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The nanoscale coaxial cable (nanocoax) has demonstrated sub-diffraction-limited optical 

confinement in the visible and the near infrared, with the theoretical potential for 

confinement to scales arbitrarily smaller than the free space wavelength. 

In the first part of this thesis, I define in clear terms what the diffraction limit is. 

The conventional resolution formulae used by many are generally only valid in the paraxial 

limit. I performed a parametric numerical study, employing techniques of Fourier optics, 

to resolve precisely what that limit should be for nonparaxial (i.e. wide angle) focusing of 

scalar spherical waves. I also present some novel analytical formulae born out of Debye’s 

approximation which explain the trends found in the numeric study. These new functional 

forms remain accurate under wide angle focusing and could materially improve the 

performance, for example, in high intensity focused ultrasound surgery by further 

concentrating the power distributed within the point spread function to suppress the side 

lobes. I also comment of some possible connections to the focusing of electromagnetic 

waves. 

In the second part of this thesis I report on a novel fabrication process which yields 

optically addressable, sub-micron scale, and high aspect ratio metal-insulator-metal 

nanocoaxes made by atomic layer deposition of Pt  and 2 3Al O . I discuss the observation 

of optical transmission via the fundamental, TEM-like mode by excitation with a radially 

polarized optical vortex beam. Also, Laguerre-Gauss beams are shown to overlap well with 
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cylindrical waveguide modes in the nanocoax. My experimental results are based on 

interrogation with a polarimetric imager and a near-field scanning optical microscope. 

Various optical apparatus I built during my studies are also reviewed. Numerical 

simulations were used with uniaxial symmetry to explore 3D adiabatic taper geometries 

much larger than the wavelength. 

Finally, I draw some conclusions by assessing the optical performance of the 

fabricated nanocoaxial structures, and by giving some insights into future directions of 

investigation.
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1 INTRODUCTION 

1.1 Problem statement 

The ability to confine light into small spaces has driven many revolutionary advances in 

technology. However free-space light, being an electromagnetic wave, cannot be made 

substantially smaller than its wavelength λ . This is called the diffraction limit [1]. In broad 

terms, the problem statement for this thesis is to make nanostructures which confine light 

to smaller scales than the diffraction limit would otherwise allow. 

1.2 Motivation 

Any imaging system which can beat the diffraction limit is called super-resolving. Super-

resolution imaging has revolutionized many fields of science and engineering. To give 

some contemporary context, I point to Moore’s law which says that the number of 

transistors on an integrated circuit doubles every two years. This progress is largely driven 

by technical advances that yield ever finer lithographic resolution. There is a lesser known 

corollary to Moore’s law called Rock’s law, which says the cost of fabricating those 

integrated circuits also grows exponentially, doubling every four years. This growth is in 

no small part driven by the R&D costs of developing those new nanolithography processes, 

part of which is the super-resolving imaging tool itself. In 2018 the revenues generated by 

companies which make those lithographic imaging tools exceeded $14 billion. The point 

is that even within the niched context of developing new lithography tools for the 

semiconductor industry, and furthermore even only considering the types of tools which 

are used by high volume manufacturers within that industry, even in that narrow setting 
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there is still an enormous economic driver. But the impact of super-resolution imaging 

systems reaches far beyond that limited context, one need look no further than the sea-

change it brought to the life sciences. In a broader sense, the utility of super-resolution 

imaging systems to the world could hardly be overstated. 

There are a wide variety of super-resolution techniques used to beat the diffraction 

limit. This work uses an already well-established technique, which is to confine light in a 

metal-insulator-metal (MIM) waveguide [2], which substantially reduces the scope of the 

above problem statement. I have made specifically MIM nanostructures. This MIM 

approach is motivated by a simple phenomenon: that the fundamental mode of any 

multiconductor waveguide can be made arbitrarily smaller than λ , provided that the metal 

and insulator constituents behave materially as their names suggest. This is because multi-

conductor waveguides always have at least one TEM-like fundamental mode [3], where 

TEM means transverse electromagnetic. One could say this phenomenon is a topologically 

robust feature: two or more conductors can sustain DC excitations, for example in the form 

of an electrostatic separation of charge, or in the form of magnetostatic supply and return 

currents. Such bipolar DC excitations are not possible on any single-conductor system, 

they instead decay as transients. For finite frequencies above DC, therefore also with a 

finite λ , the waveguide behavior of the fundamental TEM-like mode is described by the 

quasistatic limit. But for higher-order modes, the wave can only propagate for sufficiently 

short λ , a phenomenon known as cut-off. All higher order modes above the fundamental 

are subject to cutoff. 

 The motivation for this work is also furnished by the scale invariance of 

electromagnetism. While waveguides are most typically used to channel RF energy 
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( )100 GHzf < , where f  is the frequency, they function in essentially the same manner 

when channeling optical energy, even for photon energies up to the ultraviolet 

( )800 THzf < . However, in order to operate a waveguide at 1000 times faster 

frequencies, roughly speaking, it must be minified by a corresponding factor of 1000. 

Applying the lessons learned from conventional RF waveguide engineering into the optical 

domain requires modern fabrication procedures to make nano-sized structures. There are, 

of course, important detailed differences between waveguide behaviors in these two 

frequency ranges, as will be discussed later in this thesis. But their essential operation is 

not different. And from a historical perspective, many of the limitations overcome in 

optical MIM waveguide research have been due to innovative fabrication and excitation 

schemes which simply have no analog in the RF domain. Among the common RF 

waveguide topologies, only the coaxial cable [4] totally encloses the insulating space, thus 

eliminating fringe/stray fields. Early theoretical predictions [5] and experimental 

observations [6]–[9] have demonstrated transmission at visible frequencies through sub-

µm coaxial MIM structures. 

1.3 Application areas 

The nanocoax has numerous photonics applications, including color filters [10], 

[11], optical tweezers [12], negative index metamaterials [13], fiber-terminating lenses 

[14], [15], super-resolution imaging [16], scanning Raman probes [17], and lasers [18], 

[19], to name a few. And while the action of a metal in this context can be mimicked by an 

all dielectric photonic crystal [20], it is important to note that there are caveats attached to 
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this mimicked behavior, and for the most general set of physical conditions only a true 

MIM waveguide can facilitate these phenomena. 

1.4 Organization of this thesis 

Since the aim of this work is to confine light to sub-diffraction-limited scales, this 

dissertation starts in Chapter 2 by defining in clear terms what is meant precisely by “the” 

diffraction limit, particularly how the lesser-known effects of wide angle focusing can be 

understood as a departure from their better-known paraxial counterparts. In Chapter 3, I 

describe some of the experimental apparatus and methods I used to probe a microscopic 

device under test. Chapters 2 and 3 lend themselves mostly to the first half of the title for 

this work, “Optical Confinement …”. In Chapter 4 I address the second half of the title, 

“… in the Nanocoax”. There I describe the theoretical foundations of and the experimental 

progress I have made towards super-resolved nanoconfinement in the nanocoax, and using 

the foundations established in the earlier Chapters. 
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2 WIDE ANGLE EFFECTS IN SCALAR FOCUSING 

The overall aim of this work is to “beat the diffraction limit”. So, having a clearly defined 

limit is the first logical step. Recent advances in optical microscopy have enabled imaging 

with spatial resolution beyond the diffraction limit. This limit is sometimes taken as one of 

several different criteria according to different conventions, including Rayleigh’s 

0.61 NA,λ  Abbe’s 0.5 NA,λ  and Sparrow’s 0.47 NA.λ  This Chapter retells our 

published result [1], where we perform a parametric study, numerically integrating the 

scalar Kirchhoff diffraction integrals, and we propose new functional forms for the 

resolution limits derived from scalar focusing. The new expressions remain accurate under 

wide angle focusing, up to 90 .°  

In Section 2.1 I provide the motivation for this Chapter and give the familiar paraxial 

formulae. In Section 2.2 I discuss some mathematical preliminaries to be used throughout 

this thesis and describe a computational approach for evaluating and analyzing non-

paraxial point spread functions. In Section 2.3 I define the focusing problem and 

summarize some known solutions. In Section 2.4 I quantify the effects of strong focusing 

by reporting the results of a parametric study, this section accounts for most of my original 

contribution to the field. And in Section 2.5 I summarize with some key takeaways which 

elude to similar trends in electromagnetic focusing, and I describe some potential 

application of the scalar results discussed in this Chapter. Our results could materially 

impact the design of high intensity focused ultrasound systems and can be used as a 

qualitative guideline for the design of a particular type of planar optical element: the flat 

lens metasurface. 
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2.1 Motivation 

The role of diffraction in imaging systems has been studied since the days of Airy [21], 

Abbe [22], [23], and Rayleigh [24]. Textbook theory [25]–[29] says that conventional 

optical microscopes cannot resolve spatial features finer than approximately half the 

wavelength of light, 2λ . Pushing beyond the diffraction limit, near-field techniques based 

on scanning probe and plasmonic technologies collect information present only in 

evanescent waves [30], [31]. Far-field techniques based on fluorescence microscopy [32], 

[33] beat the diffraction limit with a priori information about the positions of fluorescent 

molecules (or about their concentration). Far-field super-resolution has even been 

demonstrated for non-fluorescent specimens, for example by using a super-oscillatory lens 

[34]. With this context, the motivation for the present work is to reexamine the textbook 

resolution limits of a conventional optical microscope: 

NAxd λχ=  (2.01) 

2NA
z

nd λζ=  (2.02) 

xd  and zd  are, respectively, the minimum transverse and longitudinal separations 

between two “barely resolved” point sources, α  is the half angle subtended by the 

objective lens, n  is the refractive index of the immersion medium, and NA sinn α=  is the 

numerical aperture. The numerical factors χ  and ζ  take on different values with different 

definitions of “barely resolved”. For example, 0.61χ ≈  according Rayleigh, 1 2χ =  

according to Abbe, and 0.47χ ≈  according to Sparrow (see page 474 of [25]); some 

sources [35] use 2ζ = , while others [36] use 1.4ζ = . Although the different numerical 
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values stem from important conceptual differences, we present them here succinctly in 

order to highlight the common , carried by 1NA−  and 2NA− . 

There is an expansive body of work on the theory, computation, and experiments 

within the focal region, including textbooks [37] as well as volumes of journal articles that 

deal exclusively with the electromagnetic [38] and scalar [39] aspects of focusing. In broad 

terms, scalar and electromagnetic theory give the same result to within 5% for angles up to 

~ 50α ° . For example, figure 8 of [40] shows less than a 1% difference for 30α < ° . For 

strong focusing (i.e. ‘wide angle’, 50α > ° ), polarization effects become increasingly 

important, see in particular figures 7 and 8 of [41]. 

While those polarization effects certainly cannot be ignored for optical confinement, 

the scope of this work was restricted intentionally to scalar theory. As such, our results 

have limited quantitative applicability to high- NA  optical microscopy, where objective 

lens angles can approach ~ 70α ° . For a detailed discussion of polarization effects, we 

refer the interested reader to the works cited in [38], Chapters 3 and 4 of [29], or Chapters 

15 and 16 of [37]. However, scalar theory is often used as a qualitative guideline in the 

design of new optical elements [42], [43], and furthermore our scalar results can be applied 

quantitatively to the focusing of waves other than light, for example in high intensity 

focused ultrasound [44]. With our numerical results we quantify the effects of wide angle 

focusing in a way that has not been previously reported, and our novel analytic formulae 

retain an accurate -dependenceα  (within scalar theory) beyond the paraxial limit. 
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2.2 Theoretical foundation 

For the entirety of this thesis, I will consider monochromatic wave propagation and follow 

the physics convention for the ±  signs in the complex exponentials, and I will only 

consider physical systems which bear separable solutions. A harmonic scalar wave u  is 

( ) ( )( ), i t i tu u t u Fe Beω ω− += = +r r  (2.03) 

where 2 0fω π= >  is the frequency, and the coefficients F  and B  describe waves 

propagating “forward” and “backward” in time, respectively. Without any loss of 

generality, one can set 1F =  and 0B = , so that, going forward in this thesis, “a harmonic 

time dependence” means explicitly 

( ) ( ), i tu t u e ω−=r r . (2.04) 

2.2.1 Wave mechanics in cylindrical coordinates 

I will also only consider physical systems with axial symmetry,  and therefore will work in 

cylindrical coordinates ( ), , ,zρ φ=r  as depicted in Figure 2.1. Because of the continuous 

rotational symmetry, all wave equation solutions have following angular dependence: 

( ) ( )( ), 0, 1, 2,il ilu u z Re Le lφ φρ − += + =r   (2.05) 

The positive integer l  gives the angular order of the solution, and the coefficients R  and 

L  describe a harmonic wave which circulates in a clockwise or counter-clockwise fashion 

about the -axis,z  respectively. For a wave which propagates forward along the ẑ+  

direction, these coefficients also correspond to a right- and left-handed helicity, 

respectively. 
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Figure 2.1: Cylindrical coordinates defined.  

2.2.2 Cardinal directions 

Figure 2.1 shows that the unit vectors in Cartesian and cylindrical coordinates are related 

by rotation about ẑ . 

ˆ ˆ
ˆ ˆ
ˆ ˆ

x
y

z z

ρ

φ

   
   =   
     

R  (2.06) 

1
cos sin 0 cos sin 0
sin cos 0 sin cos 0
0 0 1 0 0 1

φ φ φ φ
φ φ φ φ−

−   
   = − =   
      

R R  (2.07) 

As will become clear in Sections 0 and 0, these unit vectors can be used to establish some 

physically meaningful cardinal directions. The “natural ways” of pointing at something in 

a rectilinear coordinate system are left, right, front, back, up, and down. But in a circular 
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coordinate system, these are somewhat foreign concepts. Perhaps a more “natural way” to 

point at something would involve a clockwise (CW) or counterclockwise (CCW) rotation, 

much like a navigational heading. Cylindrical waves swirl in exactly that rotational fashion. 

In the context of polarization optics, see Chapter 3, the cardinal directions are used as Jones 

vectors. The most common way of writing the right- and left-handed unit vectors is 

( )1ˆ ˆ ˆ
2

R x iy= −  (2.08) 

( )1ˆ ˆ ˆ
2

L x iy= +  (2.09) 

But with Equations (2.06) and (2.07) in mind, these should be cast into polar coordinates 

( )ˆˆ ˆ
2

ieR i
φ

ρ φ
−

= −  (2.10) 

( )ˆˆ ˆ
2

ieL i
φ

ρ φ
+

= +  (2.11) 

Note that these directions have an intrinsic -dependenceφ , tantamount to setting 1l =  in 

Equation (2.05). 

2.2.3 Angular spectrum method 

The angular spectrum method is technique for modeling wave propagation through 

homogeneous media, wherein one uses Fourier analysis to decompose a wave ( )u r  into 

its spatial frequency spectrum ( )U k . The mathematical details of this technique can be 

found elsewhere [27], but the necessary parts are summarized in this section. For physical 

systems with rectilinear (i.e. Cartesian) symmetry, it is natural to expand in a basis of sines 

and cosines. For systems with axial symmetry, such as in this thesis, the natural basis are 
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cylindrical waves, where the radial dependence comes from Bessel’s functions. In 

cylindrical coordinates, one generally uses the Hankel transform, as given by Equations (2-

22) and (2-23) in [27]. In this Chapter I will only consider wave solutions of the lowest 

angular order (i.e. without angular variation), so I set 0l =  and 1 2R L= =  in Equation 

(2.05). The Hankel transform is then reduced to the Fourier-Bessel transform (FBT) 

( ) ( ) ( ){ }0
0

JU k d k uρ ρρ ρ ρ ρ
∞

= ∫ , (2.12) 

and the inverse transform (iFBT) 

( ) ( ) ( ){ }0
0

Ju dk k k U kρ ρ ρ ρρ ρ
∞

= ∫ . (2.13) 

kρ  is the radial component of the wavevector k  

ˆˆzk z kρρ= +k , (2.14) 

and ( )Jl x  is a Bessel function of the first kind, order l . The action of the angular spectrum 

method is to propagate the wave from an input surface, say the plane 0z = , to an output 

surface, say some plane 0z > , with the wave fields in the two surfaces being connected by 

a transfer function. While in direct-space this connection is a convolution, in reciprocal-

space the connection is a simple multiplication, so propagating the wave can be carried out 

by evaluating the sequence of transforms 

( ) ( ) ( ), iFBT exp FBT ,0zu z ik z uρ ρ =     , (2.15) 

where ( )exp zik z  is the transfer function connecting two constz =  planes. 



12 

As indicated in Equations (2.01) and (2.02), I consider a homogenous, isotropic, 

lossless medium with refractive index n , so that the wavelength in that medium is nλ . 

For far-field waves, the magnitude of k  is fixed, 

2 nnk π
λ

= =k , (2.16) 

where k  is the vacuum wavenumber. One uses Equations (2.14) and (2.16) to find zk , 

( )2 2
zk nk kρ= − . (2.17) 

From Equation (2.17), one can see a sort of threshold which separates the near-field from 

the far-field. If the input wave u  contains rapid spatial variations on length scales shorter 

than nλ  (e.g. at the abrupt truncation by a hard edge), then the resulting spectral 

components U  with spatial frequencies kρ  larger than nk  are propagated by a purely 

imaginary zk . Those rapid variations are thus evanescent, trapped in the near-field. 

Propagating waves must satisfy Equation (2.16). 

2.3 Statement of the focusing problem 

Consider an infinitely thin, aplanatic flat lens which transforms monochromatic, axial, 

plane waves into converging spherical waves, truncated abruptly by a circular aperture, as 

shown in Figure 2.2. The truncated waves are commonly referred to as ‘spherical caps’ due 

to their resulting shape. Using Kirchhoff’s approximation [45] for the aperture boundary 

condition, the spherical caps emerge from the lens (at the 0z =  plane) with a wave function 

u  of the form: 
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( )

( ) ( )exp
exp tophat

sphere sphere

plane

u u

inkr
I f inkf

r a

ρ

ρ

=

−  =  
 

 (2.18) 

2 2r fρ= +  (2.19) 

( )
1 0 1

tophat
0 1

x
x

x
≤ <

=  ≤
 (2.20) 

where a  is the aperture radius, f  is the focal length, planeI  is the input plane wave 

intensity, 2 2x yρ = +  is the radial distance in cylindrical coordinates (in this case at the 

0z =  plane), and r  is the distance from the focal point to a point within the aperture. At 

the origin, where the output spherical cap has the same amplitude and phase as the input 

plane wave, the flat lens has a transmission coefficient of unity.  

 
Figure 2.2: Graphical statement of the focusing problem. Taken with permission 

from the authors of [1]. The aplanatic flat lens, given a plane wave input, transmits 

converging spherical wave output. Truncated abruptly by the lens’ aperture, the 

spherical waves are referred to as “caps”. As the caps propagate through the focus, 

they flip their curvature from converging to diverging. Also drawn, for reference, 

is the geometrical optics cone, which is the solid angle subtended by the lens 

aperture. 
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It is known that Equations (2.01) and (2.02) are valid only under paraxial ( )sinα α≈ , large 

FN  focusing, where FN  is the Fresnel number: 

2
F

a nN
f λ

= . (2.21) 

 

2.3.1 Analytic solutions 

For axial points, given by 0ρ = , the diffraction integrals can be evaluated exactly [46]–

[50], and from the exact solution there are two important observations: first, the -positionz  

of peak intensity is shifted toward the lens, peakz f< ; and second, the intensity 

distribution generally does not have inversion symmetry about any constz =  plane. The 

focal shift [51]–[55] is a robust feature for any coherent, converging wave [56], and 

inversion symmetry emerges for lenses with sufficiently large FN  [57]. For off-axis 

points, given by 0ρ > , the diffraction integrals cannot be evaluated exactly. Analytically 

approximate solutions [58]–[60] typically employ the Debye approximation [28], [37]. 

2.3.1.1 Debye’s approximation 

A detailed mathematical overview of Debye’s approximation can be found elsewhere [37], 

specifically Chapter 12. I summarize here as follows: Debye’s approximation only 

considers the waves which propagate within the geometrical optics cone subtended by the 

lens. This contrasts with Kirchhoff’s approximation, which considers waves diffracted in 

all directions, including outside of that cone. It is natural to wonder how the lens could 

produce a wave outside of that cone. The answer lies in the “boundary diffracted waves” 

[61] (BDW). These BDW are scattered in all directions, due to the diffraction at the hard 

edge along the rim of the lens aperture. The basic idea behind Debye theory is that for a 
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sufficiently large lens, where the size of the lens is quantified by FN , that these BDW 

form a negligible component of the focal field in proportion to those transmitted by the 

interior clear aperture of the lens, far away from the rim. One of the key differences in the 

physics between Debye’s add Kirchhoff’s formulations is whether to include the 

contribution from BDW. 

2.3.1.2 Paraxial limit 

Combining the paraxial limit with Debye’s approximation is the scope of Fraunhofer 

diffraction, which yields the seminal result of Airy [21]. In the focal plane, this is 

( ) ( )2 jinc NAAiry peakz f u i I kρ= → = − , (2.22) 

and for points along the -axisz  

( )
2

2
40 exp sincAiry peak

z f z fu i I i
z z

αρ π π
α

 − − − = → = −     ∆ ∆  
. (2.23) 

peakI  is the peak intensity, 

2NA
2peak plane
kaI I =  

 
, (2.24) 

z∆  is the paraxial depth of focus, 

2 2
4 2

NA NA
n nz

k
λπ∆ = = , (2.25) 

and the functions jinc  and sinc  are given by 

( ) ( ) ( )1J sinjinc sinc zz
z

ρ
ρ

ρ
= = . (2.26) 
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The wave’s intensity distribution is the square modulus of the amplitude. For the 

system sketched in Figure 2.2, the focal intensity distribution is equivalently called the 

point spread function (PSF), 

2PSF I u= = . (2.27) 

Equations (2.22) and (2.23) then give a longitudinal line-cut and a transverse slice through 

Airy’s PSF. These are plotted for reference in Figure 2.3. 

It is from Equation (2.22) that the Rayleigh criterion is derived, 0.61χ ≈  in 

Equation (2.01), such that ( )1J 2 0πχ = . Similarly, 2ζ =  in Equation (2.02) comes from 

Equations (2.23) and (2.25), such that ( )sin 2 0πζ = . Note that tophat jinc↔  form an 

FBT pair, and due to the symmetry of swapping kρ ρ↔  in the FBT, that the forward and 

inverse transform yield the same result, for example 

[ ] [ ]FBT tophat i FBT tophat jinc= = , (2.28) 

or vice versa. This means Airy’s spectrum (at the focal plane) is 

( )2
2

tophat
NANA

peak
Airy

i I k
U

kk
ρ−  

=  
 

. (2.29) 

Along a similar vein, the 1D Cartesian “rectangle” function forms the Fourier pair,  

rect sinc↔ , however the Fourier transform (in a basis of sines and cosines) does not have 

the same “swapping” symmetry in xk x↔  as the FBT mentioned above. In the context of 

this thesis, tophat  is ever only supplied “radial” arguments, so that it is generally defined 

over a 2D domain. So unlike rect() , which is a linear step function, tophat()  is a circular 

step function, and hence the name: it looks much like flat-crowned hat for men traditionally 

worn with 19th century western formal dress. 
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Figure 2.3: Airy's PSF. Transverse slices at the focal plane ( )z f=  colored (a) 

linearly and (b) logarithmically. The first dark ring occurs at 0.61 NAρ λ≈ . Line 

cuts through the focus along the (c) -x  and (d) -axesz  show the characteristic 

( )2jinc x  and ( )2sinc z  dependences.  

2.3.2 Numeric solutions 

For numerically approximate solutions, the wave at the input plane, ( )sphereu ρ , is 

sampled discretely. To compute the wave function in the focal region, one commonly 

employs the discrete Fourier transform (DFT), wherein the computation is done by either 

the summation of a discrete summand or by a matrix multiplication. A noncomprehensive 

selection of DFT implementations can be found in [62]–[65]. In this thesis, I employ direct 
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numeric integration (DNI), in which the computation is done by numerically integrating a 

continuous integrand (which is sampled recursively). Although a DFT is generally orders 

of magnitude faster than a DNI [62], one must take extra care when employing DFT to 

avoid aliasing [66] and to mitigate errors [67] and artifacts [68] which result from the 

discrete sampling and tiling. 

2.4 Parametric study of nonparaxial focusing 

A lens is uniquely specified by three parameters , , and f a n , which are indicated in Figure 

2.2, we vary these parameters and numerically integrate both Kirchhoff’s and Debye’s 

diffraction integrals to illuminate the trends of nonparaxial focusing. 

2.4.1 Numerical methods 

All numerical computation is performed using the built-in functionality of commercially 

available software (Mathematica and MATLAB) running on personal computers. To save 

time on lengthy calculations, we network several computers together for parallel 

computation on a grid environment. In total, we have access to 64 processing cores at 

nominally 3 GHz and 400 GB of local RAM. A sketch of the numeric steps in our 

computational process are shown in Figure 2.4. In Figure 2.4-a) the input wave sphereu  is 

truncated abruptly by the lens aperture radius, a . Figure 2.4-b) Shows the input spectrum 

( )U kρ . Due to the infinitely sharp edge at the aperture boundary, U  contains spatial 

frequencies larger than what far-field waves could possibly support, nk . Note that in the 

limit FN →∞  (i.e. Debye theory), the maximal spatial frequency is NAk , not nk . The 

spectrum U  is computed by FBT over a discrete series of -valueskρ , sampled densely 
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enough that aliasing is of no concern. Figure 2.4-c) Shows the action of the free space 

transfer function (see Equation (2.15)), propagating the wave from the input plane ( )0z =  

to some output plane ( )0z > . For sufficiently large z , the free space transfer function 

attenuates the spectral components with spatial frequency larger than nk . A continuous 

output spectrum is rendered by interpolation (gray curve). Figure 2.4-d) The output wave 

u  is computed over a discrete series of -valuesρ  by taking the iFBT of the spectrum 

shown in Figure 2.4-c). Keeping track of the lens parameters, one of the features accounted 

for by our parametric study is the position of the first transverse zero. For reference, the 

value 0.61 NAλ  is shown in Figure 2.4-d). The discrete output wave is also interpolated 

for further analysis (gray curve). 

 
Figure 2.4: Numeric steps in the angular spectrum method. We use Kirchhoff’s 

approximation. (a) The input wave sphereu  and (b) input spectrum ( )U kρ . (c) The 

output spectrum is obtained by the action of the free-space transfer function. (d) 

The output wave is computed by iFBT. 
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2.4.2 Characteristics of a nonparaxial PSF 

Figure 2.5 shows a side-by-side, qualitative comparison of PSF’s for paraxial and non-

paraxial focusing. It illustrates that as the lens angle widens, the side-lobes get 

proportionately brighter, power is redistributed from the central spot into rings. 

 
Figure 2.5: Visual comparison of paraxial vs. nonparaxial PSF’s. (a) Paraxial and 

(b) Nonparaxial PSF's have some key qualitative differences. Surface plots of a 

transverse slice in the z f=  focal plane, with logarithmic color-scaling and linear 

surface heights, show how power is redistributed for large focusing angles α . 

