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SUMMARY

Plant organ growth is widely accepted to be deter-
mined by cell division and cell expansion, but, unlike
that in animals, the contribution of cell elimination
has rarely been recognized. We investigated this
paradigm during Arabidopsis lateral root formation,
when the lateral root primordia (LRP) must traverse
three overlying cell layers within the parent root. A
subset of LRP-overlying cells displayed the induction
of marker genes for cell types undergoing develop-
mental cell death, and their cell death was detected
by electron, confocal, and light sheet microscopy
techniques. LRP growth was delayed in cell-death-
deficient mutants lacking the positive cell death
regulator ORESARA1/ANAC092 (ORE1). LRP growth
was restored in ore1-2 knockout plants by geneti-
cally inducing cell elimination in cells overlying the
LRP or by physically killing LRP-overlying cells by
ablation with optical tweezers. Our results support
that, in addition to previously discovered mecha-
nisms, cell elimination contributes to regulating
lateral root emergence.

INTRODUCTION

In contrast to that in animals [1], cell elimination is generally

considered not to play a role in regulating plant organ growth

[2–4]. Cell elimination occurs frequently as part of plant develop-

ment in a genetically controlled manner often referred to as pro-

grammed cell death (PCD) [5, 6], as evidenced by the expression

of a particular set of genes specifically in cells that are bound to

undergo developmental cell elimination [7]. Cell death and the

subsequent cell degradation are usually considered cell autono-

mous, as during the formation of water-conducting xylem

tracheary elements (TEs) [8] or the elimination of lateral root

cap cells that surround the root tip and regulate root growth

[9]. Nevertheless, developmentally regulated cell elimination
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can also rely on non-cell-autonomous mechanisms [10], as in

the Arabidopsis endosperm, where the core developmental cell

death indicator genes [7] are induced, but where cell death itself

is caused by pressure from the growing embryo into the location

of the endosperm [11]. The fact that different mechanisms have

been co-opted to control developmental cell elimination sup-

ports that cell elimination plays several crucial roles during devel-

opment, suggesting a more prominent role during plant organ

growth than previously thought.

Morphological features of cell death have been observed in

several species in cells overlying the sites of lateral root (LR) for-

mation within existing roots [12–15]. The lateral roots are initiated

from a subset of pericycle cells that form the LR primordium

(LRP) deep in the parent organ [16, 17]. The developing LRP

must therefore traverse the overlying endodermal, cortical, and

epidermal cell layers for LR emergence (LRE) to occur. LRE

has been shown to rely on cell divisions and turgor-driven expan-

sion in the LRP [16, 18], as well as on changes in the cell walls

and shapes of the LRP-overlying cells [18–24]. Cell death is not

believed to occur during LRE in Arabidopsis [25, 26], and the

cell death reported in the LRP-overlying cells of other species

[12–15] has not been studied in relation to LRP growth, leaving

open the question of whether cell death contributes to LRE.

In Arabidopsis, the most dramatic changes reported during

LRE occur in the LRP-overlying endodermal cells due to their

position in immediate contact with the LRP and the presence

of their lignified casparian strip cell wall region. In front of the

growing LRP, endodermal cells modify their shape to such an

extent that they occasionally split, with both halves having the

ability to maintain plasma membrane integrity at least for

some time [23]. The cortical and epidermal cells are less

affected, as their cell walls are loosened by hydrolytic enzymes

so that they can separate to allow the emerging LRP to pass

through [19, 26]. There is no report of cell death during LRE in

Arabidopsis, suggesting that the remodeling and separation of

the LRP-overlying cells are sufficient to ensure LRE without

any contribution from cell death. However, cysteine proteases

associated with cell death and autolysis are expressed in

LRP-overlying cells [27], supporting the occurrence of cell death

during LRE in Arabidopsis.
February 3, 2020 ª 2019 The Authors. Published by Elsevier Ltd. 1
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The present study investigates whether cell death occurs in

the LRP-overlying cells during LRE in Arabidopsis, and if so,

whether it contributes to LRP growth. We detected the expres-

sion of several canonical marker genes for developmental cell

death [7] in a subset of LRP-overlying cells. Electron microscopy

revealed the autolytic features indicative of cell death in endo-

dermal cells overlying early-stage LRPs. Combined viability

and cell death stains also indicated the presence of dead LRP-

overlying cells before the LRP had crossed any overlying cell

layers. Live cell imaging by confocal and light sheet microscopy

confirmed that cell death occurred in a subset of the LRP-over-

lying endodermal cells, concomitant with the growth of the LRP

through the endodermis. Plants unable to express ORESARA1/

ANAC092 (ORE1), a transcription factor contributing to the tran-

scriptional activation of several cell death-related genes [28],

displayed the decreased cell death of LRP-overlying cells as

well as a delay in LRE. When cell death was restored in the over-

lying cells of these plants by either expressing the mammalian

cell death-promoting factor mBAX [29–31] or using laser-assis-

ted targeted cell elimination (hereafter called laser ablation)

inspired by previous studies [32–35], LRP growth reverted to

normal, indicating that cell elimination contributes to the regula-

tion of organ growth during LRE.

RESULTS

Cell Death Indicator Genes Are Induced in Cells
Overlying LRP
In a time-course transcriptomics dataset covering various

stages of LRP growth [36], we detected the upregulation of

BIFUNCTIONAL NUCLEASE 1 (BFN1), which functions in cell

autolysis associated with developmental cell death [9] (Table

S1). Several other genes belonging to the set of transcriptional

reporters for cell types undergoing developmental cell death

and autolysis [7] were identified among the genes most

correlated with BFN1 in the LRE transcriptome. Among them,

METACASPASE 9 (MC9), RIBONUCLEASE 3 (RNS3), EXITUS 1

(EXI1) and DUF679 DOMAIN MEMBRANE PROTEIN 4 (DMP4),

together with BFN1, represent five of the nine core marker genes

specifically expressed in cell types undergoing developmental

cell death in Arabidopsis [7] and are hereafter referred to

as ‘‘cell death indicator genes’’ (Figure 1A; Table S1). Using

promoter::GUS reporter lines, we also detected the activation

of the promoters of these cell death indicator genes in LRP-over-

lying cells at different stages of LRP growth (Figure 1B), defined

according to Malamy and Benfey [16].

A more detailed time-lapse confocal microscopy analysis of a

proBFN1::nucGFP reporter line [37] carrying the proUBQ10::

WAVE131:YFP plasma membrane marker [38] indicated BFN1

promoter activity in an endodermal cell overlying an early-stage

LRP and revealed the apparent loss of nuclear integrity at stage

III (Figure 1C). Overall, for 381 observed LRP, induction of the

proBFN1::nucGFP reporter was detected in at least 1 LRP-adja-

cent cell (i.e., overlying the LRP during early stages of LRP

growth or neighboring the LRP in late stages of growth) 53.5%

of the time in the endodermis, 14.7% of the time in the cortex,

and 9.7% of the time in the epidermis. These averages likely un-

derestimate the actual frequency of cell death indicator gene

expression because transcriptional markers for the activation
2 Current Biology 30, 1–10, February 3, 2020
of cell death disappear upon the execution of cell death. When

considering cell death indicator gene expression in relation to

LRP stage, the frequency of proBNF1::nucGFP signal adjacent

to an LRP reached >90% in the endodermis at stage IV, nearly

50% in the cortex at stage VII, and 38% in the epidermis at stage

VII (Figures 1D and 1E). These results indicate that over the

course of LRP growth, there is almost always a time when a

cell death indicator gene is induced in at least one LRP overlying

endodermal cell and also, although less frequently, in adjacent

cortical and epidermal cells.

Cell Death Occurs in a Subset of LRP-Overlying Cells
To determine the fate of the cells overlying the growing LRP, we

used several cell-death-detection methods. The previously

published tonoplast integrity marker (ToIM) results in a GFP

signal in the cytoplasm and nucleus as well as a red fluorescent

protein (RFP) signal in the vacuole of viable cells, while both sig-

nals mix and GFP rapidly quenches upon tonoplast rupture and

cytoplasmic acidification that result from cell death [9]. This cell

death marker driven by the BFN1 promoter (proBFN1::ToIM)

indicated the occurrence of cell death in xylem TEs known to un-

dergo developmental cell death [37] as well as in a subset of

LRP-adjacent cells (Figures 2A, S1A, and S1B). Activation of

autophagy, a cellular process that has been linked to develop-

mental cell death [39–42], could also be visualized in a subset

of overlying cells (Figure S1C) by detecting the autophagy

marker GFP:ATG8a driven by the ATG8a endogenous promoter

[43]. Furthermore, seedlings were stained simultaneously with

the viability marker fluorescein diacetate (FDA), which fluo-

resces in living cells but not in dead cells, and with propidium io-

dide (PI), which is normally excluded from living cells [44, 45]

(Figure 2B). The absence of an FDA signal combined with PI

entry (Figures 2B and 2C) indicated that cell death occurred

specifically in a subset of endodermal and cortical cells over-

lying LRP at early stages (stages I to IV, before crossing of the

endodermis).

