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Abstract

Next-Generation Sequencing has made available substantial amounts of large-scale Omics

data, providing unprecedented opportunities to understand complex biological systems. Spe-

cifically, the value of RNA-Sequencing (RNA-Seq) data has been confirmed in inferring how

gene regulatory systems will respond under various conditions (bulk data) or cell types (sin-

gle-cell data). RNA-Seq can generate genome-scale gene expression profiles that can be

further analyzed using correlation analysis, co-expression analysis, clustering, differential

gene expression (DGE), among many other studies. While these analyses can provide

invaluable information related to gene expression, integration and interpretation of the results

can prove challenging. Here we present a tool called IRIS-EDA, which is a Shiny web server

for expression data analysis. It provides a straightforward and user-friendly platform for per-

forming numerous computational analyses on user-provided RNA-Seq or Single-cell RNA-

Seq (scRNA-Seq) data. Specifically, three commonly used R packages (edgeR, DESeq2,

and limma) are implemented in the DGE analysis with seven unique experimental design

functionalities, including a user-specified design matrix option. Seven discovery-driven meth-

ods and tools (correlation analysis, heatmap, clustering, biclustering, Principal Component

Analysis (PCA), Multidimensional Scaling (MDS), and t-distributed Stochastic Neighbor

Embedding (t-SNE)) are provided for gene expression exploration which is useful for design-

ing experimental hypotheses and determining key factors for comprehensive DGE analysis.

Furthermore, this platform integrates seven visualization tools in a highly interactive manner,

for improved interpretation of the analyses. It is noteworthy that, for the first time, IRIS-EDA

provides a framework to expedite submission of data and results to NCBI’s Gene Expression

Omnibus following the FAIR (Findable, Accessible, Interoperable and Reusable) Data Princi-

ples. IRIS-EDA is freely available at http://bmbl.sdstate.edu/IRIS/.
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This is a PLOS Computational Biology Software paper.

Introduction

Advanced computational tools with appropriate experimental designs and interactive interface

are needed to build integrated models of biological systems and devise deliverable strategies to

prevent or treat disease [1–3]. RNA-Seq has created vast amounts of gene expression data and

the demand for data analysis and interpretation is significant [4]. Analysis of the gene expres-

sion data is facilitated by computational experience in appropriately designing the methods

and experiments and conducting the analysis processes using one of many computing lan-

guages. This creates an obstacle for users with limited computational experience who want to

analyze their RNA-Seq studies; thus there is an increased need for easy-to-use interactive

expression analyses and results visualization [5].

While a wide variety of computational methods can be applied to expression data to deter-

mine particular qualities of the data on a sample or cell level [6–13], differential gene expres-

sion (DGE) analysis is the most commonly used. It allows researchers to identify differentially

expressed genes (DEGs) across two or more conditions and can provide a meaningful way to

correlate differences in gene expression levels with phenotypic variation. Many tools have

been developed and optimized, such as: DESeq [14], DESeq2 [15], edgeR [16], limma [17],

Cuffdiff [18], Cuffdiff2 [19], sleuth [20], and many others. While there have been substantial

efforts in DGE analysis and visualization of DGE results [21–28], numerous pitfalls and

bottlenecks persist, including challenges with experimental design, a need for comprehensive

integrated discovery-driven analyses and DGE tools, and the lack of functionalities and inter-

activity related to visualizing the analysis results.

To address these bottlenecks, we have created IRIS-EDA, which is an Interactive RNA-Seq

Interpretation System for Expression Data Analysis. It provides a user-friendly interactive

platform to analyze gene expression data comprehensively and to generate interactive sum-

mary visualizations readily. In contrast to other analysis platforms, IRIS-EDA provides the

user with a more comprehensive and multi-level analysis platform. IRIS-EDA outperforms

other tools in several critical areas related to efficiency and versatility offering: 1) Single-cell

and bulk RNA-Seq analysis capabilities, 2) GEO submission compatibility, 3) seven useful dis-

covery-driven and DGE analyses, 4) seven experimental design approaches through three inte-

grated tools for DGE analysis, and 5) seven interactive visualizations (Fig 1).