For a more concrete example, consider a lens with 75f a λ= =  (so that 45α = ° ) and 

1n =  (in air). The output wave, plotted in Figure 2.6, has been normalized against its peak 

amplitude, peaku , and has been computed on a mesh of points within the dashed green 

boundary. Plotting the PSF on a logarithmic scale in Figure 2.6-b) clearly displays the 

structure outside of the geometrical optics cone, and isophotes (contours of constant 

intensity) are drawn at each decade in order to reveal the asymmetry in Kirchhoff’s result. 
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Figure 2.6: Characteristics of a nonparaxial PSF. Taken with permission from the 

authors of [1]. (a) A plot of [ ]Re u  shows the wavefronts. (b) A plot of I  shows 

the PSF. (c) Longitudinal and (d) transverse cuts of the PSF are plotted on a 100x 

scale, and with coordinates normalized using equations (1) or (2). The insets show 

magnified views of the peak and of the first transverse zero. The numeric result (red 

circles) are plotted at a reduced density of points for clarity. 

A higher resolution version of Figure 2.6-b) (but omitting the geometrical optics cone and 

using thinner linewidths on the contours) is shown in Figure 2.7. The purpose of showing 

a high-resolution rendering of the PSF in Figure 2.7 is to highlight the asymmetry in 

Kirchhoff’s result, which owes itself to BDW. Debye’s approximation does not include 

BDW. Note: the lens in Figure 2.7 is positioned vertically above the top part of the figure, 

with waves propagating in an overall “downward” direction through the PSF. This is 

rotated 90° clockwise w.r.t. Figure 2.6-b), where the lens is on the left-hand side and waves 

propagate in an overall “rightward” direction. The underlying data are the same, only the 

resolution and orientation of the rastered image are different.  This asymmetry is especially 
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clear for the isophotes drawn at 210 peakI− . Note how the 4 pockets on the bottom part of 

the figure are broken off into 4 separate “islands” of intensity, however the corresponding 

features on the top part of the figure are merged-in as part of largest contour. There is also 

a single island on the top part of the figure which is not included within the range of the 

bottom part. 

 
Figure 2.7: Higher-resolution rendering of a nonparaxial PSF. This is an alternate 

version of Figure 2.6-b), rendered at high resolution specifically to highlight the 

asymmetry in Kirchhoff’s result. 

From the nonparaxial PSF, we define the transverse and the longitudinal resolution 

criteria by the positions of the first zeros in the respective directions ( x zerod ρ=  and 

z peak zerod z z= − ). Note that there are many different conventions for how to define the 

width of the PSF [25]. Also note that since Kirchhoff’s result is asymmetric, we always 
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take the first axial zero towards the lens, which is in the same direction of the focal shift 

(i.e. ẑ− ). We follow the choice of Rayleigh (using the position of the first zero), which is 

addressed further in Section 2.4.4. For the lens shown in Figure 2.6, where 45α = ° , and 

in the parlance of Equations (2.01) and (2.02), we find 0.58χ ≈  and 1.65ζ ≈  (as opposed 

to the paraxial values 0.61χ ≈  and 2ζ = ). We also compute the encircled energy 

(integrated intensity) in the central spot of the PSF (that is, integrating out to only the first 

dark ring) at the focal plane ( )peakz z= , as a fraction of the total encircled energy at the 

aperture, spot totalE E . For Airy’s PSF, where 0α → , the encircled energy is 

83.8%spotE = , but at 45α = °  the energy is reduced to 77.8%spotE = . In the inset of 

Figure 2.6-d) one sees that the side lobes are proportionately brighter at 45α = °  than in 

the paraxial case, as already illustrated qualitatively in Figure 2.5. Thus we recognize two 

general characteristics of a nonparaxial PSF: first, the central spot is generally ‘tighter’ 

than in the paraxial case (smaller χ  and ζ ); second, energy is redistributed outward from 

the central spot and into the side lobes. 

2.4.3 Results 

The general characteristics of nonparaxial PSFs mentioned above have been identified 

previously, for example see figures 12.7 and 12.11 of [37]. The novel aspect of our work 

is that we identify a trend, tracking these features as we vary the three parameters which 

uniquely specify a lens ( ), , f a n . The criteria ( ),d d nα=  in Equations (2.01) and (2.02) 

are valid only in the paraxial limit, and for nonparaxial focusing they are inaccurate even 

in their functional form (i.e. independent of the choice in χ  and ζ ). In our numeric study, 

we analyze the PSFs for ~2,500 sets of unique lens parameters. 
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Figure 2.8: Parametric study part 1, varying α . Taken with permission from the 

authors of [1]. (a) We fix 1n =  and choose points in the -plane.fa  The black curves 

show different Fresnel numbers, FN . The relative error is computed by comparing 

our numerically approximate result against an analytically exact formula. b.) The 

energy contained in the central spot is plotted vs. α , and is expressed as a 

percentage of the input energy at the aperture. The numeric data in b.) are shown at 

reduced density for clarity. 
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The parameters ( ), , f a n  form a 3D space, and Figure 2.8-a) shows that in the first 

part of our two-part parametric study, we keep 1n =  constant and choose points in the 2D 

-planefa . In this plane, α  is the clockwise polar angle, just like φ  in the Cartesian 

-planexy  drawn in Figure 2.1.  For each lens, we compute longitudinal and transverse line-

cuts in the PSF, and a relative error is calculated by comparing the longitudinal cut from 

the numeric result against the analytically exact solution [46]–[50]. Among all of the 

results, the median relative error is on the order of parts per thousand ( )310− , and we find 

that this error, which aggregates from the multiple numeric steps of our computational 

process (including but not limited to those sketched in Figure 2.4), generally can be 

controlled with a tradeoff in computational time. In Figure 2.8-b) one can see that as 

90α → °  and energy gets redistributed outward to the side lobes, the fraction of energy 

remaining in the central spot falls precipitously to 0. 

Two general traits emerge from the ensemble results of our parametric study: first, 

in the transverse cut of the PSF (at the focal plane), we find good agreement between the 

direct numeric integration of Kirchhoff’s and Debye’s theories, as expected [69]–[72] since 

we have intentionally restricted our study to lenses with 50FN > ; second, if we plot some 

characteristic of the nonparaxial PSF vs. α  and take the limit 0α → , then we always 

recover the result of Airy’s PSF, no matter what the characteristic. 

Further results from our parametric study are shown in Figure 2.9, where we plot 

xd  and zd  vs. α . Although the vertical axis in Figure 2.9-a) has been normalized against 

NAλ , the data still have a clear, monotonic trend in α . The numeric data (red dots, at 

reduced density for clarity) are compared against Debye’s approximation (blue solid line).  



26 

It is therefore evident that Equation (2.01) for xd  has an inaccurate functional form, 

specifically that 1NA−  does not give an accurate -dependenceα . We observe a similar 

trend in zd  which is shown in Figure 2.9-b). We show our analytic results (yellow, dashed 

lines), Equations (2.39) and (2.40), and the black curves (circle, square, and diamond) are 

from numerical analysis of the exact solution at different Fresnel numbers. The apparent 

spread in the numerical result in Figure 2.9-b) is not due to the error of our computational 

process, but rather due to the fact that the 2D -planefa illustrated in Figure 2.8-a) covers a 

range of Fresnel numbers. Consistent with the findings of [57]–[60], we observe that 

Kirchhoff’s theory and Debye’s approximation agree for sufficiently large FN . Quite 

interestingly, the trend in the “constant” χ , shown in Figure 2.9-a), is from Airy’s limit 

( )0.61χ ≈  down to Abbe’s criterion ( )1 2χ =  as α  varies from 0  to 90° , and our 

numerical results indicate that χ  logarithmically approaches 1 2  as α  logarithmically 

approaches 90° , as summarized in Table 2.1. Considering that Airy’s and Abbe’s criteria 

originate from very different theoretical considerations (Airy’s PSF vs. Abbe’s sine 

condition), it’s especially interesting that there is any connection at all. 

  

lens angle 

( )°α  
transverse resolution 

( )dim'lessDebyeχ   

89.9 0.5002653… 
89.99 0.5000265… 
89.999 0.5000027… 
89.9999 0.5000003… 
  

Table 2.1: Logarithmic approach of Debye's transverse resolution. Debye’s 

integrals are evaluated numerically for α  logarithmically approaching 90° , 

tabulating the position of the first transverse zero in accord with Equation (2.01). 
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Figure 2.9: Nonparaxial resolution limits. Taken with permission from the authors 

of [1].  (a) Plotting the normalized transverse resolution xd  vs. α  reveals a 

monotonic trend. (b) There is a similar trend in the longitudinal resolution zd . Note 

that the numbering in Figure 2.9, equations (16) and (17), does not point to entries 

in this thesis, but the corresponding entries in [1]. 

 

In the second part of our two-part parametric study, we kept constα =  by choosing several 

points in the 2D -planefa  illustrated in Figure 2.8-a) and varying n  from 1 to 2 while fixing 
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both f  and a . In summary, we observe that Equations (2.01) and (2.02) indeed have the 

correct dependence on n . For example, plotting the normalized xd  and zd  vs. n  yields flat 

lines, independent of n  and α , meaning that the accurate -dependencen  is 1n− . Plots of 

xd  vs. n  for a few values of α  are shown in Figure 2.10. Taken together, parts 1 and 2 of 

our parametric study indicate unambiguously that the resolution criteria are accurately 

expressed as: 

( ) ( ),j jd n F
n
λα α= . (2.30) 

where ( )jF α  is some function of α , and j  is either x  or z . 

 

Figure 2.10: Parametric study part 2, varying .n  A similar plot is obtained for zd  

vs. n , flat lines which are independent of both n  and α . This means 

unambiguously that 1n−  is the correct -dependencen . 
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2.4.4 Discussion 

It makes intuitive sense that that the jd  in Equation (2.30) carry an 1n−  dependence; after 

all, nλ  is the wavelength and therefore the only possible choice of length scale for 

oscillations in ( )u r . This is essentially the same reasoning which motivates Equation 

(2.16). To find the correct α -dependence, we perform spectral analysis. 

2.4.4.1 Transverse resolution 

Starting with the transverse resolution, xd , and following the same approach used in [73], 

[74], the natural choice for ( )xF α  is to take the inverse of the spectral width, ( ) 1.xk −∆  

Using Debye’s approximation (see Ch. 12 of [37]), one can write down an expression for 

the spectrum at the focal plane z f=  

( )2 2

tophat
NA

1 cos
peak

Debye

k
i I k

U
nk nk k

ρ

ρ
α

 
 −  =

− −
. (2.31) 

Equation (2.31) is naturally compared against its paraxially limiting form, Airy’s spectrum, 

which is given in Equation (2.29). To find xk∆ , one must normalize the square modulus 

of a spectrum 2U  (i.e. the power spectral density) against the total power, thus rendering 

a probability density function in reciprocal space. From Plancherel’s theorem, the total 

power must be 2
planeP a Iπ= . This theorem was already used to derive Equation (2.24), 

which relates peakI  to planeI   (i.e. the paraxial intensity enhancement). It must be noted 
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that Equation (2.24) is valid only for Airy’s spectrum, i.e. in the paraxial limit. For Debye’s 

spectrum, one must integrate 

( )( )

sin

2 2
0

2

11 cos

peak
Debye

I
P d

nk

απ ββ
βα

=
−−

∫ , (2.32) 

using the integration variable k nkρβ = . The integral in Equation (2.32) evaluates to 

( )ln secα . Debye’s intensity enhancement, which is the non-paraxial, large FN  limit for 

Equation (2.24), is therefore: 

( )( )
( )

21 cos
ln secpeak plane

nka
I I

α
α

−
= , (2.33) 

Note that expanding Equation (2.33) as a Taylor series about 0α =  

( )
2 42 sin sin
2 6peak planeI nka Iα α 

= − +  
 

 , (2.34) 

recovers to leading order Equation (2.24). Equation (2.24) is (and more generally all of the 

characteristics from Airy’s PSF) therefore the paraxial-limiting form of Equation (2.33) 

(and more generally the corresponding characteristics from Debye’s PSF). 

To find the spread in momentum, one must compute moments of the probability 

density function associated with the power spectral density via 
22 .k k kρ ρ ρ∆ = −  For 

Debye’s spectrum, Equation (2.31), one must evaluate integrals of the form: 

( )
( )

sin 1

2
0

ln sec 1

m m
m nk

k d
α

ρ
ββ

α β

+
=

−∫ , (2.35) 

where the positive integer m  is the order of the moment in the probability distribution, 

and  the integration variable β  has the same definition as in Equation (2.32). Indeed one 
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can inspect Equations (2.32) and (2.35) to see how the total power normalizes the zeroth 

moment of the probability distribution function to unity. Isolating the -dependenceα  from 

Equation (2.35), 

( ) ( )

sin 1

2
0

1
ln sec 1

m
mG d

α βα β
α β

+
≡

−∫ , (2.36) 

one can tabulate the first few moments of the probability density function associated with 

Debye’s power spectral density; these are given in Table 2.2.  

  

moment order 
m  

evaluated integral 
( )mG α  

0 1 

1 ( )
( )

1tanh sin sin
ln sec

α α
α

− −
 

2 ( )
2sin1

2ln sec
α
α

−  

  

Table 2.2: Moments of Debye’s power spectral density. As described in Section 

2.4.4.1, the moments of the probability density function associated with Debye’s 

power spectral density are used to the -dependenceα  for a transverse resolution 

criterion similar to Equation (2.01), but valid for non-paraxial focusing. The 

integral ( )mG α  is defined in Equation (2.36). 

Next, noting that kρ  is the radial component of the momentum and examining Figure 2.1 

and see 2 2
x yk k kρ = + , where xk  and yk  are the Cartesian components of the momentum. 

Interestingly, this is true even in spite of the fact kρ  sets the length scale for oscillation in 

the non-periodic Bessel functions, however xk  and yk   set the length scale for periodic 

oscillations in sines and cosines. Furthermore, as stated in Section 2.2.3, since we seek 
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solutions to the focusing problem only of the lowest angular order 0l = , one uses x yk k=  

and notes 0x yk k= =  to write ( ) 2 ,x RMS
k kρ∆ =   where “RMS” means keeping 

only the 2m =  moment in kρ∆ , given by the last row in Table 2.2. Finally, one obtains: 

( )
2sin2

2 ln cosx
nkk α

α
∆ = + . (2.37) 

To the best of our knowledge, Equation (2.37) has not been previously published. A 

qualitatively similar expression for xk∆  was obtained using a ray optics approach [73], 

[74], and both expressions are compared against our numerical result in Figure 2.11. 

 
Figure 2.11: Transverse spectral width for nonparaxial focusing. Taken with 

permission from the authors of [1]. The spectral width xk∆  is plotted vs. lens angle 

α , and normalized against Airy’s (paraxial) result, NA 2k , which is obtained 

from Equation (2.29). Our numerical results (red circles), shown at reduced density 

for clarity, agree well with Equation (2.37) (solid yellow line). A similar result was 

obtained by [73] (solid maroon line). Note that the numbering in Figure 2.11, 

equation (14) and reference [52], does not point to entries in this thesis, but the 

corresponding entries in [1]. 
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It is interesting to note the limits of the radical on the right-hand side of Equation (2.37): 

at 90α → °  one gets 2 ; and at 0α →  one recovers the result of Airy, NA 2k , which 

can be deduced from Equation (2.29). The latter limit to Equation (2.37) can be seen by 

expanding in powers of sinα  about 0α = , and keeping only the leading order term: 

3sinsin
2 12x

nkk αα
 

∆ = + +  
 

 . (2.38) 

The radical on the right-hand side of Equation (2.37) can be used to get a phenomenological 

-dependenceα  for xd , in the mold of Equation (2.30). However, in order to maintain 

accuracy when comparing to our numerical result, (i.e. the position of the first transverse 

zero in the PSF at the focal plane, z f=  for Debye’s result and peakz z=  for Kirchhoff’s), 

we include two dimensionless empirical parameters in ( )xF α , namely 0χ  and b : 

( ) ( )
( )( )

1 22

0
sin

2
ln cosx

b
F b

b
α

α χ
α

− 
 = +
 
 

. (2.39) 

Fixing 0 0.61χ = , we find a good fit to our numerical results for 60α < °  with 1.11b = , 

which is shown as a dark yellow, dashed curve in Figure 2.9-a). 

Regarding the parameters 0χ  and b , we make two comments. The first comment, as 

pointed out in Section 2.1, is there are several alternative definitions [25] for the transverse 

width x∆  of the PSF. For example, we have used the RMS -valuekρ  to compute xk∆ , but 

in general the RMS -valueρ  of the PSF cannot be computed; even for Airy’s ( )2jinc ρ , 

the variance 2ρ  diverges. For nonparaxial focusing, this divergence only diverges more 
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rapidly with increasing α . Indeed rendering a probability density function from Airy’s 

PSF using Equations (2.22) and (2.24), one finds that all higher-order moments with 2m ≥  

diverge. So we have followed the convention of Rayleigh and chosen the positions of the 

first zeros: zeroρ  and zeroz . But we could have chosen the half-widths at half maximum, 

followed Sparrow’s criterion, or several different positions instead; the different choices 

are just different conventions, and we find that the general trends of nonparaxial focusing 

are insensitive to the convention choice. With a different choice, the trends could equally 

well be described by a different set of values for 0χ  and b . In all cases, Equation (2.37) 

can be used to obtain a phenomenological -dependenceα . 

The second comment: independent of which convention is used to define x∆ , the space-

bandwidth (SW) product xx k∆ ∆  is generally not independent of α . This peculiar feature 

of sphereu  is not present in all types of focused waves. For example, in the focusing of 

Gaussian beams, as long as the beam waist w  at the input plane is much smaller than the 

lens radius a  (i.e. an underfilled aperture), the SW-product is always equal to 1 2 , as 

shown in [75]. In that work, the authors’ parametric study showed that the focusing of 

sphereu  and of a Gaussian beam can be thought of as two limiting cases of the truncation 

ratio w a  (i.e. the degree of filling). When juxtaposing results from Kirchhoff’s and 

Debye’s formulation, something which is not present in the Debye result, and which can 

result only from the inclusion of “boundary diffracted waves” (BDW) from the hard edge 

at the rim of the lens aperture.  It is tempting to point to BDW [61] as the culprit responsible 

for there being an -dependentα  SW product. After all, within Kirchhoff’s formulation, the 
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authors of [75] clearly showed that several of the features of a focused sphereu  emerge 

when increasing w a  for a focused Gaussian beam. Surely, it must be the presence of hard-

edge diffraction at the rim which is responsible for this difference, no? However, it is also 

important to realize that an -dependentα  SW product also emerges even only within 

Debye’s approximation, which totally neglects the contribution from BDW. BDW 

therefore could not possibly be the culprit. The main point here is that an -dependentα  

SW product means that taking ( ) 1
xk −∆  does not account for the full -dependenceα  in x∆

, and thus we introduce the parameter b  to compensate for this. 

2.4.4.2 Longitudinal resolution 

Next, for the longitudinal resolution zd , we examine equations 12.21 (a)-(d) of [37] and 

note that within Debye’s approximation, for points along the optical axis, the first zero in 

the PSF always satisfies: 

1
1 coszd

n
λ

α
=

−
. (2.40) 

As before, this can be expanded in powers of sinα  to recover the paraxial limit: 

2 4
1

sin sin
2 8

zd
n
λ

α α
=

+ +

. 
(2.41) 

Equation (2.40) is plotted alongside the numerical results in Figure 2.9-b), and a nearly 

identical formula has been reported [73], [74] using a ray-optics approach. In Figure 2.9-

b), we also plot a family of curves which result from numerical analysis of the exact 

solution at different Fresnel numbers ( 50FN = , 100, and 200). 
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2.5 Conclusions 

In practice, the resolution limits predicted by our nonparaxial formulae, Equations (2.39) 

and (2.40) differ by nominally 10 - 30% from the limits predicted by the paraxial formulae, 

Equations (2.01) and (2.02). Consider an NA 1.4=  oil-immersion objective with 

1.52n =  at 0.532 μm,λ =  the paraxial and nonparaxial results are tabulated in Table 2.3.  

   

resolution 
criterion 

paraxial nonparaxial 
Equation result (µm) Equation result (µm) 

transverse, xd  (2.01) 0.232 (2.39) 0.208 

longitudinal, zd  (2.02) 0.825 (2.40) 0.573 
     

Table 2.3: Comparison of paraxial vs. nonparaxial resolution criteria. NA 1.4= , 

1.52n = , and 0.532 μmλ =  were used, meaning 67.0α = °  and 0.350 μmnλ =

. 

The wide-angle features of a PSF have also been explained in the context of scaling 

the coefficients χ  and ζ  in Equations (2.01) (2.02) [76], or by introducing appropriate 

optical coordinates [77]. Alternatively, one can compose a nonparaxial PSF from a 

superposition of prolate spheroidal wave functions [78]; these are eigenfunctions of a 

finite-bandwidth Fourier transform, and therefore the natural choice for the focusing 

problem [79]. These explanations are rich with mathematical rigor and quite accurate, 

however our novel, closed-form expressions offer accessible alternative means of 

understanding a nonparaxial PSF. 

As discussed in Section 2.1, scalar and electromagnetic focusing give quantitatively 

“the same result to within 1%” for 30α < °  [40], which is further beyond merely the 

paraxial limit. sinα α≈  holds to within 1% only up to roughly 15°. And there is even 

reasonable agreement, within 5%, between scalar and electromagnetic results for 50α < °
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. In those cases, one observes that the nonparaxial characteristics identified in section 2.4.2  

(as well as focal shift from Kirchhoff’s approximation) are present in both scalar and 

electromagnetic diffraction, for another example see Figure 1-c) of [80], and therefore we 

consider the two diffraction theories qualitatively similar in this regard.  

2.6 Perfect focusing for ultrasound imaging 

The lens studied here and sketched in Figure 2.2 follows the aplanatic transformation rule, 

converting input plane waves into output spherical waves. It would be interesting to repeat 

this parametric study using a flat lens which obeys a different transformation rule, such as 

1
1perfect sphere

inkru u
inkf

+
=

+
, (2.42) 

where perfectu  is Stamnes’ so-called “perfect” wave [37], and the distance r  is defined in 

Equation (2.19). and to apply the focusing of perfect waves to high-intensity focused 

ultrasound [44]. Such an application could materially improve the imaging contrast 

(specifically, by preserving Airy’s 83.8% energy concentration). For electromagnetic 

focusing, Stamnes’ perfect wave could be used as a design goal for a new class of 

metasurface, the flat lens [81], [82]. 
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3 OPTICAL TOOLSET 

This Chapter is divided into sections as follows: In Section 3.1 I describe a theoretical 

framework which builds up to the electromagnetic focusing of Laguerre Gaussian laser 

beams. Section 3.2 describes some experimental apparatus and image processing methods 

I used for to make a polarimetric imager. Section 3.3 briefly describes the experimental 

apparatus I used to record sub-diffraction limited optical micrographs. Finally, Section 3.4 

describes the plasmonic responses of various metals at optical frequencies. 

3.1 Tightly focused laser beams 

Tightly focused laser beams with nearly diffraction-limited spot sizes are a very useful, 

indeed sometimes necessary, tools for exciting nanophotonic structures. Nanostructures 

can do the rest of the confinement, but careful optical design with conventional far-field 

optics can get you almost all the way there. 

3.1.1 Experimental framework – high magnification imaging 

Figure 3.1 shows a schematic of a confocal microscope. A pinhole aperture is positioned 

in image plane that is conjugated to an image sensor. Illuminating this pinhole with a light 

source forms a near diffraction limited spot on the sample. 
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Figure 3.1: Tightly focused laser spots in a high magnification imaging system. A 

confocal microscope illuminates a sample with a near diffraction limited spot. 

3.1.2 Theoretical framework – paraxial Laguerre-Gaussian beams 

Next, I will summarize some textbook beam solutions to the wave equation, valid in the 

paraxial limit. For a thorough overview of beam solutions to the paraxial wave equation, 

Chapter 3 of [26], Chapter 3 of [29], or Chapter 16 [83] are all very good references on the 

subject. I will not rederive any of those textbook results, instead just recall some of the 

elements which are most essential to this thesis. 

3.1.2.1 Scalar beams 

Time-harmonic (i.e. stationary) waves, as in Equation (2.04), are solutions to the 

Helmholtz equation. Within the context of Section 2.3 (i.e. for the focusing problem 

sketched in Figure 2.2), the paraxial approximation means equivalently a small angle 

approximation, sinα α≈ . For this Chapter, “small angle” means that the wavefronts 

within the beam propagate basically along the ẑ+  direction, so that, in air, 
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ikzu e∝  (3.01) 

accounts for the primary spatial dependence of the wave. Unlike Equation (2.14), which 

allowed for an arbitrary balance between the longitudinal and transverse components of a 

wavevector k  (see Equation (2.14)), in the paraxial approximation k  is principally 

oriented along ẑ+ , hence in Equation (3.01) the longitudinal component of k  has the “full 

strength” of k . Although the total, complex spatial variations in ( )u u= r  are such that 

propagating waves must still satisfy Equations (2.16) and (2.17). With the dominant spatial 

dependence given by Equation (3.01), one separates the Laplacian into the transverse and 

longitudinal parts, see for example Equation 16.6 of [83], and substitutes 

2 2 2u z ik u z∂ ∂ → + ∂ ∂  for the longitudinal part, rendering a paraxially-approximate 

version of the Helmholtz equation. Laguerre-Gaussian (LG) modes are eigenfunctions of 

the paraxial Laplacian, written in cylindrical coordinates (see Figure 2.1), and form a 

complete orthonormal set. The spatial dependence of the LG modes along the transverse 

dimensions ρ  and φ  are indexed by the positive integers p  and l , respectively, so LG 

modes are labeled using an LGl
p  notation. The angular dependence, allowing for solutions 

which circulate in both a CW and a CCW sense, was given in Equations (2.05). 

The family of LG laser beams has sparked a recent explosion in optical sciences 

[84]. The fundamentally new thing about them is their ability to carry optical orbital 

angular momentum (OAM) [85], [86]. Indeed the early works proved this point by 

observing the rotational motion of dielectric particles trapped within the beam [87]. 

Imbuing light with OAM accesses a degree of freedom which has enabled entirely new 

means of communication [88], [89], cryptography [90], computing [91], and, notably, 
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super-resolution imaging [92], [93] and photolithography [94] to name a few. For this 

thesis, I need not the whole family of LG modes, but only two low-order LG beams, 

namely: 

0 1
"Gaussian" "donut"

0 0
l l
p p
= = 

→ → = = 
 (3.02) 

Figure 3.2, adapted from [95], illustrates the conventional beam parameters, 

0
beam

0 0 0

2w
z kw w

λθ
π

= = = , (3.03) 

where beamθ  is the beam divergence angle, 0w  is the beam waist at focus, and 0z  is the 

Rayleigh range. In the paraxial limit, beam beamsinθ θ≈ . And while the analogy is not 

exact, one can think of 0w  and 0z  in Equation (3.03) as analogous to xd  and zd  in 

Equations (2.39) and (2.40), which are, respectively, the diffraction-limited transverse and 

longitudinal resolutions for focused, scalar spherical waves. 0z  and zd  may be more 

commonly referred to as a “depth of focus”. 

 
Figure 3.2: Paraxial laser beam parameters. Adapted from [95]. 

