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Abstract Plants have an intriguing tripartite genetic

system: Nuclear genome 9 Mitochondria 9 Plastids

and their interactions may impact germplasm breed-

ing. In grapevine, the study of cytoplasmic genomes

has been limited, and their role with respect to

grapevine germplasm diversity has yet to be eluci-

dated. In the present study, the results of an analysis of

the cytoplasmic diversity among 6073 individuals

(comprising cultivars, interspecific hybrids and

segregating progenies) are presented. Genotyping by

sequencing (GBS) was used to elucidate plastid and

mitochondrial DNA sequences, and results were

analyzed using multivariate techniques. Single

nucleotide polymorphism (SNP) effects were anno-

tated in reference to plastid and mitochondrial genome

sequences. The cytoplasmic diversity identified was

structured according to synthetic domestication

groups (wine and raisin/table gr.ape types) and
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interspecific-hybridization-driven groups with intro-

gression from North American Vitis species, identify-

ing five cytoplasmic groups and four major clusters.

Fifty-two SNP markers were used to describe the

diversity of the germplasm. Ten organelle genes

showed distinct SNP annotations and effect predic-

tions, of which six were chloroplast-derived and three

were mitochondrial genes, in addition to one mito-

chondrial SNP affecting a nonannotated open reading

frame. The results suggest that the application of GBS

will aid in the study of cytoplasmic genomes in

grapevine, which will enable further studies on the

role of cytoplasmic genomes in grapevine germplasm,

and then allow the exploitation of these sources of

diversity in breeding.

Keywords Plastid genome �Mitochondria genome �
Cytoplasmic differentiation � Cytoplasmic lineage �
Organelle genes � Vitis � Grapevine

Plants have two genetic systems that interact within

their cells: a nuclear genome and a cytoplasmic

component, which includes a mitochondrial and a

plastid genome. The interaction of these three genetic

complexes contributes to certain features that may

play a role in traits of agricultural interest: the nuclear-

cytoplasmic male sterility system in several crop

species (Eckardt 2006); abiotic stress responses, such

as cold tolerance in cucumber (Chung et al. 2007); and

some agronomic traits in potato (Sanetomo and

Gebhardt 2015). However, with the exception of

cotton, studies on cytoplasmic genomes from a

breeding perspective have been done primarily with

annual or biennial plants. In grapevine, the maternally

inherited cytoplasmic genomes, chloroplasts and

mitochondria, have been studied (Goremykin et al.

2009), but not with attribution to specific traits. In the

case of breeding germplasm, differentiation of full-sib

families was performed using RFLP markers within

the chloroplast genome (Strefeler et al. 1992), as well

as maternal lineages between domesticated and Asian

grapevine accessions (Lózsa et al. 2015). More

recently, maternal inheritance has been suggested for

the type of anthocyanin in the berries (Liang et al.

2009). The cytoplasmic genetic complex of crops is

another layer of information that breeders and geneti-

cists want to understand and exploit. The application

of next generation sequencing (NGS) technologies in

grapevine may enable study of this layer of informa-

tion and make it useful for genetic research as well as

breeding pursuits.

The present analysis included genotyping by

sequencing (GBS) data from 6073 individual vines

from the breeding programs of Cornell University

(2768), South Dakota State University (682), Univer-

sity of Minnesota (716), Missouri State University

(177), and USDA-San Joaquin Valley Agricultural

Sciences Center (1666). The vines are used as

germplasm for research and breeding in their respec-

tive programs as well as in the VitisGen project (www.

vitisgen.org) funded by the USDA-Specialty Crops

Research Initiative. Those 6073 individuals included

biparental families having at least 20 individuals,

some of them products of hybridization with various

wild Vitis species. Also, 64 selections and cultivars

used for wine, table grape, and raisin production, as

well as germplasm development, were included in the

analysis. The genetic background of the germplasm

comprised a wide range of diversity, going from pure

Vitis vinifera L. accessions (such as the progeny from

a cross between ‘Riesling’ and ‘Cabernet Sauvignon’)

to interspecific hybrids [e.g. Illinois-547-1 = V.

cinerea (Engelm. ex A. Gray) Engelm. ex Millard

accession B9 9 V. rupestris Scheele accession B38]

and complex hybrids (e.g. ‘Seyval blanc’ with back-

ground from V. vinifera, V. rupestris, and V. aestivalis

Michx.).