Transmission electron microscopy (TEM) observations on root

cross-sections (Figure 2D) showed plasmolysis and autolytic

features indicative of cell death, such as leakage of intracellular

material outside the protoplast, specifically in cells overlying

even early-stage LRP (Figures 2E–2I). These TEM observations

are therefore consistent with the occurrence of cell death and

autolysis in a subset of LRP-overlying cells in the endodermis

(Figures 2E–2I) before the LRP crossing this cell layer.

The observation of cell death-related features in LRP-overlying

endodermal cells (Figures 2B–2I), together with the high fre-

quency of BFN1 transcriptional activation in the endodermis

(Figure 1D), prompted us to observe endodermal cells by time-

lapse confocal and light sheet microscopy using the endo-

dermis-specific plasmamembranemarker proCASP1::CITRINE:

SYP122 [23], together with the proBFN1::nucGFP cell death

marker. This latter marker not only reveals transcriptional activa-

tion of cell death indicator genes but also can indicate cell death

execution, based on the abrupt disappearance of the nuclear

GFP signal known to shortly follow cell death [9, 37]. Time-lapse

confocal microscopy imaging of LRP provided evidence for the

occurrence of cell death in endodermal cells overlying LRP, as

revealed by the complete loss of the nuclear GFP signal in these

endodermal cells between two consecutive time points (Figures
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Figure 1. Transcriptional Activation of Cell Death Indicator Genes in LRP-Overlying Cells

(A) Expression profile of BFN1 and four highly correlated cell death indicator genes in the lateral root (LR) development time course transcriptomics dataset from

[36]. The five cell death indicator genes display three peaks of expression coinciding temporally with the passage of the growing LRP through each of the three

overlying (endodermal, cortical, and epidermal) cell layers. See also Table S1 and Video S4.

(B) Promoter activity profile of the cell death indicator genes BFN1, MC9, DMP4, and RNS3 in the tissues overlying naturally initiated LR primordia (LRP) at the

indicated stages. Bars, 25 mm. Note that in addition to signal in the overlying cells, there is often signal in the protoxylem vessel.

(C) Micrographs of confocal laser scanning microscopy imaging of proBFN1::nucGFP expression (green) and ubiquitous plasma membrane marker

proUBQ10::WAVE131:YFP (magenta) around LRP. Arrowheads indicate GFP+ nuclei adjacent to the developing LRP. The lowest panel is a magnification of the

highlighted area of the middle panel, showing GFP in the entire cytoplasm of a squeezed endodermal cell, indicating loss of nuclear integrity. Bars, 20 mm.

(D) Proportion of LRP displaying nuclear GFP signal in at least one LRP adjacent endodermal cell (red), cortical cell (orange), or epidermal cell (purple), for each

stage of LRP development in the proBFN1::nucGFP seedling roots. Values represent the averages of three replicate experiments, each including 20 seedlings

and >100 primordia. The total number of LRP observed at each stage (across all three replicate experiments) is indicated. Error bars indicate SEMs.

(E) Visualization of LRP stage distribution in terms of LRP sequence from the root tip of 60 5- to 6-day-old Arabidopsis seedlings. The size of each dot is pro-

portional to the number of observed LRP at each stage and position in total (gray) or with at least one proBFN1::nucGFP+ overlying cell (green). E, emerged.
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2J, 2K, and S1D–S1H). Light sheet microscopy (which provided

a 12-fold greater time resolution) revealed the complete disap-

pearance of the nuclear GFP signal between two consecutive

time points in the LRP-overlying endodermal cells (Figure 2L;

Videos S1 and S2). One of these endodermal nuclei disinte-

grated just before losing its signal (Figure 2L; Video S1). Both

the apparent nuclear disintegration and the rapidity of the nu-

clear signal disappearance can be explained only by cell death.

The shapes of the plasma membranes of the LRP-overlying cells

at the times of death indicated that the LRP had not yet entirely

traversed the endodermis (Figures 2J, 2L, and S1D–S1H; Video

S3), meaning that the observed cell death events occurred either

before or during the passage of the LRP through the endodermal

layer. A very limited number of surviving endodermal cells in

close proximity to LRP displayed a slow and gradual decrease

in the nuclear GFP signal (Figures S1D–S1H), suggesting deac-

tivation of the cell death and autolysis transcriptional machinery
in these cells. A few other endodermal cells kept a high level of

nuclear GFP signal over the observation time span (Figures 2L

and S1D–S1H), and it is possible that these cells died at a later

point during LRP emergence.

Cell Death in LRP-Overlying Cells Facilitates LRP
Growth
We reasoned that if cell death played a role in facilitating LRP

growth, then plants impaired in parts of the cell death machinery

may show delayed LRE. To compare the speed of LRE between

genotypes, LR initiation was induced synchronously by gravita-

tional stimulus (90� rotation of the seedlings) [16, 18]. When

monitored at 18 and 42 h post-gravitational induction (pgi), the

single mutants for the cell death indicator genes did not show

any consistent or significant changes in LRP growth (Figure S2),

possibly because of functional redundancy, which is a common

problem when studying plant cell death [46].
Current Biology 30, 1–10, February 3, 2020 3



Figure 2. Detection of Cell Death in LRP-Overlying Cells

(A) The top panel displays a time-lapse confocal microscopy 3D projection of proBFN1::ToIM (tonoplast integrity marker, consisting of cytoplasmic and nuclear

GFP as well as vacuolar RFP [9]) fluorescence in a cell overlying a naturally occurring LRP. The bottom panel shows the transmission light, where the LRP can be

distinguished. Arrowheads mark the indicated fluorophores and the asterisk marks the loss of GFP signal, which reveals cell death. TE, xylem tracheary element,

known to undergo canonical developmental cell death. Bars, 50 mm. See also Figures S1A and S1B and Video S4.

(B) Cell death detection relying on the absence of viability staining fluorescein diacetate (FDA) signal (green) and on nuclear staining propidium iodide (PI,

magenta) observed with confocal laser scanning microscopy imaging of LRPs and their overlying cells in the main roots of 4- to 5-day-old Arabidopsis seedlings.

White arrowhead points at an endodermal cell displaying signs of cell death (absence of FDA combined with PI entry).

(C) Frequency of cell death observed by double staining (y axis), as in (B), in cortical and endodermal cells overlying LRP at stages I to IV in 4- to 5-day-old Col-0

WT in 13 independent experiments (each bar represents the mean of each independent experiment).

(D–I) TEM of cross-sections through an LRP and the surrounding tissues. The position of the cross-section within the root is shown in (D). Stage-II (E and F) and

stage-III (G–I) LRPs are shown. (F) is a magnification from (E). (I) is a magnification of (H), which itself is a magnification of (G). The arrowhead indicates the apparent

loss of plasma membrane integrity, while the asterisk indicates leakage of intracellular material. CC, cortical cell. Bar, 5 mm (E and G), 2 mm (H), and 0.5 mm (I).

(J) Time-lapse confocal microscopy 3D projection of the endodermal plasma membrane marker proCASP1::CIT:SYP122 (purple) and the nuclear cell death

reporter proBFN1::nucGFP (green) around a developing LRP. The asterisks mark the endodermal cell, which ultimately dies (between 10 and 12 h), while the

arrowheads point at the endodermal nuclei displaying the GFP signal. The elongated area with the GFP signal seen in the stele from 2 to 6 h is the nucleus of a

xylem TE undergoing developmental cell death and autolysis. Bar, 25 mm. See also Figure S1D–S1H.

(K) Transmission light images corresponding to the images in (J). The LRP are highlighted by white lines. Bars, 25 mm.

(L) Montage of 3D projection from light sheet microscopy time-lapse imaging of the endodermal plasma membrane marker proCASP1::CIT:SYP122 and the

nuclear-localized cell death indicator gene transcriptional reporter proBFN1::nucGFP around a developing LRP. The two rows show two different primordia (each

from an independent seedling). In the top panel, the presence of an LRP can be deduced from the bent shape of the overlying endodermal cells, while in the

bottom panel, the relative weakness of the plasmamembrane compared to nuclear fluorescence makes it necessary to indicate the LRP shape with orange lines.