The paraxial beam in Figure 3.2 can be constructed from the following pieces: 
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2

0
0

1 zw w
z

 
= +  

 
 (3.04) 

2
01c

zR z
z

   = +     
 (3.05) 

( )1
0tani z ze

−
Ψ =  (3.06) 

( ) ( )22 2
PRX cik z Rwe e

ρρ − −−= . (3.07) 

where ( )w w z=  is the beam waist, ( )c cR R z=  is the wavefront curvature, ( )zΨ = Ψ  is 

a unit Guoy phase, and ( )PRX PRX , zρ=  is the paraxial beam envelope. The Gaussian 

beam referred to by Equation (3.02) is then 

( ) 02, PRXwg g z
w

ρ
π

= = Ψ . (3.08) 

Incorporating the angular dependence in Equation (2.05), the donut beam referred to by 

Equation (3.02) is 

( ) ( )2, , i id d z g Re Le
w

φ φρρ φ − += = Ψ + . (3.09) 

Note that the 1l =  donut in Equation (3.09) (or any 0l ≠  LG mode) can have a helicity, 

depending on the values of the coefficients R  and L . For example, a right- and left-

handed donut are obtained by setting 

1 0
0 1R L

R R
d d

L L
= = 

→ → = = 
 (3.10) 

respectively. The Gaussian beam, Equation (3.08), and a right-handed donut, Equations 

(3.09) and (3.10), are plotted in Figure 3.3 for a beam with 
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beam beamNA 0.31 18.1 ,θ= ≈ = °  which is basically the upper limit where 

beam beamsinθ θ≈  is worse than ca. 1%. 

 
Figure 3.3: Two low-order LG modes, a Gaussian and a right-handed donut. (a-b) 

Show wavefronts in g  and Rd  with beam 18.1 .θ = °  The beams g  and Rd  can be 

sliced longitudinally (c-f) in the -planezx , or transversely (g-j) in the ( )0z =  

-planexy . 
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Figure 3.3-a) and Figure 3.3-b) show plots of the wavefronts in g  and Rd , 

respectively. Note that any wavefront, by definition, is a surface of constant phase. So, 

these plots were rendered by finding the surface(s) in ( )u r  where ( )Arg 0u = ° . For 

clarity, only points very close to the optical axis, where 0wρ <<  are shown, so that the 

effects of PRX  can be safely ignored. The Gaussian beam has planar wavefronts, while 

the wavefronts in the right-handed donut beam form a right-handed helix, the same type of 

twist as the thread on a single-start, right-handed machine screw. Figure 3.3-c) and Figure 

3.3-d) show plots of the Gaussian beam in the -planezx , in accord with the color scales 

above and below. Figure 3.3-e) and Figure 3.3-f) show the same plots but for the right-

handed donut. Note that for points along the optical axis, where 0ρ = , the donut has a null,  

0Rd = . There is also a sign change for any pair of points diametrically opposed about the 

axis, as dictated by Equation (2.05). 

Figure 3.3-g) and Figure 3.3-h) show plots of g  in the focal ( )0z =  -planexy , 

with Figure 3.3-i) and Figure 3.3-j) showing the corresponding plots for Rd . In these plots, 

the ẑ+  direction points out of the page. With the assumed harmonic time dependence, the 

waves are propagating out towards you. For clarity, I also plot in Figure 3.4 the time-

evolution of a right-handed, harmonic donut beam at a few snapshots in time during the 

first quarter cycle. When viewed from this perspective, with a line of sight pointing along 

ẑ−  (as in these figures), the red and blue lobes circulate in a CCW fashion. This is 

consistent with the right-handed helicity of Rd  shown in Figure 3.3-b). 
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Figure 3.4: Time evolution of a donut beam. (a-h) Snapshots of ( )Re Rd  in the 

( )0z =  -planexy  at a sequence of different instants in time. T  is the period of 

oscillation. The red-white-blue color-coding is the same as in Figure 3.3. 

3.1.2.2 Electromagnetic beams 

In addition to OAM, light also carries spin angular momentum (SAM). The earliest 

experimental observation of optical SAM [96] confirmed what many understand 

intuitively, that SAM is manifest, under those experimental conditions, in the light’s 

polarization state. Polarization effects are a set of phenomena which cannot be accounted 

for using the scalar formalism of Section 3.1.2.1 and of Chapter 2. Furthermore, many of 

the useful applications of LG beams exploit their vortex polarization states [97], where 

superpositions of differently polarized LG beams can give rise to compounded polarization 

textures that are simply not obtainable in plane waves. While it may be intuitive to separate 

light’s total angular momentum (JAM) into its spin and orbital parts SAM and OAM, 

respectively, this is not always physically possible (see for example Chapter 2 of [98]). For 

focused beams in particular, the two parts are inextricably linked, with the degree of spin-

orbit coupling in a paraxial LG beam varying in proportion to beamθ  [99], [100]. 

For an isotropic, homogenous, local, linear, non-magnetic medium in the absence 

of any charge or current other than due to the polarized and conductive responses of the 

charge-neutral medium itself (i.e. no “free” or “unbound” sources of field), and assuming 

the explicit harmonic time dependence in Equation (2.04), Maxwell’s equations are 
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0iωµ∇× =E H  (3.11) 

0iωε ε∇× = −H E  (3.12) 

0∇⋅ =E  (3.13) 

0∇⋅ =H , (3.14) 

For the electric and magnetic fields, E  and H . Constrained within the above list of 

caveats, the frequency-dependent, complex, scalar relative permittivity in Equation (3.12) 

( ) 1 2iε ε ω ε ε= = +  (3.15) 

totally encodes the medium’s electromagnetic response. The material response could 

equivalently be cast into a complex refractive index 

N n iε κ= = +  (3.16) 

with the real and imaginary parts related by 

2 2
1 2 2n nε κ ε κ= − =  (3.17) 

1 1
2 2

n
ε ε ε ε

κ
+ −

= = . (3.18) 

In SI units, where for example the permittivity of free space is 0 8.85 aF μmε = , the 

quantity 0ε ω  has dimensions [ ] ( ) 1
0 Ω μmε ω −= ⋅ , the same as electrical conductivity. As 

it happens, within the caveats listed above, there is a constitutive relation which allows one 

to alternatively encode a material’s response totally in terms of the frequency dependent 

conductivity 
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( )

( )
1 2

0 1

i
i

σ σ ω
σ σ
ωε ε ε

=

= +

= −

. (3.19) 

It is a matter of preference which among Equations (3.15), (3.16), or (3.19) to use in 

describing the material response; they are mathematically interchangeable, at least within 

those constraints. In light of Equation (3.16), one might see the curl Equations (3.11) and 

(3.12) could perhaps be more clearly construed in terms of the factor ( )
22c N cε = , where 

the vacuum speed of light is 300 μm psc ≈ , and c n  is the phase velocity in the medium. 

By taking the curl of the curl, and with the assumed harmonic time dependence, one can 

use Maxwell’s Equations (3.11) through (3.14) to make the vector Helmholtz equation (i.e. 

a stationary wave equation) for the electric and magnetic fields, E  and H  

2
2 0N

c
ω   ∇ + =    

F , (3.20) 

where F  is either E  or H , and 2∇  is the Laplace operator. The complex wavenumber 

N cω=k  accounts for both oscillatory and decaying (or growing) behavior of the wave 

as it propagates, depending on the medium’s refractive index and absorption coefficient 

(or gain). 

 There is no closed-form vector beam solution to Maxwell’s equations. The most 

accurate way to model focal fields is by numerically solving diffraction integrals, for 

example a vectorial version of the scalar Debye theory covered in Section 2.3.1.1. These 

vectorial integrals are presented in a very accessible manner in Chapter 3 of [29], or several 

other standard texts on the subject. Accessible as they are, however, they are also numeric 

solutions, as in Section 2.4.1. This means they are evaluated only on a point-by-point basis. 
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In some scenarios, this can become computationally burdensome. It would be easiest, 

especially for the finite-element modeling discussed in Section 4.4, to use analytic (closed-

form), approximate formulae. One can find comprehensive juxtapositions of the various 

analytically approximate formulae for focused electromagnetic beams against the numeric 

results [101]. 

The standard prescription is to “vectorize” the scalar result, constructing a purely 

transverse electromagnetic (TEM) beam by setting the transverse components of the fields 

ˆˆF Fρ φρ φ⊥ = +F , equal to independent scalar LG modes. While this is a useful starting 

point, it produces a vector beam which does not solve Maxwell’s equations, to any degree 

of approximation. Beams with a finite waist ( )w z  cannot be TEM, as such hypothetical 

fields would fail to satisfy the divergence conditions, Equations (3.13) and (3.14). Only 

plane waves (of infinite extent) can be TEM. For such hypothetical beams to be physical, 

even in vacuum, one must invoke fictitious charges and currents in order to source and sink 

the fields [102]. This violation becomes increasingly worse as the azimuthal order l  

increases [103], as it would also for an increasing radial order p . Therefore, a focused 

electromagnetic beam necessarily has a finite longitudinal component in at least one of the 

F  [104]. One approach, called the Lax expansion [105], can account for the zF  by starting 

with the standard “TEM prescription” and perturbatively expanding the field components 

in powers of the small divergence angle, beamθ  [106]. Another straightforward approach 

[107], which I employ below, is to start with the “TEM prescription” and find the zF  by 

subjecting the ⊥F  to paraxially-approximate forms of Maxwell’s equations [108]. This 

amounts, for my purposes, to finding a paraxially approximate form of ∇⋅F , and since all 



49 

components of F  have the assumed dominant spatial dependence given by Equation 

(3.01), this ultimately amounts to substituting (again, in air where 1N = ) 

zikF⊥∇⋅ ≈ ∇ ⋅ +F F , (3.21) 

so that 

( )1 1
z

FiF F
k

φ
ρρ

ρ ρ ρ φ
∂ ∂

≈ + ∂ ∂ 
 (3.22) 

could approximately account for the divergence violation of the prescribed TEM beam. 

The two vector beams used in this thesis are a linearly polarized Gaussian, and a 

radially polarized donut. The standard “TEM prescription” uses Jones vectors, already 

introduced in Section 2.2.2, and reviewed in most standard optics textbooks, for example 

see Table 8.5 of [25]. Looking at Equations (2.10) and (2.11), one can make a generalized 

circular polarization Jones vector from 

( )ˆ ˆˆ
2

zi
z

eS i
σ φ

ρ σ φ= + . (3.23) 

where choosing zσ  from either 1−  or 1+  selects between a right- and left-hand circular 

polarization, R̂  and L̂  respectively. As it turns out [99], for a TEM plane wave with 

polarization Ŝ , zσ  is the SAM carried by the light. And similarly, for an LG beam with 

angular order l , the beam carries an -worthl  of OAM; l  is often referred to as the beam’s 

“topological charge”, as in Equation (1.95) of [109]. 

Denoting the -fieldE  in a circularly polarized Gaussian beam with the notation 

gσE , the prescribed transverse parts are 

( ) 0 ˆg E gSσ ⊥
=E . (3.24) 
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The scalar beam g  is from Equation (3.08), and 0E  is a unit of electric field strength, say 

0 1 V μmE = . Interestingly, even though g  is an LG mode with 0l = , the Gaussian beam 

in Equation (3.24) picks up a -dependenceφ  through Ŝ . Divergent as they are, it is 

instructive to see that any prescribed TEM LG beam with circular polarization has an 

overall -dependenceφ  given by ( )( )exp zi l σ φ+ . Noting that 

( )
2

beam1 kg g
w
ρρ θ

ρ

 ∂
= − Ψ  ∂  

, (3.25) 

and using Equations (3.22), (3.24), and (3.25), one  can find ˆ gz σ⋅E . Putting it all together, 

0 beamˆˆ ˆ
2

zi
g z

geE i i z
w

σ φ
σ

ρρ σ φ θ = + − Ψ 
 

E . (3.26) 

It is interesting to see that zE , in addition to being simply proportional to beamθ , also has 

an extra -dependenceρ  and Guoy phase. This makes zE  functionally the same as d  in 

Equation (3.09). It is as if operating ∇  on g  promotes it to the next highest LG order. This 

is exactly the spin-orbit coupling mentioned previously [99], [100]. For a well-collimated 

beam (i.e. unfocused), where beam 0θ → , zE  vanishes and the beam becomes increasingly 

TEM. For example, affordable HeNe lasers have beam divergence typically smaller than 

beam 0.04θ = ° . In that case, and to the same approximation that 0.04°  can be rounded to 

zero, the JAM is exclusively due to SAM (i.e. the value of zσ ). However when the beam 

is focused, the twist imparted onto zE  with increasing beamθ  appears as the OAM of a 

promoted LG mode. So, the JAM of a focused beam is partly OAM and partly SAM, even 

if the collimated beam has exclusively a SAM. 
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A linearly polarized Gaussian (say, along x̂ ) can be made from the superposition 

of right- and left-circular polarizations 

( )ˆ ˆˆ-Gaussian

0 beam

1
2

ˆ ˆ

x gR gL

xE g x i z
w

θ

= +

 = − Ψ 
 

E E E
. (3.27) 

I used Equation (2.06) in order to express the linearly polarized Gaussian in its “natural” 

Cartesian basis. Equation (3.27) has been derived previously, see Equations (5.2), (5.25) 

and (5.26) of [110], although that result was obtained using a different theoretical approach, 

instead starting with a prescribed vector potential A . Plotted in Figure 3.5 are the field 

components of ˆ-GaussianxE  for beam 18.1θ = ° . Figure 3.5-a), -b), -c), and -d) show energy 

densities, proportional to 2E , for the total field 
22 2

x y zE E E+ + , and for each of the 

separate components 2
xE , 

2
yE , and 2

zE , respectively. These should be contrasted 

against the scalar result, shown in Figure 3.3-g). Figure 3.5-a) and -b) look nearly identical 

because virtually all of ˆ-GaussianxE  is channeled into xE . However, Figure 3.5-c) shows 

that 0yE =  everywhere. One drawback of using Equation (3.22) is that it totally fails to 

account for cross-polarization effects, which also ultimately stem from satisfying the 

divergence-free constraint. Numeric integration of the diffraction integrals [101], 

theoretical analysis [111], and experiments [112] all show that a focused, ˆ-polarizedx  

beam would result in some finite yE . In this regard, the shortcomings of Equation (3.27) 

are readily seen. I should emphasize Equation (3.27) is an approximate formula. Figure 

3.5-d) shows that 2
zE , colored for clarity on a different color-scale from the rest, is only 
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a minor component of ˆ-GaussianxE , though still present. Figure 3.5-e) and -f) show plots 

of ( )Re E  as line-cuts along the -axisx , where 0y z= = , and at two different snapshots 

in time, at the cycle start and a quarter cycle later, respectively. The fields xE  (red) and 

zE  (blue) oscillate out of phase, as dictated by the factor of i  in Equation (3.27), and yE  

(green) is zero at all times. 

 
Figure 3.5: Electric field components of a paraxial, ˆ-polarizedx  Gaussian beam. 

(a-d) Show energy densities, proportional to 2E  , with (a) showing the total energy 

density, and (b-d) showing each of the -x , -y , and -channelsz  separately. (e-f) 

Are plots of ( )Re E  at two instants in time t  and along the -axisx , where 

0,y z= =  with 0t =  and 4t T=  shown in (e) and (f), respectively, and where T  

is the period. 
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 Next, I will follow the same set of steps to find a formula for a radially polarized 

donut. The radial polarization state is considered a vortex state. If one restricts themselves 

to prescribing only polarizations which are realizable in plane waves (e.g. circular 

polarization), then a radially polarized beam can be made only from a linear combination 

of differently polarized LG beams. It is not correct to say that vortex beams need to be 

made of multiple beams per se; after all any linear combination of solutions to Equation 

(3.20) is itself a valid solution. There is nothing wrong with prescribing a radial 

polarization from the get-go, those vortex directions are perfectly valid for a cylindrically 

symmetric beam, they should even be considered the “natural” cardinal directions. 

However, there are simply no “radially” nor “azimuthally” polarized plane waves, as those 

polarization states require a singularity. Since plane waves are more intuitively understood 

and more often encountered in nature, the term “vortex” applies. 

For the circularly polarized Gaussian, where 0l =  in Equation (3.24), any arbitrary 

polarization state can be made from a basis of two polarization states, 1zσ = ± , which are 

diametrically-opposed points on the Bloch sphere. But for an 1l =  donut, as in Equation 

(3.09), there would be four combinations of ( ), zl σ . These combinations are discussed in 

[97]. The radially polarized donut is composed of LG beams with opposite orbital and spin 

helicities, 

( ) ( )ˆ ˆˆ -donut
1
2 L Rd R d Lρ ⊥

= +E E E . (3.28) 

Because of these opposite helicities, the overall -dependenceφ  cancels. Much like 

Equation (3.25), one can use the relation 
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( )
2

beam2 kd d
w
ρρ θ

ρ

 ∂
= − Ψ  ∂  

, (3.29) 

and compile the electric field of a radially polarized donut 

0
ˆ -donut 0 beamˆ ˆwE d i z

wρ
ρρ θ

ρ
  

= − Ψ −  
  

E . (3.30) 

As was the case for ˆ-GaussianxE  in Equation (3.27), the longitudinal component of zE  has 

a different LG order from the transverse components. In this case, the two terms in 

ˆ -donutẑ ρ⋅E  would increment and decrement the overall exponent of ρ , effectively raising 

and lowering the LG order l , respectively. The first term in zE , with promoted LG order, 

also has an additional Guoy phase. It has, in fact, identically the same spatial dependence 

as an 2l =  mode. Equation (3.30) has been derived previously, for example see Equations 

(3) and (7) in [113]. The field components of ˆ -donutρE  are plotted in Figure 3.6, again for 

beam 18.1θ = ° . Figure 3.6 is a companion of Figure 3.5. There are a few features worth 

mention. First, the color scale at the top of Figure 3.6 is the same for all of panels (a-d). 

This is different from Figure 3.5, where zE  was small enough to warrant a separate color 

scale for clarity. Apparently, zE  is in proportion much stronger in a radially polarized 

donut than in a linearly polarized Gaussian (or any polarization state of a Gaussian). One 

way to understand this is that the null at the beam center causes a more egregious 

divergence violation in the prescribed TEM beam. This is readily apparent in comparing 

Figure 3.6-f) against Figure 3.5-f); at this beamθ , zE  is nearly as strong as the ⊥E  for the 

radially polarized donut. This raises the second point, Figure 3.6-a) shows that the null isn’t 

indeed a null. There is finite field strength, due exclusively to zE , along the optical axis. 
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One way to think of this is that any LG beam with 0l ≠  gets “flung out” away from the 

optical axis as it orbits around it, much as a centrifugal force would have it. Only the set of 

LG beams with 0l =  could have a finite field strength on the axis, just as in the second 

(“demoted”) term for zE  in Equation (3.30). So Figure 3.6-a) ought to be compared against 

Figure 3.3-i), which, being a scalar beam, could not possibly account for this effect. The 

third point is that Figure 3.6-e) and -f) would seem to indicate that 0yE =  for all instants 

in time, as was the case for ˆ-GaussianxE , but this is not generally the case for ˆ -donutρE . It 

is only because I took an ˆ-line-cutx , where 0y z= = , to plot the fields. Clearly, as 

indicated in Figure 3.6-c), this would not be the case had I taken any line-cut which departs 

the 0y =  plane.  Forth, and finally, is that Figure 3.6-b) and -c) together are indicative of 

the radial polarization state. In those panels, the lobes of high energy density are oriented 

along the same direction as their respective polarization components of E , x  and y . 

Figure 3.6-b) and -c) in plotting 2E , contain no information about phase. While there is 

no explicit -dependenceφ  in Equation (3.30), it is worth noting, for example see Equations 

(2.06) and (2.07), that when projecting ρ̂  onto x̂  and ŷ , one incurs a cosφ  or sinφ  

dependence. This means diametrically opposed points have an ( )exp iπ  phase difference. 

The lobes are of opposite sign, as indicated by the zero-crossing of xE  in Figure 3.6-e). 
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Figure 3.6: Electric field components of a paraxial, ˆ -polarizedρ  donut beam. 

These are companion plots to Figure 3.5, see the caption there for a detailed 

explanation. The same color scale is used for panels (a-d). 

3.1.3 Vortex generation 

To excite the fundamental, TEM-like mode of the nanocoax [114], I used a radially-

polarized donut beam (i.e. an optical “vortex”) at 980 nmλ = . This beam was generated 

with the apparatus pictured in Figure 3.7 and diagramed in the bottom half of Figure 3.8. 

The vortex generation apparatus was packaged into a module, and the collimated beam was 

coupled into a confocal pair of inverted and upright microscopes, aligned for collinearity 

and with a sample positioned at their common focus. One key component lies at the heart 

of the vortex generation module: a commercially available liquid crystal waveplate [115]. 
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Figure 3.7: Picture of the donut module. This module is diagramed in Figure 3.8. 

The letter-paper sized optical breadboard (black) slides under the inverted 

microscope in the NSOM cabinet. 

A periscope, shown on the left in Figure 3.7, is used to keep the form factor to a 

minimum, with a beam height of 20 mm from the breadboard. Also pictured here is a 

temporary 12” vertical cage used to steer the collimated beam as parallel to the zenith as 

possible and was achieved using a pair of cage plates which register a quick-release 

alignment phosphor by magnetic retention of ball-bearings into roller-bearing detents. 

When the alignment cage is removed, the module’s exit aperture is only 40 mm from the 

surface of the breadboard, well within the space constraints of the inverted microscope in 

the NSOM cabinet. 



58 

3.1.4 Coincident dual microscopes 

The pair of coincident upright and inverted microscopes, as well as the polarimetric imager 

discussed in Section 3.2, are drawn in Figure 3.8. The results obtained by these apparatus 

are discussed later in Section 4.3.1. In this section I describe these apparatus in some more 

detail. 

 
Figure 3.8: Tightly focused vortex and polarimetric imaging schematic. The vortex 

is generated by the apparatus at the bottom of this figure, everything below the 

inverted microscope. That vortex generation is packaged into a module pictured 

Figure 3.7. The encoded rotation mount of Section 3.2.1 is represented by the 

analyzer in this figure. 
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On the substrate’s backside, the inverted microscope focused the beam through 0.5 

mm of glass at NA0.64. The backside objective is an aspheric singlet lens, so there are no 

forms of imaging correction typically present in most compound objective lenses. The 

resolving power of that inverted microscope could be improved by using an objective lens 

with a correction collar for focusing through a thick, glass substrate. I intentionally 

underfilled the asphere’s clear aperture, CA ~ 3.6 mm , to avoid clipping/truncating the 

collimated beam with waist 2 ~ 1.5 mmw . So the beam does not, nor in best practice 

should not, access the full NA of the backside objective and is instead focused at a lower 

beamNA 0.31=  than the objective’s marginal ray. This corresponds to a beam divergence 

angle beam 18.1θ = ° , which was used throughout Section 3.1.2. 

 Light transmitted by the sample is collected on the topside by the upright 

microscope with high-NA objective, either an oil-immersion NA1.40 or a dry NA0.95. In 

the tube space of the upright microscope, I placed a rotating analyzer, mounted into 

apparatus described in Section 3.2.1, and acquired an image using a complementary metal 

oxide semiconductor (CMOS) sensor at a series of angles θ , registered absolutely to within 

0.1° of the sensor’s -axisx . 

3.2 Polarimetric imaging 

The apparatus described here is a “division of time, incomplete polarimeter” [116], such 

that, with only a rotating analyzer, one can measure only the degree of linear polarization 

(the strength of 1I  in Equation (3.33)), but cannot resolve the circular polarization content 

(some fraction of 0I  in Equation (3.33)). While a complete Mueller polarimeter would 
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resolve the full Stokes parameters, for the purposes of this work, an incomplete 

polarimetric measurement is enough. 

3.2.1 Encoded rotation mount 

The division of time polarimeter is made from two pieces: a motorized, encoded rotation 

mount, and a camera. The rotation mount was assembled from several off-the-shelf and 

stock parts, with a few components machined in house, as shown in Figure 3.9-a). 

 
Figure 3.9: Encoded, motorized rotation mount. (a) 3D ray traces rendered from 

the CAD model. The assembly is made from ca. 30 individual, mostly stock parts. 

(b) An oscilloscope trace from the encoder’s quadrature A and B channels while 

rotating at ca. 5 RPM. 

A 100 steps per revolution stepping motor drove a Newport RM25A rotation mount 

through an MXL pulley system with a 120:18 gearing ratio. Fastened onto the barrel of the 

RM25A was a 2500 counts per revolution (CPR) code-disk, read out optically into 

quadrature channels A and B, as shown in Figure 3.9-b). By encoding the angular position 

of the load (not the drive shaft), the closed-loop position feedback was immune to backlash 

and torsional windup in the drive train as well as any missed steps by the motor. This 
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motion control was implemented with an Arduino Uno microcontroller, which was 

programmed using interrupt service requests (ISRs) attached to the encoder Ch.’s A, B, 

and Z (index), so that program execution was paused in order to ensure no counts were 

missed. The ISRs were triggered on any edge (rising or falling) in either Ch.’s A or B, so 

that the 2500 CPR code-disk was read out into 10,000 incremental counts. So, the encoded 

rotation mount has an angular resolution of 0.036°, and is essentially agnostic to the source 

of mechanical drive (e.g. when denied motor power and rotating manually by hand). The 

microcontroller is programmed as a state machine with various motion control and system 

states and communicates with an associated LabVIEW driver by sending and receiving 

messages over a USB. This LabVIEW driver was employed by a higher-level virtual 

instrument (VI) which synchronized the rotational action of the polarizer with acquisition 

from a USB camera (Thorlabs DCC1545M), and in the end acquired still images 

transmitted through an analyzer fixed at different angles. 

3.2.2 Brewster’s window calibration 

With a relative measurement of the angle of linear polarization (AOLP, ϕ  in Equation 

(3.33)), one cannot distinguish between vortex donut beams in the orthogonal radial and 

azimuthal polarization states [97]. To make an absolute AOLP measurement, it is necessary 

to have a polarization reference with an AOLP that is known w.r.t. a mechanical datum 

plane. This reference was generated by cutting a straight edge into a flat piece of glass, 

which was tilted to reflect at the Brewster’s angle, Bθ : 

( )1tan 56.7B glassnθ −= ≈ ° . (3.31) 
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Figure 3.10-a) shows how that tilt angle was produced by supporting the glass plate on 

three points of contact. The two points where the straight edge touches the two optical cage 

rails assure the glass is tilted by rotation about the cage’s mechanical -axisx . A third point 

of contact on a backing cage plate sets the tilt angle. A pair of centered-drilled cage plates, 

shown in red, define some range of angles which can be reflected to the camera. The setup 

pictured in Figure 3.10 had an acceptance cone with marginal rays at about ±1.2° w.r.t. the 

optical axis. With careful adjustment of the reflector’s angle (i.e. by adjusting the space 

between the backing plate and the aft center-drilled plate), one can set the received angle 

of reflection to Bθ , within the angular aperture of that acceptance cone. By using a 

randomly polarized incandescent source, shown in Figure 3.10-b), the reflected AOLP is 

aligned with the cage’s mechanical -axisx  to within the mechanical precision of the 

following items: the straightness of the edge; the flatness of the reflective surface; and the 

centering of the drilled thru-holes. In practice, the last item bears the largest impact on 

precision of the polarization reference angle. 