GBS data were generated as described by Hyma

et al. (2015), taking advantage of 384X multiplexing.

In order to identify GBS markers in organelles, the

genome sequences reported for chloroplast (Jansen

et al. 2006) and mitochondria (Goremykin et al. 2009;

Velasco et al. 2007) were included as independent

chromosomes (20 and 21, respectively) in the FASTA
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file containing the ‘Pinot noir’-derived PN40024

(Jaillon et al. 2007) 12X version 2 assembly (Adam-

Blondon et al. 2011). This file was processed and

integrated in the TASSEL-GBS pipeline (Glaubitz

et al. 2014) to call markers in both nuclear and

organellar genomes. Subsequently, the markers were

filtered using vcftools version 0.1.12a (Danecek et al.

2011) based on locations (organelle chromosomes),

sequencing depth ([10), amount of missing data

(\1 %) and presence of singletons and doubletons,

which were excluded from the final marker set. An

analysis based on the fixations index (FST, Weir and

Cockerham 1984) per marker was performed consid-

ering biparental populations as items to look for

differentiation. Thus, the identified markers were

retrieved on an individual basis and used for principal

component analyses based on marker covariance, as

well as multidimensional scaling analyses using

SNPRelate1.2.0 for R 3.2.1 (R Core Development

Team 2016). Then, a cluster analysis of the markers

with pools of individuals was performed using pvclust

2.0 (Suzuki and Shimodaira 2006) for R, using the

Euclidean distance, the Ward’s hierarchical clustering

method, and the k-means method to distinguish

clusters with bootstrapped p B 0.05 among clusters

and p C 0.05 for individuals within a cluster. The

outgroup was an accession of Vitis acerifolia Raf.

(syn. Vitis longii W.R. Prince & Prince). As an

additional measure of quality control, 177 vines

resulting from reciprocal crosses between ‘Cabernet

Sauvignon’ and ‘Norton’ (submitted by the Missouri

State University breeding program, 19 siblings from

the cross $ ‘Cabernet Sauvignon’ 9 # ‘Norton’, and

158 from the reciprocal cross $ ‘Norton’ 9 # ‘Caber-

net Sauvignon’) were used to test maternal inheritance

of markers.

Finally, the cytoplasmic DNA markers identified in

the FST analysis were stored in a VCF file that

subsequently was used as the input file for the SNP

annotation and effect prediction according to the

current annotations available using SnpEff 4.1 (Cin-

golani et al. 2012). Given that the annotations for the

grapevine chloroplast and mitochondria are not avail-

able either in the current genomic annotation of

grapevine or in the built-in databases of SnpEff, custom

annotation databaseswere generated for each organelle,

following the manual of SnpEff 4.1 and using the

existing information available inGenBank (accessions:

DQ424856.1 and FM179380.1, for chloroplast and

mitochondria, respectively). The putative impact of

SNP effects yielded for the functional annotation

procedure by SNPs through SnpEff 4.1 is described in

the ‘Variant annotation in VCF format’ document

available at the SnpEff website (Cingolani et al. 2015).

The NCBI-GenBank accession for the chloroplast

genome sequence refers to a cultivar called ‘Maxxa’,

which is not registered in the Vitis International

Variety Catalogue (http://www.vivc.de). Therefore, in

communication with Jansen et al. (2006), it was clar-

ified that the ‘Maxxa’ chloroplast genome sequence

corresponds to an accession of the cultivar ‘Syrah’,

which was derived from the BAC libraries used in the

study of Tomkins et al. (2001) (Christopher Saski,

Pers. Comm.). Up to the date of submission of this

manuscript, the information in GenBank has not been

corrected.