Asterisks indicate time points when an endodermal nucleus is seen to disintegrate or disappear. Arrowheads point at disintegrating nuclei. Bars, 20 mm.

See also Videos S1, S2, and S3.
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A large number of cell death-related genes, including the five

cell death indicators co-expressed during LRE, are transcription-

ally regulated by, among other regulators, the NAC transcription

factor ORESARA1/ANAC092 (ORE1) [28]. ORE1 is known to

regulate the genes associated with hormones, cell wall remodel-

ing, and cell death, and it is expressed in connection with several

types of developmental cell death and autolysis [47, 48]. Further-

more,ORE1 overexpression was previously reported to increase

LR number, while knocking it out did not decrease the number

of formed LR [49], even if these LR seemed shorter [49]. We

detected ORE1 promoter [28] activity in roots, including LRP-

overlying cells (Figure S3A). This is consistent with the transcrip-

tomics study over time on sections of roots induced to develop

an LRP [36], in which ORE1 shows overall strong expression.

The expression of ORE1 in LRP-overlying cells is compatible

with a potential role for ORE1 in the transcriptional control of

cell death in the LRP-overlying cells. We therefore hypothesized

that analyzing LRP growth in ore1 mutants could overcome po-

tential genetic redundancies between cell death-related genes

during LRE.

Consistent with a role for ORE1 during LRE, shorter LRs and

fewer emerged LRs were observed in two ore1 mutant alleles

compared to wild-type (WT) seedlings (Figures S3B–S3D).

Gravitational induction experiments confirmed that LRP growth

was delayed in these ore1 mutants compared with WT (Fig-

ure 3A), and even without synchronous induction, ore1-2 had

significantly fewer emerged LRs than WT (Figure 3B). Further-

more, simultaneous FDA and PI staining showed significantly

less frequent cell death in the LRP-overlying cells of ore1-2

than in WT (Figures 3C and 3D). The fact that cell death was

strongly reduced in ore1-2 compared with WT, but not

completely abolished, indicates that ORE1 is not the sole regu-

lator of LRP-overlying cell death. Nevertheless, the strong

reduction in overlying cell death in this mutant (Figures 3C and

3D), concomitant with the reduced speed of LRP growth (Fig-

ures 3A and 3B), justify using the ore1-2 mutant as a tool to

test a possible relation between LRP growth speed and over-

lying cell death.

To test whether loss of ORE1 expression correlated with

slower LRP growth as a result of less frequent cell death in the

overlying cells, we set out to rescue the LRE delay of ore1-2 by

inducing cell death in cells overlying LRP (genetic rescue strat-

egy; Figures 3B–3D) or bymortally wounding LRP-overlying cells

by laser ablation (physical rescue strategy; Figures 4A–4D).

For the genetic rescue strategy, we expressed the pro-

apoptotic mammalian protein mBAX [29], known to potently

induce cell death in Arabidopsis [30, 31], under the transcrip-

tional control of the BFN1 promoter (proBFN1::mBAX) in the

ore1-2 background. The use of the BFN1 promoter is justified

because the promoters of the cell death indicator genes such

as BFN1 are the only ones known to be active specifically in

the subset of LRP-overlying cells that die during LRE. Despite

the regulation of BFN1 by ORE1 [28], BFN1 expression in the

ore1-2 background has previously been shown to be reduced,

but not abolished [48]. Furthermore, the reduced, rather than

the abolished, cell death frequency in LRP-overlying cells of

ore1-2 (Figures 3C and 3D) strongly suggests that the BFN1 pro-

moter retains some activity in LRP-overlying cells in ore1-2.

Consistently, we found that the BFN1 promoter activity in the
ore1-2 mutant was still sufficient to drive the expression of

mBAX in the ore1-2 proBFN1::mBAX lines (Figures S3E and

S3F). In addition, the BFN1 promoter is specific for cells bound

to undergo developmental cell death [7], meaning that the use

of the BFN1 promoter to drive mBAX expression is not expected

to result in the death of cells that should not die, and therefore

to result in a WT-like phenotype in both ore1-2 and WT back-

grounds (Figure S3G).

While LR density was reduced in upright grown 7-day-old

ore1-2 seedlings compared with Col-0 WT (Figures 3B and

S3B–S3D), several ore1-2 proBFN1::mBAX lines that we gener-

ated showed similar LR densities as WT, while the others

showed a variety of pleiotropic phenotypes such as stunted

root growth (Figure 3B). Therefore, we focused on the three

ore1-2 proBFN1::mBAX lines (1, 4, and 6) with high mBAX

expression (Figure S3E), whose main root growth was not

impaired (Figure 3B) and that rescued the ore1-2 LRP growth

delay (Figure 3B). These three ore1-2 proBFN1::mBAX lines dis-

played LRP-overlying cell death as frequently as in WT (lines 1

and 4) or at even higher (line 6) levels (Figures 3C and 3D),

demonstrating the potency of proBFN1::mBAX to induce cell

death in LRP-overlying cells, even in the ore1-2 background.

Gravitational induction of ore1-2 proBFN1::mBAX lines 1 and 4

along with ore1-2 and WT (Figure 3E) confirmed that the rescue

of LRP-overlying cell death in the ore1-2 background (Figures 3C

and 3D)was concomitant with the rescue of LRP growth speed in

this mutant (Figure 3E).

For the physical rescue strategy, the junction between an LRP-

overlying endodermal cell and its neighboring cortical cell was

targeted (to avoid possible damage in the LRP) with optical twee-

zers to inflict a wound, ultimately leading to the death of the

targeted cells (laser ablation) (Figure 4A). The targeted cells

showed signs of damage and death within 3 h after laser ablation

(Figures 4B and 4C). When laser ablation was performed 24 h

after gravitational induction, when the LRP had not yet crossed

the endodermis (Figure 4D), the LRP growth became signifi-

cantly faster and less variable in ablated ore1-2 than in untreated

ore1-2 (Figure 4D). This partial rescue of LRP growth speed in

ore1-2 following laser ablation of overlying cells confirms that

the slower LRP growth in ore1-2 results from defective cell death

in LRP-overlying cells.

DISCUSSION

Our study demonstrates that developmentally regulated cell

death occurs in cells overlying LRP in Arabidopsis and contrib-

utes to regulating LRP growth. Previous studies have shown

that living LRP-overlying cells undergo a number of major cell

wall and cell shape changes, which also contribute to LRP

growth [18–24]. Cell death is therefore one of the mechanisms

involved in the regulation of LRP growth in Arabidopsis. Regula-

tion of LRP growth by overlying cell death is probably not

restricted to Arabidopsis because morphological studies indi-

cate the demise of cells overlying LRP in other species such as

maize, field bindweed, and soybean [12–15].

The mechanism of cell death in LRP-overlying cells is not

known and its executionmay differ from other instances of devel-

opmental cell elimination, as suggested by the spreading of

proBFN1-driven nuclear GFP signal into the entire protoplast of
Current Biology 30, 1–10, February 3, 2020 5
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Figure 3. LRE Is Delayed by Loss of the Positive Cell Death Regulator ORE1 and Rescued by Inducing Cell Death in Overlying Cells

(A) Distribution of observed LRP stages 18 and 42 h after gravitational induction of LR initiation inWT and twomutant alleles forORE1 (n = 30 observed seedlings).

See also Figures S2 and S3A–S3D.

(B) Number of LRs per mm of main root (i.e., emerged LR density) and average total length of the main root from 7-day-old seedlings. Each bar represents the

average of 8 replicate experiments (n = 32: 8 experiments 3 4 biological replicates per genotype), while the error bars represent SEMs. Similar results were

obtained in another set of 8 replicate experiments. The genotypes were compared by post-ANOVA Fisher test. Genotypes that do not share any letter are

significantly different from one another. See also Figures S3C–S3G.

(C) Representative 3D projections of double staining with viability dye FDA signal (green) and PI (magenta) observed by confocal laser scanning microscopy

imaging of stage II LRPs (seen in transmission light [Trans]) and their overlying cells in the main roots of 4- to 5-day-old Arabidopsis seedlings of the indicated

genotypes. White arrowhead points at an endodermal cell displaying signs of cell death (absence of FDA signal and PI entry). Bars, 20 mm.