Specifically, IRIS-EDA provides comprehensive RNA-Seq data processing and analysis in a

seamless workflow. This investigative approach uses expression quality control and discovery-

driven analyses integrated with DGE analysis through one of the three widely used R packages,

DESeq2, edgeR, and limma, all of which have demonstrated capacities for expression data anal-

ysis [29]. It provides users with a choice of intuitive experimental design options (e.g., pairwise

and factorial comparisons, main and grouped main effects, etc.), as well as, the option to

upload a custom design matrix in the DGE analysis. IRIS-EDA includes numerous interactive

visualizations for each analysis type, enabling users to gain an immediate global view of their

data and results or download as a high-resolution static image for publications. For the first

time, this tool implements a framework based on the FAIR Data Principles [30] to assist users

with the submission of their data and results to NCBI’s Gene Expression Omnibus (GEO).

A shiny web server for RNA-Seq data analysis and interpretation
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Design and implementation

Bulk and single-cell RNA-Seq analysis

IRIS-EDA was designed to provide a comprehensive platform for gene expression data analy-

sis, which includes applicable analysis of both bulk and single-cell sequencing data. Single-cell

RNA-Seq (scRNA-Seq) data analysis is a growing area of study within RNA-Seq analyses and

can provide unique insights into gene expression patterns considering cell variations [31, 32].

The methods used for traditional DGE analysis have demonstrated applicability to scRNA-Seq

DGE analysis when combined with proper filtering and DGE methods [32]. Thus, IRIS-EDA

can facilitate discovery-driven and DGE analysis for scRNA-Seq data with few modifications.

Namely, analysis of single-cell data can be appropriately carried out by using a stringent filter

cutoff based on a default setting of transcripts per million (TPM)> 1, especially when com-

bined with either edgeR or limma, which have both been shown to have high performance on

scRNA-Seq data [32]. For particular types of scRNA-Seq data that expect overall low expres-

sion levels, such as 10X single-cell data, a different approach is provided to account for the dif-

ferences. In particular, DESeq2 normalization methods are used in conjunction with no

filtering of genes to provide the most reliable analysis results [33]. More details regarding the

analysis of scRNA-Seq data can be found in the Single-cell RNA-Seq section of S1 Text.

Required inputs

IRIS-EDA requires two or three user-provided input files, depending on the type of data used:

(1) a gene expression estimation matrix (EEM, also referred to as read count data), (2) a condi-

tion matrix with factor levels corresponding to the provided samples in the EEM, and (3) a

gene length matrix indicating the base-pair length of each gene to be used for filtering of

scRNA-Seq data only. When uploading data, users will select gene expression data type: either

bulk or single-cell RNA-Seq data. If using scRNA-Seq data, the additional requirement for

gene length matrix will be shown on the web server. Also, default parameterizations for

Fig 1. IRIS-EDA integrated functions. Comparison of IRIS-EDA and six other DGE analyses and visualization tools regarding available features, integrated tools,

visualizations, and analyses.

https://doi.org/10.1371/journal.pcbi.1006792.g001
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optimized analysis for single-cell data will be populated throughout the server. Methods to

obtain gene lengths from GFF/GTF/GFF3 annotation files can be found in the Single-cell
RNA-Seq section of S1 Text.

After submitting the required inputs, one of the three normalization approaches can be

selected, or users can choose not to normalize the data. The three normalization methods

available in IRIS-EDA are the normal log transformation, regularized log transformation, and

variance stabilizing transformation. The normal log transformation uses a base-2 log function

to normalize the expression for each gene. Doing so improved the expression distribution

visualizations, particularly for sparse expression matrices where the large number of zeros can

lead to little information collected from non-transformed plots. The regularized log transfor-

mation provides a method to minimize the differences between samples with small gene

counts and regularizes based on library size [15]. The regularized log transformation method

is most useful for datasets where library sizes do not vary greatly. The variance stabilizing

transformation also normalizes by library size and provides an expression matrix that is

roughly homoscedastic [15]. For datasets with library sizes that vary greatly, the variance stabi-

lizing transformation method would be most appropriate.