Figure 3.10-c) shows an image of the fore thru-hole cage plate, with scribe marks 

made parallel to its edges. How closely the scribe marks intercept the countersunk, Ø1.6 

mm thru hole along a diameter indicates the accuracy of the centering, which is about ±50 

µm. This image allows one to reference the camera sensor’s -gridxy  of pixels against the 

mechanical -axisx  of the cage. Figure 3.10-d) shows a polarization trace, measuring the 

light reflected by the glass plate through the pair of thru-holes and onto the camera. The 

angular measurements in Figure 3.10-c) and -d) allow one to register the polarizer’s 

transmissive axis absolutely w.r.t. the camera sensor’s -grid,xy  at a precision of 0.1 .± °  
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Figure 3.10: Brewster's reference for absolute AOLP. (a) Light from an 

incandescent bulb (b) is reflected to the camera. (c) Center-drilled thru holes are 

used as mechanical fiducials, with a red reticle superimposed on scribe marks. (d) 

The polarizer’s transmissive axis can be registered against the camera sensor’s 

-axisx  to within 0.1°. 
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3.2.3 Orbit shift correction 

For a division of time polarimeter, any aparallelism in the analyzer’s surfaces will cause 

the image formed on the camera’s sensor to shift as the analyzer rotates. This shift, which 

is a highly repeatable, systematic effect, was measured and corrected for. For example, 

highlighted with a blue circle in Figure 3.11-a) is a piece of debris on a resolution target. 

The blue points plotted in Figure 3.11-b) show how the debris’ centroid -positionxy  (in 

pixels) tracks an ellipsoid as the analyzer is rotated through one revolution. These points 

are used to find the red curve of best fit, which is a shifted, rotated ellipse, 

( ) ( ) ( ) ( )2 2cos sin sin cos
1c c c cx x y y x x y y

a b
α α α α   − + − − − −

+ =   
   

, (3.32) 

where ( ),x y  are points (in pixels) along the red curve, ( ),c cx y  is the center of the ellipse, 

a  and b  are the semi-major and semi-minor axes, and α  is the angle of rotation. The best-

fit values of those five parameters are determined by regression. A sixth parameter, the 

angle β , (which is fixed, not part of the regressive fit) is required in order to register the 

index position of the code-disk onto the red ellipse. 

A sequence of stills from the first roughly ¼ revolution are shown in Figure 3.11-

c) through -j). For each still, a pair of two images (top and bottom) is shown. On the top, 

the blue crescent is used as a guide for the eye to show how the image of the debris shifts 

around on the image sensor as the analyzer rotates, while the bottom image is after 

correcting for this shift using Equation (3.32). Note that due to the polarizing nature of the 

inverted microscope’s beam splitter, the illumination brightness varies with analyzer angle 

and the debris does not have the same contrast in all the stills. To determine the debris’ 

centroid positions, the stills were all equalized by background subtraction and histogram 
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transforms, thereby mitigating the effect of polarized illumination. Note how the shift 

correction, typically about 15 pixels in magnitude, leaves some of the border region filled 

with blank pixels (colored black). The red reticle indicates the centroid position, which is 

determined by the grayscale-weighted center of mass in those equalized images. Note that 

in the shift-corrected images, the red reticles are all very close to the image centers, 

indicating the sub-pixel accuracy of this correction. 

 
Figure 3.11: Image-shift correction in a division of time polarimeter. (a) A piece 

of debris on a resolution target is tracked as the analyzer rotates. (b) An ellipse of 

best fit is used to correct for the image shift. (c-j) Several stills of the raw (top) and 

corrected (bottom) images are shown, through the first roughly ¼ revolution. The 

centering of the red reticle indicates the level of accuracy in this correction. 
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3.2.4 HSV color composition 

Figure 3.12 shows the polarimetric imaging of a tightly focused vortex beam, where the 

“bare” beam has been focused through the glass substrate only (i.e. no coaxial apertures). 

The top surface of the glass substrate was positioned by an -piezoxyz  stage at the common 

focus of the dual microscope system sketched in Figure 3.8. Figure 3.12-a) shows an image 

of the “bare” beam acquired without any analyzer. There is no polarimetric information in 

Figure 3.12-a). 
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Figure 3.12: Polarimetric imaging - HSV color fusion. (a) Donut beam imaged 

without an analyzer and (b) with an analyzer at 240.0°. (c) Polarization trace from 

a pixel outlined with a purple reticle in (b). (d-f) Polarization information is used to 

raster three color channels which are combined (g) into a 24-bit color fusion image. 

Scale bars: 1 µm. 

Figure 3.12-b) shows an image of the beam filtered through an analyzer oriented at 240.0° 

w.r.t. the CMOS -axisx , picking off two lobes with polarization parallel to the analyzer’s 

transmissive axis. Note that if the analyzer position was not known absolutely, then Figure 

3.12-a) and -b) alone could only indicate that the beam is in either the radial or in the 

azimuthal polarization state. They could, at least, rule out vortices with aligned spin and 
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orbital helicities [97], but not more. With the absolute θ  known, however, Figure 3.12-a) 

and -b) already indicate the beam is likely radially polarized. But to decipher more clearly, 

instead of acquiring a single image, a series of images is acquired over a set of θ . 

 The accumulated images form layers of a stack, and at each pixel in the stack I 

sampled the grayscale intensities with a 5 5×  Gaussian kernel. For example, the purple 

reticle in Figure 3.12-b) points to a single pixel. I sampled that pixel’s intensity (and some 

nearest neighboring pixels) from each of a 180 images and plotted that intensity as purple 

circles in polar coordinates on Figure 3.12-c). There is nothing special about the purple-

marked pixel, it is a result typical of any pixel in the “bare” beam images. Note that the 

purple-marked pixel, which is due North of the vortex beam’s topological singularity is 

brightest when the analyzer points North (or South). This is indicative of a radial 

polarization. The sampled grayscale intensities I  can be fit to Malus’ law 

( )2
0 1cosI I I θ ϕ= + − . (3.33) 

Here 0I  is the non-plane polarized intensity, 1I  is the plane polarized intensity, and ϕ  is 

the AOLP. From the three fitting parameters, 0 1, , and I I ϕ , I raster three channels of 

polarimetric information, shown in Figure 3.12-d) through -f), and I combine them into a 

24-bit color fusion image shown in Figure 3.12-g) by mapping them into a cylindrical color 

space [117], [118]. I used the standard mappings for hue and value, 

H ϕ= , (3.34) 

0 1V
2

I I+
= , (3.35) 

but I plotted the saturation using a log-scale and color-coded using a cube root: 
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I

 +
=  

 
. (3.36) 

I used this non-linear color-coding to reveal more easily [119] the AOLP. Even though 

Equation (3.33) is periodic every 180°, in the fitting regression routine I allowed ϕ  up to 

360° by seeding the fit with the polar angle φ  (see Figure 2.1) that the pixel makes w.r.t. 

the topological singularity. For example, for the purple-marked pixel in Figure 3.12-b), I 

would seed the regressive fit with ~ 90ϕ °  (not 270°) (or, I guess, not any other angle). 

The HSV-fusion image therefore encodes polarization information colorimetrically [120]–

[122]. The fit curve, drawn in green underneath the sampled grayscale intensities, is 

colored green in accord with the angular hue scale. To the best of my knowledge, this work 

is the first to apply a full three-channel HSV-fusion method to the polarimetric imaging of 

a cylindrical vortex beam, although several other works [123], [124] have used a similar 

two-channel approach. In concert with the color scales above, Figure 3.12-g) indicates 

unambiguously the “bare” beam is radially polarized. 

 While the incomplete imaging polarimeter here cannot resolve the difference, for 

example between random- and circular-polarization, there is no need for the purposes of 

this work to make that distinction. Figure 3.12-e) (the S-channel) and Equation (3.36) show 

that the beam is predominantly linearly polarized, with an extinction ratio of 20 dB being 

typical. Note that the apparatus could be modified into a Stokes/Muller imaging 

polarimeter by adding a waveplate into the tube-space of the upright microscope drawn in 

Figure 3.8. A full Stokes image, bearing one additional piece of information at each pixel, 

could be color-fused using the alpha channel of a 32-bit image. In Section 4.3.1 this 
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apparatus is used to observe the transmission of the donut beam by nanocoaxial 

waveguides. 

3.3 Near-Field scanning optical microscopy 

I used a MultiView 4000 (Nanonics Inc.) near-field scanning optical microscope (NSOM) 

to probe the near field intensity of samples in various nanophotonics experiments. Figure 

3.13 shows a schematic of an NSOM. It is nearly the same optical setup as presented in 

Figure 3.8, with one major difference: the objective lens on the upright microscope needs 

a long working distance (LWD), at least 15 mm, in order to accommodate a quart tuning 

fork (QTF) based fiber optic NSOM probe. An SEM image of the Ø250 nm  metallized 

aperture probe is shown in Figure 3.13-a). 

 
Figure 3.13: Near-field scanning optical microscope. (above) Schematic of the 

optical setup. Also drawn, as an example, is backside illumination by a radially 

polarized optical vortex. The inset (a) shows SEM image of the Ø250 nm  

apertured fiber probe. Scale bar: 1 µm. 
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In most cases, the space gained by using an LWD objective, comes at a sacrifice in optical 

performance. There are specialized LWD objectives which can mitigate this trade-off. But 

very often one must sacrifice on the numerical aperture; this apparatus is equipped with a 

NA0.45 LWD objective and the ramifications of this sacrifice are resolved more clearly in 

Section 4.3.2. Some experimental NSOM data are shown in Figure 4.26. 

3.4 Plasmonics 

A plasmon is a density wave in a gas of free charges [125]. Metals can be described as a 

gas of free electrons, which collide with their environment (i.e. the Drude model) [126]. 

For the purposes of optical confinement [127], a surface plasmon (SP) is the wave of charge 

density and accompanying electromagnetic fields which are trapped against the surface of 

a metal, right at the interface it shares with an adjacent insulator. So, an SP is bound to an 

MI interface. By coupling light into the motion of free charges in the metal, the wave slows 

down significantly compared to light moving through just the insulator alone, thereby 

“shrinking” the wavelength of the light trapped against the surface. SP waves are a resonant 

material response; for any given material they are excited much more prominently at some 

free space wavelengths than at others, and different materials respond with different 

strengths. So plasmonics are a resonant means of optical confinement. This resonance 

stems from the bulk plasma frequency, 

2
4p

ne
m

ω π= , (3.37) 

which is determined by the density of free charges, n , by the charge e  per carrier, and by 

the carrier mass m . Note that n  means different things in Equations (3.16) and (3.37). 
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Equations (2.1) - (2.12) of [128] give some very useful mathematical formulae to describe 

the properties of a SP wave. 

Most familiar metals, with a density of free electrons on the order of 

23 310  cm ,n −  have a resonant frequency typically in the UV, in excess of 800 THzpf >  

(free space wavelengths shorter than 0.4 µm). However, practically speaking, only some 

metals exhibit useful SP confinement. In most metals, at energies higher than ca. 1 eV 

(wavelengths shorter than ca. 1 µm) there are absorption pathways not accounted for by 

the Drude model, and this absorption often prevents one from exploiting the “exotic” 

aspects of an SP resonance. Within the theoretical framework of Section 3.1.2.2, the 

measured optical constants for Ag, Au, and Cu (from [129]) and for Al (from [130]) are 

given in Figure 3.14.  
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Figure 3.14: Optical constants for Ag, Al, Au, and Cu. (a), (c), and (d) are from 

[129], and (b) is from [130]. One can see how Ag differs from the rest. Some would 

say Ag is the gold standard of plasmonic metals. 

Some of the useful properties of a SP wave can be identified from its dispersion 

relation, which, for any wave, connects a wave’s frequency and wavelength. Equation (2.4) 

from [128] gives the dispersion relation of a SP wave traveling along a planar MI interface, 

and Equation (2.3) from [128] gives the length scale at which the SP is trapped onto the 

planar surface. I have plotted the dispersion relation for two planar 2 3metal Al O  

interfaces in Figure 3.15. The two metals I considered are Ag (panels (a-c)) and Pt (panels 

(d-f)) with the optical constants for Ag from [129], Pt from [131]. For the insulator, I used 

the 2 3Al O  optical constants from the Cauchy fit given in Equation (4.28). More discussion 

on the Pt and 2 3Al O  optical constants can be found in Section 4.2.2.3.  
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Figure 3.15: SP dispersion on a planar 2 3metal Al O  interface. (a-c) Ag exhibits a 

high-Q SP resonance at ~ 0.375 μmλ . (d-f) Pt does not strongly resonate. The 

three rows are: dispersion curve, propagation length, and confinement factor. 

 Equations (2.3) and (2.4) from [128] give the SP wavevector, 

SP SP, SP,ˆ ˆx zk x k z= +k . (3.38) 
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Note that the assumed -componenty  of SPk  is zero, so that the SP waves, propagating 

along x̂ , are of infinite extent in the ˆ-directiony , much like plane waves. Therefore, planar 

SP waves are only confined in two dimensions, along the ˆ-x  and ˆ-directionsz . The 

electromagnetic fields which accompany the charge oscillation in an SP wave, 

SP SP, SP,ˆ ˆx zE x E z= +E , (3.39) 

SP SP, SP,ˆ ˆy zH y H z= +H , (3.40) 

are polarized transverse magnetic (TM). Some refer to the fields themselves as a 

“polariton”, so that the oscillating charges and accompanying fields are together called a 

surface plasmon polariton (SPP). However, the plasmonic charge and fields are always 

inextricably linked, they always accompany each other. It is not as if one could ever 

possibly separate an SP wave clearly into charge and field parts. SP is a simpler term, so I 

prefer it. But I believe that SP and SPP are interchangeable terms, always describing the 

same plasmonic surface wave. 

Figure 3.15-a) and -d) show the SP dispersion relations for planar 2 3Ag Al O  and 

2 3Pt Al O  interfaces, plotting the wave’s energy E ω=   vs. its propagation constant 

( )SP,Re .xk  There are many useful pieces of information which can be extracted from a 

wave’s dispersion curve. For starters, the black curve which separates the shaded-white 

and shaded-gray areas on the left- and right-hand sides of the plots, respectively, 

demarcates the boundary between photonic and plasmonic behavior. Note that this 

boundary is itself a dispersive curve, where the tangential dashed green line is intended to 

approximate the long-λ  optical response of 2 3Al O . Although that green line totally 

neglects to account for vibrational or other low energy resonances in 2 3Al O , which has 
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many features in the range 10 30 μmλ< < . The curvature in Equation (4.28) at shorter 

wavelengths is due to the long tail of UV absorption near ~ 0.1 μmλ . One should note 

that Equation (4.28), with a purely real N , one does not faithfully account for these 

features outside of 0.25 1.3 μmλ< < , and is technically Kramers-Kronig inconsistent. 

Even though the boundary is curved, it is conventionally referred to it as the light 

“line”. The SP dispersion curve has two branches. Below resonance, where the dispersion 

is entirely to the right of the light line, such that ( ) 2 3SP, Al ORe xk n k> , the SP wave carries 

more momentum than could ever be carried by a photon moving through alumina alone. 

2 3Al On  is the alumina refractive index given by Equation (4.28), and k  is the vacuum 

wavenumber given by Equation (2.16). Therefore, SP waves on the lower branch are 

trapped on the surface, until they are ultimately absorbed by the metal as Ohmic loss. 

Above resonance, the dispersion curve is entirely to the left of the light line, such 

that ( ) 2 3SP, Al ORe xk n k< , and the SP wave can now couple into photons moving through 

the bulk of either the metal or the alumina, with the former typically being very strongly 

absorbing in the UV. The SP waves above resonance, are not bound to the surface it as they 

are below resonance. Above resonance, SP waves can dissipate not only by absorption in 

the metal but also by escaping the surface and leaking into radiation. 

So, the parts to the left and right of the light line are called “photonic” and 

“plasmonic”, respectively. While this demarcation is useful for the above technical reasons, 

it is not perhaps entirely faithful in its name: all parts of the dispersion curve are plasmonic, 

the waves are the combined oscillation of charges and accompanying fields; so whether or 

not they can be separated as either “plasmonic” or “photonic” in their nature by whether or 
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not they are bound to the surface is unclear to me. In any case, while the two branches are 

connected (no gaps), the upper branch describes a plasmonic wave that is no longer bound 

to the surface. In principle, that upper branch is at frequencies where the metal is 

transparent to light. But in practice this usually isn’t the case, usually the metal is absorbing. 

SP waves are only useful for confinement at frequencies below resonance. 

Figure 3.15-b) and -e) show the SP propagation length, L , plotting ( )SP,1 2Im xk  

vs. λ . Figure 3.15-c) and -f) show the plasmonic confinement factor, which is the 

magnitude of the SP wavevector in ratio against the wavenumber in 2 3Al O , plotting 

2 3SP Al On kk  vs. λ . A confinement factor of 1 means that the SP wave has the same 

wavelength as light moving through alumina, and that it is trapped against the surface on a 

similar length scale. One can see in Figure 3.15-c) that for Ag the confinement factor on 

resonance, near ~ 0.375 μmλ , can be as high as 5. Note that the SP resonance depends on 

geometry as well, Figure 3.15 only considers a planar MI geometry. The confinement 

factor is never less than 1 (superluminous), and regardless how close or far one is from the 

SP resonance, one should note that the existence of SP waves bound to the MI interface is 

a topologically robust feature [125] due simply to the very existence of that interface. This 

means that even very far below resonance, indeed arbitrarily so, there is an SP wave trapped 

on the MI interface. In the long-λ  limit, these are called Sommerfeld-Zenneck waves 

[132], [133], and while trapped on the surface, they are not confined at all to subwavelength 

scales. Therefore, in the long-λ  limit of Figure 3.15-c) and -f), the confinement factor 

asymptotically approaches unity, regardless of the MI combination. 
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4 NANOCOAXIAL WAVEGUIDES  

This Chapter is divided into 5 Sections. In Section 4.1 I cover the theoretical basis for 

optical confinement in nanocoaxial waveguides. Section 4.2 covers various fabrication 

schemes to achieve a coaxial MIM geometry. Section 4.3 summarizes some experimental 

results in optically interrogating these structures by polarimetric imaging and NSOM. 

Section 4.4 covers a finite element calculation which examines the coupling of free-space 

radiation at terminations of these waveguides and to study 3D taper geometries; the 

axisymmetry shared by LGl
p  beams and coaxial modes is used to dramatically reduce the 

computational burden. Finally, Section 4.5 offers some conclusions and future directions 

of work. 

4.1 Elements of waveguide theory 

Any waveguide can be treated as an extrusion of a two-dimensional cross section, with a 

coaxial waveguide having extruded annular layers. I will consider a coaxial MIM 

waveguide with a single, annular 2 3Al O  insulator and having dimensions 

ID ODØ 2 0.2 μm Ø 2 0.5 μma b= = = = , (4.01) 

where IDØ  and ODØ  are the inner and outer diameters, with a  and b  being the respective 

radii. The outer-to-inner aspect ratio, 

OD

ID

Ø 2.5
Ø

b
a

Φ = = = , (4.02) 

is a useful metric for predicting the waveguide properties. In this Section, I will highlight 

some key elements of waveguide theory, not rederiving already established results. The 
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interested reader should see any number of standard textbooks [3], [134], [135] for a 

comprehensive overview of waveguide theory, and in particular the 2nd Chapters of [136] 

and [137]. Most of the work here will be merely to cast those previously published results 

into the mathematical language I’ve been using in Chapters 2 and 3. 

The aim of this Section is to write down the modal solutions for the fields of the 

two lowest-order modes in a coaxial waveguide. Regardless of the diameters IDØ  and 

ODØ , and even regardless of the frequency or materials, the lowest energy, fundamental 

mode has electromagnetic fields which resemble a transverse electromagnetic (TEM) 

wave, and the first excited mode has fields which resemble a transverse electric (TE) wave. 

Higher order coaxial modes are indexed as either TElp  or TMlp  (TM being short for 

“transverse magnetic”), with the integer indices l  and p  serving much the same function 

as the LGl
p  beams covered in Section 3.1.2, accounting for the -φ  and -dependenciesρ , 

respectively. The TEM and 11TE  modes are pictured schematically in Figure 4.1. These 

modes have monopolar ( )0l =  and dipolar ( )1l =  character, respectively, and will be 

shown to overlap well with corresponding electromagnetic LGl
p  beams. 

 
Figure 4.1: First two coaxial modes, TEM and 11TE . Adapted from [3]. 
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Coaxial waveguides, bearing continuous translational and rotational symmetries, as 

in the cylindrical coordinates depicted in Figure 2.1, impart onto the modal fields the 

following -φ  and -dependenciesz , with F  being either E  or H , as in Section 3.1.2.2, and 

omitting the harmonic time dependence in Equation (2.04), 

( ) zik zil il
l Re Le eφ φ− +∝ +F , (4.03) 

for a given angular order l , as in Equation (2.05). zk  is the propagation constant and has 

exactly the same meaning as in Equations (2.14) and (2.17). The standard theoretical 

approach to finding waveguide modal fields which solve the time-harmonic Maxwell’s 

Equations (3.11)-(3.14), is to decompose them into the transverse ⊥F  and longitudinal zF  

parts. In cylindrical coordinates, and incorporating the -dependencez  of Equation (4.03), 

the transverse/longitudinal decomposition of Maxwell’s equations becomes 

02
1z z

z
i E HE k

k
ρ

ρ
ωµ

ρ ρ φ
 ∂ ∂

= + ∂ ∂ 
, (4.04) 

02
1 z z

z
i E HE k

k
φ

ρ
ωµ

ρ φ ρ
 ∂ ∂

= − ∂ ∂ 
, (4.05) 

02
1z z

z
i H EH k

k
ρ

ρ
ωε ε

ρ ρ φ
 ∂ ∂

= − ∂ ∂ 
, (4.06) 

02
1 z z

z
i H EH k

k
φ

ρ
ωε ε

ρ φ ρ
 ∂ ∂

= + ∂ ∂ 
. (4.07) 

The duality between E  and H  can be seen in Equations (4.04)-(4.07) above. 
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4.1.1 PEC/Al2O3 coaxial waveguide modes 

It is helpful when modeling the optical response of a metallic structure to simplify the 

problem and treat the metal as if it were a perfect electrical conductor (PEC). This 

effectively isolates the parts of the structure’s response which can be attributed to its 

geometry alone. PEC modeling eliminates, for example, the SP waves discussed in Section 

3.4, so that PEC coaxial modes have non-zero fields only within the alumina insulating 

annulus. For the PEC/TEM mode, there are no longitudinal components, 0z zE H= = . So, 

one cannot follow the standard transverse/longitudinal decomposition they normally would 

for higher order modes, which always have at least one non-zero zF . Instead, one sets 0l =  

with 1 2R L= =  and finds, 

PEC
TEM 0 ˆzik zaE e ρ

ρ
=E , (4.08) 

PEC
TEM ˆ

wave

E
Z

ρ φ=H . (4.09) 

0E  is the electric field strength at the surface of the center conductor and waveZ  is the 

wave impedance of a plane wave propagating through 2 3Al O . waveZ  is computed by 

dividing the impedance of free space 0 0 0 377 ΩZ µ ε= =  by alumina’s refractive 

index, given as the Cauchy-fit ( )2 3 2 3Al O Al On n λ=  in Equation (4.28), 

2 3

0

Al O
wave

ZEZ
H n

= = , (4.10) 

and is related to the characteristic impedance of the PEC coax operating in its TEM mode  

PEC
TEM

ln
2waveZ Z
π
Φ

= . (4.11) 
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For the free space wavelength 0.98 μmλ = , PEC
TEM 33.4 ΩZ = .This mode has all the same 

photonic properties as light traveling through 2 3Al O  alone, including the dispersion 

relation, 

2 3
PEC

Al OTEM zck nω = . (4.12) 

Equation (4.12), in concert with Equation (4.28), must be inverted to find the full dispersion 

relation ( )zkω ω= . Noting the dependence of 
2 3Al On  on ω , this means inverting a 

polynomial of order 5ω . The fields PEC
TEME  and PEC

TEMH , along with the mode dispersion 

curve, are plotted in Figure 4.2. One could compare the field components for this mode to 

those of ˆ -donut ,ρE  plotted in Figure 3.6. The field components were evaluated at the free-

space wavelength 0.98 μm,λ = which is the black point on the blue dispersion curve. The 

green, dashed line shows the long-wavelength limit of 
2 3Al On , as will be discussed later. 

The white- and gray-shaded areas to the left- and right-hand side of the dispersion curve 

have the same meaning as those in Figure 3.15. 
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Figure 4.2: TEM mode of a 2 3PEC Al O  coax. (a) Dispersion curve. (b-i) field 

components PEC
TEME  and PEC

TEMH . The color scale in (b-i) is the same as in the 

Figures from Section 3.1.2. 

For the 11TE  mode, one sets 0zE = , 1l = , and 

( ) ( ) ( )( )0 1 1J Y zik zi i
zH iH Re Le A k B k eφ φ

ρ ρρ ρ− += + + , (4.13) 
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where ( )Jl x  and ( )Yl x  are Bessel functions of the first and second kind, respectively, of 

order l , 0H  is a unit of magnetic field strength, say 1 A μm , and the coefficients A  and 

B  are determined by enforcing the boundary conditions at the two PEC/alumina interfaces. 

The TE, PEC boundary conditions are 

0 0

0 0
a a

b b

E H

E H

φ ρ

φ ρ

= =

= =
. (4.14) 

So the procedure is to plug Equation (4.13) into in Equations (4.04)-(4.07), and then find 

the value of kρ  which satisfies Equations (4.14). With the three unknowns, A , B , and 

,kρ  it would at first appear that the problem is overdetermined. But note that Equations 

(4.14) are all constraints on zH ρ∂ ∂ . So there are not 4 constraints, but really only two, 

one at each of the radii a  and b . In that case, the problem is underdetermined. One way 

around this is to “absorb” the coefficient B  into the value of 0H  and then solve for only 

two unknowns: kρ  and the ratio A B . 

Solving for kρ  is how one finds the cutoff frequency and dispersion relation. One 

can think of the TEM mode has having 0kρ = . But for the 11TE  mode, in essence, the 

PEC walls of the waveguide dictate that the fields must have nodes at the radii a  and b . 

This condition is satisfied only when at least a “half wave” fits into the radial size of the 

annulus. That reasoning helps to make clear the textbook formula for the 11TE  cutoff 

wavelength, see for example the Equation immediately following (3.159) in [3], 

( )PEC
c n a bλ π≈ + , (4.15) 
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where n  is the insulator’s refractive index. So the cutoff frequency is the minimum ω  

which can summon enough spatial variation along ρ  to put two nodes in the fields, one 

each at a  and b . Another way to put it is that the cutoff is defined as the finite value of ω  

for 0zk →  in Equation (2.17). Using the recursive relation for a generalized Bessel’s 

function ( )nG x , 

( )0 2
1 2

G G
G

−′ = , (4.16) 

and applying the two conditions on Eφ  to eliminate A  and B , one gets: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 2 0 2

0 2 0 2

J J J J

Y Y Y Y

k a k a k b k b

k a k a k b k b
ρ ρ ρ ρ

ρ ρ ρ ρ

− −
=

− −
. (4.17) 

This transcendental equation can only be solved numerically. There are an infinite number 

of “zero crossings”, or roots, to this equation, as Bessel’s functions are oscillatory. Those 

zero crossings are enumerated by the integer index 1.p ≥  After finding the first ( 1p = ) 

value of kρ  which solves Equation (4.17), one has the dispersion relation from inverting 

Equation (2.17), 

( )2 311

2PEC 2
Al OTE zck n kρω = − . (4.18) 

To find the cutoff free-space wavelength ,cλ  one must then invert 

( )2 3Al O2 ,c ck nρ π λ λ=  where the refractive index 
2 3Al On  is from Equation (4.28). For 

the coaxial diameters given by Equations (4.01), I calculate PEC 1.741 μmcλ = . Note that 

if I use the “long wavelength” or “low energy” limit of Equation (4.28), as discussed in 

Section 3.4, so that 
2 3Al On  takes its limiting form 

2 3Al O 1.6176n n∞→ =  and loses its 
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frequency-dependence, then I calculate PEC 1.738 μmcλ = . This makes intuitive sense: a 

slightly higher refractive index, such as one which includes the Cauchy terms, should be 

able to “shrink down” a slightly longer wavelength. Looking at Figure 4.14-b), one can 

imagine how including the Cauchy terms becomes increasingly important at shorter 

wavelengths (higher energies), where one expects to find the cutoff of smaller diameter 

waveguides. One should contrast the result from finding the root to Equation (4.17) with 

results from the approximate formula, Equation (4.15). In the same sequence as before, 

using the Cauchy terms of Equation (4.28) and then inverting Equation (4.15) results in 

PEC 1.781 μmcλ = , and without the Cauchy terms the result is PEC 1.778 μmcλ = . It’s the 

same pattern: including the Cauchy terms lengthens the cutoff wavelength (i.e. lowers the 

frequency, or energy), however one can see that Equation (4.15) overshoots by roughly 3% 

for these diameters. With the cutoff value of kρ  found, the ratio A B  is found by 

( ) ( )
( ) ( )

0 2

0 2

Y Y

J J

k a k aA
B k a k a

ρ ρ

ρ ρ

−
= −

−
. (4.19) 

For the diameters of Equations (4.01), I find 15.8471 μmkρ
−=  and 4.2878.A B = −  

A 11TE  mode can take on one of two degenerate, orthogonal polarizations. In 

cylindrical coordinates, this can be seen by setting either R  or L  equal to zero in Equation 

(4.13) (but not both), resulting in either a left- or right-hand circulating mode, respectively. 

