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1 Introduction

The modern S-matrix program has been wildly successful when applied to gravitation [1–

4], including higher derivative theories [5–9]. In the age of LIGO, there has been much

attention given to the simplicity of amplitude techniques in computing post-Newtonian and

post-Minkowskian corrections to General Relativity (GR) [10, 11], and in fact it has been

shown that the classical contribution of loop amplitudes correspond to terms in a post-

Minkowskian expansion [12, 13]. As an interesting modification of GR, one can consider

theories of gravity which involve terms cubic in either the Riemann or Ricci tensors which,

among other things, contain non-trivial black hole solutions in four dimensions [14]. Such

higher-derivative contributions to the gravitational action are often encountered within

string theory [15], and can be formulated in such a way as they only possess spin-2 degrees

of freedom on-shell [16, 17]. In this paper, we will explore both classical and quantum

aspects of this theory by computing its scattering amplitudes using modern techniques.

From there, we will use these amplitudes to derive the semi-classical potential associated

with cubic theories of gravity, where the purely classical graviton mediated interaction

between two scalars is affected by cubic terms only at one-loop order and above.

In section 2 we review cubic theories of gravity — including Einsteinian cubic gravity —

in order to setup the problem we will consider. In section 3, we develop the tools required

to obtain the semi-classical potential and black hole solutions directly from scattering
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amplitudes before moving on to section 4.1, where we compute the massive scalar one-

loop amplitude using unitarity cuts. This requires us to compute the coefficients of the

standard integrals that usually arise in a Passarino-Veltman loop decomposition, from

which we derive the quantum- corrected classical potential and the classical and quantum

corrections to the Schwarzschild black hole solution arising from the addition of a cubic term

in the gravitational action. Computing amplitudes via unitarity cuts is computationally

expensive, and so to contrast this, in section 4.2 we derive the classical contribution of the

amplitude directly from the Leading singularity [18], where loop integration is reduced to

the far simpler problem of computing residues.

2 Cubic theories of gravity

Higher derivative operators in gravity are important for a variety of reasons, including the

modification of gravity at short distances/large energies and the possibility of renormal-

izability. One particularly interesting theory of gravity in this class is Einsteinian cubic

gravity (ECG) [14, 16], which enjoys the same linearised spectrum as General Relativity,

in that it propagates only two degrees of freedom on-shell.

We will consider a generic six-derivative theory in four dimensions described by the

action

S =

∫
d4x
√
−g
(

2

κ2
R+ λP

)
, (2.1)

where the coupling has mass dimension [λ] = −2 and

P = β1R
µ
ανβR

αλβσR ν
λµσ + β2R

αβ
µν R λσ

αβ R µν
λσ + β3RµναβR

µαRνβ + β4R
ν

µ R α
ν R µ

α .

(2.2)

We leave these coefficients generic, in order to keep track of how each of these terms

contributes to the physical effects, however, when required to specialise to ECG, we will

consider the specific set of coefficients

β1 = 12, β2 = 1, β3 = −12, β4 = 8. (2.3)

Nonetheless, as is well known, only the first two terms typically contribute to the S-matrix

at cubic order, and furthermore, a specific choice of coefficients, β1 = −2β2, gives the well

known cubic Gauss-Bonnet invariant

G3 = R αβ
µν R λσ

αβ R µν
λσ − 2Rµ ανβR

αλβσR ν
λµσ . (2.4)

While this term does not produce pure graviton dynamics on its own, when coupled to

Einstein gravity or generic matter, it can produce non-trivial scattering effects [19, 20]. As

expected from a cubic theory of gravity, with the predictable coefficients expected given

the argument above, the on-shell three-point all minus graviton amplitude at order λ is

given by

M−−− =
3

8
κ3λ(β1 + 2β2) 〈12〉2 〈23〉2 〈31〉2 , (2.5)

where we have derived this using eq. (A.2) contracted with a graviton polarization tensor.

At tree level, when compared with the contributions from General relativity (GR), we
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find that although the three-point vertex itself is modified by the O(R3) terms, we do

not modify the scalar-scalar-graviton vertex. This means that at first-order in G the

Newtonian potential must be the same in both GR and ECG, and thus we would expect

any static, spherically symmetric black hole solution to be a higher-order perturbation of

the Schwarzschild solution. To find such a higher order contribution then, we must compute

the classical contributions that arise from a one-loop amplitude, and from this, derive the

classical potential.

3 Scattering amplitudes and the effective potential

A particularly sensible definition of the potential energy is to define it in terms of gauge-

invariant on-shell scattering amplitudes in the non-relativistic limit. To this end, we will

consider 2 −→ 2 scattering of two massive scalars mediated by gravity. This ensures that

the definition of the potential is itself gauge-invariant [21] and that, in the non-relativistic

limit (t = −q2), can be given by the inverse Born approximation [22, 23]

V (r,p) = − 1

4EAEB

∫
d3q

(2π)3
eiq·rM(q,p), (3.1)

where q is the exchanged three-momentum and EA (EB) is the energy associated with

particle A (B).

Ultimately, we would like to derive the metric associated to a black hole in an asymptot-

ically flat spacetime [24, 25], meaning we need to relate the potential energy to the metric.