(D) Frequency of cell death observed by double staining, as in (C), in cortical and endodermal cells overlying LRP at stages I–IV, before crossing of the endo-

dermis. Bars represent the average of 4 (mBAX-expressing lines) to 13 (WT and ore1-2) replicate experiments, and error bars represent SEMs. The genotypes

were compared by post-ANOVA Fisher test. Genotypes that do not share any letter are significantly different from one another.

(E) Distribution of observed LRP stages 18 and 42 h after gravitational induction of LR initiation in WT, ore1-2 mutant, and ore1-2 expressing the cell-death-

inducing mBAX protein under the transcriptional control of the BFN1 promoter (20 < n < 33 observed seedlings per genotype). This gravitational induction

experiment was repeated 5 times for line 1 and 2 times for line 4.

In (A) and (E), each line was compared with the corresponding WT by Pearson’s chi-square test, to reveal potential differences in the distribution of LRP stages

dependent on genotype (n.s., not significant, *p < 0.05, **p < 0.01, ***p < 0.001).
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an LRP-overlying endodermal cell (Figure 1C). A non-canonical

cell death execution in LRP-overlying cells is also supported by

the fact that only five of the nine canonical Arabidopsis develop-

mental cell death indicator genes [7] were highly co-expressed

during LRE (Figure 1A; Table S1). In addition, expression of a

ToIM [9] under the control of theBFN1 promoter revealed a longer

time gap between transcriptional activation of this promoter and

loss of tonoplast integrity in LRP-overlying cells than in xylem TEs
6 Current Biology 30, 1–10, February 3, 2020
(Video S4), which undergo a well-studied case of developmental

cell death and autolysis [8].

The exact spatial and temporal characterization of cell death

during LRE is challenging since it is not possible to record the

entire time span of LRP growth while using an appropriate chro-

nological resolution to record all cell death events. Our observa-

tions over limited time spans or at single time points with

stringent criteria (e.g., double staining FDA + PI) necessarily



A B

C D

Figure 4. Cell Ablation of LRP-Overlying Cells in Plants Lacking ORE1 Rescues LRE

(A) Schematic illustration of the optical tweezer setup used to specifically target LRP-overlying cells for ablation.

(B) Cell death detection relying on the absence of viability staining FDA signal (green) and on nuclear staining PI (magenta) observed with confocal laser scanning

microscopy imaging of LRPs and their overlying cells in the main root of a 4-day-old Arabidopsis seedling, 1 or 3 h after laser ablation. White arrowheads point at

an endodermal cell targeted for ablation. To avoid possible wounding of the LRP, the side of the endodermal cell toward the cortex was targeted with the laser

beam. Both the targeted endodermal cell and the adjacent cortical cell show signs of cell death after 3 h. Scale bars represent 10 mm.

(C) 3D projection of confocal laser scanning micrographs of a stage II LRP and the overlying cells in the main root of a 4-day-old Arabidopsis seedling expressing

ubiquitously (35S-promoter driven) the plasmamembranemarker GFP:LTi6a (magenta) and the nuclearmarker H2B:YFP (yellow fluorescent protein; green) 1 and

3 h after targeting an LRP-overlying cell (arrowheads) for laser ablation. After 1 and 3 h, the targeted LRP-overlying cell shows (arrowhead) disorganized plasma

membrane at the site where the optical tweezers hit. After 3 h, the damaged area seemed more affected than at 1 h, while the nucleus of the corresponding

endodermal cell showed an unusual shape and position (i.e., not pushed against the plasmamembrane, despite turgor pressure and the growing LRP). Scale bars

represent 10 mm.

(D) Distribution of observed LRP stages 18, 24 (time of ablation), and 42 h after the gravitational induction of LR initiation in WT and ore1-2 having undergone

ablation (or no ablation as a control) of an LRP-overlying endodermal cell (n = 9 observed seedlings from 3 independent experiments). Statistical comparisons

correspond to Pearson’s chi-square tests, to reveal potential differences in the distribution of LRP stages dependent on genotype (n.s., not significant, *p < 0.05,

**p < 0.01, ***p < 0.001).

See also Figures S3B–S3D and S3G.
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underestimate the actual frequency of cell death. Such underes-

timation of cell death frequency is supported by the fact that cell

death indicator genes were almost always induced at some point

over the course of LRP development (Figure 1D) and by the

strong proBFN1::nucGFP signal that persisted in LRP-overlying

cells beyond the end of our limited observation time frames (Fig-

ures 2L and S1D–S1H). It is therefore likely that overlying cell

death would occur in most LRE events when considering the

entire time span of LRP growth. The distribution of cell death in-

dicator gene activation over time (Figures 1D and 1E) in relation

to the time of cell death execution (Figures 2A, 2J, 2L, and S1D–
S1H) suggests the existence of a switch or threshold leading to

the execution of cell death. It is therefore possible that the

LRP-overlying cell death would follow a bistable switch regula-

tion, whereby a certain threshold of pro-cell death signal deter-

mines the commitment to cell death execution, as has recently

been shown for the cell death of xylem TEs [50].

Possibly contributing to a bistable-switch regulation, mechan-

ical forces can be expected to influence the fate of the LRP-over-

lying cells. Strong mechanical pressure is likely to be exerted by

the LRP growing against the overlying cells, which themselves

alter their mechanical properties and rigidity in coordination
Current Biology 30, 1–10, February 3, 2020 7
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with LRP growth [18, 20]. This could eventually result in the

developmentally regulated, non-cell-autonomous death of

some weakened overlying cells under intense pressure. Such a

scenario is analogous to the elimination of Arabidopsis endo-

sperm cells, which, by loosening their cell walls, allow the

embryo to grow into the space that they occupy and then

mechanically kill them [11]. Similarly, during adventitious root

formation, mechanical pressure has been reported to induce

cell death in the epidermis of rice in an ethylene-dependent

manner [51]. It is therefore possible that mechanical pressure

represents at least one of the mechanisms involved in cell death

signaling, or even in the execution of cell death itself [10], during

LRP growth. Furthermore, such LRP-mediatedmechanical pres-

sure would likely affect the overlying cells differently, depending

on their own mechanical properties and on their degree of over-

lap with the growing LRP, which is in line with our observation

that only a subset of the LRP-overlying cells dies.

It is possible that the death of a subset of overlying cells facil-

itates the growth of the LRP by reducing the mechanical resis-

tance of the overlying cells toward the primordia. The plausibility

of such a mode of action is supported by the fact that laser abla-

tion of an endodermal cell is potent enough to trigger cell division

in the adjacent pericycle [33], likely because the loss of mechan-

ical feedback from the ablated cell allows the necessary swelling

of the pericycle to initiate LRP formation [23, 25]. Alternatively, or

in addition, cell death may contribute to cell wall remodeling and

cell separation and hence to LRP growth by allowing a massive

release of cell wall-modifying enzymes and/or of auxin. For

example, the cell death of a few columella stem cell daughter

cells in Arabidopsis roots exposed to low temperature has

been shown to affect auxin distribution [52]. Furthermore, the

developmental cell death of LR cap (LRC) cells has been shown

to result in the release of auxin that is necessary for LR initiation

[53]. LRP growth was delayed to a comparable extent in mutants

for ORE1 and for the LATERAL ORGAN BOUNDARIES-

DOMAIN/ASYMMETRIC LEAVES 2-LIKE29 (LBD29) transcrip-

tion factor that normally controls auxin accumulation in LRP-

overlying cells [21] (Figure 3A versus [21] and Figure S3B). It is

therefore tempting to hypothesize that the death of LRP-over-

lying cells may serve an analogous purpose to LRC cell death

in quickly releasing high amounts of auxin for cell wall remodeling

of other overlying cells and for LRP growth.

Our finding regarding the impact of cell death on LR growth

demonstrates that plant organ growth can be regulated by cell

elimination. It was also recently shown that embryo growth re-

quires cell death of the bordering endosperm [11]. Furthermore,

the LRC, forming protective cell layers around the root tip, regu-

lates root organ growth based on the cell death dynamics of LRC

cells [9]. These findings, therefore, demonstrate that cell prolifer-

ation is not the sole factor determining organ growth in plants

and that the regulation of organ growth in plants is not dissimilar

from that in animals as previously proposed.

This greater similarity than previously accepted in the regula-

tion of organ growth between animals and plants raises some

evolutionary questions. Has cell elimination arisen as a mecha-

nism to regulate organ growth from a shared evolutionary

heritage between animals and plants, for example, from the

regulation of early unicellular populations by cell death [54]?