In Cartesian coordinates, the two orthogonal polarizations are a predominantly ˆ-orientedx  

or a predominantly ˆ-orientedy  mode. For a circular coax, these modes have the same 

cutoff. Breaking the rotational symmetry, for example by deforming the coax into ellipses 

[138], breaks the degeneracy by lowering the cutoff energy for one of the polarizations (i.e. 
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lengthening its cutoff wavelength). Figure 4.1-b) sketches a predominantly ˆ-orientedx  

11TE  mode. Much like what was done for Equation (3.27) for an ˆ-polarizedx  Gaussian 

beam, one can make the ˆ-orientedx  11TE  mode as a superposition of copropagating right- 

and left-handed circulating modes. Isolating the radial dependence into the dimensionless 

functions u  and v , 

( ) ( ) ( )1 1J YAu k k
B ρ ρρ ρ ρ = + 

 
, (4.20) 

( )

( ) ( )( ) ( ) ( )0 2 0 2

1

1 J J Y Y ,
2

duv
k d

A k k k k
B

ρ

ρ ρ ρ ρ

ρ
ρ

ρ ρ ρ ρ

=

 = − + − 
 

 (4.21) 

and using dimensionless the normalization factor, 

( )
0.234902

,0
k a

C
u a

ρ= =  , (4.22) 

the ˆ-orientedx  11TE  mode fields are: 

( )
11

PEC 0
ˆ-TE

cos ˆˆ sin zik z
x

E u v e
C kρ

φ ρ φ φ
ρ

 
= − +  

 
E  (4.23) 

11

PEC 0
ˆ-TE

0

cos ˆˆ ˆsin sin zik zz
x

z

kEk uv i u z e
C k k

ρ

ρ

φφρ φ φ
ωµ ρ

 
= − − +  

 
H . (4.24) 

The factor 0 zkωµ  is identified as the wave impedance, as in Equation (4.10). Note that 

the criterion for cutoff demands 0zk → , such that the wave impedance diverges. The 

fields 
11

PEC
ˆ-TExE  and 

11

PEC
ˆ-TExH  were evaluated at the free-space wavelength 0.98 μmλ = , 
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well above cutoff, and are plotted along with their dispersion curve in Figure 4.3. One 

should compare these fields to ˆ-GaussianxE  plotted in Figure 3.5. 

 
Figure 4.3: 11TE  mode of a 2 3PEC Al O  coax. (a) Dispersion curve. (b-i) field 

components 
11

PEC
ˆ-TExE  and 

11

PEC
ˆ-TExH . The color scale in (b-i) is the same as in the 

Figures from Section 3.1.2. 
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Three things are worth immediate mention. First, at a glance it appears that 

Equations (4.23) and (4.24) do not at all account for the material response of the alumina 

insulator, with no explicit dependence on the refractive index given in Equation (4.28). 

However, the insulator’s optical response is buried into ( )z zk k ω=  through Equation 

(2.17), so the dependence is implicit. Second, the black point in Figure 4.3 lies on the modal 

dispersion curve, but to the left of the light line. The light “line”, for this PEC waveguide, 

is the blue dispersion curve in Figure 4.2, and the ratio of -valueszk  at the black point to 

the light line at the same energy hc λ  is basically a measure of “how much of nk  is 

required for kρ ,” with a smaller proportion required at higher energies (i.e. where the 

modal dispersion curve converges with the light light). Third, a waveguide’s characteristic 

impedance is not unambiguously defined when operating in a higher order mode, since the 

measured voltage and currents depend when and where on the conductors one measures 

them. The voltage and current can be computed by carefully chosen path integrals. For the

ˆ-orientedx  11TE  mode, there are natural paths to choose for the voltage integral [139], for 

example walking from aρ =  to a  at 0φ = ° . But the currents of a 11TE  mode have a 

someone more complicated, frequency dependent spatial distribution: far above cutoff, the 

currents flow basically along ẑ±  and the magnetic field is dominantly ⊥H  oscillating in 

phase with ⊥E  (and with a similar spatial distribution); however approaching cutoff the 

current flow is principally along φ̂±  with the magnetic field dominantly zH  oscillating 

90° out of phase with ⊥E  (and with a very different spatial distribution). 
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Equation (4.24) for 
11

PEC
ˆ-TExH  could be compared against Equation (3.27) for the 

electric field of an ˆ-polarizedx  Gaussian beam. A few common threads emerge: First, the 

longitudinal component oscillates out of phase with the transverse components. Second, 

the longitudinal component zF  is related to an angle the wave makes with the optical axis. 

In the case of ˆ-GaussianxE , this was the beam divergence angle beamθ . For the 11TE  mode, 

and especially considering Equation (2.14), this is the tangent of the angle the wavevector 

makes in the waveguide. One can think of the 11TE  (and all higher order) guided mode as 

bouncing off the metallic walls (in this case by perfect reflection at the PEC/alumina 

interface). In contrast, the TEM mode can be thought of propagating exactly along the 

ˆ-directionz , making no angle w.r.t. the waveguide axis, and never bouncing, but simply 

skimming off the walls. It is common to refer to bounceθ  as the “bounce” angle, 

bouncetan
z

k
k
ρθ = . (4.25) 

For the coaxial diameters in Equations (4.01), the free space wavelength 0.98 μmλ =  

corresponds to bounce 34.2θ = ° , see Figure 4.3. Forth, and finally, in the limit that 0zk →  

(i.e. at cutoff, where bounce 90θ → ° ), the longitudinal component of zH  dominates over 

the transverse components ⊥H . This is not dissimilar, in light of the E H  duality, from 

the longitudinal component of ˆ-GaussianxE  vanishing as beam 0θ → ° . 

4.1.2 Overlap between PEC nanocoax modes and LG beams 

The TEM mode given by Equations (4.08) and (4.09) has a strong overlap with the 

paraxially focused, radially polarized donut beam, with an electric field given by Equation 
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(3.30). Similarly, the ˆ-orientedx  11TE  mode given by Equations (4.23) and (4.24) has a 

strong overlap with the focal fields of an ˆ-polarizedx  Gaussian beam, with an electric field 

given by Equation (3.27). A similar observation has been made for the overlap of LG beams 

with the guided modes of a hollow cylindrical waveguide [140]. This can be readily seen 

by visual inspection of the field plots in Figure 4.4. 

 

Figure 4.4: Matching LGl
p  beams to PEC coax modes. (a-b) a radially polarized 

donut matches the TEM mode. (c-d) An ˆ-polarizedx  Gaussian matches an 

ˆ-orientedx  11TE  mode. 

The coaxial diameters OD IDØ Ø 3.25 1.45  μm=  in Figure 4.4 were chosen to match 

the beam waist, ( )02 2 0.98 μm 18.1 1.97 μmw π= ⋅ ⋅ ° ≈ , as described in Section 3.1.2.2. 

The overlap integral between the electric fields beamE  and modeE  of an LG beam and 

coaxial waveguide mode, respectively, was calculated by 

2
beam mode

2 2
beam mode

dA
M

dA dA

∗ ⋅
=

∫
∫ ∫

E E

E E
. (4.26) 

So that 0 1M≤ ≤  measures the strength of overlap. Table 4.1 shows that “large” coaxial 

diameters, as those presented in Figure 4.4, can harvest a substantial fraction of the focused 
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beam’s power. Since both 
11

PEC
ˆ-TExE  and ˆ-GaussianxE  have a cosφ  dependence while both 

PEC
TEME  and ˆ -donutρE  have no -dependenceφ , it is possible to show analytically the 

diagonal elements in Table 4.1 are equal exactly to zero, however in light of the fact that 

the waveguide modes PEC
TEME  and 

11

PEC
ˆ-TExE  are defined only in terms of the numeric 

parameters kρ  and the ratio A B , it is simpler to solve Equation (4.26) numerically for 

M  than to write out the analytic results. In that sense, the diagonal entries with 

330 dBM < −  could be taken as an indication of that numerical accuracy. 

  

 ˆ-GaussianxE  ˆ -donutρE  

PEC
TEME  3510−<  61.35% 

11

PEC
ˆ-TExE  18.25% 3310−<  

   

Table 4.1: LGl
p  beam to coaxial waveguide mode overlap: large coaxial 

diameters. The coaxial diameters OD IDØ Ø 3.25 1.45  μm=  harvest a substantial 

fraction of the 02 1.97 μmw =  beam’s power. The table entries show values of M  

from numerically solving Equation (4.26). 

  Figure 4.4 and Table 4.1 are meant to show that appropriately-sized coaxes can 

harvest a substantial fraction of an LGl
p  beam’s power. For completeness, since this 

Section deals instead with “small” coaxial diameters given by Equation (4.01), I have also 

computed the overlap of the paraxial beam into those “small” waveguides and summarized 

the results in Table 4.2. 
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 ˆ-GaussianxE  ˆ -donutρE  

PEC
TEME  3410−<  0.50% 

11

PEC
ˆ-TExE  5.70% 3510−<  

   

Table 4.2: LGl
p  beam to coaxial waveguide mode overlap: small coaxial 

diameters. The coaxial diameters OD IDØ Ø 0.5 0.2  μm=  do not harvest a 

substantial fraction of the 02 1.97 μmw =  beam’s power. The table entries show 

values of M  from numerically solving Equation (4.26). 

4.1.3 Real-metal/Al2O3 coaxial waveguide modes 

A PEC has a complex refractive index PEC 0N i= + ∞ . Real metals, having finite 

conductivity at optical frequencies, have finite refractive indices plotted variously 

throughout Figures 3.14, 4.14, and 4.20. Electromagnetic fields penetrate the surface of a 

real metal, and the PEC boundary conditions (4.14) are no longer valid. Instead, one solves 

for the fields in the three regions aρ < , a bρ≤ < , and b ρ≤  separately, enforcing the 

general electromagnetic continuities as boundary conditions at the two radii aρ =  and 

bρ = . A detailed derivation of these solutions is given in the 2nd Chapters of [136] and 

[137]. The introduction of metallic loss into a waveguide is typically a small perturbation, 

and in general, for frequencies sufficiently slower than the plasma resonance frequency of 

the metal, the real-metal modes closely resemble their companion PEC modes. For 

example, plotted in Figure 4.5-b) and -e) are the first two modes of a 2 3Pt Al O  coax with 

diameters given by Equations (4.01), and operating at the free space wavelength 

0.98 μmλ = . These modes were computed using a finite element solver, and should be 
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juxtaposed against the companion 2 3PEC Al O  mode profiles plotted in Figure 4.4-b) and 

-d). 

 
Figure 4.5: Summarizing the effects of metallic loss on nanocoaxial waveguides. 

(a) From [141], dispersion plots for OD IDØ Ø 0.5 0.15  μm=  coax made of Ag 

and vacuum. Representative mode profiles in (b) through (g) for a 

OD IDØ Ø 0.5 0.2  μm=  coax made from either 2 3Pt Al O  or 2 3Ag Al O and 

operating at either 0.98 μmλ =  or 0.405 μmλ = . 

Some key characteristics emerge from the penetration of the fields into the lossy 

metal, here are four: First, there are no longer any purely transverse modes [142]. All modes 

will have both non-zero zE  and zH . This means the TEM  and 11TE  modes are 

perturbatively morphed into TEM-like  and 11TE -like  modes. Second, the Ohmic loss in 

the metallic walls introduces an imaginary component to the propagation constant zk , and 

therefore a finite propagation length, ( )1 2Im zL k= . Third, as detailed in Section 3.4, real 

metals support SP waves, and depending on how close in frequency one is to the SP 
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resonance, real-metal coaxial modes obtain a varying degree of plasmonic character. This 

added plasmonic character can again be thought of as a perturbative departure from a PEC 

companion mode. As the frequency approaches the SP resonance, the plasmonic character 

of a mode increases: it becomes more tightly bound against the metal surfaces, and, as 

shown in Figure 4.5-a), the dispersion curve crosses the light-line such that the mode 

carries more momentum than ever could be carried by light propagating through 2 3Al O

alone. Fourth, and finally, since the fields penetrate into the metal, the mode occupies a 

physically larger cross-sectional area than when bounded by PEC walls, so real-metal 

coaxes have a red-shifted cutoff wavelength when compared to PEC coaxes with the same 

diameters [141]. 

As a quantitative measure of the penetration into the metal, one can use the 

confinement factor, Γ , which, in a similar spirit to the mode overlap integral in Equation 

(4.26), computes the fraction of the modal energy that lies within the insulating annulus. 

For a PEC waveguide, where the fields satisfy the boundary conditions (4.14), one gets 

automatically PEC 100%Γ =  for all modes. Table 4.3 has calculated confinement factors 

and propagation lengths, and optical constants for the 6 modes plotted in Figure 4.5-b) 

through -g). Quite generally, MIM waveguides exhibit a tradeoff between confinement and 

loss in the optical domain [143]. 
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( )μm
λ

 
refractive indices metal mode  

panel in 
Figure 4.5 ( )

2 3Al O

%

Γ
 

( )μm
L

 

0.980 
2 3Al O 1.624N =  

Pt 3.4 5.7N i= +  

Ag 0.04 7.0N i= +  

Pt TEM-like  e) 98.7 1.7 

11Pt TE -like  b) 98.9 1.8 
Ag TEM-like  not shown 99.0 140 

11Ag TE -like  not shown 99.2 160 

0.405 
2 3Al O 1.657N =  

Pt 1.7 2.9N i= +  

Ag 0.05 2.2N i= +  

Pt TEM-like  f) 93.5 1.2 

11Pt TE -like  c) 94.1 1.1 
Ag TEM-like  g) 70.6 2.2 

11Ag TE -like  d) 70.8 2.1 
      

Table 4.3: Confinement and loss in  nanocoaxes. For the modes 

plotted in Figure 4.5, and for two more not shown. 

4.2 Fabrication 

MIM nanocoaxes have been fabricated in a variety of ways. This section is organized as 

follows: first, I review some of the literature for fabrication schemes, then I describe some 

of my original, unpublished fabrications schemes which “didn’t work”, and finally, the 

bulk of this section is dedicated towards the ALD nanocoax, which has yielded novel 

optical performance. 

4.2.1 Review of prior work 

Deeply sub-mm coaxial cables, for example with diameters OD IDØ Ø 74 30 μm= [144], 

can be made by conventional wire drawing and extruding methods. In principle, these 

methods could be used to make even smaller diameter cables, for example by threading a 

fine wire through an insulating preform before drawing [145], however there is limited 

market demand so the production methods used in commercial manufacturing operations 

are generally not employed to make cables smaller than that. MIM microcoaxes with either 

2 3real metal Al O
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of ODØ  or IDØ  less than 10 µm are typically custom-made objects for scientific studies 

(i.e. not mass-manufactured). The core difficulty of fabricating these structures boils down 

to them having internal components which are totally enclosed by external components. 

While exterior surfaces can readily be metallized, it is generally more challenging to access 

an interior space by conventional microfabrication means. In this section I will describe 

some microfabrication approaches to making supra- and sub-µm-scale coaxes. On a high 

level, microfabrication methods can be divided into two overall categories [146], top-down 

and bottom-up. For the purposes of this thesis, I will make the distinction between those 

two categories based on how the coaxial geometry is achieved, so that instead of “top-

down” or “bottom-up” the categories might more appropriately be called “lithographic” 

and “self-assembled”, respectively. In the former case, any arbitrary geometry can be 

obtained by printing, imaging, engraving, etching, or some other patterning process. 

Therefore, a lithographically defined structure can have its geometry controlled 

independent from its material properties. In the latter case, however, the geometry is 

generated by the automatic organization of the constituent materials as they are 

added/removed/modified, so that both the geometric and material properties of the 

fabricated structure are determined in unison. 

4.2.1.1 Top-down approaches 

One way to lithographically achieve a coaxial geometry is to add materials to an axially 

symmetric template, such as a rod, hole, tube, pillar, or fiber. One way to add the materials 

is by molding. When fabricating macroscopic objects by molding, the materials are almost 

exclusively cast as a liquid which flows into a die, and subsequently freezes or cures solid. 

This very same approach has been miniaturized. Drawing inspiration from the fiber [147], 
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pipette [148], [149], and electrospinning [150] communities, one interesting approach is to 

start with a µm-scale annular insulating mold (essentially a glass tube or a hollow glass 

fiber), and then inject into the interior, hollow core a low melting point metal such as an 

In-, Ga-, Bi-, or Sn-based eutectic alloy, or even elemental Hg. This same basic approach 

can be used for planar integrated circuits with microfluidic channels [151], [152], and is 

amenable to more complex structures, such as non-planar [153] or flexible [154], [155] 

geometries. These low melting point metals are sufficiently conductive for electronic 

devices up to the RF, even if left in their liquid state [156], but these alloys are generally 

not useful for photonics applications due to their significant loss at optical frequencies; 

although one could imagine using them simply as an conductive intermediary in order to 

subsequently incorporate a low-loss optical metal, for example by electrochemical 

substitution. Some of the above works are summarized in Figure 4.6. In Figure 4.6-a), one 

can see that insulating sheaths can be formed around a conducting core during 

electrospinning. In that work [150],  the electrospun sheath was a conductive 

electroluminescent (EL) polymer, not an insulator. But properly insulating electrospun 

sheaths should be compatible with their method. Their electrospun fibers were clad with 

an ITO outer coating to make an M-EL-M nanocoax with a molten core. Figure 4.6-b) 

shows that room temperature liquid metal can be injected into a flexible PDMS mold. For 

room temperature eutectics, this means a perfectly conforming metallic pattern even during 

flexure. The macroscopic device pictured was made specifically to demonstrate its 

flexibility, however this technique works equally well for microscopic PDMS molds. One 

could conceive of rendering a coaxial MIM structure by starting with an injected PDMS 

mold. Figure 4.6-c) shows that liquid metal can be injected into pulled micropipettes [149]. 
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Even though the eutectic alloy was formulated to wet a clean glass surface, the metal only 

injected so far into the mold, stopping this case 8.2 µm short of the tip. Increasing the 

hydrostatic pressure during injection can further advance the metal, but only up to the 

mechanical yield of the capillary (30 bar). From [157], and as shown by a pair gray circles 

on the right-hand side of Figure 4.6-d), one promising approach is to use a through-hole 

multi-mode (THMM) optical fiber as the mold. The 50 µm holes on the left and right were 

injected while the center 62 µm hole was left empty for other purposes. While the hole 

sizes for the multi-mode fiber used in this case were larger than 10 µm, one can purchase 

single-mode holey fibers off-the-shelf with hole sizes down to ~ 1 µm. It would be 

interesting to see if the smaller diameter holey fibers could be injected, or perhaps 

electrochemically filled-in with Ag. 
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Figure 4.6: Molding µm-scale coaxial structures with molten metal. Literature 

review of fabrication using low-melting point metals. (a) From [150], the molten 

metal was extruded during electrospinning. (b) From [155], room temperature 

liquid metal injected into a PDMS mold. (c) From [149], a glass capillary is pulled 

into a micropipette/nozzle shape then molten metal is injected. (d) From [157], a 

polarization maintaining THMM fiber is used as the injection mold. 

Materials are more conventionally added by thin film deposition and growth, where 

the sequential coating of metallic, insulating, and then metallic thin films results in a 

coaxial MIM structure. Next, I will discuss coaxial structures resulting from coating 

convex templates (e.g. rods and pillars), such that the thin films are added only to the 

external parts of the structure. This basic approach has been comprehensively reviewed 

before [158]. In that review, a broad range of application areas were discussed. In Figure 

4.7 recall some of those fabrication schemes which are most pertinent to making MIM 

nanocoaxes for photonics applications. The templates in these approaches have been 

referred to as “scaffolds”, however I find this term unsatisfactory since a scaffold is a 

temporary support structure. I believe that “frame” is a more appropriate term since, in all 

cases discussed here, the template is incorporated permanently into the final structure. 
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Although it is worth nothing that the added materials often contribute more to the final 

structure’s mechanical integrity than the buried frame within. In many cases, the structural 

role of the frame is simply to seed the topology, rather than for mechanical support. 

The basic scheme for this approach is illustrated in Figure 4.7-a). One can see that 

after the 2nd metal coating the coaxial structure is closed on the top. There are several ways 

to “open up” the structure [159], shown in Figure 4.7-b). Going vertically downward 

through the 5 rows in Figure 4.7-b), where each row pairs an illustrative schematic on the 

left with a corresponding scanning electron microscope (SEM) image on the right. The 

arrangement illustrated in Figure 4.7-a) is equivalent to the 3rd row of Figure 4.7-b). Going 

from the 3rd to the 4th row, one can see that the coaxial pillars are first potted in an 

encapsulant (such as the epoxy-based resist SU-8), as shown in gray, and then polished. If 

controlled correctly, the polishing action abrades away only the uppermost section of the 

coaxial pillar. Going from the 4th to the 5th row, one can see how the structure can be further 

modified, “hollowing out” the insulating annulus by selective etch, for example. Figure 

4.7-e) shows a focused ion beam (FIB) cross-sectional SEM [160] from the fabrication 

scheme shown in Figure 4.7-b). 

One major strength of this approach is that it requires only a single lithography step, 

in order to define the frame. Another major strength is that the transverse dimensions of 

the structure are controlled by the coating thicknesses. These thicknesses are very easily 

controlled on the deeply sub-µm or even single-nm scales. As will be discussed later in this 

Chapter, there are specialized coating technologies which indeed wield the ultimate 

precision control over a thickness, with digital atomic resolution (i.e. single-Å scale). In 

any case, film thickness precision is generally finer than even the most precise lithographic 
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techniques. This is demonstrated especially well in [161], as shown in Figure 4.7-c). In that 

work, very deeply sub-diffraction-limited confinement was demonstrated (see Equations 

(2.39) and (2.40)), where light with 1 μmλ > was transmitted through insulator 

thicknesses less than 9 nm. 

For the most part, coaxes made in the manner shown in Figure 4.7 can be made 

only at modest overall aspect ratio ( AR ) defined as 

lengthAR
diameter Ø

L
= = . (4.27) 

This is because of limitations in lithographically defining a high-AR pillar which protrudes 

out of the plane. Another approach [9], one of the seminal works within the field, and as 

show in Figure 4.7-d), is to grow a high-AR, vertically-oriented multi-walled carbon 

nanotube (CNT) for use as a pillar/frame/inner metal all at once. These structures exceed 

AR > 20. While this bottom-up growth perhaps does not truly belong in this Section 4.2.1.1, 

one should note that it is well-established to lithographically pre-pattern the substrate 

before the growth [162], so that it occurs only on certain seed sites. 
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Figure 4.7: Fabricating out-of-plane, µm-scale coaxes. (a) From [158], metal and 

insulator layers can be coated onto a convex template, such as a rod or a pillar.(b) 

From [159], each of the 5 rows show a fabrication step. (c) From [161], very fine 

control over the transverse dimensions can be achieved. (d) From [9], the frame can 

be grown in a bottom-up sense to render a very high-AR pillar. (e) From [160], a 

FIB-cross section from fabrication scheme shown in (b). 

Many prior experiments involving lithographically-defined MIM coaxes [163], [164] 

have generally focused on annular apertures perforating a thin film. While this is perhaps 

the simplest top-down coaxial fabrication scheme, the resulting coaxial MIM structure is 
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nearly a 2D object with AR ~ 1, often much less. These sub-µm apertures can readily be 

patterned by FIB-milling (which is the most typically encountered approach) [165], by 

electron beam lithography (EBL) [166], and by nanosphere lithography [167].  They can 

even be patterned by photolithography [168], that is even on those sub-diffraction-limited 

scales, with precise undercutting. 

The externally clad coaxial structures just mentioned are in the vertical orientation 

with respect to the substrate. It is also possible to make microcoaxes which “lie flat” in the 

horizontal orientation, parallel to the surface of the planar substrate. This orientation grants 

access to much higher AR , and allows for connection and routing between neighboring 

integrated devices. However, this means the MIM layers cannot be prepared in the same 

sequential coating procedure as before. All previously reported fabrications of horizontally 

oriented, µm-scale coaxes have required multiple (aligned) layers of lithographic 

patterning. For example a monolithic coax (i.e. fabricated on a single substrate) can be 

made [169] with a series of 3 layers, as shown in Figure 4.8-a), where the height of the 

structure was divided into three parts: one containing the center conductor and one each 

above and below. The structure was fabricated and experimentally characterized, however 

none of the available digitized micrographs show it in any detail. This scheme necessarily 

has a rectangular (not circular) geometry. It is possible to make circular, horizontally 

oriented, split-coaxial structures by using two substrates. The authors of [170] imprint 

patterned the two halves of the split-coax and then bonded the aligned halves together into 

an assembly. Note that, even after bonding, the outer conductor is still split into two halves 

by the bonding membrane, which also suspends the center conductor. Schematics of these 

two approaches are shown in Figure 4.8. 
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Figure 4.8: In-plane µm-scale coaxes requiring multi-layer patterning. (a) From 

[169], the complete structure is fabricated by  3 layers of aligned 2D exposures. (b) 

From [170], the authors fabricated the coaxial structure in two halves, bonding them 

together. 

4.2.1.2 Bottom-up approaches 

Self-assembled geometries are typically not arbitrary, but rather from groups of naturally 

emergent morphologies [171]. Coaxial structures are a commonly encountered self-

assembled morphology. Furthermore, self-assembled coaxial structures are often both 

composed of high-quality materials (e.g. single crystals) and are truly nanoscopic with 

deeply sub-µm dimensions. The main drawback of self-assembled geometries is there is 

little control over the patterning and placement of these structures onto a substrate, and 

thus they cannot be as easily integrated into devices as with top-down structures, which 

affords nearly arbitrary patterning. 