We will therefore consider the gravitational field to be sourced by two point-masses in

the stationary limit. In this limit, the usual relativistic action for a point particle is only

dependent on g00 and we therefore consider the following path integral [26]

Z =

∫
Dhµν exp

[
−i

(
SEH +mA

∫ T/2

−T/2
dσ
√
g00(σ) +mB

∫ T/2

−T/2
dσ′
√
g00(σ′)

)]
. (3.2)

This describes the two sources, with masses mA and mB, interacting at rest on a flat

background. They begin at some fixed distance, with their interaction adiabatically turned

on at a (large) time −T/2, and turned off at T/2. We can then consider the generating

functional given by

F =

∫
Dhµν exp

[
−i
(
SEH +mA

∫ T/2
−T/2 dσ

√
g00(σ) +mB

∫ T/2
−T/2 dσ

′√g00(σ′)
)]

∫
Dhµν exp [−iSEH ]

=

〈
exp

[
−i

(
mA

∫ T/2

−T/2
dσ
√
g00(σ) +mB

∫ T/2

−T/2
dσ′
√
g00(σ′)

)]〉
. (3.3)

In the T −→ ∞ limit, this is well approximated by the ground state energy [26], meaning

we can say that limT−→∞F ∼ e−iV (R)T , and we can define the potential energy via

V (r) = lim
T−→∞

i

T
log(F) ' lim

T−→∞

1

T

(
mA

∫ T/2

−T/2
dσ
√
g00(σ) +mB

∫ T/2

−T/2
dσ′
√
g00(σ′)

)
.

(3.4)
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In the static, spherically symmetric limit in which we are interested, the potential Φ is

related to the metric via

g00 = 1− 2Φ. (3.5)

If we consider the probe limit where mB � mA, then we can discard the gravitational field

produced by mB and easily perform the integral in eq. (3.4) for the static case (where we

take |Φ| � 1), to find

V (r) = mB

√
1− 2Φ ' mB(1− Φ). (3.6)

Deriving the potential energy V (r) from the amplitudes, then, allows us to compute the

potential directly. One way to do this is to expand Φ(r,mA) in terms of G as

Φ(r,mA) =
∞∑
n=1

Cn(mA, r)G
n, (3.7)

where Cn(r,mA) will be a combination of mA and r with mass dimension 2. We can then

directly compare this order by order with the potential energy in the correct limit

Φ(r,mA) =

∞∑
n=1

Cn(r,mA)Gn = − lim
mB−→0

1

mB

(
1

mAmB

∫
d3q

(2π)3
eiq·rM(q)

)
. (3.8)

With this solution in hand, the line element is given by

ds2 = −(1− 2Φ)dt2 + (1 + 2Φ)dr2 + r2dΩ. (3.9)

4 One loop amplitude

4.1 Unitarity cuts

We will first compute the relevant one-loop amplitude using standard on-shell unitarity

cuts. As is well known, corrections to the potential arise from the purely non-analytic

pieces of loop amplitudes, corresponding to long-range effects of massless particle interac-

tions [27]. This means that we only need to consider cuts in the t-channel, and we need

not consider all possible cuts. Indeed, we are free to ignore those that will give purely

analytic contributions to the amplitudes. The non-analytic pieces of loop amplitudes are

also independent of regularization scheme, and as such we can happily work in D = 4

throughout the calculation [28]. Since only the graviton three-point vertex is modified in

cubic theories, the one-loop box diagram must be the same as it is in GR, and thus we

will focus first on the triangle diagram, noting that any contributions ought to come from

diagrams containing massive propagators, which facilitate the delicate ~ cancellations that

give rise to purely classical pieces [27, 29]. We will consider the diagram given in figure 2.

To compute the double cut, we need to evaluate

M
(1)
4 = −i

∑
h1,h2

∫
d4`1
(2π)4

ML[P1, P2, `
h1
1 , `h22 ]MR[−`−h11 ,−`−h22 , P3, P4]

`21`
2
2

∣∣∣∣∣
`21=`22=0

, (4.1)
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Figure 1. The kinematic setup, where particles 1 and 4 are incoming and 2 and 3 outgoing. In

the center of mass frame, we consider the exchanged momentum q = P1 + P2 = (0,q) (in the all

outgoing convention) and P1 = (EA,q/2), P2 = −(EA,−q/2) with EA =
√
m2

A + p2 + q2

4 . P3 and

P4 are defined similarly with A↔ B.

Figure 2. Double Cut Diagram.

where `2 = `1 − P1 − P2 and P 2
1 = P 2

2 = m2
A, P 2

3 = P 2
4 = m2

B. The cut conditions are

therefore given by

`21 = (`1 − q)2 = 0

⇒ 2`1 · q = q2 , (4.2)

where q = P1+P2. Note that eq. (4.2) implies that P2 ·`1 = m2
A+P1 ·P2−P1 ·`1 = t

2−P1 ·`1.