Alternatively, could the regulation of organ growth by cell death
8 Current Biology 30, 1–10, February 3, 2020
in animals and plants have stricken roots at different locations in

the tree of life, making it a form of convergent evolution that may

in the future reveal some form of deep evolutionary constraint

linked with cell elimination?
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M.A., and H.T. supervised the experiments. S.E. and H.T. wrote the manu-

script with help from all of the co-authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 16, 2019

Revised: November 22, 2019

Accepted: November 26, 2019

Published: January 16, 2020

https://doi.org/10.1016/j.cub.2019.11.078
https://doi.org/10.1016/j.cub.2019.11.078


Please cite this article in press as: Escamez et al., Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis, Current
Biology (2019), https://doi.org/10.1016/j.cub.2019.11.078
REFERENCES

1. Gokhale, R.H., and Shingleton, A.W. (2015). Size control: the develop-

mental physiology of body and organ size regulation. Wiley Interdiscip.

Rev. Dev. Biol. 4, 335–356.

2. Harashima, H., and Schnittger, A. (2010). The integration of cell division,

growth and differentiation. Curr. Opin. Plant Biol. 13, 66–74.

3. Meyerowitz, E.M. (1997). Genetic control of cell division patterns in devel-

oping plants. Cell 88, 299–308.

4. Mizukami, Y., and Fischer, R.L. (2000). Plant organ size control:

AINTEGUMENTA regulates growth and cell numbers during organogen-

esis. Proc. Natl. Acad. Sci. USA 97, 942–947.

5. Daneva, A., Gao, Z., Van Durme, M., and Nowack, M.K. (2016). Functions

and regulation of programmed cell death in plant development. Annu. Rev.

Cell Dev. Biol. 32, 441–468.

6. Lockshin, R.A., and Williams, C.M. (1964). Programmed cell death—II.

Endocrine potentiation of the breakdown of the intersegmental muscles

of silkmoths. J. Insect Physiol. 10, 643–649.

7. Olvera-Carrillo, Y., Van Bel, M., Van Hautegem, T., Fendrych, M.,

Huysmans, M., Simaskova, M., van Durme, M., Buscaill, P., Rivas, S.,

Coll, N.S., et al. (2015). A conserved core of programmed cell death indi-

cator genes discriminates developmentally and environmentally induced

programmed cell death in plants. Plant Physiol. 169, 2684–2699.

8. Escamez, S., and Tuominen, H. (2014). Programmes of cell death and

autolysis in tracheary elements: when a suicidal cell arranges its own

corpse removal. J. Exp. Bot. 65, 1313–1321.

9. Fendrych, M., Van Hautegem, T., Van Durme, M., Olvera-Carrillo, Y.,

Huysmans, M., Karimi, M., Lippens, S., Gu�erin, C.J., Krebs, M.,

Schumacher, K., and Nowack, M.K. (2014). Programmed cell death

controlled by ANAC033/SOMBRERO determines root cap organ size in

Arabidopsis. Curr. Biol. 24, 931–940.

10. Escamez, S., and Tuominen, H. (2017). Contribution of cellular autolysis to

tissular functions during plant development. Curr. Opin. Plant Biol. 35,

124–130.

11. Fourquin, C., Beauzamy, L., Chamot, S., Creff, A., Goodrich, J.,

Boudaoud, A., and Ingram, G. (2016). Mechanical stress mediated by

both endosperm softening and embryo growth underlies endosperm elim-

ination in Arabidopsis seeds. Development 143, 3300–3305.

12. Bell, J., and McCully, M.E. (1970). A histological study of lateral root initi-

ation and development in Zea mays. Protoplasma 70, 179–205.

13. Bonnett, H.T., Jr. (1969). Cortical cell death during lateral root formation.

J. Cell Biol. 40, 144–159.

14. Karas, I., and McCully, M.E. (1973). Further studies of the histology of

lateral root development in Zea mays. Protoplasma 77, 243–269.

15. Kosslak, R.M., Chamberlin, M.A., Palmer, R.G., and Bowen, B.A. (1997).

Programmed cell death in the root cortex of soybean root necrosis mu-

tants. Plant J. 11, 729–745.

16. Malamy, J.E., andBenfey, P.N. (1997). Organization and cell differentiation

in lateral roots of Arabidopsis thaliana. Development 124, 33–44.

17. Stocking, C. (1956). Histology and development of the root. In Pflanze und

Wasser/Water Relations of Plants, Handbuch der Pflanzenphysiologie/

Encyclopedia of Plant Physiology, Volume 3, M.J. Adriani, et al., eds.

(Springer), pp. 173–187.

18. P�eret, B., Li, G., Zhao, J., Band, L.R., Voß, U., Postaire, O., Luu, D.-T., Da

Ines, O., Casimiro, I., Lucas, M., et al. (2012). Auxin regulates aquaporin

function to facilitate lateral root emergence. Nat. Cell Biol. 14, 991–998.

19. Kumpf, R.P., Shi, C.-L., Larrieu, A., Stø, I.M., Butenko, M.A., P�eret, B.,

Riiser, E.S., Bennett, M.J., and Aalen, R.B. (2013). Floral organ abscission

peptide IDA and its HAE/HSL2 receptors control cell separation during

lateral root emergence. Proc. Natl. Acad. Sci. USA 110, 5235–5240.

20. Lucas,M., Kenobi, K., vonWangenheim, D., Vob, U., Swarup, K., De Smet,

I., Van Damme, D., Lawrence, T., P�eret, B., Moscardi, E., et al. (2013).

Lateral root morphogenesis is dependent on the mechanical properties

of the overlaying tissues. Proc. Natl. Acad. Sci. USA 110, 5229–5234.
21. Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., Swarup,

R., Kuempers, B., Bishopp, A., Lavenus, J., et al. (2016). Lateral root emer-

gence in Arabidopsis is dependent on transcription factor LBD29 regula-

tion of auxin influx carrier LAX3. Development 143, 3340–3349.
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G., Opdenacker, D., Möller, B.K., Skorzinski, N., Njo, M.F., et al. (2016).

Cyclic programmed cell death stimulates hormone signaling and root

development in Arabidopsis. Science 351, 384–387.

54. Ameisen, J.C. (2002). On the origin, evolution, and nature of programmed

cell death: a timeline of four billion years. Cell Death Differ. 9, 367–393.

55. Kim, J.H., Woo, H.R., Kim, J., Lim, P.O., Lee, I.C., Choi, S.H., Hwang, D.,

and Nam, H.G. (2009). Trifurcate feed-forward regulation of age-depen-

dent cell death involving miR164 in Arabidopsis. Science 323, 1053–1057.

56. Feng, Z., Sun, X., Wang, G., Liu, H., and Zhu, J. (2012). LBD29 regulates

the cell cycle progression in response to auxin during lateral root formation

in Arabidopsis thaliana. Ann. Bot. 110, 1–10.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli strain DH5a Widely distributed N/A

Escherichia coli strain DB3.1 Widely distributed N/A

Agrobacterium tumefaciens strain GV3101 pMP90 Widely distributed N/A

Chemicals, Peptides, and Recombinant Proteins

Murashige and Skoog (MS) medium (including vitamins) Duchefa Biochemie M0222

Fluorescein diacetate Merck F7378

Propidium iodide Merck P4864-10ML

Triton X-100 Merck 11332481001

X-Gluc Thermo Fisher R0851

Potassium hexacyanoferrate(III) (K3Fe(CN)6) Merck 244023

Potassium hexacyanoferrate(II) (K4Fe(CN)6) Merck 455989

Chloral hydrate Merck 15307

PhytagelTM Merck P8169-250G

MES Merck M1317

Glutaraldehyde Merck G5882

Osmium tetroxide Merck 75632

Propylene oxide Merck 82320

Spurr’s resin Polysciences 01916-1

Uranyl acetate Agar scientific AGR1260A

Lead Acetate Agar scientific AGR1209

Chloramphenicol Merck C0378-25G

Spectinomycin Merck S4014-5G

Critical Commercial Assays

Gateway BP Clonase II Enzyme mix Thermo Fisher 11789100

Gateway LR Clonase II Enzyme mix Thermo Fisher 11791100

RNeasy Plant Kit QIAGEN 74904

RNase-Free DNase Set QIAGEN 79254

QuantiTect Reverse Transcription Kit QIAGEN 205311

LightCycler� 480 SYBR Green I Master Mix Roche 04707516001

Deposited Data

LRP growth transcriptomics data from Voß et al. (2015) ArrayExpress E-MTAB-2565

Experimental Models: Organisms/Strains

Arabidopsis thaliana (Arabidopsis) Columbia-0 (col-0) ecotype,

wild-type

NASC N1092

Arabidopsis Wassilewskija (Ws) ecotype, wild-type NASC N5390

Arabidopsis anac092-1 mutant NASC & [28] SALK_090154

Arabidopsis ore1-2 mutant NASC & [55] N/A

Arabidopsis bfn1-1 mutant NASC & [9] GK-197G12

Arabidopsis bfn1-2 mutant NASC SALK_017287

Arabidopsis mc9-1 mutant NASC & [37] GABI_540_H06

Arabidopsis mc9-2 mutant NASC & [37] SALK_075814

Arabidopsis mutant for DMP4 NASC SALK_063946

Arabidopsis mutant for EXI1 NASC SALK_137383

Arabidopsis mutant for EXI1 NASC SAIL_760_G07

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Arabidopsis lbd29 mutant NASC & [56] SALK_071133C