 Single crystal silver nanowires (NW) have long been known [172] to exhibit strong 

nanoconfinement, mediated by guided surface plasmons guided along their axis. These Ag 

NW are grown in solution then cast onto a substrate for photonics experiments. The various 

synthesis methods [173] and photonics applications [174] have been reviewed before, and 
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Figure 4.9-a) shows a scheme which can grow highly 1D crystals. After seeding, the growth 

is terminated at the 100 facets by a sol-gel coating and self-limiting capping polymer film, 

leaving crystal growth to occur by reducing Ag+ ions from solution onto at the exposed 

111 facets [175]. These nanowires, while technically of pentagonal cross-section, can be 

modelled theoretically as axially symmetric plasmonic waveguides [176]. Shown in Figure 

4.9-b) is an optical path in which the plasmon spirals around the “circumference” of the 

nanowire. This would be a guided mode with non-zero angular order, 0l > , see Equation 

(2.05). The nanowires can be processed further in solution before casting. For example, 

one can sol-gel coat a layer of SiO2 [177], as shown in Figure 4.9-c) which are transmission 

electron microscope (TEM) images of this process at different points in time. The sol-gel 

growth rate is 
2SiO ~ 1 nm minR . It is worth future investigation to see if the Ag/SiO2 NW 

suspended in solution could then be coated electrolessly [178] with an outer metal layer to 

make, all in solution, a true MIM nanocoaxial waveguide before casting onto a substrate. 

A very similar scheme was demonstrated recently [179], where using the long-established 

Tollen’s test Ag was deposited onto LaMnO3 nanorods. 

 Ag NW, being made of single crystal silver and having atomically flat facets, are 

in some senses the optimal optical plasmonic material. As such, there is a vast body of 

work investigating the plasmonic properties of these structures [180], with only a handful 

of pertinent items retold here. First, I will discuss how the SPP can be excited. Show in 

Figure 4.9-d) and Figure 4.9-e) are two of the most common excitation schemes. In Figure 

4.9-d), the authors of [181] illuminated one end of the NW with a tightly focused laser 

beam, they also showed that there is a correlation between in the incident and emitted 

polarizations. As it happens, this correlation is due to the spiraled nature of the guided 
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modes, as shown in Figure 4.9-b). The SPP wave fronts, shown as green lines in that figure, 

are polarized TM, and the angular order l  of the guided mode is tied to the input 

polarization direction, α  in Figure 4.9-d). In Figure 4.9-e), the authors of [182] used 

another popular excitation scheme, where a tapered optical fiber is mechanically positioned 

adjacent to the NW. 

While the applications are myriad and the body of work immense, I will comment 

on one Ag NW based plasmonics application which, given the context of recent work 

conducted at Boston College, seems appropriate. Some years ago, shortly after one of the 

seminal works in the nanocoax field [9], it was conceived [16], [183] to make a super-

resolving microscope which can extract near-field information and broadcast it into the far-

field using a magnifying array of nanoscopic waveguides as an intermediary. Soon after, it 

was proposed that capacitively coupled sections of Ag NW could do the trick [184], and 

later on finite element simulation was carried out to better understand how Ag NWs could 

be arranged for this purpose [185]. Recently, the authors of [186], demonstrated a proof of 

concept experiment using two obliquely-oriented Ag NW which were FIB-milled into 

capacitively coupled chains. This microscope was originally named the “Nanocoaxial 

Converging Optical Microscope” (NCOM), where, according to the original proposal, 

nanocoaxes would be used in place of Ag NW, in order to eliminate crosstalk. 
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Figure 4.9: Ag nanowires as 1D plasmonic waveguides. (a) From [175], one of the 

synthesis methods for Ag NWs. (b) From [176], SPPs can spiral around the NW, 

traveling along both the circumference and the length simultaneously. (c) Adapted 

from [177], Ag NW can be coated with SiO2 in solution. (d) From [181], and (e) 

from [182], two popular excitation methods for coupling light into guided NW 

SPPs. 

4.2.2 Horizontal nanocoax fabrication schemes 

One major limitation to the multi-layered schemes presented in Figure 4.8 is that 

the transverse dimensions of the coaxial structure are determined by the alignment 

tolerance. This tolerance is typically larger than ultimate lithographic resolution, regardless 

of how that lithography is performed. In some cases, such as mechanically registered 

photo- and imprint-mask-aligners, it can be much larger. One way to mitigate this problem 

is by adding the insulator cladding as a growth process instead of a lift-off or etch process, 
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thereby eliminating a patterning (and therefore alignment) step. In the next three sections 

I will describe some fabrication schemes I have developed to this effect. 

4.2.2.1 By metal oxidation 

One pathway for the insulator growth is to deposit the first metal and then oxidize it, 

provided that the resulting oxidized-metal compound is a good optical insulator and that a 

well-defined boundary between metal and oxidized-metal can be established. This is shown 

schematically in panels a-c) of Figure 4.10. In Figure 4.10-a), the only required layer of 

lithography is used to pattern a nanostripline by liftoff, where both the insulating and metal 

lines are deposited through the same mask. This metal, being reactive, can be oxidized 

selectively against the chemically inert ground plane, as drawn in Figure 4.10-b). Finally, 

as shown in Figure 4.10-c), the whole structure is “buried” with second deposition of metal, 

resulting in an in-plane coaxial MIM structure. Note that the second metal layer, while 

drawn in Figure 4.10-c) with finite lateral extent for clarity, need not be patterned. 

Next, I will remark on a few material prospective combinations considering the 

above criteria. While Ag is the “ideal” plasmonic metal, it is noteworthy that the only 

oxidized-Ag compound which is easily synthesized near room temperature and which has 

a sufficiently high bandgap for many optical applications, ~ 1 eVgE , is 2Ag S . However, 

2Ag S  does not fit the above requirements; 2Ag S  films grown on Ag are neither continuous 

nor adherent, with the film crumbling off as a powdery tarnish [187]. Although recent work 

suggests that a high-quality 2Ag S Ag  interface can be established with pulsed 

electrochemistry [188]. There are perhaps several alternative “plasmonically-active” 

metals [189] which could fit the above criteria. Future work in this area should resolve 

which metal and which oxidizer (and which oxidizing method) could grow the best quality 
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metal/insulator interfaces. One approach is to expose a metal film to a source of oxygen 

(the oxidizer) in a thermal chamber (the oxidizing method). Most metals of interest can be 

oxidized at temperatures less than 600 °C. However, one should note that most thin metal 

films, even if exposed to an inert environment such as Ar, generally do not survive 

temperatures greater than ca. 300 °C. In many cases, the maximum survivable temperature 

can be much lower. If exposed to high temperatures, then in order to relieve any built-in 

stresses and to assume a lower energy state, these films often curdle into disjoint islands, 

losing their thin film morphology. One could achieve the same oxidation reaction at a lower 

temperature by using a more electronegative (or penetrative) source of oxygen than 

molecular 2O . For example, one could expose the film to steam, monoatomic O, or 3O  

(ozone) [190]. All of these reactants (except for steam), as well as their ionized 

counterparts, can be generated in a plasma chamber [191]. There a few promising 

metal/oxide combinations which may satisfy the above criteria, including 2Ti TiO  [192], 

2Cu Cu O  [193], Cu CuO  [194], and 2 3Al Al O [195]. 

Al has a useful window of low optical loss in the blue and UV, and is the base 

material for a broad range of plasmonics applications [196]. Furthermore, Al can be made 

to establish an 2 3Al Al O  interface by electrochemical anodization, an extensively studied 

and straightforward approach [197]. I employed this method for the structures presented in 

panels d-i) of Figure 4.10.  
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Figure 4.10: Oxidized metal nanocoax fabrication. (a-c) Illustrative schematics for 

a general metal/oxide process. (d-f) Photographs of the fabricated, anodized 

structure. (h) A TEM micrograph from a cross section lifted-out by FIB. (i) An 

SEM-SEI micrograph of the complete structure. 

First, shown in Figure 4.10-d) the striplines were patterned EBL. A sodalime glass 

substrate with Ti/Au = 10/100 nm was left for 2 min on a 100 °C hotplate and then 

immediately (before cooling) spin-coated with a polymethylmethacrylate (PMMA, in 

anisole) bilayer resist. The 750/50 nm PMMA bilayer was made of molecular weight 
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495/950 kDa. The resist films were soft-baked (after each spin step) on a 180 °C hotplate 

for 90 s. A 30 kV, 75 pA electron beam exposed patterns with varying electron doses near 

2300 μC cm . The images were developed with 60 s of stirred immersion in a solution of 

methyl isobutyl ketone and isopropanol (MIBK:IPA::1:3). To terminate the development, 

the samples were immediately swirled for 3 s in pure IPA, then immediately immersed in 

and subsequently rinsed by deionized water (DI). The developed samples were blown dry 

with a stream of  2N . Immediately before loading into the deposition chamber, the 

patterned samples were cleaned with a 30 s exposure to 2O -based  plasma (100 SCCM 2O

flow at 270 mTorr and with 550 W of 2.45 GHz power). This “ 2O  descum” plasma process 

is used to etch roughly 5 nm of hydrocarbon and promotes adhesion by removing residuals 

and exposing a clean surface. The deposition was carried out by electron beam evaporation 

of 2SiO Al 50 150  nm= , and liftoff was performed by immersing the samples in a 

vigorously stirred  80 °C solution of Microchem’s MicropositTM remover 1165 (primarily 

consisting of 1-methyl-2-pyrrolidinone, similar in action to N-methyl-2-pyrrolidone, 

NMP) for 10 minutes. The samples were rinsed with acetone, DI, then IPA and again blown 

dry with 2N . Finally, the samples were one more time 2O  descummed. 

Figure 4.10-b) and Figure 4.11-a) show that the oxide was grown on the Al surface 

by anodization. Nanostriplines of varying length and width were fabricated, with 

300 nmw =  and 5-30 μmL = . The nanostriplines were arranged in a “finger” type pattern, 

where the striplines are oriented in a N-S direction and connected to an “arm” electrode 

which is oriented in a SW-NE direction. The electrode traces-out to a macroscopic contact 

pad where I bonded to AWG36 Cu wire using Ag epoxy (DuPont 6838), the wire and Ag-
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epoxy bond were then potted in a dollop of waterproof, non-conductive epoxy for both 

electrical isolation and mechanical strain-relief. The sample was immersed in a 10 mM 

citric acid electrolyte, and the Al was biased with 30 V DC against the 300-series stainless 

steel (SS) counter electrode. Under electrochemical conditions which produce a dense, 

pore-free oxide, the anodization process is self-limiting with the terminal film thickness 

depending on the DC voltage bias. Consistent with [197], I find the proportion to be 

1.6 nm V . Figure 4.11-b) shows a current trace (blue circles) during the anodization. The 

Ag-epoxy also makes incidental electrical contact to the Au ground plane. As a control, I 

also show a current trace from an equal area unpatterned Au ground plane without any Al 

(red squares). Their difference, for times 2 min,t <  is due to the oxidation of Al. 

 
Figure 4.11: Anodized coax, electrochemical setup. (a) Schematic of the 

electrochemical cell and (b) a current trace during anodization. 

 Figure 4.10-c) and Figure 4.10-f) show that after anodizing, the second metal layer 

was deposited (250 nm Au in this case), encapsulating the insulator-clad nanostriplines to 

make a full, in-plane MIM nanocoaxes. For the sample shown in Figure 4.10, the second 

metal layer was patterned by lift-off with an aligned, second layer of EBL (registered 
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electronically against fiducials in the first layer, not shown). Going from Figure 4.10-e) to 

Figure 4.10-f), one can clearly see outline of the second metal layer as an isosceles 

trapezoid. While the second layer need not be patterned in order to achieve the desired 

coaxial geometry, it was patterned in this case to allow optical access on both ends, with 

stubs on the S-end and a stub-to-arm T-shape on the N-end. Figure 4.10-h) shows a 

transmission electron microscope (TEM) image of the complete structure, recorded from a 

cross-section excavated by FIB-milling lift-out. Figure 4.10-i) shows a perspective-view 

SEM of the complete structure. 

In this section, I have described a fabrication scheme based on selective metal 

oxidation. There is a similarly-spirited form of microfabrication wherein one achieves 

selective electroless metal deposition by appropriately patterning surfaces with a Pt or Pd 

catalyst [198]. This same underlying chemistry is used to plate through holes in printed 

circuit boards (PCB) [199]. It would be interesting to see if, along the vein of this section 

and in the spirit of selective metallization, one could selectively grow an insulator on a 

metal surface, with appropriate surface functionalization.  

4.2.2.2 Cast from a solution of Ag/SiO2 nanowires 

Section 4.2.1.2 (see especially Figure 4.9), describes how one can make a coaxial geometry 

by sol-gel coating a layer of 2SiO  onto single crystal Ag NW. 2Ag SiO  NW were 

purchased [200] as a concentrated suspension in DI. The solution was diluted in IPA and 

cast onto a sodalime glass substrate with a Ti/Ag = 10/200 nm ground plane, as illustrated 

in Figure 4.12-a). Figure 4.12-b) shows that 50 nm of Pt was deposited by ALD, thus totally 

enclosing the NW to make a full MIM nanocoaxial structure. Figure 4.12-c) shows an 

optical micrograph (darkfield contrast) of the NW cast from the IPA solution not onto a 
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TEM mesh with a holey carbon film [201], with Figure 4.12-d) and Figure 4.12-e) showing 

TEM images of suspended 2Ag SiO  NW before and after the deposition, respectively. 

The dark and bright bands in Figure 4.12-e) clearly show the individual MIM layers (with 

varying degrees of electron transparency). Figure 4.12-f) shows a plot of the measured NW 

length vs. “diameter” Ø  for ca. 20 2Ag SiO  NW’s before the Pt deposition (blue 

squares) and for 5  2Ag SiO Pt  NW’s after (green triangles). More details about the 

conformal Pt deposition are given in Section 4.2.2.3. The term “diameter” is lacking, since 

single crystal Ag NW’s are known to have a pentagonal-faceted, not round, cross-section 

[202], so “diameter” really means “diameter of the circumscribed circle”. Also drawn are 

a constant AR = 100 guide for the eye (purple line, Equation (4.27)), and a red ellipse to 

represent the specified dimensional range of the commercially purchased NW’s.  
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Figure 4.12: Nanocoaxial waveguides from single crystal Ag NWs. (a-b) 

Fabrication schematics. (c) Optical darkfield micrograph of NW’s on a TEM grid. 

(d-e) TEM images before and after Pt deposition, respectively. (f) Measured NW 

dimensions. (h-i) FIB- milled nanocoax, with magnified views of the terminations. 
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For making useful optical devices from these in-plane nanocoaxes, one can optically 

“open up” the structure by FIB-milling. Figure 4.12-g) shows a 2Ag SiO Pt  NW on a 

sodalime glass substrate which has been FIB-milled on the two ends. On the left-hand end, 

outlined in blue and shown in Figure 4.12-h) is a “window” type of termination, where the 

milling depth reached into the glass substrate, through the Ag ground plane. This allows 

for backside illumination through the transparent substrate. On the right-hand end, outlined 

in red and shown in Figure 4.12-i) is a “stub” type of termination, where the milling was 

terminated after polishing away the Pt layer, exposing nominally a 2Ag SiO  NW with 

only traces of the Pt left behind. The milling must be monitored in real time using either a 

secondary electron image (SEI) or a back-scattered electron composition (BEC) image. If 

one were to repeat this fabrication scheme, I would recommend a several-fold thicker 

ground plane, perhaps most easily obtained by electroplating. 

4.2.2.3 By atomic layer deposition 

The previous section considered conformal insulator growth onto the surface of a metal, 

and as mentioned above it is also possible, with certain chemistries, to conformally deposit 

metals. One way, already discussed in Section 4.2.1 is by electroless deposition from 

solution [178]. Another, which is leveraged extensively in this thesis, is by chemical vapor 

deposition (CVD), where the sample is exposed in a low-pressure chamber to a volatile 

precursor which chemically reacts on the sample surface and leaves behind the desired 

film. One specialized class of CVD is atomic layer deposition (ALD). What distinguishes 

ALD from other forms of CVD, is that ALD is a self-limiting, monolayer process by nature. 

ALD is performed in sequential cycles, where in each cycle another monolayer of material 
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is added. So, ALD being a digital monolayer process, one can control the deposited film 

thicknesses with bona fide sub-nm precision. Combined with its conformality, and with an 

appropriate geometry, one can apply this thickness control onto the transverse dimensions 

of their desired structure. This fabrication approach has been called atomic layer 

lithography [203]. Indeed, others have achieved extreme optical confinement in this way, 

squeezing light into less than 5 nm wide gaps [204]. Figure 4.13 shows ALD-grown, 

horizontal nanocoaxes fabricated by depositing sequential Pt  and 2 3Al O  layers onto a 

3 4Si N  nanobeam frame; the beam serves the same purpose as the pillars in Figure 4.7. 

 Figure 4.13-a) through -d) show the major steps of the fabrication process. First, 

(100)-oriented single-side polished (SSP) Si wafers with a 100 nm thick plasma-enhanced 

CVD (PECVD) layer of 3 4Si N  were purchased, coated with 40 nm Cr by electron beam 

deposition, then cut into 215 15 mm×  die. The pattern is imaged into a 100 nm 950 kDa 

PMMA resist, following a very similar EBL recipe to what was described in Section 

4.2.2.1. The patterned PMMA, pictured in Figure 4.13-e), is used as a wet-etch mask, 

transferring the image into the Cr layer by room temperature immersion in a commercial 

Cr etchant based on ceric ammonium nitrate, ( ) ( )4 32 6NH Ce NO . The PMMA was 

exposed and developed under conditions where it acts as a positive resist, leaving behind 

the dark lines in areas not exposed. The line widths were varied from 100 to 300 nm. So, 

the targeted image features sizes in the Cr film were roughly AR 40 100 ~ 1= . Whenever 

transferring an image by isotropic etch into a layer whose thickness is comparable with the 

feature size, accurate etch control / timing measures must be in place, as undercutting will 
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eventually erase the image completely. Figure 4.13-b) shows schematically that I 

transferred these lines into the Cr layer then stripped the resist. 

 
Figure 4.13: Horizontal 2 3Pt Al O  nanocoaxes on suspended 3 4Si N  beams. (a-d) 

Fabrication schematics to make suspended beams, with (e) showing the PMMA 

etch mask, and (f) and (g) showing the suspended structure. (h-k) Fabrication 

schematics and corresponding optical micrographs during sequential ALD steps. 

(l) FIB cross-section of the complete structure. Scale bars: (e-f) 5 (g) 2 (h-k) 5 and 

(l) 2 µm. Note the compound scale in e), the same proportion applies to all SEM 

images, taken at perspective-tilts of 35°.  
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 The function of the Cr layer was to hard-mask a reactive ion etch (RIE), shown in 

Figure 4.13-c), where the pattern was transferred into the 3 4Si N  using a 3 2CHF O+  

based, inductively-coupled plasma. The chamber pressure was fixed at 3 mTorr with flow 

rates of 45 and 5 SCCM, respectively for 3CHF  and 2O . The plasma is sustained by 500 

W of RF power at 13.56 MHz, with the substrate biased by ca. 70 V DC, and cooled on 

the backside using flowing He at 2 Torr and 5 SCCM (in a hermetically separated space 

from the vacuum chamber). The substrate bias is what gives the etch its directionality. I 

measured an etch rate of 100 nm min , and stopped the etch after 120 nm of 3 4Si N  would 

have been consumed. ways. 

With the image transferred into the 3 4Si N , the beams were suspended by 

anisotropically etching the (100)-oriented Si substrate in a stirred KOH solution 

( )30 : 70 :: KOH : DI m m , heated to 80 °C and, as best as could be done with a thermally-

sunk watch-glass to cover the crystallization dish, reflux-condensed. The pyramid which 

is hollowed out under the membrane extended to a ca. 2100 100 μm×  area, undercutting 

the EBL fiducials (not shown) which were patterned in case the need arose to register a 2nd 

layer of EBL. The suspended 3 4Si N  beams, Figure 4.13-f) and -g), are therefore features 

within a larger suspended 3 4Si N  membrane. These membranes, with 

3AR 0.1 100 ~ 10−= , were surprisingly robust, surviving direct blasts from an 2N  gun 

pressurized to 60 PSIG, and held only a few mm away. This KOH recipe etched any 

exposed (100) Si facets at roughly 1 μm min.  



121 

Figure 4.13-h) through -k) show that Pt  and 2 3Al O  layers were coated 

sequentially by thermal ALD using commercially available reactors [205], [206], with the 

four panels showing four pairs of schematics and optical micrographs (brightfield contrast 

mode, imaging exactly the same set of nanobeams) above and below, respectively.  This 

MIM by 2 3Pt Al O  ALD will be used again in this thesis, so here I will give some detail 

about those steps. First, a single cycle of Pt deposition, executed at 250 °C, is accomplished 

in 4 steps: 1.) Evacuate the chamber and ancillary plumbing to the roughing base pressure, 

ca. 10 mTorr. 2.) Introduce, under flow of 2N ,  a volatile/gaseous Pt-based precursor to the 

chamber by actuating a valve at the Pt source. 3.) Introduce an oxidizer, such as 2O , also 

within an 2N  carrier gas by actuating open and closed a valve connected to a high-purity 

2O  cylinder. 4.) Purge the chamber with 2N . The Pt source is a sealed canister with 

liquid trimethyl(methylcyclopentadienyl)platinum(IV), ( )3 4 3 3 3C H CH Pt CH  (PtMe), 

heated to 65 °C in order to produce ca. 4 Torr of vapor pressure. The plumbing is heated 

to 115 °C to eliminate the possibility of condensation, which, because PtMe is pyrophoric, 

could result in a fire. The Pt-valve is opened for a 250 ms burst, and the gaseous PtMe is 

allowed to dwell/soak in the sample chamber for some exposure time. The pressure and 

exposure time combine to set the dose, with a sufficiently high dose required for monolayer 

formation. We find that a 250 ms burst is useful for up to 5 s of dwell time. So, for higher 

doses than what can be provided by a single burst, a series of consecutive burst/dwell steps 

can be used. The dose should be increased until the deposition rate stabilizes, and then 

increased no further in order to conserve the precursor. Our stable Pt deposition rate was 
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Pt ~ 0.7Å cycleR . Note that ALD valves must actuate with accurate timing [207]. For 

example, the 2O -valve  is opened for only 25 ms. The chamber is left to oxidize for 1 

second before being purged and pumped. During oxidation, the organic ligands are burnt 

off the 4Pt +  cation. The monolayer of cations is reduced to form an elemental film, which 

for the ca. 50-75 nm thicknesses used in this thesis, is metallic. Each cycle takes 2-5 min 

depending on the parameters, so the deposition rate is on the order of Pt ~ 1nm hrR . 

2 3Al O  is also grown by thermal ALD, with essentially the same four steps as Pt, 

except for the following differences: 1.) The deposition temperature is not as high. We 

have successfully deposited 2 3Al O  films as low as 115 °C. But the standard recipe we 

follow is at 200 °C. 2.) The Al-based precursor is trimethylaluminum, ( )2 3 6Al CH   (TMA), 

heated to 110 °C and reaches a much higher vapor pressure (~100’s Torr) at that 

temperature than PtMe. 3.) The oxidizer is 2H O , sourced from a 100 °C canister of DI. 

4.) The pump/purge steps are basically the same. With a much higher vapor pressure, a 

much shorter exposure burst, 15 ms, is required to establish a useful dose of TMA than in 

PtMe. I measure a stable 2 3Al O  deposition rate of 
2 3Al O ~ 0.11 Å cycleR . With each 

cycle taking 1-3 min, again depending on the parameters, this means 
2 3Al OR  is also of 

order 1 nm hr .  

Figure 4.14 shows the measured optical constants of ALD Pt and 2 3Al O . The 

measurements were made with a variable-angle spectroscopic ellipsometer (VASE) [208]. 

The VASE data were fit to extract the optical constants into the form of Equation (3.16). 



123 

Figure 4.14-a) shows the measured optical constants for Pt, with n  plotted by red circles 

and κ  by blue triangles. Also plotted are two curves as a reference from the literature: κ  

in a broken blue line and n  in a solid red line. Note that these reference curves are fits to a 

4-oscillator Drude-Lorentz model [131], based on measurements from a bulk sample [209]. 

Figure 4.14-b) shows the measured optical constants for 2 3Al O . Not included on this scale 

are the κ , which are generally all lower than 100 PPM and can be safely neglected. The 

real-valued n  are fit to a Cauchy curve 

2 4
B Cn A
λ λ

= + + , (4.28) 

where  1.6176A = , 3 26.4 10  μmB −= × , and 5 41.3 10  μmC −= × . For comparison, the 

(ordinary) refractive index of sapphire (single-crystal 2 3-Al Oα ), taken from [210], is 

included in Figure 4.14-b). 

 

Figure 4.14: Optical constants of ALD Pt and 2 3Al O .(a) Pt and (b) 2 3Al O  

refractive indices, comparing measured results from grown films against literature. 

ALD alumina films are amorphous [211] and therefore optically isotropic. The temperature 

dependence of ALD alumina’s optical constants [212] (i.e. the thermo-optic response) can 

be used to make integrated thermal phase shifters [213]. 
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I used a 4 point probe [214] to measure the room temperature DC resistivity of the 

ALD Pt film, DC 16.6 0.5 μΩ cmρ ± ⋅= , which compares well with the bulk value, 

bulk 10.5 μΩ cmρ ⋅= , and with Pt films grown by plasma-enhanced ALD [215]. By 

clipping 4 leads onto an unpatterned thin film and dunking into liquid 2N , I find a 77 K 

residual resistance ratio (RRR) of only 3.4. For comparison, sputtered thin Pt films have a 

77 K RRR closer to 5 [216]. This indicates the temperature-independent scattering in the 

ALD Pt film is quite high. It is also commensurate with the higher-than-bulk κ  values 

measured by VASE in Figure 4.14-a). 

Next, I describe some fabrication steps to gain optical access to the horizontal 

2 3Pt Al O  nanocoaxes. In Section 4.2.2.2, where Ag NW’s were Pt-coated on a silvered 

glass substrate, optical access was gained by FIB-milling windows into the ends. However, 

that same approach could not work for theses suspended-nanobeams, slicing the structure 

all the way through would also mechanically release it. As shown in Figure 4.15-b), I fixed 

them with a contact adhesive [217], bonding the 2 3Pt Al O -coated  Si substrate to a 

sodalime glass superstrate. The 525 µm thick Si substrate was removed with an isotropic 

2XeF  etch [218]. The etch exposes the sample to 4 Torr of 2XeF . The 2XeF  chemically 

attacks the Si, releasing 4SiF , which is pumped away under 2N  flow. The etch cycle is 

complete by evacuating the chamber to a 10 mTorr base pressure before exposing to the 

next round of 2XeF . Each cycle, taking ca. 70 s, etches 300 nm of Si, although that rate is 

determined by how much Si surface area is exposed in the chamber (i.e. the “loading” of 

the etch), and can vary quite a bit. At the average etch rate of 15 μm hr , the through wafer 

etch takes ca. 35 hr. 
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Figure 4.15-c) shows that after the 2XeF , the nanocoaxes are shielded inside of a 

hollow “tent” created by 2 3Pt Al O  deposition onto the facets of the KOH pit. Most of 

these pits burst during the pressure cycles of the 2XeF  etch. Probably during the first 

evacuation. But even the bursted tents still obscured the nanocoaxes, obstructing optical 

access. After the etch, I blasted the samples with 60 PSIG 2N , with the nozzle held only a 

few mm from the tents. The blasting opened many of the tents, with a typical result shown 

in Figure 4.15-d). I found that immersing the samples in an ultrasonic DI bath helped to 

disintegrate much of the remaining tent, shown in Figure 4.15-e) through -g). Finally, 

Figure 4.15-h) shows a grating structure milled into the horizontal nanocoax. 
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Figure 4.15: Adhesive bonding and optical access to the horizontal ALD nanocoax. 