Moreover, we define the Mandelstam variable t = q2 = (P1 + P2)2 = (`1 + `2)2 = 2`1 · `2,

using the kinematic conventions set out in figure 1. The tree-level amplitudes are given in

figure 3. The tree level diagrams on both sides of the cut are the classical gravitational

Compton diagrams, given by

At order λ1 in the three-graviton coupling (i.e. ignoring the λ0 GR contribution and

λ2 pure cubic contributions to eq. (4.3)), and choosing to focus on the h1 = h2 = − case,

the corresponding amplitudes are given by

ML[P1, P2, `
−
1 , `
−
2 ](GR) =

κ2

16

m4
A 〈`1`2〉

4

(P1 + P2)2(P1 · `1)(P2 · `1)
, (4.4a)

MR[−`+1 ,−`
+
2 , P3, P4](R

3) =
3

16

κ4λ[`1`2]4

(P3 + P4)2

(
β1

(
(`1 · P3 − `1 · P4)2 −m2

B`1 · `2
)

− 8β2(`1 · P3)(`1 · P4)
)
. (4.4b)
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= + +

(4.3)

Figure 3. Tree Diagrams.

The loop amplitude is therefore given by1

M
(1)
4 =

3κ6λm4
At

2

32

∫
d4`

(2π)4

β1

(
(` · P3 − ` · P4)2 − 1

2m
2
B(P3 + P4)2

)
− 8β2(` · P3)(` · P4)

`2(` − P1 − P2)2[(` − P1)2 − m2
A][(` − P2)2 − m2

A]
.

(4.5)

Performing a standard Passarino-Veltman decomposition, we can express the loop ampli-

tude as a sum of boxes, triangles and bubbles. We find that there are no box contributions,

but that there are triangles and bubbles. Evaluating these with the help of Package-X [30],

we find

M
(1)
4 = −

3κ6λm4
At

2

32(t− 4m2
A)2

[
(β1 + 2β2)b2(t)B0(t)

+
[
(β1 + 2β2)c2

3(t) + β1c
1
3(t)
]
C0(P 2

1 , P
2
2 , t; 0,mA, 0)

]
(4.6)

where B0 and C0 are the bubble and triangle scalar Passarino-Veltman functions and

b2(t) = 6m4
A + 4m2

A

(
m2
B − 3s

)
+ 6(m2

B − s)2 − 2
(
2(m2

A +m2
B)− 3s

)
t+ t2, (4.7a)

c1
3(t) =

1

2
(t− 4m2

A)2(t− 2m2
B), (4.7b)

c2
3(t) = 2

[
2m2

A

(
s− (mA −mB) 2

) (
s− (mA +mB) 2

)
+
(
−3m4

A + 2m2
Am

2
B + (m2

B − s)2
)
t

+ (m2
A −m2

B + s)t2
]
. (4.7c)

Expanding these terms for small t (and keeping only the terms that give rise to leading

1For the purposes of isolating the contribution of the G3 term, one can express the four point as

MR[−`+1 ,−`
+
2 , P3, P4]

(R3) =
3

64
κ4λ[`1`2]

4 β1 t
(
t− 2m2

A

)
− 16(β1 + 2β2)(`1 · P3)(`1 · P3)

(P3 + P4)2
.
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Figure 4. LS Triangle Diagram.

order classical and quantum contributions to the potential) we find

t2b2(t)

(t− 4m2
A)2

=
(
3m4

A + 2m2
A(m2

B − 3s) + 3(m2
B − s)2

) t2

8m4
A

+O(t3), (4.8a)

t2c1
3(t)

(t− 4m2
A)2

= −m2
Bt

2 +
1

2
t3, (4.8b)

t2c2
3(t)

(t− 4m2
A)2

=
(
s− (mA −mB) 2

) (
s− (mA +mB) 2

) t2

m2
A

+O(t3). (4.8c)

4.2 Leading singularity

Computing scattering amplitudes via the unitarity cuts method is an often cumbersome

(or impossible) affair, requiring us to solve complicated divergent loop integrals using some

regularisation scheme or other and perhaps a clever technique for integrand reduction.2

Using two-particle cuts, solutions to the cut conditions ensure that the considered loop

momenta remain real and the integrals can be evaluated on those real solutions. However,

as is now standard in modern amplitude techniques, considering scattering amplitudes as

analytic functions of complex momenta often yields incredible simplifications, allowing us

to utilise the full barrage of tools bequeathed to us by complex analysis.

In this spirit, we will revisit the calculation of the classical potential in higher derivative

gravity by considering the leading singularity [31, 32], the highest codimension singularity

of the amplitude, found by fully localizing every loop integral. In doing so, we find that the

solutions to the cut conditions are typically complex, and at one loop, this means that the

problem of computing loop amplitudes conveniently reduces to the problem of computing

residues of some product of (complex) tree amplitudes. It was recently shown that the

leading singularity encodes the information required to compute classical gravitational

effects [18, 33–35], and in this section we will review the techniques required and use them

to compute the classical potential in cubic gravity once more, showing that the result is

identical to that obtained via unitarity cuts.

2This process can, however, be almost entirely automated nowadays using one of the many excellent

available software packages, for example [30].
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Since we require at least one massive propagator in the loop to find classical effects,

we consider the triangle diagram in figure 3. This is due to the fact that we require that

the three-point amplitude is present (in this case the all-plus or all-minus helicity vertex).

In order to compute the classical piece of this diagram, we will use the on-shell leading-

singularity method presented in [18].