There were 22 SNPs identified in the chloroplast

and 30 SNPs identified in the mitochondria sequences.

Thus, 52 GBS markers were analyzed to examine the

cytoplasmic diversity of breeding progenies in the

VitisGen database. The maternal inheritance of the 52

selected markers was confirmed based on all markers

matching the maternal parent in all 177 siblings from

the reciprocal cross between ‘Cabernet Sauvignon’

and ‘Norton’. According to the principal component

analysis results and considering the 52 GBS cytoplas-

mic markers, 81.7 % of the variation is captured by the

first two principal components (62.4 % by PC1 and

19.3 % by PC2). Considering chloroplast polymor-

phisms, 34.6 % of the variation was captured by the

first two principal components. Considering mito-

chondrial polymorphisms, 82.4 % was captured

through the first two principal components. Given

these results, a graphical three-dimensional represen-

tation through a multidimensional scaling plot was

generated (Fig. 1) in which each axis captured 33.3 %

of the variation, which allowed the visualization of

cytoplasmic relationships and variability among the

breeding accessions. Genotypes studied sorted into

four main clusters: cluster A corresponded to geno-

types related to V. rupestris; cluster B encompassed

genotypes related to V. riparia and V. aestivalis; and

clusters C and D included genotypes closer to V.

vinifera; however, they may each be from distinct

cytoplasmic lineages.

The grouping of the breeding progenies according

to their cytoplasmic constitution resulted in six

cytoplasmic groups (Fig. 1), which are: (1) a group

Mol Breeding (2016) 36:116 Page 3 of 10 116

123

http://www.vivc.de


related to V. rupestris (VRU) composed of 2044

individuals, including known cultivars such as ‘Cham-

bourcin’ and ‘Cayuga White’; (2) a group with V.

vinifera origin and related to ‘Cabernet Sauvignon’

(VCS) composed of 1330 individuals, which included

known cultivars such as ‘Marquette’, ‘Flame Seed-

less’, ‘Regent’, ‘Riesling’ and ‘Ruby Cabernet’; (3) a

group encompassing table grape and raisin accessions

(VVT) composed of 862 individuals, including known

cultivars such as ‘Scarlet Royal’ and ‘Jupiter’; (4) a

group related to Vitis riparia Michx. and V. rupestris

(VRR) composed of 835 individuals, encompassing

cultivars such as ‘Frontenac’ and ‘Valvin Muscat’

(and this group may be related to group 1 as an

additional lineage); (5) a group related to V. aestivalis

(VAE) composed of 643 individuals, including acces-

sions related to ‘Tamiami’ and ‘Norton’; and (6) a

group with V. vinifera (VCY) origin composed of 319

individuals and related to ‘Chardonnay’, which also

included table grape cultivars such as ‘Autumn King’

and raisin cultivars such as ‘Sunpreme’. V. acerifolia

(VAC) was identified as an isolated individual

between groups 1 and 5. Finally, 40 individuals

presented ambiguous genotypes, due to missing data

or suspicious heterozygosity, particularly for the

mitochondrial markers, and were excluded from the

study. These individuals included known cultivars

such as ‘La Crescent’, ‘Horizon’, ‘Rubired’, and

‘Seyval blanc’.