Arabidopsis 35S::SRDX:LBD29 dominant suppressor line NASC & [21] N/A

Arabidopsis mutant for RNS3 NASC FLAG_164_A04

Arabidopsis proDMP4::GUS This study N/A

Arabidopsis proRNS3::GUS This study N/A

Arabidopsis proBFN1::GUS This study N/A

Arabidopsis proMC9::MC9:GUS [37] N/A

Arabidopsis proORE1::GUS [28] N/A

Arabidopsis proBFN1::ToIM This study N/A

Arabidopsis proUBQ10::WAVE131:YFP [38] N/A

Arabidopsis proCASP1::CIT:SYP122 [23] N/A

Arabidopsis proBFN1::nucGFP [37] N/A

Arabidopsis proUBQ10::WAVE131:YFP proBFN1::nucGFP This study N/A

Arabidopsis proCASP1::CIT:SYP122 proBFN1::nucGFP This study N/A

Arabidopsis 35S::GFP:LTi6a [57] N/A

Arabidopsis 35S::H2B:YFP [58] N/A

Arabidopsis 35S::GFP:LTi6a 35S::H2B:YFP This study N/A

Arabidopsis proATG8a::GFP:ATG8a [43] N/A

Arabidopsis proBFN1::mBAX (Col-0 background) This study N/A

Arabidopsis ore1-2 proBFN1::mBAX lines 1-6 This study N/A

Oligonucleotides

For Gateway cloning of DMP4 promoter: proAT4G18425-attB1

(Forward), GGGGACAAGTTTGTACAAAAAAGCAGGCTTACCG

AACTGATCAAACATATATGATC; attB2-proAT4G18425 (Reverse),

GGGGACCACTTTGTACAAGAAAGCTGGGTAATCTTTGAAGTT

GTTTCCTTTGTC

This study (synthesis ordered

from Thermo Fisher)

N/A

For Gateway cloning of RNS3 promoter: proAT1G26820-attB1

(Forward), GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGG

AGAAGAAGAAGAGGACAGACC; attB2-proAT1G26820 (Reverse),

GGGGACCACTTTGTACAAGAAAGCTGGGTATTCCTCAAGAT

ATCAAATAATTTG

This study (synthesis ordered

from Thermo Fisher)

N/A

For Gateway cloning of BFN1 promoter: proAT1G11190-attB1

(Forward)GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATCAA

TGGTATAGATTTG attB2-proAT1G11190 (Reverse)GGGGACC

ACTTTGTACAAGAAAGCTGGGTAATCTTCAAAGTTTGAAACTTA

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of EXI1

Forward:

ATGATGTATCTAAGTCGGAGA

Reverse:

TTAGTGGCGTGAAGGC

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of RNS3

Forward:

AATTCTTCATTTTTATTCTAGCGT

Reverse:

TTAGAACTTGGGAAATTGAACT

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of DMP4 (5’ end of transcript)Forward:

TGACGAAGGTCATCAAAAAGG

Reverse:

TAGAAGCTGAAACGCGAGAA

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of DMP4 (3’ end of transcript)

Forward:

TTGGTGCGGTGGTTTTATTC

Reverse:

CAATCCCATTGCGTGTTGT

This study (synthesis ordered

from Thermo Fisher)

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

For checking expression of BFN1

Forward:

CCCTTTTGTTCTTGTCTCATTTC

Reverse:

ACGCCTTTGTATCCCCATTT

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of ORE1 (full length)

Forward:

ATGGATTACGAGGCATCAAG

Reverse:

ATGGATTACGAGGCATCAAG

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of ORE1 (3’ end of transcript)

Forward:

CAGAAGCCGGTTATTGGAAA

Reverse:

CGTTTTTGGAAAACACGACA

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of mBAX (full length)

Forward:

ATGGACGGGTCCGGGGAGCAG

Reverse:

TCAGCCCATCTTCTTCCAGAT

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of mBAX (3’ end of transcript, for qPCR)

Forward:

TGCAGAGGATGATTGCTGAC

Reverse:

GATCAGCTCGGGCACTTTAG

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of UBQ10 (3’ end of transcript,

reference gene for qPCR)

Forward:

GGCCTTGTATAATCCCTGATGAATAAG

Reverse:

AAAGAGATAACAGGAACGGAAACATAGT

This study (synthesis ordered

from Thermo Fisher)

N/A

For checking expression of CESA8/IRX1 (3’ end of transcript,

for qPCR)

Forward:

GGTTCTACGTTGGGCTCTTG

Reverse:

ATACTGACTCCGCTCCATCG

This study (synthesis ordered

from Thermo Fisher)

N/A

For genotyping of SALK_063946 (for DMP4)

Forward:

GAACTTCCAATGCTTCTGCTGReverse:

TGTCATTGACAAATGACACGG

This study (synthesis ordered

from Thermo Fisher)

N/A

For genotyping of SALK_017287 (bfn1-2)

Forward:

TAAACAAAGCAGTCCACAGGCReverse:

TGGTTTAAGATTGGCTTGACG

This study (synthesis ordered

from Thermo Fisher)

N/A

For genotyping of SALK_137383 (for EXI1)

Forward:

ACTTTTTCCACCTGCAATTTGReverse:

CATCTATGAATCCATGTCCGG

This study (synthesis ordered

from Thermo Fisher)

N/A

For genotyping of SAIL_760_G07 (for EXI1)

Forward:

ACATCTTTCATTTGCATTGGCReverse:

AAGGTTAGATTGCGTATTATTTTGG

This study (synthesis ordered

from Thermo Fisher)

N/A

For genotyping of FLAG_164_A04 (for RNS3)

Forward (’’Left primer’’ regarding the orientation of the T-DNA):

CATGCCTTGAATTTCAGCAAGReverse (’’Right primer’’

regarding the orientation of the T-DNA):

GCCCAAGATTTCGATTTCTTC

This study (synthesis ordered

from Thermo Fisher)

N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

pENTR207 Thermo Fisher (formerly invitorgen) N/A (no longer sold by this

manufacturer)

pBGGUS [59] N/A

proDMP4::GUS This study N/A

proRNS3::GUS This study N/A

proBFN1::GUS This study N/A

proMC9::MC9:GUS [37] N/A

proORE1::GUS [28] N/A

pDONR P4P1r Thermo Fisher (formerly invitrogen) N/A (no longer sold by this

manufacturer)

pK7m34GW-pPASPA3-eGFP-2A-sp-mRFP [9] N/A

pK7m34GW-pBFN1-eGFP-2A-sp-mRFP This study N/A

proBFN1::ToIM This study N/A

pENTRL4R1 containing the proBFN1 fragment (pENTRL4R1-pBFN1) This study N/A

pENTR221 containing the mBAX gene Dr. Moritz Nowack (VIB Gent;

unpublished)

N/A

pK7m24GW [60] N/A

proBFN1::mBAX This study N/A

Software and Algorithms

ImageJ/Fiji N/A https://imagej.net/Fiji

Minitab 17 Minitab LLC https://www.minitab.com/

en-us/products/minitab/

Other

Glass capillaries, 1.8 mm of diameter, 100ml Blaubrand intraMark 7087 44

Nunc� Lab-Tek� 1-well microscopy Chamber Thermo Fisher 155361
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LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents or resources, but new materials such as Arabidopsis transgenic lines were gener-

ated in this study. These materials will be made available upon request addressed to the Lead Contact, Dr. Hannele Tuominen

(hannele.tuominen@umu.se).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant Material
The model plant species Arabidopsis thaliana (Arabidopsis) has been used throughout this study. Most of the Arabidopsis knock-out

mutant plants used in this study are in the Columbia-0 (Col-0) genetic background, and were therefore compared with a Col-0 wild-

type: anac092-1 (ore1 allele SALK_090154 [28];), ore1-2 (5bp deletion [55];), bfn1-1 (GK-197G12 [9];), bfn1-2 (SALK_017287),mc9-1

(GABI_540_H06 [37];), mc9-2 (SALK_075814 [37];), SALK_063946 (for DMP4), SALK_137383 and SAIL_760_G07 (for EXI1). The

knock-out mutant lbd29 (SALK_071133C) and the dominant suppressor 35S::SRDX:LBD29 were also in the Col-0 background,

generated in previous studies [56]. The FLAG_164_A04 knock-out mutant (for RNS3) in the Wassilewskija (Ws) genetic background

was compared to Ws wild-type.