To begin with we will compute the imaginary part of the all-plus contribution to this

amplitude, meaning we need to evaluate the integral

I =
∑
h1,h2

∮
Γ

d4L

(L2 −m2)k2
1k

2
2

M3[P1,−L, k−h11 ]M3[L,P2, k
−h2
2 ]M4[−kh11 ,−kh22 , P3, P4], (4.9)

where k1 = L+ P1 and k2 = L− P2.

We will parameterise the massive loop momenta by

L = zl + ωq, (4.10)

where z, ω ∈ C are parameters to be integrated over, l = λλ̃ is massless and q is an arbitrary

fixed reference vector.

Cutting the massive propagator and following [18], we can write this as

I =
∑
h1,h2

∮
ΓLS

z dz 〈λ dλ〉 [λ̃ dλ̃]

k2
1k

2
2

M3[P1,−L, k−h11 ]M3[L,P2, k
−h2
2 ]M4[−kh11 ,−kh22 , P3, P4],

(4.11)

We can also project the external momentum onto the lightcone using massless vectors

p1 = λ1λ̃1 and p2 = λ2λ̃2

P1 = p1 + xp2, P2 = p2 + xp1, x =
m2
A

2p1 · p2
, (4.12)

where we have used P 2
1 = P 2

2 = m2
A to fix x. We note that, since we are going to look

primarily at the t-channel, we can use x to parameterize it as

(1 + x)2

x
=

t

m2
A

,
(1− x)2

x
=
t− 4m2

A

m2
A

. (4.13)

If we now also choose two mixed reference vectors q = λ1λ̃2 and q̄ = λ2λ̃1, then we

have four linearly independent vectors which we can use as a basis for our massless loop

amplitude, i.e.

l = Ap1 +Bp2 + Cq + q̄. (4.14)

Demanding the on-shell condition l2 = 0 gives C = AB, and regarding A,B ∈ C means we

can identify dA dB ∝ 〈λ dλ〉 [λ̃ dλ̃]. After a change of variables, we find

I =
1

(2πi)3

(2p1·p2)

16

∑
h1,h2

∮
ΓLS

z dz dA dB M4[P3, P4, k
h1
1 kh2

2 ]M3[k−h2
2 , P2, L]M3[k−h1

1 , P1,−L]

(m2
A+z(p1·p2)(B+xA))(−m2

A+z(p1·p2)(A+xB))
.

(4.15)
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Using eq. (4.12), we find poles at A = −B = 2x
z(1−x) , leaving finally after integration

over A,B

I =
x

4m2
A(1− x2)

∑
h1,h2

1

2πi

∮
ΓLS

dz

z
M3[P1,−L, k−h11 ]M3[L,P2, k

−h2
2 ]M4[−kh11 ,−kh22 , P3, P4].

(4.16)

With this in hand, we can now parameterize k3 and k4 using the same parameters. For k3,

this is

k1 = L+ P1

= (1 + zA)p1 + (zB + x)p2 + (zC + ω)q + zq̄

= r(x)p1 − xr(x)p2 −
xr2

z
q + zq̄

= r(x)

[
λ1 +

z

r(x)
λ2

] [
λ̃2 −

x

z
r(x)λ̃1

]
, (4.17)

where we have defined r(x) = 1+x
1−x =

(
t

t−4m2
A

)1/2
and plugged in ω =

m2
A

2z(q·q̄) = −x
z . Re-

peating this for k4, we find

k2 = r(x)
[
λ2 +

x

z
r(x)λ1

] [
λ̃2 −

z

r(x)
λ̃1

]
. (4.18)

It follows from these parameterizations, that

k1 · Pi =
1

z

[
z2q̄ · Pi + r(x)z(p1 − xp2) · Pi − xr2(x)q · Pi

]
, (4.19)

for i = 3, 4. Ultimately, we want to express everything in terms of Mandelstam invariants.

Using eq. (4.12), we find that we can write

(p1 − xp2) · P3 =
1

2

(
1 + x

1− x

)(
m2
A −m2

B + s
)
, (4.20)

(p1 − xp2) · P4 =
1

2

(
1 + x

1− x

)(
m2
A −m2

B + u
)
. (4.21)

As such, eq. (4.19) becomes

k1 · P3 =
1

z

[
z2q̄ · P3 +

1

2
r2(x)

(
m2
A −m2

B + s
)
z − xr2(x)q · P3

]
, (4.22a)

k1 · P4 =
1

z

[
z2q̄ · P4 +

1

2
r2(x)

(
m2
A −m2

B + u
)
z − xr2(x)q · P4

]
. (4.22b)

Moreover, as z is our integration variable, we are free to make the following rescaling: z −→
21+x
M2

√
−x(q ·P3)z, where M is defined by M4 := −4(1−x)2(q ·P3 q̄ ·P3) = (m2

A−m2
B)2−su

– 9 –
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(note that (q · P3) = −(q · P4), and (q · P3 q̄ · P3) = (q · P4 q̄ · P4)). From this, we find that

k1 · P3 =
M2mAr

2(x)

2
√
−t

1

z

[
−z2 −

(
m2
B −m2

A − s
) √−t
M2mA

z + 1

]
:=

M2mAr
2(x)

2
√
−t

1

z
Fs(z),

(4.23a)

k1 · P4 =
M2mAr

2(x)