Although it has been proposed that at the genomic

level close kinship between V. vinifera grapevine

genotypes for wine and raisin/table grapes is scarce

(Myles et al. 2011), our results suggest that V. vinifera

germplasm may share a cytoplasmic lineage regard-

less of domestication events. Thus, in terms of

cytoplasmic genes affected by SNPs, the annotation

Fig. 1 Tridimensional scaling plot of the 6073 accessions of

grapevine analyzed for their cytoplasmic diversity, based on 52

plastid and mitochondrial SNP markers. Four clusters were

identified as significantly distinct (encircled by dotted lines),

while five cytoplasmic groups plus a distinct outgroup were

distinguished: VAC corresponds to the accession of V.

acerifolia. VAE corresponds to the group of accessions related

to V. aestivalis, VCS includes accessions of V. vinifera related to

‘Cabernet Sauvignon’, VCY, includes accession of the other

lineage of V. vinifera in this study, and which are related to

‘Chardonnay’, VRR includes accessions related to V. riparia

and V. rupestris, VRU includes accessions related to another

large lineage of V. rupestris, and VVT includes accessions

related to V. vinifera but mainly individuals bred for table grape

and raisin production
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of the polymorphisms identified in this study shows

that up to 10 organelle genes (Table 1, nine annotated

genes and one open reading frame) may be affected to

distinct degrees, from high impact (stop codon) to low

impact and modifiers (a variant that is of low impact

and lacks deleterious effects, Cingolani et al. 2015).

Six plastid genes were found with SNP effects (atpA,

rcpoC2, psbD, psbB, rps12 and ndhE) (Table 1). A

high-impact effect (i.e. a new stop codon) was noted

for the gene psbB for Photosystem II P680 chlorophyll

A apoprotein (Westhoff et al. 1983), with a transition

from G ? A occurring at position 77,699 bp. This

protein is related to the use of energy from light to

extract electrons from water, to generate oxygen and a

proton gradient for the subsequent formation of ATP.

Interestingly, nine individuals showed this transition:

five selections from the Cornell breeding program, two

from Missouri State University, and two from Univer-

sity of Minnesota. In the latter case, this transition was

noted in the table grape cultivar ‘Swenson Red’, which

descends from V. riparia and V. labrusca L. However,

the maternal background seems to come from V.

labrusca given that the female grandparent ‘Witt’ is

reported to result from self-pollination of ‘Concord’,

having V. labrusca maternal ancestry (Hedrick et al.,

1908). Unfortunately, in the set of breeding selections

analyzed, germplasm with maternal descent from V.

labrusca was not considered. Therefore, our results

suggest that the addition of labrusca-related genotypes

will help to further describe cytoplasmic diversity

within Vitis breeding programs.

The role of chloroplasts in plant response to

environmental stimuli is supported by the relevance

of this organelle for photosynthesis and metabolism;

in addition, evidence supports the role of this organelle

for environmental sensing to trigger adaptive

responses due to abiotic and biotic stresses, and to

control the aging processes (Bouvier et al. 2009).

Thus, in crops such as tomato, differential transcrip-

tion of the gene psbB has been linked to responses to

salinity–alkalinity stress (Li et al. 2015). However,

there are no studies addressing the role of certain

chloroplast polymorphisms to adaptive responses in

grapevine. In the present study, it is interesting that

‘Swenson Red’ showed a particular high-impact SNP

effect, since this table grape cultivar is considered to

be moderately cold-hardy, and the gene psbB is a

member of a complex gene cluster for land plant

chloroplasts (psbB-psbT-psbH-petB-petD operon,

Barkan 2011), which may be involved in the response

to cold stress (Kupsch et al. 2012). Further research is

needed, whichmay involve the manipulation of plastid

genes.

Three mitochondrial genes (nad1, nad2 and nad5)

and one mitochondrial open reading frame (orf104)

were found with SNP effects (Table 1). The great

majority of effects (33 out of 60) were located in intron

regions, which could affect more than one gene. Some

of these SNP effects may affect splicing, giving rise to

multiple protein isoforms. Only one variant, located at

581,741 bp, showed either moderate or low impact for

orf104 and nad5, respectively. When the change was a

transversion (from A ? C), it had a moderate impact

in the leading strand on orf104, which should be

related to proteins reported in tobacco and maize, but

is still an uncharacterized protein (Goremykin et al.

