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Executive Summary 

In response to eelgrass habitat losses associated with development and marine activities in and 
around Nantucket Harbor, the Nantucket Land Council became interested in restoring eelgrass.  
One approach was to establish a meadow by transplanting eelgrass to previously vegetated 
areas.  An experimental eelgrass planting was conducted in June and July, 2010 in Nantucket 
Harbor following a site selection process that included surveys and light measurements.  Areas 
where eelgrass had thrived in the past, but now appeared to be absent based on aerial 
photographs and local accounts, were surveyed in early spring 2010 with assistance from 
Harbormaster Dave Fronzutto and town biologist Tara Riley.  Our surveys confirmed that most 
of the sites appeared to have abundant eelgrass seedlings at that time, and so were eliminated 
from consideration for subsequent experimental planting.  Three potential sites were further 
examined, including a comparison of bottom type, relative current speed and light availability.  
After review of the data, one site was selected for planting due to its low to moderate tidal 
current and highest light availability (18.1% of ambient).  The planting site is located about 
1,000 meters southwest of the inlet to Polpis Harbor, just offshore of the bluff at the border of 
Quaise and Polpis, in slightly deeper waters than existing eelgrass beds. 

The planting area was populated with local eelgrass shoots, sustainably harvested from an 
extensive bed within the Harbor with assistance from trained volunteers.  Over 6,000 eelgrass 
shoots were collected from this donor site, located just west of First Point and near the inlet to 
Nantucket Sound. Four weeks following collection, impacts from our collection were shown 
by a 24% decline in shoot density, but live eelgrass cover did not decline significantly. After 12 
weeks, no effects of collecting could be measured at the donor site for shoot density or cover, a 
result supported in the literature by others using donor beds for eelgrass restoration in our 
region.  We returned to the site after 13 months and again found no collection effect. 

Plants had difficulty establishing within the restoration area due in part to extensive 
phytoplankton and macroalgal blooms that dramatically shaded the transplants for the initial 
three months following transplanting.  After the first growing season, few of the 6,000 plants 
had survived, but those plants that survived became well established and grew through the 
second growing season in 2011.  The significance of the macroalgae was documented through 
estimates of percentage cover, whereas light measurements showed the decline in water clarity 
from phytoplankton blooms to less than 10% ambient.  Combined with our planting and 
monitoring results, our observations suggest that reestablishment of eelgrass beds in Nantucket 
Harbor is not limited by the distribution of seedlings, but by shading from phytoplankton and 
macroalgal blooms that resulted in levels of light too low to support eelgrass establishment 
during the summer months in 2010.
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Eelgrass Habitat Creation 

in Nantucket Harbor, Massachusetts  

 

Introduction 

Eelgrass, Zostera marina, is a rooted vascular plant of subtidal habitats that is known to 

support many valuable ecosystem functions, from essential fish habitat such as bay scallops 

to improvement of water quality (Thayer et al. 1984).  Nantucket Harbor supports extensive 

eelgrass beds and has one of the few remaining bay scallop fisheries in Massachusetts. 

However, eelgrass beds in some areas of Nantucket have begun to decline and other areas 

have been impacted by development and marine activities. To investigate the possibility of 

increasing eelgrass habitat, The Nantucket Land Council (NLC) has engaged restoration 

scientists from the University of New Hampshire Jackson Estuarine Laboratory (JEL).   

As a first step, we have examined the feasibility of using transplants to reestablish eelgrass 

where it had thrived in the past.  Creation of eelgrass beds is difficult and there are more 

failures than successes described in the literature, so site selection is important (Thom 1990, 

Fonseca et al. 1998, Short et al. 2002).  However, success rates appear to be improving in 

estuaries where water quality is improving (Boston Harbor: Leschen et al. 2008; 

Narragansett Bay: SaveTheBay 2009).  Working with NLC and the Town of Nantucket we 

surveyed areas shown to have lost eelgrass in the past throughout the Harbor to choose a 

planting site.  A moderately shallow area off of Polpis, shown to have fairly good light 

conditions in April 2010, was chosen as the best site that did not already have eelgrass 

seedlings. In June and July of 2010 we worked with the NLC and volunteers from the 

UMASS field station to collect and transplant approximately 6,000 eelgrass shoots using 

two frame methods.  The team planted approximately 6,000 square feet of marine bottom 

with 120 planting frames totaling over 6,000 eelgrass plants in 2010.  Impacts to the donor 

site and transplant success were assessed in 2010 and 2011 and are reported herein. 
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Methods 