Discovery-driven analyses

Discovery-driven analyses include tools and algorithms designed to provide an investigative

approach of expression data, especially for the situation where users do not have a strong

direction or hypothesis for their data analysis procedures. These algorithms assist users in ana-

lyzing and visualizing their EEM input information and discovering trends in their data that

may provide additional hypotheses for downstream analyses. In particular, discovery-driven

analyses can help users define a specific hypothesis within their RNA-Seq study, which can

assist in development of experimental design methods for DGE analysis. Discovery-driven

analyses processes available in IRIS-EDA include: sample correlation analysis and pairwise

expression scatterplots, expression heatmaps, clustering, biclustering, principal component

analysis, multidimensional scaling, t-distributed Stochastic Neighbor Embedding, and sample

distance matrix. The figures generated through the discovery-driven analysis feature of IRI-

S-EDA are provided in an interactive manner, allowing users to select specific samples or pair-

wise comparisons to further evaluate. One such example is with the sample correlation

analysis and pairwise scatterplots. Users can choose one cell of the sample correlation matrix

corresponding to a comparison between two samples. This will display the pairwise scatterplot

for that specific comparison. The user can then scroll over the scatterplot and display the gene

ID for an indicated data point. A detailed example with more tutorial information will be

shown in the Results section.

Differential gene expression analysis

DGE analysis in IRIS-EDA is performed using one of three tools provided: DESeq2 [14], edgeR
[16], and limma [17]. These three tools were selected based on their widespread use in pub-

lished RNA-Seq studies and reviews [28]. The default tool is DESeq2, based on independent

evidence supporting its performance [29] and our RNA-Seq analysis experience, but users can

also select one of the other two tools based on their own preference. There are other high-per-

forming commonly-used DGE tools available; however, their compatibility with IRIS-EDA

excludes their use in IRIS-EDA. For example, tools that do not utilize read count data, e.g.,

Sleuth, [20] or are not R-based, e.g., Cuffdiff [18], are not included due to compatibility issues.

In addition to the DGE tools, experimental design can also be specified by the user. The

designs provided in IRIS-EDA include two-group (pairwise) comparisons, multiple factorial

A shiny web server for RNA-Seq data analysis and interpretation
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comparisons, classic interaction design, additive models for pairing or blocking of data, main

effect testing (testing time-series data) and blocked main effect testing. IRIS-EDA provides

additional flexibility for the instances when the user needs a design not already included in

IRIS-EDA. Each of these methods has unique parameters to be specified by the user, typically

including which factors are intended for analysis and which specific comparisons are required.

After analyzing the data, IRIS-EDA provides an overview displaying the number of up- and

down-regulated IDs for each indicated comparison, along with a histogram displaying this

information. The results table is also available through IRIS-EDA, along with interactive MA

and Volcano plots. Both of these plots allow users to compare DGE results metrics, such as log

fold-change, mean expression, and adjusted p-value.

Similar to the figures generated in the Discovery-Driven Analysis section of IRIS-EDA, the

plots in the DGE section are also highly interactive. Discovery-Driven Analysis features allow

users to gain more specific information from their plots, including highlighting individual or

regions of data points on the plot. These features highlight the corresponding row of the DGE

results table, showing users gene information identifying them as outliers or falling within a

certain region. Conversely, users can select specific gene IDs from the results table, resulting in

the highlighting of that gene ID’s or set of gene IDs’ data points on the corresponding plot.

This feature can be used to easily determine the relative location of specific genes or gene sets

in the plot.

Results obtained from the DGE analysis section of IRIS-EDA are often not the end of the

analysis procedures. Based on the information collected, users may choose to further investi-

gate their expression data using additional analyses provided in the Discovery-Driven Analyses

section, such as the clustering or biclustering. This feedback loop between DGE and Discov-

ery-Driven analyses allows for supporting and complementing analyses to function in tandem,

providing more comprehensive data interpretation.