2
√
−t

1

z

[
z2 −

(
m2
B −m2

A − u
) √−t
M2mA

z − 1

]
:=

M2mAr
2(x)

2
√
−t

1

z
Fu(z),

(4.23b)

where Fs and Fu are defined as

Fs(z) =− z2 −
√
−t
(
m2
B −m2

A − s
)

mA

√
−2m2

A

(
m2
B + s

)
+m4

A − 2sm2
B +m4

B + s(s+ t)
z + 1, (4.24a)

Fu(z) = z2 −
√
−t
(
m2
B −m2

A − u
)

mA

√
−2m2

A

(
m2
B + s

)
+m4

A − 2sm2
B +m4

B + s(s+ t)
z − 1. (4.24b)

We now need to compute the tree-level amplitudes with which we will build the loop. These

are give as follows:

M4[P3, P4, k
+
1 , k

+
2 ](R

3) =
3

64
κ4λ[k1k2]4

β1 t
(
t− 2m2

A

)
− 16(β1 + 2β2)(k1 · P3)(k2 · P4)

(P3 + P4)2
,

(4.25a)

M4[P3, P4, k
+
1 , k

−
2 ](GR) =

κ2

4

[k1|P3 |k2〉2

(P3 + P4)2[k1|P3 |k1〉 [k1|P4 |k1〉
, (4.25b)

and,

M3[P1, P2, k
+](GR) =

κ

2

〈g|P1|k]2

〈gk〉2
, M3[P1, P2, k

−](GR) =
κ

2

[g|P1 |k〉2

[gk]2
. (4.26)

Note that the contributions from cubic gravity (see appendix B for the full derivation) to

the four-point amplitudes arise only in the all-positive (and all-negative) helicity case. The

reason being is that cubic gravity only affects the three-point vertex function for graviton

self-interactions when each graviton has the same helicity (all positive, or all negative).

Focusing on pieces with only one cubic gravity contribution to the loop, and making

use of eq. (4.23), one can recast M4[P3, P4, k
+
1 , k

+
2 ](R

3) into the following form:

M4[P3, P4, k
+
1 , k

+
2 ](R

3) =
3

64
κ4λ[k1k2]4 β1(t− 2m2

B)

+
3

16t2
κ4λM4m2

Ar
4(x)[k1k2]4

1

z2
(β1 + 2β2)Fs(z)Fu(z). (4.27)

To evaluate the leading singularity, we need to plug these tree level amplitudes into

eq. (4.16), with h1 = h2 = +, and integrate over the localised integral, i.e. take residues.

For this we need to include the product of three-points, given by

M3[k−2 , P2, L](GR)M3[k−1 , P1,−L](GR) =
κ2

4

[p1|P2 |k2〉2

[p1k2]2
[p2|P1 |k1〉2

[p2k1]2
=
κ2

4
[p1p2]4

〈p2k2〉2 〈p1k1〉2

[p1k2]2[p2k1]2

=
κ2

4
x2r4(x) 〈p1p2〉4 . (4.28)
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where we have chosen the reference vectors in the three-points to be p1 and p2, and we

have made use of eqs. (4.12), (4.17), and the relations: [p1k2] = [p1p2], [p1k2] = xr(x)
z [p1p2],

〈p1k1〉 = z 〈p1p2〉 and 〈p2k2〉 = −xr2(x)

z 〈p1p2〉.
We will consider the contribution common to both β1 and β2 first which, after using

definitions of r(x) and M4, is given by (using that [k1k2] = (1− x)[p1p2])

I
(β1+2β2)
++ =

3κ6λm6
AM

4

256t

(
t

t− 4m2
A

)5/2 1

2πi

∮
ΓLS

dz

z3
Fs(z) Fu(z)

=
3κ6λm4

A

256

(
t

t− 4m2
A

)5/2 [
tR(s,mA,mB) + P (s,mA,mB) +

Q(s,mA,mB)

t

]
= I

(β1+2β2)
−− , (4.29)

where

R(s,mA,mB) = m2
A −m2

B + s, (4.30a)

P (s,mA,mB) = 2m2
Am

2
B +

(
s−m2

B

)2 − 3m4
A, (4.30b)

Q(s,mA,mB) = 2m2
A

(
s− (mA +mB)2

)(
s− (mA −mB)2

)
. (4.30c)

In anticipation of comparison with the unitary cuts calculation, we observe that

c2
3(t) = 2

[
tR(s,mA,mB) + P (s,mA,mB) +

Q(s,mA,mB)

t

]
,

and thus

I
(β1+2β2)
++ = −

3κ6λm4
A

512

(
t

t− 4m2
A

)5/2

c2
3(t).

The remaining β1 terms are evaluated analogously, finding

Iβ1++ =
3κ6λm6

A

1024
r3(x)

(1− x)2

x
(t− 2m2

A)

=
3κ6λm4

A

1024t

(
t

t− 4m2
A

)5/2

(t− 4m2
A)2(t− 2m2

B)

= Iβ1−− . (4.31)

Here, we note that c1
3(t)= 1

2(t−4m2
A)2(t−2m2

B), such that Iβ1++ =−3κ6λm4
A

512t

(
t

t−4m2
A

)5/2
c1

3(t).