Planting Site Selection 

Rigorous evaluation of potential sites is critical to site selection and ultimate restoration 

success (Thom 1990, Short et al. 2002). We based our initial review of potential restoration 

sites upon comparison or the latest aerial imagery (MassGIS, 2001, 2003, 2005) and the most 

up-to-date mapped areas of eelgrass resources (MassDEP 2006) that were generated in 1995 

and 2001.  On site observations were conducted with the help of harbormaster David 

Fronzuto on March 25, 2010 and led us to narrow the search to three potential locations for 

eelgrass habitat creation (Figure 1).  At each potential restoration site we deployed light 

sensing data loggers (HoboTM pendants) to evaluate available light within the water column.  

Light is critical to eelgrass bed success (Short et al. 2002) and we compared proposed sites 

for light data collected from mid-March to mid-April.  

Eelgrass donor site and collection  

Several areas within the Harbor were evaluated for their potential to serve as donor beds. 

Donor site harvesting is an accepted approach for use in seagrass restoration that has been 

successfully employed at many locations throughout the northeast by a variety of groups, 

each demonstrating no long-term impacts to the donor bed (Davis and Short 1997, Leschen 

et al. 2007).  The key to sustainable use of donor sites lies in careful site selection and 

adherence to several critical selection criteria and collection protocols, as outlined below.  

The donor site chosen was located in the outer harbor on the western shore of the First Point 

along Coatue, opposite from Brant Point (Figure 1). The bed had an eelgrass cover averaging 

over 80%, with a stem density averaging 490 shoots per square meter.  Prior observations of 

the bed from surveys conducted in 1995 and 2001 (MassDEP 2006) suggest eelgrass 

coverage has been persistent at this location. Therefore, with more than 50% cover and 

documented persistence, it was deemed acceptable for use as a donor bed following new 

state recommendations  (Evans and Leschen 2009). Following assessment of cover and stem 

density, plants were harvested directly for transplanting. 
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Figure 1. Potential areas for eelgrass creation sites (green) and donor bed (open circle).  One 

reference site was established adjacent to the donor site, while another was established 
adjacent to the planting site.   
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Shoot collections were led by JEL scientists and aided by NLC staff and volunteers from the 

UMASS Field Station that received on-site training.  Harvesting of plants was conducted 

entirely by hand and resulted in no greater than 20% of shoots removed from the bed.  The 

collection process was methodical, with all participants harvesting plants distributed across 

the entire bed surface to minimize localized harvesting impacts.  To obtain viable shoots for 

transplanting, selected plants were separated from the rhizome by hand after a small clump of 

3-5 shoots was pulled from the sediment.  Each shoot was snapped off the rhizome about two 

internodes below the youngest root node.  This provides a viable shoot with minimal 

disturbance to the sediment. Plants were collected from the donor site and bound in sets of 

fifty plants.  Plants were tied to frames and installed on the bottom on the same day or the 

day following collection. 

In order to characterize the collection impacts to the donor bed, eelgrass was monitored for 

cover and shoot density (Table 1).  The boundaries of the donor and reference areas (each 7 

by 20 meters) were established using WAAS-corrected GPS and marked in the field with 

PVC stakes.  Twelve randomly chosen locations in the donor bed were assessed at four 

intervals: before collections (June 2010), 4 weeks following collections (mid-August), at the 

close of the growing season (mid-October), and once again in mid-August, 2011.  For 

percentage cover, 1 m2 quadrats were placed on the bottom and visual estimates of eelgrass 

and algae were made.  A smaller 0.1 m2 quadrat was placed at the center of the larger quadrat 

and shoot density was counted.  Similar monitoring was performed on the same dates from 

an adjacent reference bed where no eelgrass was collected for transplanting.   

 

Table 1. Sampling associated with experimental eelgrass planting in Nantucket Harbor. Twelve 
replicates (1m2) were collected for the donor/reference site (9.2% of area) and 20 were collected for 
the planting/reference sites (3.5% of area). 

 
Sample Area Existing 

Conditions 
4 weeks 

(mid-Aug. 2010) 
12 weeks 

(mid-Oct. 2010) 
Year 2 

(mid-Aug. 2011) 
Donor Site Cover/Shoots Cover/Shoots Cover/Shoots Cover/Shoots 
Donor 
Reference 

Cover/Shoots Cover/Shoots Cover/Shoots Cover/Shoots 

Planting Site Cover Cover Cover Cover 
Planting 
Reference 

Cover Cover Cover Cover 
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Eelgrass planting and monitoring 

There have been many techniques for planting eelgrass developed over the past 20 years.  