2009). When the change was a transversion (from

A ? T), it had a low impact in the lagging strand on

nad5, which in its gene ontology is related to ATP

synthesis. Interestingly, 884 individuals, mainly from

the group VCY showed the transversion affecting

orf104, while the transversion affecting nad5 was

found in the great majority of the individuals, inde-

pendent of the cluster identified previously.

Our study provides a first approach to the study of

mitochondrial genome diversity within breeding

selections of Vitis. Nevertheless, the germplasm

diversity captured exclusively by mitochondrial poly-

morphisms is remarkable, considering that 82.4 % of

the variation was captured by the first two principal

components, and the characterization and use of this

diversity may follow several paths. The evolution and

colonization of species may be studied in wild Vitis

populations, as has been done for pines (Wu et al.

1998). For purposes of germplasm conservation and

breeding, mitochondrial markers may allow a more

robust determination of the maternal backgrounds of

not only cultivars (Arroyo-Garcı́a et al. 2002) but also

interspecific hybrid accessions within Vitis germplasm

collections, especially when parentage is uncertain or

untraceable. With the availability of GBS data on

germplasm accessions and the development of ana-

lytical tools such as AmpSeq (Yang et al. 2016), the

elucidation of such cytoplasmic lineages seems attain-

able, as well as the accurate determination of

cytoplasmic haplotypes in individual, family and

breeding program bases. The grapevine mitochondrial

genome is one of the largest in dicots (Goremykin

Mol Breeding (2016) 36:116 Page 5 of 10 116
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Table 1 Cytoplasmic polymorphisms identified in this study, as well as SNP effects on plastid and mitochondrial genes

Locusa,b Referencec Alternative(s)d Effect(s)e Impact(s)f Gene(s)g Gene(s) names

S20_11990 G T, A Missense variant Moderate atpA ATP synthase CF1 alpha chain

S20_11992 T C, G Missense variant,

Synonymous

variant

Moderate,

Low

atpA

S20_12036 T G, C Missense variant Moderate atpA

S20_12037 C G, T Missense variant Moderate,

Low

atpA

S20_12038 T G, C Missense variant Moderate,

Low

atpA

S20_12044 G C, A Missense variant Moderate atpA

S20_18436 A T Synonymous variant Low rpoC2 RNA polymerase beta

S20_36731 C A, G Missense variant Moderate psbD Photosystem II protein D2

S20_36751 T G, C Synonymous variant Low psbD

S20_36759 T C, G Missense variant Moderate psbD

S20_36762 A G Missense variant Moderate psbD

S20_36770 T G Missense variant Moderate psbD

S20_36773 T C Missense variant Moderate psbD

S20_36777 A G Missense variant Moderate psbD

S20_36784 T C, G Synonymous variant Low psbD

S20_77694 T G, C Synonymous variant,

Intron variant

Low,

Modifier

psbB, rps12 Photosystem II P680 chlorophyll A

apoprotein, Ribosomal protein S12

S20_77699 G A, T Stop gained,

Missense variant

High,

Moderate

psbB, rps12

S20_77708 T G, C Missense variant,

Intron variant

Moderate,

Modifier

psbB, rps12

S20_77918 G A, T Missense variant,

Intron variant

Moderate,

Modifier

psbB, rps12

S20_77925 A G, T Missense variant,

Synonymous

variant

Moderate,

Low

psbB, rps12

S20_123934 T C, A Missense variant,

Intron variant

Moderate,

Modifier

ndhE, rps12 NADH dehydrogenase subunit 4L,

Ribosomal protein S12, Ribosomal

protein S12S20_123960 A G, C Missense variant,

Synonymous

variant

Moderate,

Low

ndhE, rps12

S21_129983 C A, G Intron variant Modifier nad5 NADH dehydrogenase subunit 5

S21_130007 G A Intron variant Modifier nad5

S21_130037 G A, T Intron variant Modifier nad5

S21_130340 A T, C Intron variant Modifier nad5

S21_151790 A C Intron variant Modifier nad5

S21_151813 A C, G Intron variant Modifier nad5

S21_151815 A C Intron variant Modifier nad5

S21_156980 A T, C Intron variant Modifier nad5

S21_156981 A T, G Intron variant Modifier nad5

S21_156982 G T, C Intron variant Modifier nad5

S21_170740 A C Intron variant Modifier nad5, nad1 NADH dehydrogenase subunits 5 and 1
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Table 1 continued