In general, the full amplitude is related to the imaginary part I by the dispersion

relation of a given channel: we integrate the imaginary part of the amplitude along the

branch cut in order to reconstruct the entire amplitude [36]. In this case, as was shown

in [18], the amplitude has a double discontinuity in the t-channel, and we must integrate

along both, meaning the full amplitude is given by the dispersion relation

M (1)(s, t)++ =
1

2πi

∫ 4m2
A

0

1

2πi

∫ 4m2
A

0

dt′′

t′ − t′′
dt′

t− t′
I++(s, t′). (4.32)
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We need to integrate three integrands: J , tJ and J/t, where

J(t) =

(
t

t− 4m2
A + ε

)5/2

, (4.33)

and we have included the ε in order to regulate the divergence. Integrating this (and

neglecting terms that vanish in the ε −→ 0 limit), we find∫ 4m2
A

0

dt′

t− t′
J(t′) = 2 tanh−1

(
2

√
m2
A

ε
J−1/5(t)

)
J(t)− log

(
(2mA +

√
ε)2

ε− 4m2
A

)
+O

(
1

ε5/2

)
.

(4.34)

Keeping only the parts finite in ε and taking ε −→ 0, we find∫ 4m2
A

0

dt′

t− t′
J(t′) = −iπJ(t) + iπ, (4.35)

where we can ignore the addition of iπ knowing that it comes from the log pieces.3 This

means that our integral is classically self-similar, and all of the integrations we need to do

are therefore trivial, meaning we can write

M (1)(s, t) =
1

4

∑
β1,β2

∑
h1=h2

Ih1h2(s, t) +mA ↔ mB. (4.36)

Evaluating this, we find that the leading singularity is

M
(1)
4 = −

3κ6λm4
A

1024t

(
t

t− 4m2
A

)5/2 [
(β1 + 2β2)c2

3(t) + β1c
1
3(t)

]
. (4.37)

We see then that the structure of the leading singularity is identical to the classical piece

found by directly computing the loop via unitarity cuts. In fact, when evaluating only the

classical part of the finite PV integrals, we find that it is given by

C0(m2
A,m

2
A, t; 0,mA, 0)classical =

π2 + 3Li2

(
1 +

(√
1− 4m2

A
t − 1

)
t

2m2
A

)
24π2t

√
t

t− 4m2
A

(4.38)

' 1

16t

√
t

t− 4m2
A

, (4.39)

where we have kept only the first term in the expansion of Li2(1 + f [t]) ' π2

6 .

Plugging this into the unitarity cuts computation and ignoring the quantum corrections

show that these match exactly.

Before proceeding, we make a brief comment about extracting the classical contri-

butions to the amplitude (4.37). This can be achieved by appealing to the holomorphic

classical limit (HCL) of the amplitude derived via the leading singularity approach (see

3These only contribute to the quantum piece of the amplitude [37].
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ref. [33] for a detailed analysis of the procedure). The HCL corresponds to taking the

limit x −→ −1 (i.e. t/m2
A −→ 0), which in practice means that we should retain only

the leading-order-in-t contributions in eq. (4.37). Terms proportional to the same order

in t but multiplied by log
(
− t
m2

)
will therefore be ∝ ~. This is equivalent to the method

of restoring factors of ~ to extricate the classical and quantum components (see [29] for

further details on this approach).

5 Potential and black hole solutions

With the one-loop amplitude in hand, we can now go about deriving the potential. In

order to derive the non-relativistic limit, we evaluate the amplitude (4.6), taking the small

t limit of the (finite) integrals and summing together with mA ↔ mB. We will focus on

the unitarity cuts calculation since this also gives all of the quantum corrections. In the

small-t limit, the PV integrals are given by

B0(t) ' 1

16π2
log(−t), (5.1a)

C0(m2
A,m

2
A, t; 0,mA, 0) ' 1

32π2m2
A

[
log

(
m2
A

t

)
+
π2mA√
−t

]
, (5.1b)

Consequently we derive the following amplitude for small t (up to O(t2))

M
(1)
4 =− 3

4096
κ6λ(β1 + 2β2) (mA +mB)

[ (
(mA −mB) 2 − s

) (
(mA +mB) 2 − s

)
(−t)3/2

]
+

3

1024
κ6λβ1

[
m2
Am

2
B(mA +mB)(−t)3/2

]
− 3~

512π2
κ6λ(β1 + 2β2)

(
(m2

A − s)2 + (m2
B − s)2 − s2

)
t2 log (−t)

+
3~

512π2
κ6λβ1m

2
Am

2
Bt

2 log(−t). (5.2)

We can take the fully non-relativistic limit of this via4

t −→ −q2, (5.3a)

s −→ (mA +mB)2

(
1 +

p2 + 1
4q2

mAmB

)
, (5.3b)

which leaves us with a momentum space potential

V (q,p) = Vcl(q,p) + ~Vqu(q,p), (5.4)

4We thank the authors of [38] for very useful discussions on this point.
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where Vcl(q) and Vqu(q) are the classical and quantum contributions, respectively given by

Vcl(q,p) = − 3

4096
κ6λ(β1 + 2β2)

[
(mA +mB)3

mAmB
p2|q|3

]
+

3

8192
κ6λβ1

(mA +mB)

mAmB

[
2m2

Am
2
B|q|3 − (m2

A +m2
B)p2|q|3

]
+O(|q|5)