The transcriptional reporter lines for histological detection of promoter activity were either generated in this study (proDMP4::GUS,

proRNS3::GUS and proBFN1::GUS, as described in the ‘‘Method Details’’ below), or obtained from previous studies (proMC9::MC9:

GUS from [37] and proORE1::GUS from [28]).

The BFN1 promoter-driven fluorescent tonoplast integrity marker (proBFN1::ToIM) to monitor cell death was created in this

study (as described in ‘‘Method Details’’ below) based on a previously published construct [9]. The double markers for fluorescently

labeled plasma membranes (ubiquitous: proUBQ10::WAVE131:YFP; or endodermis-specific: proCASP1::CIT:SYP122) and BFN1

promoter-driven nuclear GFP (proBFN1::nucGFP) were generated in this study by crossing previously generated individual markers

[23, 37, 38]. The double marker for ubiquitous fluorescent labeling of both plasma membranes (35S::GFP:LTi6a) and nuclei

(35S::H2B:YFP) were also generated in this study by crossing previously generated individual markers [57, 58]. The autophagy

reporter proATG8a::GFP:ATG8a had been generated previously [43].
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Growth conditions
To compare the speed of LRE between genotypes, seedlings were grown on ½ MS medium for three days in constant light

(150 mE$m-2$s-1) on vertical plates, which were then rotated 90� to induce LRP initiation [18]. For laser ablation, seedlings were trans-

ferred to sterile microscopy chambers and covered with a slab of the medium they had been growing on, to allow them to continue

growing within the chamber over the course of LRP growth.

Seedlings for observations of naturally initiated LRPs (no gravitational induction) were grown on½MSmedium for 3.5 - 7 days after

germination in 16 h day (150 mE$m-2$s-1) / 8 h night cycles.

Genotypes meant to be compared always consisted of seeds that had been harvested at the same time, from plants grown in the

same location and conditions.

METHOD DETAILS

BFN1 co-expression analysis
To identify genes correlating in expression with BFN1 during LR development, smooth splines were fitted through the transcriptomic

profiles for all genes, to smooth out the noise. The Pearson correlation between each gene’s profile and that of the target gene BFN1

was calculated, including all data points, i.e., not just mean values for each time point. Genes were ranked in decreasing order of the

Pearson correlation with BFN1 (Table S1).

Cloning and plant transformation
For promoter-reporter constructs, 1654 bp (AT4G18425; DMP4) or 2000 bp (AT1G26820; RNS3) upstream of the translational start

codonwere amplified and recombined byGateway-mediated cloning via pENTR207 (Invitrogen) into the destination vector pBGGUS

[59]. proBFN1::GUSwas obtained by recombining a 670 bp promoter region ofBFN1 (AT1G11190) into pMDC163. Col-0 plants were

transformed with Agrobacterium tumefaciens using the floral dip method [61]. At least five independent lines were analyzed for each

construct to select representative lines. proBFN1::nucGFP and proMC9::MC9:GUS have been described previously [37].

To place the tonoplast integrity marker (ToIM [9];) downstream of the BFN1 promoter, the promoter of the putative protease

PASPA3 previously cloned upstream of the tonoplast integrity marker [9] was replaced by the BFN1 promoter. To do so, the

BFN1 promoter was amplified from a plasmid using primers comprising the attB4 and attB1r sequences, and recombined into

pDONR P4P1r. The PASPA3 promoter from pK7m34GW-pPASPA3-eGFP-2A-sp-mRFP [9] was removed by a standard BP recom-

bination with pDONRP4P1r, the destination vector was recovered by selecting on Chloramphenicol and Spectinomycin in DB3.1

cells and subsequently recombined during an LR reaction with pENTRL4R1-pBFN1. The resulting expression vector pK7m34GW-

pBFN1-eGFP-2A-sp-mRFP was used to electroporate Agrobacterium tumefaciens. Agrobacterium-mediated floral dip transforma-

tion of wild-type (Col-0) plants was performed and several apparent transformants were screened for visible ToIM signal, leading to

the selection of a representative proBFN1::ToIM marker line.

To express the cell death agonist mammalian protein mBAX under the transcriptional control of the BFN1 promoter, the vectors

pENTRL4R1 containing the proBFN1 fragment and pENTR221 containing the mBAX gene (a kind gift from Moritz Nowack)

were together recombined into pK7m24GW [60] using standard protocols for LR recombination. This vector was transferred into

Agrobacterium tumefaciens to transform Col-0 and ore1-2 plants by floral dip. Transformants were then screened to identify homo-

zygous lines in each genotype displaying mBAX expression.

Gravitational induction of LRP initiation
Determination of LRP stage was performed 18h and 42h after synchronized LR induction by gravitational stimulus, as described pre-

viously [16, 18]. Briefly, the seedlings were fixed and cleared by a 15min incubation in acidified methanol (20% v/v methanol with 4%

v/v HCl), followed by 15min in 60% v/v ethanol mixed with 7% v/v NaOH, and 5min steps in an ethanol gradient (40%, 20% and 10%

v/v ethanol). The fixed and cleared seedlings were then mounted in 50% glycerol and observed as described in ‘‘light microscopy’’

below.

In the specific case of laser-assisted cell elimination experiments, the seedlings were not fixed or cleared but directly observed

inside of the microscopy chambers where they were growing, similar to a previously published method real time analysis of lateral

root organs [62].

Confocal Laser Scanning Microscope analyses
All time-lapses with cLSM were acquired using a Zeiss LSM780 inverted microscope, by placing the seedlings in microscope cham-

bers as previously described [62]. GFP and CITRINE signals (Figures 2 and S1D–S1H) were simultaneously recorded with a spectral

detector after excitation with a 488 nm laser line, and separated by online fingerprinting (i.e., unmixing which occurs during, rather

than after, acquisition). eGFP and mRFP signals (Video S4) from the ToIM marker [9] were detected simultaneously upon excitation

with 488 nm (for eGFP) and 561 nm (for mRFP) laser lines.

cLSM micrographs that are not part of any time-lapse were acquired either with a Zeiss LSM780, an upright Zeiss LSM800 or an

inverted Zeiss LSM880 microscope. For FDA and PI staining, 3.5-4 days old Arabidopsis seedlings were incubated for 1h in liquid ½

MS medium containing 10 mg/mL PI and 12 nM FDA, and imaged as similarly to the ToIM maker (described above), as previously

described [44].
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Transmission electron microscopy
An early-stage LRPmarker proLBD16::GFP line [63] was used to identify regions of the root containing primordia. Tissues were fixed

under vacuum in 2.5%w/v glutaraldehyde in 0.1MNa cacodylate buffer, pH7.3 for 30min, and thenwithout vacuumovernight at 4�C.
Tissues were then stained with 1% w/v osmium tetroxide for 2 h at room temperature in the dark, washed twice in water, and then

dehydrated in 15-minute steps through an ethanol series (50, 70, 90, and 100%). Root portions were then rinsed in propylene oxide

and exchanged with Spurr’s resin (Polysciences) and then baked at 65�C for 2 days. Sections weremounted on formvar-coated cop-

per grids. Contrasting was done for 45 min in 5% uranyl acetate followed by 5 min in Sato’s lead acetate staining.

Light microscopy
All observations were performed with an upright Zeiss Axioplan II microscope or with an inverted Leica DMi8, both equipped for

epifluorescence microscopy.