(a-c) Fabrication schematics. (d-g) ALD-coating the KOH pits results in 2 3Pt Al O  

“tents” which obscure the coaxes after the through-wafer 2XeF  etch. The tents 

were disintegrated by sonication. (h) Gratings were FIB-milled. 

4.2.3 Vertical nanocoax fabrication 

Optical access to horizontally oriented nanocoaxes must be done by patterning openings 

into the ends (or to preemptively prevent their closure). But vertically oriented nanocoaxes, 

as in Figure 4.7, can be opened without needing to pattern a window, the top sides of those 

coaxes were opened abrasively. That facile approach (i.e. no patterning) requires only a 
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controlled abrasion rate. There is one thing that all prior vertically oriented nanocoaxes 

have in common: the coatings were applied to the external parts of the frame. Therefore, 

as the coaxial layers were coated, the diameter increased. But the conformal ALD coating 

discussed in Section 4.2.2.3, suggests an alternative topology for the frame. Instead of 

coating onto the outside of a pillar, why not coat the inside of a hole? In that case, as the 

coaxial layers are coated, the diameter decreases. This manner of interior-surface-coating 

is critically enabled by ALD. Figure 4.16 shows a summary sketch of this fabrication 

scheme, which is covered briefly in [219]. I made coaxial thin films by filling in a template 

of high aspect ratio nanoholes. Sections 4.2.3.1 through 4.2.3.4 cover each of these 

fabrication process steps in closer detail. Figure 4.16-a) through -h) show, in broad strokes, 

snapshots of different steps of the fabrication. The five hexagonal panels in Figure 4.16-i) 

show the fabricated MIM nanocoaxes as in panel -c), still embedded in their Si scaffold. 

Figure 4.16-j) shows a FIB cross-sectional image of the complete structure. 
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Figure 4.16: Fabrication of vertical nanocoaxes by ALD: overview. Taken with 

permission of the authors of [219]. (a-h) Are fabrication schematics, (i) shows the 

MIM nanocoaxes at step -c), and (j) shows a FIB cross-sectional image of the 

complete structure, backside thinned to a final thickness of 0.8 µm. 

4.2.3.1 Nanohole array patterning by Bosch deep reactive ion etching 

The nanohole illustrated in Figure 4.16-a), with diameter holeØ ~ 0.5 μm , is generated by 

EBL. The samples I fabricated are not individual nanoholes, as drawn schematically for 

simplicity, but nanohole arrays with pitch p . Figure 4.16-a) conveys that the nanohole 

array pattern is transferred into a Si substrate with a Bosch deep reactive ion etch (DRIE) 

[220]. The etched arrays have three parameters: holeØ , p , and etch depth L . But there 

are a series of prerequisite fabrication steps not shown in Figure 4.16 before the Si-DRIE 

can be performed. Of key concern is how to mask the DRIE. The ideal mask would store 

an image of the pattern with high fidelity and would also have high selectivity against Si 

during the DRIE. While the most faithful way, in general, to transfer high fidelity images 

of a pattern is to use the patterned resist itself as the mask for the process, there are 
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problems with using the PMMA EBL resist in this case. For starters, since I am interested 

in holeØ ~ 0.5 μm , the resist really shouldn’t be much thicker than that. One could not, 

for example, use EBL to pattern holeØ ~ 0.5 μm  into a 2 µm thick layer of PMMA. At 

least not easily. In my initial assessment, I found the selectivity of PMMA against Si in the 

Bosch etch to be around 8. This means I could etch, at maximum, a depth of roughly 

~ 4 μmL  with a PMMA mask. So, a more highly selective mask material is required. In 

many regards, Al would be the best candidate for a fluorinated plasma etch mask. However, 

I executed the Bosch DRIE on a tool at the Harvard center for nanoscale systems (CNS) 

which is dedicated metal-free. One cannot put Al in the chamber of that CNS tool. 2SiO , 

which is allowed in that chamber, has a suitably high selectivity against Si, which I found 

closer to 16, much in line with the literature [221]. Figure 4.17-a) through d) show some 

of the prerequisite fabrication steps before the DRIE. 

 Figure 4.17-a) shows that the nanohole array was patterned into a 250 nm thick, 

950 kDa PMMA resist following an EBL recipe very similar to that of Section 4.2.2.1. The 

sample had a thin film stack of 1 µm of 2SiO  and 100 nm Al. The Al was deposited by e-

Beam evaporation, and the 2SiO  was grown thermally. Much of the figure is dedicated 

towards this thermal oxide growth. Figure 4.17-h) shows an optical micrograph (darkfield 

contrast), using a white-balanced camera, of several nanohole arrays patterned into PMMA 

after development and descum, with the inset showing an SEM micrograph. 

The oxide thickness, x , was measured by profilometry and normal-incidence 

reflectometry, which agreed to better than 5 nm. The panels in Figure 4.17-f) show normal-

perspective photographs with care taken to white-balance the camera as much as possible. 

Figure 4.17-g) plots x  vs. t  for 4 different oxidation runs. The lower 3 were with 
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humidified oxygen, by sparging pure 2O  through a heated flask of DI. The upper run used 

different plumbing which more firmly sealed the flask. As the flask boiled and developed 

a head of steam, the steam was forced through insulated stainless piping into the tube 

furnace at ca. 1 bar, only 1 PSIG higher than ambient. Liquid water should never be in the 

tube, especially not in the heated zone. I kept all parts of the tube hot enough to prevent 

condensation. I further ensured the constant flow of steam through the tube by biasing the 

pressure gradient, pulling a slight vacuum on the exhaust by condensing it in a bucket of 

ice. A growth curve [146] 

2
40.5 1 1Bx A t
A

 
= + −  

 
, (4.29) 

was fit to the measured thicknesses. For the steam-based growth, I found 0.114 μmA =  

and 20.598 μm hB = . 

Figure 4.17-b) shows that the pattern was transferred into the Al layer using an ICP 

RIE tool at the CNS, where 500 W of 13.56 MHz power sustained a 2 3Cl BCl+  based 

plasma at 7 mTorr with each of the chlorine and boron trichloride gaseous precursors 

flowing at 10 SCCM. A DC bias of 300 V maintained directionality, and the sample was 

cooled by flowing He to maintain 20 °C (just as in Section 4.2.2). The process yielded an 

Al etch rate ca. 180 nm min , but with only a modest selectivity against PMMA of 1.4. 

Figure 4.17-c) shows that the pattern is then transferred into the 2SiO  layer using another 

ICP RIE tool at the CNS, where again 500 W of 13.56 MHz power sustained a 7 mTorr 

3 2 4CHF H Ar CF+ + +  based plasma, with respective flow rates of 50, 30, 6, and 2 SCCM. 

With the target material this time being non-conducting (and not connected to ground in 
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any case), an RF bias (also at 13.56 MHz) with peak-to-peak voltage ~ 900 VppV  was 

applied to assure directionality, and the sample was, as before, cooled with flowing He to 

maintain 20 °C. The measured 2SiO  etch rate was 110 nm min , and I found the 

selectivity against Al to be greater than 12. 

Figure 4.17-d) shows the nanohole pattern is finally transferred into the Si substrate 

by Bosch DRIE. In the Bosch process, a much higher anisotropy can be achieved than in 

conventional RIE by performing a directional RIE step in sequence with a PECVD 

isotropic passivation step. Those two steps are repeated for a number of cycles. I carried 

out the Bosch DRIE also on a CNS tool, where the etch step was an 6 4 8SF C F+  based ICP 

at 33 mTorr flowing at 300 and 50 SCCM, respectively, and with 2.5 kW of 13.56 MHz 

power to maintain the plasma. The sample, cooled on the backside by flowing He to 

maintain 20 °C, was biased with 18 V DC, modulated at 150 Hz. This step was terminated 

1.2 s after the plasma ignited. The deposition step was a 4 8C F  based ICP at 25 mTorr 

flowing at 270 SCCM, and again with 2.5 kW of 13.56 MHz power to maintain the plasma. 

The sample is not biased for the PECVD step, which is terminated only 1.0 s after strike, 

and this step results in an isotropic deposition of roughly 2 nm-worth of fluorocarbon. In 

all the previously mentioned RIE’s, after striking and establishing the plasma, typically 

taking 3 s, the RIE tools use feedback controllers on their various systems to keep the 

plasma as stable as possible. However, in Bosch DRIE, the timing of the plasma control is 

critical, requiring ignition, termination, and stabilization times all shorter than 1 s. The DC 

bias during the etch step ensures the fluorocarbon coated on the side walls is relatively 

untouched and therefore only normal-facing surfaces are etched. While the etch rate should 
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strictly be given in nm/cycle, in practice I used recipes with hundreds of cycles, and found 

~ 1 μm minR .  
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Figure 4.17: Oxide growth details. (a-d) Nanohole patterning schematics. (e) Tube 

furnace. (f) Array of different oxide thicknesses photographed from above. (g) 

Oxide growth curves. (h) Darkfield image of the PMMA resist. The RGB colors in 

this image faithfully portray what one sees in the ocular. The inset (compound scale 

bar: 5 µm) shows an SEM micrograph. 
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4.2.3.2 Conformal MIM coating by ALD 

Figure 4.17-d) cannot properly display the full AR of the etched hole, so I use a squiggly 

break. I can repeatably achieve AR ~ 20  and fill factors of 50% (e.g. 

holeØ 10 μm 0.5 μmL =  and hexagonally close-packed 2
holeØ 0.5 0.68 μmp× = ×  are 

typical). After the DRIE, I conformally coat the MIM layers of the coaxial structure by 

ALD of sequential Pt and 2 3Al O , as illustrated by Figure 4.16-b), and as discussed in 

detail in Section 4.2.2.3. The conformality of the coating is key: The films are coated 

radially inward from the sidewalls of the etched holes. So depending on holeØ  and on the 

sum of the film thicknesses Ptt  and 
2 3Al Ot , the nanohole may or may not clog during the 

ALD steps. Because the nanohole may clog, the resulting structure can have one of four 

basic topologies, assuming the same Ptt  for the 1st and 2nd Pt layers, as sketched in Table 

4.4. 

   

topology name holeØ  range resulting waveguide 

metal only   holeØ
2

 <  Ptt  wire 

no core Ptt  <  holeØ
2

 <  2 3Pt Al Ot t+  hollow cylindrical 

solid core 2 3Pt Al Ot t+  <  holeØ
2

 <  2 3Pt Al O2t t+  “conventional” coax 

hollow core 2 3Pt Al O2t t+  <  holeØ
2

   coax with air-filled core 
       

Table 4.4: Vertical nanocoax by ALD, fabrication topologies.Depending the ALD 

film thicknesses Ptt  and 
2 3Al Ot , and on holeØ , different topologies will result. 

The schematics presented in Figure 4.16-a) through -h) are for a hollow core nanocoax, i.e. 

the largest diameter hole, final row in Table 4.4. Figure 4.16-c) shows how one can access 

the coaxial layers after ALD by mechanical polishing on the top side, just as described in 
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Section 4.2.3. So, one opens the coaxial structure simply by controlling an abrasion rate, 

and not by lithographic patterning. This step was carried out with a vibratory polisher on 

an adhesive-backed felt platen, loaded with a glycerin-based slurry of 50 nm 2SiO  grit. I 

find that controlling the polish removal rate to less than 1 µm/h and minimizing as much 

as possible the total thickness removed by vibratory polishing (say to less than 15 µm, if 

possible) is a best practice; with careful fixturing, one can all but eliminate loss of planarity 

during this polishing step, removing a 150 nm 2 3Al O  film uniformly across a 

215 15 mm×  die. In Figure 4.16-e), each of the five hexagonal panels are for arrays with 

different holeØ  (400, 450, 500, 550, and 600 nm) after this polishing step, where the 

constituent film thicknesses are Pt 75 nmt =  and 
2 3Al O 150 nmt = . The coaxial diameters 

IDØ  and ODØ , are determined by the combination of holeØ  with these film thicknesses. 

Amongst the five hexagonal panels, one can clearly see the latter three topologies named 

in Table 4.4. After the depositing the 1st Pt layer, the coaxial outer diameter is 

ID hole PtØ Ø 2t= − , then after depositing the 2 3Al O   and 2nd Pt layers the inner diameter 

is 
2 3ID ID Al OØ Ø 2t= − . 

The ALD step is the linchpin of the overall process, so I make three remarks: First, 

due to its conformality, ALD can make non-circular (e.g. square) concentric MIM 

waveguides. For example, some of the nanocoaxes shown in the hexagonal panels of Figure 

4.16 started with out-of-round nanoholes, resulting in D-shaped layers. For the purposes of 

optical confinement, however, these non-circular MIM waveguides still support a totally 

enclosed, cuffoff-free mode [222]. Second, and this is the essence of atomic layer 

lithography, the transverse dimensions of the structure are controlled by the ALD 
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thicknesses, since the holes fill inward from the sidewalls. ALD being a digital monolayer 

process, one can achieve bona fide Å-scale control over the transverse dimensions [204]. 

Third, the DRIE step yields nanoholes with AR ~ 20 , but as the holes fill inward during 

sequential deposition cycles, the AR  of the remaining void at the center of the hole 

diverges, and we have observed conformal Pt deposition, shown in Figure 4.18, for 

AR 300> , roughly on par with other recent work [223]–[226]. One may be able to push 

the conformal coating to even higher AR  by varying the PtMe dose during ALD, for 

example by changing the exposure pressure and dwell time [227]. I did not attempt to 

determine if the dose could have been reduced. I simply observed deposition occurred and 

decided to tweak the process no further, paying no mind to PtMe use. 
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Figure 4.18: Conformal ALD into high AR nanoholes. The Pt and 2 3Al O  ALD 

layers coat the bottom of the hole, even as it closes to AR exceeding 300. An EDX 

line scan across a single nanocoax shows the material composition. 

Figure 4.18 also shows an EDX line scan across a single nanocoax, with elemental 

compositions along this line scan plotted for Si, Al, O, and Pt. There are clearly resolved 

dips and peaks in the Si, Al, and O channels, but not as much in the Pt channel. The EDX 

were collected from a 2 nA probe current (30 kV) beam. 
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4.2.3.3 Excavation and electroplating 

For optical interrogation, the coaxial structure in Figure 4.16-c) requires two further 

modifications, which I will describe in this Section and in Section 4.2.3.4. First, as shown 

in Figure 4.16-d), I substitute Ni for Si by “excavating” the 2 3Pt Al O  nanocoaxes with an 

isotropic etch that is highly selective for Si. I used a 4 2CF O+  based plasma at 420 mTorr 

sustained by 500 W at 2.45 GHz, with 150 and 10 SCCM flows for the gases, respectively. 

I measure an isotropic etch rate of 210 nm min . The etch was masked with a 

photopatterned Shipley 1805 resist, hard baked for 5 min at 125 °C. The windows in the 

mask were matched to the sizes of the arrays, typically 28 12 μm× , performed with a 

Heidelberg µPG101 direct write system. As will be made clear in the next section, having 

a windowed/patterned ground plane (as opposed the whole 215 15 mm×  die, for example) 

makes the optical alignment much easier. With a local ground plane, one can focus the 

microscopes nearby to the array and make only a small positioning change to illuminate a 

single nanocoax with a tightly focused beam. The excavated coaxes, as well as the isotropic 

undercutting of the mask, are shown in Figure 4.19-a). The samples were descummed and 

coated with Ti Au 5 10  nm=  by e-Beam deposition under angled-rotation to make a 

conductive seed layer for electrodeposition. The top SEM micrograph in Figure 4.19-d) 

shows Ti/Au-coated nanocoaxes. The samples were then photopatterned with 4.5 µm thick 

SPR 220 photoresist with an open area 23.3 mm  using a laser-printed transparency, and 

then thoroughly descummed. After clamping leads, the samples were sealed up with 

Kapton tape so that only the 23.3 mm  is exposed to the electrolyte. Establishing a fixed 

electrolytic contact area is critical to process control. The rest of Figure 4.19-d) shows a 
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few snapshots of the electroplating process, where the voids between 2 3Pt Al O  are filled 

in with Ni. The electrolyte is Transene sulfamate nickel SN-10, heated to 50 °C and stirred 

moderately. I plated in constant current mode, at 2180 3.3 μA mm  DC, Figure 4.19-e) 

shows the voltage trace required to sustain the constant current. 

 
Figure 4.19: Ni-for-Si substitution by excavation and electroplating. (a) 

Excavation by 4 2CF O+  etch. (b-c) After lapping. (d) During the plating, the Ni 

fills in the voids. (e) Voltage required for constant current plating and measured 

plating rate. 

I electroplated several µm of Ni where the Si used to be, shown in Figure 4.16-e). This 

plating process again buries the top-side nanocoax aperture in metal, so I re-opened it with 

a mechanical planarization, Figure 4.16-f). Figure 4.19-b) and -c) show an SEM and optical 
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micrograph, respectively of the planarized structure. The planarization was performed with 

the home-built lapping setup described in Section 4.2.3.4. The need for planarization, as 

opposed to polishing, arose because I did not choose the 23.3 mm  wisely. I put a single 

opening of that area at the center of the 215 15 mm×  die. I found this gave very uneven 

polish rates across the die, as the plated Ni protruded by several µm, essentially putting a 

boss of high pressure right at the center of the die. A far better window design would 

distribute the electrolytic area over multiple points of contact along the perimeter of the 

die, thereby establishing better parallelism and uniformity in polishing pressure. Perhaps 

this could eliminate the need for lapping. 

After planarization, the nanocoaxes perforate an optically opaque ground plane, 

instead of the relatively high transparency crystalline Si substrate. The Ni ground plane is 

mechanically refractory enough to making it easily processed by appropriate abrasives. 

The Ni is also plasmonically inactive, thus eliminating optical cross talk between 

neighboring coaxes and any enhanced/extraordinary optical transmission effects [228], and 

allowing one optically address an individual nanocoax. The optical constants, see Equation 

(3.16), for Si and Ni from [229] and [230], respectively, are plotted in Figure 4.20.  

 
Figure 4.20: Optical constants of Ni and Si. From [229] and [230], respectively. 
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4.2.3.4 Wafer bonding and back-side thinning 

The second change required of the coaxial structure in Figure 4.16-c) is to open up the 

bottom, which closes off during 1st Pt ALD see Figure 4.18. Figure 4.16-g) and -h) show 

that adhesive wafer bonding and back-side thinning were used to gain access. Figure 4.16-

g) depicts the adhesive bonding [231], [232] of the Si substrate to an optically transparent 

sodalime glass superstrate using an SU-8 epoxy layer. Some details from the bonding 

process are shown in Figure 4.21. Glass wafers were cut into 215 15 mm×  die then cleaned 

by piranha etch ( )2 4 2 23:1:: H SO : H O . Both the Si and glass die were treated to an 2O  

descum and left for 2 min on a 100 °C hotplate immediately before spin-coating an epoxy 

film (SU-8 3000), 5 µm thick. The dollop of SU-8 solution was cast on hot die, with the 

heat capacity of the liquid dollop used to cool the die down. Care must be used to avoid 

bubble formation when casting the SU-8. The edge bead which forms during spin coating, 

and which has deleterious effect during bonding, was mitigated by spinning at the highest 

possible speed, I used 8000 RPM. I measured by profilometry a 10 µm bead at the edge of 

the 5 µm film. The SU-8 was soft-baked on a 65 °C hotplate for 7 min. Figure 4.21-a) 

shows the press I used. The glass superstrate was placed edge-to-edge into contact with the 

Si substrate and then allowed to slowly “hinge” closed, with finger-pressure from a lint-

free wipe rolling along the same direction as the hinge action afterward. After contact, the 

die should be firmly “wrung” together (much like Gauge blocks), with Newton’s rings 

(optical fringes) clearly visible through the glass. A small piece of plastic transparency 

printing film, 100 µm thick, was placed on the bed of press with wrung die-stack laid down 

on top, glass-side up. The ram drives a non-rotating jaw into contact with the glass; the jaw 

as some freedom to articulate and auto level. The plastic film, being slightly compressible, 
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helps to auto-level the glass and Si together. Both the press bed and the jaw were lapped 

flat. I had no way to measure the pressing force, I just screwed until my knuckles turned 

white. The tightened press was placed in 75 °C convection oven for 1 h for the epoxy 

monomer films to reflow into each other. The press was cooled to ambient over 30 min 

before releasing the pressure, and the SU-8 was flood exposed by a Hg lamp, with 

223 mW cm  measured on the I-line (365 nm) for 60 s. Immediately after exposure, the 

stack was again tightened in the press and left under pressure for a post-exposure, cross-

linking bake of 225 °C for 1:00 h, then left to cool at room temperature under pressure for 

45 min. This post exposure bake is executed well above the cross-linked SU-8 glass 

transition temperature [233], and is when the bonding happens. 

 
Figure 4.21: Adhesive wafer bonding. (a) Screw press. (b) SEM of the Bonding 

layer. (c) Apparatus for measuring the tensile strength. (d) Bonding area (cyan) 

measured by image segmentation after tensile failure. 
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 Figure 4.21-b) shows a cross sectional SEM of a bonded die-stack. I cut the bonded 

die-stack along the diagonal with a low speed, abrasive circle saw, then ground and 

polished the cut for a clean cross section. The larger view shows the edge bead is pressed 

out during bonding. Figure 4.21-c) shows the apparatus I used for tensile strength 

measurement, where I hung a water jug from the bonded stack and filled with water until 

the stack snapped apart. I observed consistently that almost all the bond breakage was by 

SU-8 delaminating from the glass. By measuring the total mass suspended by the stack 

right before failure I could measure the bonding force. Figure 4.21-d) shows a 

photographed Si die with debonded SU-8 after tensile failure. I segmented the image into 

three parts: a background (yellow), unbonded die area (magenta) and bonded die area 

(cyan). By dividing the bonding force into the bonded die area, I found 3 1 bar±  of 

bonding strength, and the bonding area fraction typically exceeded 95%. I believe that if 

contact were initiated under vacuum instead of by wringing out the air, then perhaps 100% 

could be achieved. The delamination from the glass could be mitigated by appropriate 

plasma pre-treatment [234]. 

 
Figure 4.22: Optical constants for SU-8 and sodalime glass. From [235] and [236]. 



144 

Figure 4.22 shows Cauchy fits (see Equation (4.28)) to the optical constants of 

sodalime glass and SU-8 3000, taken from [235] and [236], respectively. The absorption, 

κ , was measured in both of those works and is included in the finite element modeling 

presented in Section 4.4, however it is small enough (less than 0.01) to be omitted from the 

plot range in Figure 4.22. 

I then employed a second mechanical planarization step, as shown in Figure 4.16-

h). More details of this planarization are given below in Figure 4.23. Figure 4.23-a) shows 

an apparatus I used for hand-lapping. The brass piston, with diameter Ø1.375"  slides freely 

through the 300-series stainless cylinder, with a 2"  bore length, and 0.0005"+  oversized 

diameter. The bottom surface of the cylinder was precision ground to be perpendicular to 

the bore. This fixture transfers the flatness of the surface plate onto the sample and allows 

for backside thinning to proceed parallel to the top surface. Figure 4.23-b) shows light 

transmitted through thin Si, with the W filament of an incandescent lightbulb clearly 

visible. Figure 4.23-c) shows a measured transmittance spectrum from this sample (brown) 

with a multilayered thin film calculation result [237] (blue curve) for reference. Figure 

4.23-d) shows the theoretical model I used to compute that result. 

   

grit size particle diameter (µm) removal rate μm min  
120 125 60±10 
360 40 25±5 
500 30 15±5 
1200 15 5±3 

- 6 < 2 
- 3 < 2 
- 1 < 2 
   

Table 4.5: Si abrasion rates for 2 3Al O  lapping films. Hand-lapping rates measured 

with a micrometer. Details in text. 
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Figure 4.23: Backside thinning of Si bonded to glass. (a) Surface plate and lapping 

fixture. (b) Thin Si is transparent. In this white balanced photograph, the Si is 

roughly 1 µm. (c) Measured and calculated Si transmittance. (d) Theoretical model. 

 Table 4.5 give a few abrasion rates I measured on the hand lapping apparatus shown 

in Figure 4.23-a). The brass piston was first planarized for parallelism, then SU-8 bonded 

glass/Si samples were fixed to the brass piston with wax at 125 °C. The sample was pressed 

onto the molten wax, the brass piston was placed in a beaker with room temperature water, 

and a 0.1 kg weight was placed on top of the sample so that the solidified wax film 

measured 45±5 µm. The film was constant thickness for any given sample but varied from 

sample to sample. Note that the SU-8 bond may fail if exposed to temperatures greater than 

the glass transition temperature [233], so care must be used when selecting a pitch or wax 

fixative. The abrasion rate was measured by checking the thickness with micrometers, 

which can resolve 2.54 µm. I used ethylene glycol as a lubricant, and loaded with piston 
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with a 1 kg weight, so that the lapping pressure was roughly 0.4 bar. The “final approach”, 

for Si thicknesses less than 15 µm, should be done with vibratory polishing, as described 

in Section 4.2.3.2. From inspecting SEM micrographs, I find the vibratory polishing rates 

are typically ~ 0.8 µm/hr. Many wafer thinning and lapping recipes can be found online. 

This backside thinning opens the bottoms of the nanocoaxes. With judicious. 

thinning the 525 µm-thick Si substrate down to a suitable thickness which is less than the 

etched nanohole depth planarization and final polishing recipes, one can readily control the 

final thickness to a precision of about 0.1 µm. Figure 4.16-j) shows a FIB cross sectional 

image of a finished structure with final thickness 0.8 µm. I have fabricated several samples 

with final thicknesses ranging from 0.8 to 5.8 µm. another one of which is pictured in 

Figure 4.24. After flipping the sample, the glass superstrate is relabeled as a substrate, with 

a thin Si layer on top. 
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Figure 4.24: Back-side thinned nanocoaxes. The back-side thinning was 

terminated with 5.8 µm of Si remaining. 

4.3 Optical interrogation 

Since the most common sources of electromagnetic radiation are dipolar, much of the prior 

work involving optical excitation of nanocoaxial waveguides have been restricted in scope 

to dipolar guided modes, predominantly in the 11TE -like  mode, but also in other dipolar 

modes [160]. Relatively few studies have focused specifically on coupling into the 

fundamental TEM-like (monopolar) mode. One scheme [238], [239] involves illuminating 

with TM-polarized plane waves at oblique angles of incidence, greater than 20°. Another 

scheme, intuitively stemming from the common cylindrical symmetry shared by a 

nanocoax and an LG beam, is to illuminate with a radially polarized optical vortex [114], 

[240], [241]. We follow the latter approach. 
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4.3.1 Polarimetric imaging 

Figure 4.25-a) and -d) show the principle polarimetric imaging result, these data were 

obtained using the apparatus sketched in Figure 3.8 and discussed in Section 3.2. A 

heptamer of coaxes was positioned concentrically with the beam using the piezo stage. The 

central coax, sampling an interior annulus of bare beam shown in Figure 3.8- g), transmits 

a radially polarized donut which is significantly smaller than the bare beam. The peripheral 

6 coaxes each transmit linearly polarized “p-orbitals” (i.e. with only a single hue), with the 

lobes of the orbital aligned to the local direction of linear polarization in the bare beam. 