(5.5a)

Vqu(q,p) = − 3

2048π2
κ6λ

(β1 + 2β2)

mAmB

[
2m2

Am
2
B + (3m2

A + 8mAmB + 3m2
B)p2

]
q4 log

(
q2
)

+
3

4096π2
κ6λβ1

[
2mAmB −

(m2
A +m2

B)

mAmB
p2

]
q4 log(q2) +O(|q|6). (5.5b)

Taking the Fourier transform as in appendix B, we find

V (r,p) = Vcl(r,p) + ~Vqu(r,p), (5.6)

where

Vcl(r,p) =
9

1024π2
κ6λ(β1 + 2β2)

[
(mA +mB)3

mAmB

p2

r6

]
− 9

2048π2
κ6λβ1(mA +mB)

[
2
mAmB

r6
−

(m2
A +m2

B)

mAmB

p2

r6

]
+O(r−8), (5.7a)

Vqu(r,p) = − 45

512π3
κ6λ(β1 + 2β2)

[
2mAmB

r7
+

(3m2
A + 8mAmB + 3m2

B)

mAmB

p2

r7

]
+

45

1024π3
κ6λβ1

[
2
mAmB

r7
−

(m2
A +m2

B)

mAmB

p2

r7

]
+O(r−9). (5.7b)

Equipped with the expressions for the classical and quantum corrections to the potential,

we can make contact with some specific theories my making particular choices for the

couplings. Firstly, we derive the first order corrections to the potential arising from ECG,

by choosing β1 = 12, β2 = 1 and restoring G via κ =
√

32πG. Doing so gives the potential

VECG(r) = 72λ̃G4mAmB

(
3(mA +mB)

r6
− ~

100

πr7

)
. (5.8)

where we have rescaled the coupling by

λ −→ −Gλ̃
16π

,

in order to ensure that our λ matches the one in ref. [16].

We can also compute the corrections to the potential that arise from the α′2 part of

low-energy effective action in string theory, recently discussed in [38], which enter as

S = −2α′2

κ2

∫
d4x
√
−g
(

1

48
I1 +

1

24
G3

)
, (5.9)
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where I1 is the β2 term in our case. To compute the I1 correction, we take λ = −2α′2

κ2
and

then β1 = 0, β2 = 1
48 which gives

VI1(r) = 3(α′G)2

(
(mA +mB)3

4mAmB

p2

r6
− ~

5mAmB

πr7

)
. (5.10)

Then to compute the G3 contribution we take β1 = −2β2 = − 1
24 to find

VG3(r) =
3(α′G)2

4
mAmB

(
(mA +mB)

r6
− ~

10

πr7

)
. (5.11)

Furthermore, given the potential we can, as discussed in section 3 above, derive a

static, spherically symmetric black hole solution. Knowing the form of the Schwarzschild

solution, and noting the argument earlier that any solution derived from a cubic theory

must be a correction to this, we find a black hole solution of the form

f(r) = 1− 2GmA

r
− 36β1

G4λ̃m2
A

r6
+ 360~ (3β1 + 4β2)

G4λ̃mA

πr7
. (5.12)

Choosing the specific coefficients in ECG, we find a solution of the form

f(r) = 1− 2GmA

r
− 432

G4λ̃m2
A

r6
+ 14400~

G4λ̃mA

πr7
. (5.13)

The classical part of this metric matches those derived from Einsteinian cubic grav-

ity [14, 39].

The solutions found in those papers were not easy to come by, being the (perturbative)

solution to a particularly complicated differential equation with apparently no analytic so-

lution. Here, we have come to the same solution by considering gravity as a quantum field

theory and using the tools of modern scattering amplitudes, deriving the quantum correc-

tions to the metric as an added bonus. Furthermore, we showed how the same classical

black hole solution could be obtained by computing residues of the leading singularity.

6 Discussion

In this paper, we have studied the leading order dynamics of a general cubic theory of

gravity coupled to a spin-zero matter field, within the framework of the modern scattering

amplitude techniques.

With a view to determining the effects of cubic gravity on the purely classical graviton

mediated interaction between two scalars, we observed that this can only occur at one-loop

order and above, at least when considering minimal coupling. It is known that loops can

provide classical contributions [27, 29], and moreover, that any classical contributions to

the gravitational potential manifest in diagrams containing massive propagators. Given

this, we computed the double cut of the appropriate one-loop diagram, in which we cut

two internal graviton lines and retaining only the leading order contributions to the result.

We then repeated this calculation by considering an alternative approach: computing

the leading singularity of the one-loop triangle diagram with one massive propagator. Not
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only was this a much more straightforward calculation, importantly, we recovered the result

we found using the standard unitarity cuts method. This provides us with confidence that

the final result that we obtained is consistent. Indeed, whilst this draft was in preparation,

Brandhuber and Travaglini published work in which they consider the (dynamically) non-

trivial cubic corrections to the gravitational action arising from string theory [38]. Upon

comparison of the two sets of results, we find that the corresponding cubic modification

of the gravitational potential agrees, up to an additional non-dispersive contribution, with

theirs. The most interesting difference between our results is this additional contribution,

since its structure is such that, in an appropriate probe-limit, we were able to derive a

black hole solution which exactly corresponds to the leading order Einsteinian cubic gravity

contribution, matching the result found in ref. [14]. It is interesting to note that this black

hole solution survives the limit where the cubic gravity theory under consideration is that

of pure cubic Gauss-Bonnet, G3, and that the black hole solution arises from the non-

minimal coupling between the spin-zero matter field and the Gauss-Bonnet combination.