Locusa,b Referencec Alternative(s)d Effect(s)e Impact(s)f Gene(s)g Gene(s) names

S21_258198 T A, G Intron variant Modifier nad5, nad1,

nad2

NADH dehydrogenase subunits 5, 1 and

2

S21_258213 C A, G Intron variant Modifier nad5, nad1,

nad2

S21_258214 G T, A Intron variant Modifier nad5, nad1,

nad2

S21_317016 T G, A Intron variant Modifier nad5, nad1,

nad2

S21_327855 A C Intron variant Modifier nad5, nad1,

nad2

S21_342889 T A, C Intron variant Modifier nad5, nad1,

nad2

S21_355591 A C Intron variant Modifier nad5, nad1,

nad2

S21_363763 A T Intron variant Modifier nad5, nad1,

nad2

S21_367092 C T, G Intron variant Modifier nad5, nad1,

nad2

S21_368888 G T, C Intron variant Modifier nad5, nad1,

nad2

S21_427497 G A Intron variant Modifier nad5, nad1,

nad2

S21_495021 T A, C Intron variant Modifier nad5, nad1,

nad2

S21_495022 T A Intron variant Modifier nad5, nad1,

nad2

S21_495023 C T, G Intron variant Modifier nad5, nad1,

nad2

S21_495024 T A, G Intron variant Modifier nad5, nad1,

nad2

S21_518882 G T Intron variant Modifier nad5, nad1,

nad2

S21_571261 C T Intron variant Modifier nad5, nad1,

nad2

S21_581741 A C, T Missense variant,

Synonymous

variant,

Synonymous

variant

Moderate,

Low

orf104,

nad5, nad1

Protein YP_002608359.1 similar to

orf103a in Nicotiana and orf105-c in

Zea, NADH dehydrogenase subunits 5

and 1

S21_616454 C A, T Intron variant Modifier nad1, nad2 NADH dehydrogenase subunits 1 and 2

a Locus names starting with S20 denote plastid SNPs while locus names starting with S21 denote mitochondrial SNPs
b Numbers after the underscore denote the physical position on the organelle genome sequence
c Reference denotes the nucleotide allele in the reference
d Alternative denotes the nucleotide allele(s) identified as polymorphisms; when more than one alternative was identified these are

separated by commas (the same pattern is follow in subsequent columns)
e Effects denotes the type of effect on the sequence given by the presence of the SNP
f Impact denotes the impact of the effect on the sequence as described by Cingolani et al. (2015)
g Gene name abbreviation
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et al. 2009; Mower et al. 2012); however, the

mechanisms of recombination are not yet clear

(Marechal and Brisson 2010). So, this source of

variation is mostly unexplored, although methods for

its study have been developed (Picardi et al. 2010).

Even though empirical experience suggests that

grapevine breeders are actively selecting for traits that

may be influenced by cytoplasmic genomes during

genetic improvement and cultivar development, the

actual extent is unknown. For instance, one may

expect that certain berry skin hues might be chosen

over others due to a particular pattern of oxidation of

certain types of anthocyanin (Janeiro and Brett 2007).

These pigments might be influenced by certain

cytoplasmic features leading a maternal inheritance,

as suggested by Liang et al. (2009). However, this

hypothesis has yet to be experimentally addressed.