Histochemical GUS assays were performed as described previously [37]. Briefly, 3.5-5 days old transgenic seedlings were

incubated for 1h-18h at 37�C in a solution consisting of 1 mM X-Gluc, 1 mM K3Fe(CN)6, 1 mM K4Fe(CN)6 and 0.1% Triton x-100

in 50 mM sodium phosphate buffer (pH7). After this, the samples were cleared in 70% ethanol and rehydrated in an ethanol gradient

in 5 min steps (50%, 40%, 20% and 10% v/v ethanol), followed by additional clearing in a chloral hydrate solution (chloral hydrate/

glycerol/H2O 8:2:3 v/v) for at least 1 h. The samples were mounted in 50% glycerol and observed using differential interference

contrast [16].

LRP of seedlings harboring the proBFN1::nucGFP constructs were observed while alive following mounting in liquid ½ MS

medium. Both differential interference contrast and fluorescence micrographs were acquired to relate the possible presence of

nucGFP signal to the LRP stage.

Lightsheet fluorescence microscopy
Seeds were sterilized for 10min with 70% ethanol supplemented with 0.05% Triton X-100, washed 3 times with 70% ethanol, and

incubated for 10 min with 100% ethanol before being dried out under the sterile bench. Glass capillaries (1.8 mm of diameter, Blau-

brand intraMark, glass micropipettes 100 mL Ref. 7087 44) were sterilized with 70% ethanol for 20 min, then 100% ethanol for 20 min

and left to dry. The capillaries were filled with ½MSmedium buffered with 0.5 g/L MES (adjusted to pH 5,8 with KOH), containing 1%

(m/V) of Phytagel (Sigma PhytagelTM P8169-250G) and placed in a small round plate filled with the same medium. One seed was

placed on top of each capillary and stratified for 48h before transfer to long day conditions for 4 to 5 days at 22�C.
Imaging was performed on a Luxendo MuViSPIM, equipped with two-sided illumination and two cameras for detection. In the

microscope, the plant was continuously illuminated (red and blue LEDs, turned off during stack acquisition) and the temperature

wasmaintained at 24�C. About 5 mmof the root surrounded by a cylinder of Phytagel mediumwas extruded out of the glass capillary

which itself was positioned vertically in themicroscope’s chamber containing liquid, sterile ½MSmedium. The shoots of the seedling

were left out of the liquid medium.

Samples were excited by a 488 nm laser light sheet (2.5 mm thickness at the waist) generated with Nikon Plan Fluor 10X/0.30W

objectives. Laser power was kept < 6mW. The emitted fluorescence was detected by Nikon Apo 40X/0.80WDICN2 objectives asso-

ciated with a 497-553 nm band pass filter and captured using 2 Hamamatsu Orca-flash 4.0 cameras with an exposure time < 100ms.

Under these conditions, both reporters (cell death marker proBFN1::nucGFP and plasma membrane marker proCASP1::CITRINE:

SYP122) were collected in the same channel. Stacks were acquired every 10 min for 24 h with a z-step of 0.250 mm spanning a total

volume of 200 mm containing the growing LRP and the primary root overlying tissues. Due to drifting of the samples in the liquid

medium, a total of only two successful observations could be performed (two LRP, each from a different seedling).

After fusion of the two opposite views with the proprietary script of Luxendo, sample drift was corrected using the BigDataTracker

plugin in ImageJ (Fiji).

Laser-assisted targeted cell elimination
Laser ablation was conducted with the same aim as previous studies which successfully caused the death of single cells in

Arabidopsis roots [32–35], but with an experimental setup relying on the so called optical tweezers technique. To cause deadly

wounds specifically to LRP-overlying endodermal cells, we used a modified inverted microscope (IX71, Olympus) normally utilized

in optical tweezers applications [64]. A Gaussian laser beam (TEM00, M2 < 1.1) from a continuous wavelength laser (Rumba, 05-01

Series, Cobolt AB) operating at 1064 nmwas introduced into themicroscope.We used a 60xwater immersion objective (UPlanSApo,

Olympus), with a numerical aperture of 1.2 and a working distance of 0.28 mm to focus the beam and create a high-intensity spot. To

perform accurate positioning of the laser focal spot we aligned the beam so the focal spot coincides with the focal plane of the

microscope objective. A diffraction-limited spot of �560 nm and a depth of field of �300 nm was created that we could position

with nm-resolution in the lateral and axial plane using a combination of micro-attenuators and a piezo stage (PI-P5613CD, Physik

Instruments) [65]. Since the objective strongly focused the laser beam �65�, the intensity dropped fast from the focal spot, both

in the lateral and axial directions, making ablation limited to only one specific cell [66]. We estimated the intensity in the focal spot

to 2.48 MW/mm2 by measuring the effective power (1490 mW) before the objective and by taking into account the parameter

values (transmission, focal length, etc.) of the objective specified by the manufacturer. Finally, we visualized and imaged plants

mounted in microscopy chamber (1-well Lab-Tek chamber, Nunc) as previously described [62] using a CCD camera (C11440-

10C, HAMAMATSU, 8 bit).
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RNA isolation and qPCR
For quantitative real-time PCR analyses, Arabidopsis seedlings of the indicated genotypes were grown for 5 days as indicated above

for naturally initiated LRP. For each genotype, 10 seedlings were pooled together and ground in liquid nitrogen. RNA extraction on

these ground samples was performed using RNeasy Plant Kit (QIAGEN), including ‘‘on column DNase treatment,’’ following manu-

facturer’s instruction. RNA concentration was measured with Nanodrop and all samples were diluted to 100 ng/mL. 500 ng of total

RNA were used for cDNA synthesis using QuantiTect Reverse Transcription Kit (QIAGEN), including gDNase treatment (for the sec-

ond time) prior to cDNA synthesis. cDNA samples were diluted 25 times and 5 mL were used as template in a 20 mL total reaction

volume, using LightCycler 480 SYBRGreen 1Master (Roche Life Science) according to themanufacturer’s instructions. Each sample

was loaded in duplicate into a 96-well qPCR plate (Roche Life Science) and qPCRwas run in a LightCycler 480 thermal cycler (Roche

Life Science) for 45 cycles (initial denaturation at 98�C for 3 min, cycling: denaturation at 95�C for 5 s, annealing at 55�C for 10 s,

elongation at 72�C for 30 s; melting curve from 45�C to 95�C with acquisitions every 1�C).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses
For multiple comparison of continuous variables (e.g., root length, lateral root density, frequency of cell death.) between genotypes,

post-ANOVA Fisher LSD tests were performed using Minitab 17, provided that the ANOVA indicated significant overall differences

(p < 0.05). The choice of this test is justified because statistical studies have shown that under the condition of an ANOVA returning p <

0.05, the post-ANOVA Fisher LSD test provides the best detection of true pairwise differences, while performing aswell or better than

other tests (e.g., Tukey’s test) against type I error [67].

For comparisons of stages of LRP growth, which is a categorical variable (each stage is a category, and the variable is not contin-

uous but discrete) we opted for the Chi-square test because it allows to test whether two categorical variables are independent from

one another. For instance, we tested whether the categorical variable ‘‘LRP stage’’ and the categorical variable ‘‘genotype’’ were

independent (H0) or not (H1). If the distribution LRP stage is not independent from genotype (i.e., if p < 0.05), then the conclusion

is that the compared genotypes have significantly different LRP growth speed.

All charts displaying values as bars show averages of several replicate experiments (number of combined replicate experiments

and of biological replicates are indicated in the figure legends), and error bars always represent standard error of the mean (SEM).

DATA AND CODE AVAILABILITY

Neither custom code nor datasets were generated in this study. Transcriptomics results presented in this study rely on a previously

published dataset [36].
Current Biology 30, 1–10.e1–e7, February 3, 2020 e7


	CURBIO16035_proof.pdf
	Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis
	Introduction
	Results
	Cell Death Indicator Genes Are Induced in Cells Overlying LRP
	Cell Death Occurs in a Subset of LRP-Overlying Cells
	Cell Death in LRP-Overlying Cells Facilitates LRP Growth

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Model and Subject Details
	Plant Material
	Growth conditions

	Method Details
	BFN1 co-expression analysis
	Cloning and plant transformation
	Gravitational induction of LRP initiation
	Confocal Laser Scanning Microscope analyses
	Transmission electron microscopy
	Light microscopy
	Lightsheet fluorescence microscopy
	Laser-assisted targeted cell elimination
	RNA isolation and qPCR

	Quantification and Statistical Analysis
	Statistical analyses

	Data and Code Availability