IRIS-EDA outputs

IRIS-EDA provides users with methods for extracting content based on discovery-driven and

DGE analyses. All figures in the Quality Control, Discovery-Driven Analysis, and DGE Analy-

sis sections have the option for users to download as a static image in PDF or PNG format.

Additionally, all tables in the DGE Analysis section are downloadable as CSV files, with the

final results table being downloaded in its entirety or filtered based on user-provided or

default-adjusted p-value and log fold-change cutoffs. The DGE Analysis results can also be

used for functional enrichment analysis, with detailed instructions included in this tab and in

S1 Text S7.3. As part of the clustering and biclustering analyses, users can also download a list

of gene IDs contained within the specified cluster.

GEO submission and FAIR Data principles compatibility

Many users are also interested in submitting their RNA-Seq data to a public repository for

accessibility, but this process can be tedious and troublesome. NCBI’s GEO database has spe-

cific requirements related to the data, results, and accompanying metadata file. To assist users

in their preparation of documents for GEO submission, IRIS-EDA offers an optional GEO

page. In following with the standard set forth by the FAIR Data Principles [30], this page asks

users to provide a limited amount of information that will be used, along with the previously

provided condition matrix information, to populate the metadata file required for GEO sub-

mission. This populated metadata file will then be available for download with reformatted

processed data files extracted from the EEM. These two pieces of information can later be sub-

mitted with the original raw FASTQ-formatted RNA-Seq data to the GEO submission page.

A shiny web server for RNA-Seq data analysis and interpretation
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More detailed information regarding the usage of the GEO capabilities of IRIS-EDA can be

found in the GEO Usage section of S1 Text.

Results: An application example using scRNA-Seq data

To demonstrate the effectiveness of IRIS-EDA, we analyzed a scRNA-Seq dataset consisting of

human tissue cells from various cell types. The expression data was taken from Yan, et al. [34].

The raw counts file was uploaded as the example scRNA-Seq data available on the IRIS-EDA

server. All requisite information, including sample information and gene lengths are automati-

cally provided using the example datasets. The scRNA-Seq example dataset is composed of 90

cells. While this may not be entirely representative for the ever-increasing size of scRNA-Seq

datasets, this will be used for example purposes due to size limitations. Users interested in ana-

lyzing larger datasets (1000+ cells) should refer to the S1 Text S9 for information related to the

optimized use of the IRIS-EDA server for this purpose, as well as how to access an example

dataset of this size.

Gene expression data quality control

After data upload, the three input files are first analyzed by IRIS-EDA quality control. Input

data quality is evaluated using boxplots and histograms of the read count distributions. The

purpose of the quality control process is to enable exploration of the submitted data and to ver-

ify that there are no unexpected or unexplainable abnormalities in the data, such as low total

read counts or individual samples displaying strange distribution behavior. Based on the

scRNA-Seq filtration method of TPM> 1, 78 out of the original 3,679 genes were filtered, leav-

ing a total of 3,601 genes. This process is conducted to reduce the false-positive rate experi-

enced in analyses related to scRNA-Seq data. Following data upload and initial quality check,

users can continue on to the Discovery-Driven Analyses section of IRIS-EDA, which is broken

down further into five subsections.

Correlation analyses. The analyses under the “Correlation” tab of the Discovery-Driven

Analyses provide a pairwise sample Pearson correlation value through an interactive heatmap.

Selecting a cell in this heatmap generates the indicated pairwise scatterplot of gene expression

values. In this example, two two-cell embryo samples are chosen, indicating a correlation value

of 0.931, which is relatively high compared to the correlation observed in the dark blue cells,

such as the morulae cells compared with the late blastocyst cells (Fig 2A). The scatterplot that

is generated from selecting this sample comparison shows high clustering of data points along

the diagonal, indicating a high similarity between these two samples across all gene expression

levels (Fig 2B). The sample distance matrix also shows supporting information is this compari-

son, in that the multi-cell embryo samples cluster separately from the late blastocyst samples

(Fig 2C).