This is not wholly unexpected, since although possessing trivial dynamics in isolation, it

has been shown that the Gauss-Bonnet combination has non-trivial effects on four-point

amplitudes when coupled the matter sector [19, 20].
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A Tree-level 4-point amplitude

To derive the current needed to compute amplitudes involving cubic invariants, we expand

the following around flat space (using xAct [40])

P =
√
−g
[
β1R

c d
a b R

e f
c d R

a b
e f + β2R

cd
abR

ef
cdR

ab
ef + β3RabcdR

acRbd + β4R
b
aR

c
bR

a
c

]
. (A.1)

Expanding to cubic order and including a de Donder gauge-fixing term, we find that

only the terms with coefficient β1 and β2 survive the requirements that the polarization

tensors be transverse (i.e. that kµε
µ(k) = 0) and the on-shell condition k2 = 0. Since terms

of cubic order only contribute same-helicity 3-points, we put two of the legs of the 3-point

on shell and fix their helicity to both be identical. Factoring out the third leg, we derive
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the following currents

Jµν−−,−− = κ3λ
3

16
〈12〉4

[
β1

(
kµ1 k

ν
1 + kµ2 k

ν
2 − k

µ
1 k

ν
2 − k

µ
2 k

ν
1

)
− β2

(
〈1| γµ|2] 〈2| γν |1] + 〈1| γν |2] 〈2| γµ|1]

)]
, (A.2)

Jµν++,++ = κ3λ
3

16
[12]4

[
β1

(
kµ1 k

ν
1 + kµ2 k

ν
2 − k

µ
1 k

ν
2 − k

µ
2 k

ν
1

)
− β2

(
〈2| γµ|1] 〈1| γν |2] + 〈2| γν |1] 〈1| γµ|2]

)]
. (A.3)

The scalar-scalar-graviton vertex, and the graviton propagator (in the de Donder gauge)

are further given by, respectively

Jµν00 = −κ
2

[
Pµ3 P

ν
4 + P ν3 P

µ
4 − η

µν
(
P3 · P4 +m2

) ]
, (A.4)

and

Pµ1ν1;µ2ν2 = − 1

2k2

[
ηµ1µ2ην1ν2 + ηµ1ν2ην1µ2 − ηµ1ν1ηµ2ν2

]
. (A.5)

(A.6)

Contracting these with Jµν−−,−− (and Jµν00 ), we derive the 4-points

M4[k−1 , k
−
2 , P3, P4] =

3

16
κ4λ 〈12〉4

β1

(
(k2·P3−k2·P4)2−m2k1·k2

)
−8β2(k1·P3)(k2·P3)

(P3+P4)2

(A.7)

M4[k+
1 , k

+
2 , P3, P4] =

3

16
κ4λ[12]4

β1

(
(k2·P3−k2·P4)2−m2k1·k2

)
−8β2(k1·P3)(k2·P3)

(P3+P4)2
(A.8)

where, in the case of ECG, β1 = 12 and β2 = 1. Aside from this, if we take β1 = −2β2

then the 4-point amplitudes above remain non-trivial, induced by a cubic Gauss-Bonnet

G3-interaction. In this case, they reduce to

1

λ
M4[k−1 , k

−
2 , P3, P4](G3) =

3!

4

(κ
2

)4
〈12〉4

(
t+ 2m2

)
, (A.9)

1

λ
M4[k+

1 , k
+
2 , P3, P4](G3) =

3!

4

(κ
2

)4
[12]4

(
t+ 2m2

)
, (A.10)

in agreement with the result found in [38].

B Fourier transforms

We need to compute the Fourier transform of |q|n, where n is positive

F [r, n] =

∫
d3q

(2π)3
eiq·r|q|n. (B.1)
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Formally, this diverges and requires regularization. To do so, we shift q by a regulator

ε, i.e.

F [r, n] =

∫
d3q

(2π)3
eiq·r−ε|q|r|q|n, (B.2)

where ε � 1 and we discard higher orders. Switching to spherical-polar coordinates, this

becomes

F [r, n] =

∫ π

0
dθ

∫
d|q|

(2π)3
ei|q|r cos θ−ε|q|r|q|n+2 sin θ, (B.3)

Integrating this with ε −→ 0, we can define an identity valid for odd integers n, satisfy-

ing n ≥ −1 ∫
d3q

(2π)3
eiq·r|q|n =

(n+ 1)!

2π2r3+n
sin

(
3πn

2

)
. (B.4)

Including a log piece and repeating the same procedure yields a similar but unfortunately

more unwieldy identity, and so we simply note only the following identities∫
d3q

(2π)3
eiq·r|q|4 log(q2) = − 60

πr7
, (B.5a)∫

d3q

(2π)3
eiq·r|q|6 log(q2) =

2520

πr9
. (B.5b)
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