We interpret these as direct observations of transmission by the fundamental TEM-like and 

the first excited 11TE -like  modes, respectively. As mentioned previously, one proposed 

scheme for TEM-excitation is by linearly TM-polarized plane wave at oblique angles of 

incidence [242], larger than 20°. While a focused, radially polarized beam is TM-polarized 

and if strongly enough focused should contain the angular spectral content for this 

excitation mechanism [240], the beamNA 0.31=  beam used in these experiments subtends 

angles of incidence only up to 12° in the glass substrate. I do not observe any multi-colored 

donuts on the peripheral 6 coaxes within the heptamer, only ever singly-colored p-orbitals. 

I conclude that, within these experimental conditions the 11TE  coupling is the dominant 

means of transmission for those peripheral 6, much in line with the work of others [6]. 
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Figure 4.25: Donut transmission through nanocoaxes, polarimetric imaging. (a-f) 

Coalescence by arrays with fixed ODØ  and shrinking p . (g-o) Minimum resolved 

pitch for fixed FF ~ 27%. FFT have been normalized against their peak. (p-w) 

Transmission through isolated, individual nanocoaxes. Scale bars: (a-f) 2 µm, (g-l) 

5 µm, (m-o) 10 rad·µm-1, (p-w) 1 µm. 

Keeping the diameter ODØ  constant, I varied the pitch p , as shown in Figure 4.25-

a) through -c). There one can see the fabrication limit of the “vertical ALD” process 

described in Section 4.2.3: when p  approaches its lower limit, holeØp → , the insulating 

2 3Al O  layer percolates. While the resulting MIM structure is a coalescence of Pt and 

2 3Al O , and thus no longer an array of disjoint coaxes, it is still a multiconductor 

waveguide which continues to transmit light in a way that roughly preserves the 

polarization: one can see the central donut merging with the peripheral p-orbitals going 

from Figure 4.25-d) to -f). Shown in Figure 4.25-g) through -i) are SEMs of the densest 

arrays I fabricated, close to the percolation threshold, where the 2 3Al O  annuli subtend 
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about 27% of the area (i.e. fill factor, FF ~ 27% ). In this sequence, I fixed FF and minified 

the array, shrinking both holeØ p× . The transmitted polarimetric images, collected with a 

dry NA0.95 objective on the upright microscope, are shown in Figure 4.25-j) through -l). 

Those arrays cross the resolution limit of the microscope. For the smallest array, the 

transmitted donut (Figure 4.25-l)) is indecipherable from the bare beam (Figure 3.8-g)). 

Indeed, looking at a fast Fourier transform (FFT), plotted in Figure 4.25-m) through -o), 

one can see the first order diffracted peaks (yellow points) at 2 pπ  emerge inside the 

numerical aperture of the microscope (white circle). Therefore, one cannot resolve the pitch 

of arrays much denser than NAp λ . Quite interestingly, this means the densely packed 

coaxes are functioning much in the same way as a phased array. The bare beam is sampled 

discretely on the back side by coupling into the guided modes of many individual coaxes 

(e.g. roughly 50 in Figure 4.25-i)) and, when emitted on the top side, the interference 

pattern broadcasted by the array resembles an apparently unaffected beam, at least within 

the resolution limit of the microscope. By taking the ratio of image exposure times and 

normalizing against FF I estimate the transmittance of these dense arrays is about 20%. 

On the right-hand side of Figure 4.25, I show how the size of the transmitted donut 

depends on the size of the coax. As stated previously, the donut transmitted by the coax is 

significantly smaller than the bare beam in Figure 4.25-g). It is apparently critical for there 

to exist a center conductor. For example, in Figure 4.25-s) and -w), where 

2 3hole Pt Al OØ 2 t t< +  (see Table 4.4), the resulting hollow cylindrical waveguide does not 

transmit a rainbow-colored donut. One should expect strong overlap between the donut 
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beam and the 01TM -like  mode of a hollow cylindrical waveguide, provided that λ  is 

shorter than the cutoff wavelength. 

4.3.2 NSOM 

The NSOM apparatus and techniques were described in Section 3.3. Figure 4.26 shows the 

principle near-field result from these nanocoax samples.  

 
Figure 4.26: NSOM scan of donut transmission by a heptamer of nanocoaxes. The 

donut beam is nearly concentric with the central coax, with the suspected location 

of the topological singularity indicated by a cyan reticle. Scale bar: 1 µm. 

The samples were aligned using the -piezoxyz  stage shown in Figure 3.8 and in Figure 

3.13. Note that this alignment requires mechanical coincidence from several objects all at 

once: the inverted and upright microscopes must be in focus on the top surface of the 

substrate, which is also the waist of the donut beam. Furthermore, the -positioningxy  of 

the two microscopes and of the sample is such that the donut beam, the microscopes, and 
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a single nanocoaxial waveguide must all be, as close as possible, on the same optical axis. 

This level of alignment is actually readily obtained, adequate degrees of freedom in the 

optomechanics, when using a high-NA objective on the upright microscope, such as the 

NA0.95 and NA1.40 objectives used throughout Section 4.3.1. With a high-NA objective, 

one can easily resolve individual coaxes in the sparse arrays. But when using a low-NA 

objective, positioning an individual nanocoaxial waveguide is difficult. Mostly this is 

because the samples were fabricated as arrays. If the array pitch is unresolved by the upright 

microscope, then one just sees the collective broadcast of the phased array and has no easy 

way to know how the array is aligned against the beam. Compounding this, as discussed in 

Section 3.3, NSOM has two more limiting requirements: first, a LWD objective; second, 

the tip of the QTF NSOM probe must also be positioned for coincidence. Even for the 

sparsest arrays fabricated with 2 μmp = , the LWD NA0.45 objective could not clearly 

resolve the array and the alignment for concentricity suffered. 

Regardless, nearly the same information as in Figure 4.25-d) is shown in Figure 

4.26-b): for coaxes not positioned concentrically, the transmission via the guided 

11TE -like  mode results in p-orbitals, where the lobes are directed radially away from the 

beam’s topological singularity. If I draw lines from each of the 9 p-orbitals in Figure 4.25-

b), then I conclude the beam’s singularity was roughly 0.3 µm due West of the brightest 

coax. I have drawn a cyan reticle at this location, where the diameter of the reticle 

represents the circle of least confusion for the 9 lines’ intersection point. Further 

development of an alignment procedure, which both allows space for the NSOM probe and 

positions an individual coax concentrically with the donut beam, is ongoing. 
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4.4 2D axisymmetric simulation 

I used finite element analysis software [243], [244] to simulate the optical response of a 

nanocoax illuminated with a focused LG beam. Figure 4.27 shows an overview of the finite 

element model components, and Figure 4.28 shows the principle computational results. By 

exploiting the cylindrical symmetry, I have significantly reduced the size of the 

computational domain. Working within COMSOL’s 2D-axisymmetric formulation allows 

computationally “large” volumes to be solved more quickly than in a Cartesian 3D model. 

For example, a model size of order 310 10 40 λ× ×  solves several times per minute on a 

desktop computer. Several recent computational works have incorporated a focused LG 

beam into a finite element model [245]–[247].  

 
Figure 4.27: Finite element model definition. (a) Input and (b) output ports. The 

unit of model distance is 1 µm, with ρ̂  and ẑ  oriented, respectively, along the 

horizontal and vertical axes. 
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Figure 4.27-a) shows the model geometry. The blue boundary on the bottom is the 

excitation port, where the incident LGl
p  beam is specified (with inward power flow 

indicated by the red arrow). The -axisz , indicated by the red 0r =  dashed line, is the axis 

of rotational symmetry. While the angular position φ  is not a part of the 2D-axisymmetric 

model, and so it would appear to be only a 2D model, it is indeed a full 3D geometry, just 

restricted by symmetry to an assumed -dependenceφ . Solutions are proportional to 

( )exp imφ , for an integer m . As discussed in the paragraph immediately preceding 

Equation (3.25), the overall -dependenceφ  of a paraxial electromagnetic LGl
p  beam is a 

sum of the spin (i.e. polarization) and orbital angular momentum carried by the beam, 

zm l σ= + . (4.30) 

2D-axisymmetric modeling requires one to use the circular polarization basis given in 

Equations (2.08) and (2.09), so either of 1zσ = ± . The input beam is either an 0l =  

Gaussian as in Equation (3.27), or an 1l =  donut as in Equation (3.30). The model is clad 

with a perfectly matched layer (PML), and the gray slab in the center is a Ni ground plane 

which is perforated by a single, coaxial  2 3Pt Al O  or  2 3Ag Al O  aperture. Highlighted 

in blue on the top side of Figure 4.27-b) is the output “port”. Although, strictly speaking, 

it is not a port but simply a surface to monitor power flow. Power exits the model only by 

absorption in the PML. The angles subtended by the input and output ports match the 

inverted and upright microscopes in Figure 3.8 (when using a dry objective on the top side). 

 The paraxially approximate formulae for the electric field  in a linearly polarized 

Gaussian and in a radially polarized donut beam, ˆ-GaussianxE  and ˆ -donutρE , are given in 
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Equations (3.27) and (3.30), respectively. The need for finite element modeling is the 

principle justification for using paraxially approximate formulae to model a focused LG 

beam, instead of a more accurate approach such as numeric integration [101]. These 

formulae can simply be evaluated at the input port of the model, with no need for an 

auxiliary computation step. This allows one to more freely adjust the model and more 

quickly narrow their focus onto the important physics by honing-in the model parameters 

appropriately.  
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Figure 4.28: 2D-Axisymmetric simulation: overview. Taken with permission from 

the authors of [219]. Plots of energy density 2E   in vectorial Laguerre-Gaussian 

beams: (a-b) longitudinal cuts in the -planexz ; and (c-d) transverse cuts at the focal 

-planexy . (e-f) Straight 2 3Pt Al O  and (g-h) adiabatically tapered 2 3Ag Al O  

coaxes transmit the LG beams as guided modes. (I) Tapered field enhancement vs. 

the coax diameter ODØ . 

 Figure 4.28-a) and -b) show longitudinal slices of the energy density 2E  in the 

-planexz , with contours drawn to span several decades (98, 50, 10, 1, 0.1, and 0.01% of 

the peak). Figure 4.28-c) and -d) show transverse slices in the -planexy , with arrows 

plotting the transverse parts of the electric field, ( ),x yE E⊥ =E . One prominent feature of 
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Equations (3.27) and (3.30) are the finite longitudinal components, zE . From Figure 4.28-

a) the signature of a finite zE  is unmistakable: the finite field strength at the beam focus 

( ) ( ), , 0,0,0zρ φ = , as discussed in Section 3.1.2.2, is due solely to the second term for zE  

in equation (3.30) and results in all contours below roughly 50% forming a single 

“butterfly” shape, instead of two separate “cigar” shapes. 

Figure 4.28-e) through -f) show single, hollow core 2 3Pt Al O nanocoaxes 

perforating a Ni ground plane and transmitting an LG beam via a guided mode, with the 

ˆ-componentx  of the field xE  plotted in the longitudinal -planexz . In Figure 4.28-e), 

ˆ -donutρE  is transmitted via the TEM-like mode, and Figure 4.28-f) shows ˆ-GaussianxE  

transmitted via the 11TE -like  mode. Note that this transmission preserves the topology of 

the input beam. I used Pt in the experiments because it is currently the best available optical 

metal for conformal ALD, as described in Section 4.2.2.3. But within the parameter space 

that I modeled, the attenuation length for these modes ranges 10 1000 dB μm− . If instead 

of Pt the coaxes are clad with Ag, the attenuation drops to a more useful 0.1 10 dB μm− . 

Regardless of the material, as is the general case for all MIM guided modes, the attenuation 

increases as the mode gets confined to a tighter ODØ . In addition to changing the metal 

from Pt to Ag, I also changed the coaxial geometry from straight (as in Figure 4.28-e) and 

-f)) to tapered [248]–[250]. This geometry change emphasizes the main point of this thesis: 

a guided mode with no cutoff can be compressed indefinitely. shown in Figure 4.28-g) and 

-h) are longitudinal -slicesxz  of adiabatic 2 3Ag Al O  coaxial tapers, again plotting the 
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fiend component xE . The entrance annular aperture at the bottom of the taper is enough to 

harvest most of the input LG beam, which couples into a guided mode and gets compressed 

as it propagates along the taper section, finally coupling into the nano-sized exit aperture. 

Additional in-coupling efficiency can be gained plasmonically [241], [251]. The insets in 

Figure 4.28-g) and -h) show zoomed views of the taper’s exit aperture, with the TEM-like 

mode propagating all the way to the tip (where in this case, ODØ 5 nm= ), while the 

11TE -like  mode is reflected at some point along the taper where the constriction becomes 

too narrow. 

The taper geometry was parameterized, and Figure 4.28-i) summarizes the results 

of a parametric sweep. The taper is terminated with a short straight section (where I fixed 

OD IDØ 2Ø= ). This straight section functions as a Fabry-Perot cavity, bounded by the exit 

aperture on the top-side and the impedance gradient along the taper on the bottom-side. For 

each of ˆ-GaussianxE  (red triangles) and ˆ -donutρE  (blue circles), I shrunk the exit coax 

diameter ODØ  while monitoring the average field strength exitE  at the exit aperture, 

that is, averaging across the radial -coordinateρ . Keeping the taper geometry fixed, I tune 

the length of the straight section into resonance a find the maximal value, exit maxE . The 

tuning of the Fabry-Perot cavity is illustrated in Figure 4.29. When a wave propagates 

through a lossy medium, then the more confined the wave is, the slower it moves. The 

confinement forces stronger and stronger interaction with the medium, which slows the 

wave down. The straight section at the taper’s exit is where the wave is squeezed the 

tightest and moves the slowest, it is that part of the taper where the wave accumulates phase 
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at the steepest rate (at least per unit propagation length). Therefore, the optical path length 

a guided mode must travel as it propagates through the whole taper is more strongly 

dependent on the length of that straight exit section than of any other dimension of the 

taper. Phase matching the forward and backward propagating waves in that straight section 

by varying its length (i.e. Fabry-Perot resonance tuning) is therefore the most efficient way 

(at least requiring the smallest dimensional change) to maximize the field strength at the 

exit aperture, that is for a given taper geometry. This tuning makes for an antireflective 

coating on the taper’s exit. As will be touched on briefly in Section 5.3, the simple linear 

taper geometry used in this model is not optimal. But it works well enough to demonstrate 

the main points of this thesis. 

 
Figure 4.29: Fabry-Perot tuning of the finite element modeled taper. The taper 

model illustrated in Figure 4.28 is terminated by a straight section, which is tuned 

in length into a transmissive resonance for the Gaussian (red) and donut (blue) input 

LG beams. 
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This maximal field strength exit maxE  (that is, the peak of the blue curve in 

Figure 4.29) is then compared to the average field strength annulusE  of the LG beam 

focused in air and sampled over an annulus to represent the taper’s entrance aperture. Note 

that the input port has a finite Fresnel number, given by Equation (2.21), typically around 

~ 20FN . Due to the diffraction effects discussed in Section 2.3.1, such modest values of 

FN  result in focal shifts [51]–[55] which compare with λ . So to counteract the focal shift 

effect from the finite-sized input port shown in Figure 4.27-a), I added a tuning parameter 

dz , a displacement, to adjust the focal point of the input fields,  

( )input input , z dzρ= +E E . (4.31) 

To tune this parameter, I fixed the geometry of the input port and set the whole model space 

to air, removing all interior geometries and keeping only the PML and PEC at the perimeter 

of the model. I then defined an annular probe at the 0z =  plane, where the taper entrance 

aperture would have otherwise been, and monitored the area-integrated power flow through 

this annulus. I determined that the beam was in focus when that power flow was maximum. 

The field strength from the in-focus beam was averaged over the annular probe to represent 

the field at the entrance aperture of the taper, entranceE . Because of the way I determined 

that the beam was in focus, I found different focal shifts for ˆ-GaussianxE  and ˆ -donutρE , with 

LG orders 0l =  and 1l = , respectively. These are plotted in Figure 4.30. The authors of 

[252] have found that the focal shift should be independent of LG order, however. Further 

study into the focal shift at a finite port is merited. For starters, one should quantify how 

the focal shift depends on the port size, measured for example by FN . 
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Figure 4.30: Focal shift tuning for a finite-port input beam. Due to the Fresnel 

number of the input port, there is a sizeable focal shift which we corrected for. 

The ratio of field strengths at the taper exit aperture to entrance-sized annulus-in-

air, each tuned as described above, gives the field enhancement, FE , 

exit

entrance
FE max=

E

E
. (4.32) 

I with proper tuning, and for the smallest ODØ , Ag-clad exit apertures that were simulated, 

I calculate FE 45 dB>  should be obtainable for the 0l = , TEM-like mode, corresponding 

to an intensity enhancement of 90 dB. The light at the exit aperture could be a billion times 

more intense than a tightly focused laser beam. Compressing the mode makes it more 

intense, scaling roughly in proportion to the ratio unobstructed areas at the entrance and 

exit apertures. When ODØ 180 nm=  in Figure 4.28-i), there is a clear bifurcation between 

a donut and a Gaussian input. For ODØ 180 nm<  and at 980 nmλ = , the waveguide is 

single mode. Note that for these single-mode waveguides, which can only operate in their 



162 

TEM-like fundamental mode, there are no Fabry-Perot resonances for the 11TE -like  (or 

any higher-order) mode, since it is evanescent below cutoff. The maximum field 

enhancement in that case is, therefore, automatically the shortest tuning length. Replacing 

the Ag with a perfect electrical conductor (PEC), we find single mode behavior for a larger 

ODØ 260 nm< , which is consistent with the textbook formula for cutoff given by 

Equation (4.15). The discrepancy in cutoff between PEC and a lossy metal [141] is due to 

the fields penetrating the metal, the larger mode size results in a redshifted cutoff. Roughly 

speaking, a PEC mode is exactly as large as ODØ , while a lossy metal mode is two 

penetration depths larger. 

4.5 Conclusions 

I have used conformal ALD to fabricate MIM coaxial waveguides with deeply sub-µm 

transverse dimensions and developed a novel nanofabrication process whereby backside 

thinning and electroplating rendered these coaxes optically addressable in a manner not 

previously achieved. We have used a vortex waveplate to generate a radially polarized 

donut beam of 980 nm light and coupled this focused beam into both the fundamental 

TEM-like mode and the first excited 11TE -like  mode. While the coaxes investigated here 

experimentally are large enough to be multi-mode, I emphasize that atomic layer 

lithography boasts bona fide sub-nm-scale control over the transverse dimensions, and by 

choosing different film thicknesses one could easily fabricate much smaller single-mode 

waveguides [204]. This is a direction of future work. 

I also presented simulation results where I studied an adiabatically tapered coaxial 

geometry. In Section 5.4, I propose a direction of future work is to develop fabrication 
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schemes for such a tapered structure. My simulation results show this taper can minify a 

radially polarized donut beam to length scales arbitrarily smaller than the free space 

wavelength, and indeed the resulting field enhancement in this structure diverges as the 

coax is minified below ODØ ~ 40 nm . 
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5 CONCLUSIONS AND OUTLOOK 

Section 1.1 says the aim of this thesis is to “to make nanostructures which confine light to 

smaller scales than the diffraction limit would otherwise allow.” Chapter 2 defines the 

diffraction limit, Chapter 3 describes some tools and methods for that pursuit, and Chapter 

4 covers my experimental progress towards reaching this goal. In light of that problem 

statement, I have compiled the polarimetric imaging and NSOM results jointly into Figure 

5.1, where I plot the size of the transmitted donut (imaged by an optical microscope) vs. 

the physical size of the coaxial structure (imaged with an electron microscope).  

 
Figure 5.1: Optical confinement in the nanocoax. The nanocoax transmits a 

significantly smaller donut than the input beam. 

I processed the V-channels of the polarimetric images (see Figure 4.25-t) to -w) 

and Figure 3.12-f)) using ridge detection in order to determine the transmitted donut size 
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as objectively as possible. Some details about ridgeline detection are given in Figure 5.2. 

Also plotted in Figure 5.1 are dashed lines to illustrate the resolution limits of the far-field 

optical systems, with, in spite of my best efforts in Chapter 2, various values of NA.λ  

Although, especially in view of all of the details considered throughout Chapter 2, there is 

no unambiguously defined optical resolution limit which applies particularly for the 

circumstances of these experiments. Regardless of how the resolution limits are defined, 

Table 2.3, Figure 5.1, especially Figure 4.25-m) through -o), make it clear that the coaxes 

I have fabricated are confining light very close to the conventional diffraction limit. 

Regardless of which limit they are compared to, the transmitted donuts, being broadcast 

from nanocoaxes which sample only an interior annulus of the input beam, are nonetheless 

significantly smaller than the input, shown in green in Figure 5.1. 

 
Figure 5.2: Ridgeline detection. (a) A full HSV color fusion image. (b) the V 

channel only. (c) Ridgeline analysis on the V-channel gives the probability local 

peak V-values. 

 The ridgeline analysis essentially applies a Laplacian filter to the image and seeks 

regions where the -xx  and -curvaturesyy  have opposite signs, and also where one of 

them is much stronger in magnitude than the other. These are the same properties of a 
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mountain ridgeline, and hence the name. The transmitted donut should have a ring-like loci 

of maximum intensity, and the ridgeline analysis allows one to identify that ring in an 

objective way. For example, if one were to draw circles by hand on the ring of peak 

intensity from the central transmitted donut in Figure 5.2-b) and -c), it is clear that the 

ridgeline filtered image gives a much more narrow range of acceptable circles. 

If one were to continue in this project area, here are some topics worth exploring. An 

over-arching goal which motivated this thesis is to make the proposed NCOM [16]. In 

Sections 5.1 and 5.2 I describe two potential pathways of reaching this goal which may be 

worth further consideration. In Sections 5.3 and 5.4 I build off of some of the work 

presented in this thesis and propose an alternative device morphology which would achieve 

the same ultimate goal: super-resolution imaging. 

5.1 3D NCOM: Template-stripped pyramid 

Template stripping is a way to make atomically smooth surfaces of noble metal where the 

roughness-free surfaces admit for longer-range SP propagation lengths [253]. Another 

interesting application for template stripping is the ability to mold 3D shapes out of the 

plane [254]–[256]. Figure 5.3 shows a template stripped Ag pyramid which has been FIB-

milled into a rough version of the NCOM. The pyramidal template was generated by KOH 

etch into Si, with the Ag deposited by PVD afterwards. The hollow Ag pyramids were 

filled with epoxy and then peeled from the Si template to yield ~ 5 µm faceted pyramids 

protruding out from the plane. After peeling, the Ag pyramids were milled into striplines 

with grating couplers, as shown in Figure 5.3-a). Figure 5.3-b) shows an optical micrograph 

where TM-polarized 670 nm laser spot was incident from the top side and a bright spot, 

perhaps from an SP wave, was emitted by the end-point termination of the stripline. 
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Figure 5.3: 3D NCOM from FIB-milled, template-stripped Ag on epoxy pyramids. 

(a) SEM of the stripped pyramid. (b) Optical micrograph showing coupling of 670 

nm laser light. 

5.2 2D NCOM: fanned-out Ag NW 

In many respects, the Ag NW discussed in Section 4.2.1.2 are the ideal starting point for 

nanocoax fabrication, so long as an external metal can be coated conformally. The one 

drawback of using them is that they are cast from solution randomly onto a substrate and 

cannot be patterned/organized very easily. One way of patterning them is by adhering them 

to a transfer resist and then placing them down onto a substrate, much like the alignment 

action of a nano imprint- or photo-lithographic mask aligner [257]. When arranged into a 

converging array, these nanowires can form an NCOM [186], [258]. I once made such an 

arrangement using the Kliendiek probes on our FIB. But I never hit this sample with a laser. 

Especially if done on a thicker ground plane, one could repeat this corralling and then coat 

the external coaxial metal onto 2Ag SiO  NW, as was done in Section 4.2.2.2. Finally, 

FIB-ing open some windows, that person would have a nanophotonic structure rarely 

investigated and worth exploration. 
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Figure 5.4: 2D NCOM by corralling Ag NW. Ag NW were arranged with a 

Kliendiek probe into a 2D converging array. 

5.3 Revisiting Klopfenstein’s taper 

Some time ago, Klopfenstein put forth a theoretically optimal coaxial taper geometry, 

where the optimization target was to minimize the power reflected by the impedance 

gradient along the taper [259]. The tapered coaxial structure discussed in Section 4.4 makes 

no consideration of this whatsoever. It the coaxial ratio of diameters Φ  (see Equation 

(4.02)) of that taper can be described by a pair of nested cones, where at the entrance the 

ratio was 2.24Φ =  and at the exit the ratio was 2. The entrance ratio in my simulations was 

tuned a bit to maximize the in-coupled power from the beamNA 0.31=  input. But very 

little consideration was given to the exit ratio beyond, “2 seems like a reasonable number”. 

The authors of [141] showed, at least for the 11TE -like  mode, that a ratio of 1.6 might 

have a better figure of merit. The authors of [19] showed a ratio of 1.25 works well for the 

TEM-like mode. But note both of those ratios are themselves particular to the actual value 

of ODØ  compared to λ  and furthermore on λ  itself. And regardless of the ratio, my 

simulations still demonstrate the fundamental point, which is the potential for unlimited 

confinement in the TEM-like mode. Others have considered optimized taper geometries at 
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THz frequencies [260], but I believe a computational work to optimize a coaxial taper for 

visible frequencies is another worthwhile pursuit. One could start by linearly tapering the 

impedance, which in Equation (4.11) is proportionate to lnΦ , so that the actual geometry 

of the nested “cones” is nominally exponential. 

5.4 Proposed taper fabrication scheme 

Section 4.2.1.1 alluded to some recent work which may prove useful for coaxial 

fabrication. I believe that tapered coaxes can be made in a similar fashion to the approach 

of Section 4.2.3, but mixing in the “growth” idea from Section 4.2.2.1. Perhaps the biggest 

challenge to fabricating a tapered nanocoax lies in the varying insulator thickness. ALD, I 

believe, cannot be used to generate this geometry (at least not easily), since it coats a 

conformal, constant thickness layer. The same could be said about homogenous PVD. 

Figure 5.5 sketches a proposed taper fabrication scheme, wherein a varying angle of 

deposition unlocks that varying insulator thickness. To start, as shown in Figure 5.5-a), one 

would need a retrograde hole etched into Si. For simplicity, suppose that the hole is conical 

so that the sidewall slope is constant through, set by the retrograde angle β . If directional 

deposition (such as thermal or e-beam deposition) is done at a tilted angle θ β>  (and 

rotating at a sufficiently “fast” ω , as drawn in Figure 5.5-b)), then the deposited film will 

not coat the bottom section of the conical hole, stopping somewhere along the length where 

the rim makes its “shadow”. The key is to sweep this shadow along the length of the cone 

by “slowly” varying the tilt angle, ( )tθ θ= , so that thin depositions (or none at all) result 

on the bottom of the conical hole with gradually thicker depositions at the top of the hole. 

A similar procedure is repeated for the insulator, shown in Figure 5.5-c). Finally, a zero-
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tilt deposition of the final metal would plug-up the hole to make a solid core. Finally, the 

same bonding and backside thinning steps as before could be employed to get a double-

open-ended, tapered MIM nanocoax. 

 
Figure 5.5: Proposed taper coaxial fabrication scheme. (a-d) Compounded angle 

deposition, where the “fast” rotation ω  is combined with the “slowly” varying 

( )tθ  to make a film thickness which varies along the length of a taper due to the 

shadowed deposition. 
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