Similarly, breeders are sometimes using wild species

as female parents, since the practice suggests that by

this route abiotic stress resistance may be improved,

implying that organelles may have special relevance.

Certainly, analyses of the inheritance of such complex

traits with an emphasis on maternal inheritance have

not been accomplished, and experiments to address

these kinds of questions would require efforts and

funding that are not usually available within grapevine

breeding programs budgets. Evidence from other

species suggests that some cytoplasmic-influenced

traits have experienced active anthropogenic selec-

tion. For instance, in Arabidopsis thaliana L., the

generation of mitochondrial-derived reactive oxygen

species; transition of mitochondria morphology;

depolarization of mitochondrial membrane potential;

and modulation of mitochondrial respiratory genes are

involved in certain signals for the salicylic acid

pathway (Nie et al. 2015). This metabolic pathway is

pivotal in plant defense responses and then in traits of

high breeding relevance, which are readily identified

in either commercial germplasm, or among accessions

deposited in repositories.

On the other hand, several currently neglected

research topics in Vitis are now accessible with the use

of NGS techniques to better understand grapevine

biology. For instance, nothing is known in Vitis about

the nuclear integrants of organelle DNA (norgs,

Rousseau-Gueutin et al. 2011) whether from plastids

(nupts, Timmis et al. 2004) or mitochondria (numts,

Lopez et al. 1994), and their relevance to grapevine

biology, genetics, agroecology, and breeding. In the

present analysis, we used sequences of plastid and

mitochondria as independent autosomes with the

purpose of discovering markers through the alignment

with those sequences. Some of those alignments may

also come from certain nuclear sequences representing

actual norgs, since Goremykin et al. (2009) have

described horizontal gene transfer in grapevine. The

identification and characterization of these norgs are

possible (Rousseau-Gueutin et al. 2011) and attainable

using techniques of NGS amplicon sequencing.

Another pending topic is the role of heteroplasmy

[coexistence in a cell of distinct mitochondrial

genomes—and possibly plastid genomes (Wolos-

zynka 2010)] in the diversity of mitochondria in

grapevine. Plant mitochondria, unlike animal mito-

chondria, can recombine and are a very active

genomic system (Sloan 2013). Phenomena such as

horizontal gene transfer (Goremykin et al. 2009);

coexistence of alternative mitotypes; and segregation

of these alternative mitotypes during plant develop-

ment (Woloszynka 2010) enrich the genetic makeup

of plant species. Segregation of mitotypes at distinct

developmental stages and within specific organs may

lead to chimerism, which is an important source of

phenotypic variation in grapevine, and often not well

understood. The relevance of mitochondrial and

plastid diversity also has implications to describe the

divergence and diversity of wild relatives of crops, as

seen for carrot (Mandel et al. 2012; Mandel and

McCauley 2015). In the case of grapevine, the

description and understanding of such diversity could

inform North American breeding programs given the

active use of wild species and complex interspecific

hybrids. In this study, we tried to avoid the ‘‘noise’’

possibly produced by heteroplasmy by not accounting

for singletons and doubletons, although these features

may be indicative of heteroplasmy and need further

attention.

In this study, we characterized cytoplasmic diver-

sity in a large sampling of North American and V.

vinifera genotypes. Cytoplasmic diversity was struc-

tured according to synthetic domestication groups

(wine and raisin/table grape types) and interspecific-

hybridization groups (breeding selections with intro-

gression from related species). Although resources are

available for the study of cytoplasmic diversity, such

resources may be greatly improved with the applica-

tion of NGS. In addition, further studies of the role of

cytoplasmic genomes in specific traits relevant to

116 Page 8 of 10 Mol Breeding (2016) 36:116
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grapevine improvement are desirable (i.e. reciprocal

crosses). Consideration of the cytoplasmic genome

sequences for any grapevine genome sequence assem-

bly is desirable to continue the further exploration of

the role of cytoplasmic genomes in viticulture.
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