Principal component analysis, multidimensional scaling, and t-distributed Stochastic

Neighbor Embedding. PCA, MDS, and t-SNE provide linear, non-linear, and non-paramet-

ric transformations, respectively, of the gene expression vectors represented by each sample

for dimension reduction. The transformations are then commonly plotted as scatterplots by

the first two principal components representing the most variance between samples. Where

the most variance is observed in the first and second components, particular clusters of cells

appear to group together, indicating high similarity about that transformation. In the scRNA--

Seq example, clusters Five and Six and clusters One, Two, Three, and Four group together

closely in both the PCA (Fig 3A) and MDS (Fig 3B) plots, while cluster Seven is quite isolated.

This shows a high level of difference between the late blastocyst samples and other samples.

The t-SNE feature allows for visualization of either two or three dimensions, with the three-
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dimensional plot allowing for rotation of the axes. The three-dimensional plot of the scRNA--

Seq example data shows mostly clustering of similar clusters, except a single instance of clus-

ters Seven, Six, and Two grouping together.

Clustering. Clustering of samples based on gene expression can provide helpful insight to

group samples and conditions with similar expression level across all genes. For scRNA-Seq

data, clustering can provide information related to cell types. While clustering methods alone

cannot lead to full cell-type prediction, they can help support other cell-type prediction meth-

ods. State-of-the-art cell-type prediction methods involve at least two steps, one of which is a

Fig 2. Correlation analyses. (A) Interactive correlation heatmap generated from single-cell gene expression data; (B) Scatterplot generated by selected a cell in

the interactive correlation heatmap; (C) Sample distance matrix showing Euclidean distances between samples, along with hierarchical clustering.

https://doi.org/10.1371/journal.pcbi.1006792.g002
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Fig 3. Principal component analysis, multidimensional scaling, and t-distributed Stochastic Neighbor

Embedding. (A) PCA plot showing the first two principal components; (B) MDS plot showing the first two MDS

coordinates; and (C) t-SNE plot showing the first two t-SNE coordinates.

https://doi.org/10.1371/journal.pcbi.1006792.g003

Fig 4. Clustering and biclustering. (A) Sample dendrogram and color bar representing optimized identified clusters for the WGCNA method of clustering on

the scRNA-Seq example data. The dendrogram shows the 2- and 4-cell samples clustering together, with the Late Blastocysts forming a unique cluster. (B) The

first three biclusters were generated using QUBIC on the IRIS-EDA server. The first two biclusters (69 and 49 genes) show the grouping of Oocyte, Zygote, and

2- and 4-cell samples and Oocytes, Zygote, and 2-, 4-, and 8-cell samples, respectively. The third bicluster (52 genes) separates the Late Blastocysts from the

other samples. These three biclusters demonstrate the expression similarity between the Oocyte, Zygote, and multi-cell samples relative to the Late Blastocyst

samples over numerous gene sets.

https://doi.org/10.1371/journal.pcbi.1006792.g004
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clustering approach [35]. In IRIS-EDA, three clustering methods are provided: Weighted

Gene Co-expression Network Analysis (WGCNA) [36], k-medoids [37], and the Markov Clus-

tering Algorithm (MCL) [38]. WGCNA, k-medoids, and MCL represent the highest perform-

ing clustering methods from hierarchical, representative, and graph-based clustering

approaches, with WGCNA being the highest overall performer [9]. Because of this, we selected

WGCNA for use in the example, generating results related to the hierarchical clustering of

samples (Fig 4A). In this WGCNA analysis, the 2-cell and 4-cell samples cluster together quite

closely, and the 8-cell samples were distributed throughout the remaining cell types.

Biclustering. Biclustering can group together subsets of the expression profile, indicating

genes that have high expression similarity in only a subset of cells. Heatmaps for the first three

biclusters are shown in Fig 4B, with the first two showing expression similarities for the

Oocyte, Zygote, and Embryo cells, while the third cluster shows high homogeneity for the late

blastocyst cells. This information is also supported in the PCA and MDS analyses.

Differential gene expression analysis

Experimental design. For the purpose of analyzing the example scRNA-Seq data, we will

be using the basic two group comparison design, which looks for differences between selected

clusters. Based on the information in the Discovery-Driven Analyses section, we know the

samples in cluster Seven appear different than the other samples. Because of this, the factor lev-

els chosen for comparison are all comparisons involving cluster Seven.

DGE overview. The Overview tab of the DGE Analysis section in IRIS-EDA provides

basic information related to the number of DEGs in the selected comparisons, specifically the

Fig 5. DGE overview. An overview of the number of DEGs determined using DESeq2 on the IRIS-EDA server. Cell-type Seven is compared against the other

six cell types based on the number of up- and down-regulated genes. The Seven and Four comparison shows the highest number of DEGs of all comparisons,

followed by Seven and Five comparison. The other four comparisons show similar numbers of DEGs, with all comparisons showing at least as many down-

regulated genes as up.

https://doi.org/10.1371/journal.pcbi.1006792.g005
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Fig 6. DGE overview. (A) MA plot for the Seven and Four cluster comparison with particular genes highlighted in the results table and corresponding location

in the figure; (B) Volcano plot for the Seven and Four cluster comparison with particular genes highlighted in the results table and corresponding location in

the figure; (C) The searchable, interactive table corresponding to both the MA plot and Volcano plot, showing results of the DGE analysis from the user-

selected DGE tool.

https://doi.org/10.1371/journal.pcbi.1006792.g006
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number of up- and down-regulated genes. This information is provided as a table and as a bar

plot (Fig 5). The single-cell example data, with pairwise comparisons relative to cluster Seven,

show most comparisons having more down-regulated genes. This indicates cluster Seven has

higher expression levels of a large number of genes compared to the other clusters. In particu-

lar, the Seven and Four comparison has the highest number of down-regulated DEGs and the

highest number of DEGs overall.

DGE plots. Two interactive plots are provided following DGE analysis on IRIS-EDA.

Both are accompanied by a linked table, which highlights the results information for a selected

gene in the figure or highlights the gene in the figure corresponding to the selected gene from

the table. Since the Seven vs. Four cluster comparison shows the highest number of DEGs

from the DGE Overview table, this comparison seems like an interesting choice to explore fur-

ther using the DGE plots. Both the MA plot and Volcano plot show features of potential genes

of interest. The MA plot gives a visual representation of mean expression compared with log

fold-change for a selected comparison, while the Volcano plot compares log fold-change with

adjusted p-values. BANK1, which is associated with calcium binding in the central nervous

system, is highly differentially expressed between the late blastocyst and 4-cell embryo samples.

This high absolute log fold-change is shown in both the MA and Volcano plots (Fig 6A & 6B)

by selecting BANK1 in the interactive table (Fig 6C).

Availability and future directions

The Shiny open-source tool can be accessed through the direct URL bmbl.sdstate.edu/IRIS/ or

can be loaded locally using basic R code loaded through GitHub (https://github.com/btmonier/

iris). The tutorial found on the server and in S1 Text provides a comprehensive explanation of

all features within the IRIS-EDA tool, including descriptions of how to optimally use each fea-

ture. Descriptions of the interpretations for each analysis can also be found in this document.

In future iterations of this tool, we plan to expand the scope of analyses that IRIS-EDA can

cover. Analyses such as functional enrichment, motif prediction [39], and various other net-

work analyses have the potential to provide further insight into expression data. Thus, the

inclusion of these analyses would benefit a certain segment of researchers. Additionally, we

plan to explore the implementation of IRIS-EDA in the Galaxy platform [40]. This implemen-

tation would allow for an even broader base of users for this tool.

As demonstrated through the discussion of methods and demonstration using scRNA-Seq

data, IRIS-EDA provides a method for comprehensive analysis of expression data. It is our

hope that this tool will have a substantial impact on researchers aiming to explore and analyze

both bulk and single-cell RNA-Seq data.

Supporting information

S1 Text. IRIS-EDA supplementary material. Detailed tutorial for the IRIS-EDA web server.

(PDF)
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