Each technique possesses unique benefits and drawbacks such that no one method suits all 

sites or conditions equally.  After careful consideration of our site conditions and specific 

project goals, we elected to employ two different frame-based planting methods described 

below.   

Review of various transplanting methodologies shows that shoots are often planted too deep 

in the sediment or too shallow so they are loosened and lost through typical wave action. 

When planted in clumps, the sediment often becomes anoxic after re-planting and impacts 

survival.  An alternative method involves tying pairs of rhizomes to coated wire frames, 

known as TERFS ™ (Short et al. 2006).  This approach allows very shallow planting depths 

to minimize exposure to anoxic sediment conditions, yet protects the plants from becoming 

dislodged by waves or bioturbation (Short et al. 2006).  In this method, crepe paper is twisted 

tightly to form rapidly biodegradable ‘string’ that holds rhizomes to the frame, while the 

frame itself is brought into close contact with the sediment using retrievable metal wire 

staples (Figure 2). 

Eelgrass planting and reference sites were assessed for cover of plants at four intervals: 

before planting, and one, three and thirteen months following transplanting.  A 30 by 30 m 

grid was used to choose 20 random 1 by 1 meter locations prior to transplanting.  Following 

transplanting a 22 by 30 m grid was used (the size of the actual transplanted area) to generate 

20 random sampling locations.  At each location the percentage cover of eelgrass and 

different types of dominant macroalgae were estimated and recorded, as well as any obvious 

invertebrates (e.g., scallops). 
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Figure 2. Original TERFTM unit deployed with attached eelgrass in Bellamy River, NH. 

 

TERFSTM were originally constructed from plastic-coated wire mesh (typically used for 

lobster and crab traps; Short et al. 2006) with bricks along two edges to hold the structure to 

the marine bottom.  Depending upon site conditions, a modified frame can be employed 

which lack the sides shown in Figure 2.  These modified TERFSTM are simply coated wire 

frames held in place with bent wire staples.  In either case, transplanted eelgrass plants will 

establish within six to eight weeks.  Rooted plants have rooted in the sediment and the crepe 

is dissolved, so the frames and staples can be carefully removed and used again, leaving no 

permanent materials behind at the site.   

In Boston Harbor, TERFSTM were modified using biodegradable jute mat fastened to a frame 

of PVC pipe (Figure 3) and stapled to the sediment (Leschen et al. 2007).  In this new 

adaptation, the jute is released from the frame and only the frame and staples are removed 

once plants become established after several weeks.  This allows the jute to remain and 

continue protecting the plants until it slowly degrades.  We used two types of frames that 

held 50 shoots each: the flat, coated wire frames and the newly developed PVC with jute 

frames.  
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Figure 3. Planting frame developed by Leschen and colleagues (2007).   
 
Typically, 50 plants are attached to each frame that is affixed at the center of an area that is 50 

square feet.  In our application, 120 frames were used over a 6,000 square foot area (one 

planting frame every 50 square feet).  Following planting, the successful eelgrass transplants 

are distributed in small patches that will coalesce over a period of one to several growing 

seasons, dependant upon local conditions (Short et al. 2006, Leschen et al. 2007). 

 
Statistical Analyses 

Data were input to excel spreadsheets and imported to JMP for statistical analysis using 

monitoring area and period as fixed effects in a two-way Analysis of Variance (ANOVA) of 

dependent variables (eelgrass and algal cover, shoot and scallop density).  Effects were deemed 

statistically significant using an alpha of 0.05.  Residuals were examined for outliers, normal 

distribution and evenness of variance to assure assumptions of parametric statistics were met.  

For analyses of the eelgrass donor sites, algae and bare sediment cover were square root 

transformed; other variables met assumptions.  For analyses of planting sites, eelgrass cover was 

ranked; scallop density, cover of Codium and cover of Gracilaria were log transformed; and 

Lyngbya and total algae cover were square root transformed.  Post hoc differences between 

means were tested using Tukey’s when main and interactive effects were significant in 

ANOVA. 
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Results 

Planting Site Selection 

To increase the likelihood of success, we carefully reviewed general site information and 

light data collected from the three potential planting sites.  Our field survey on March 25, 

2010 found abundant eelgrass plants throughout the majority of the potential planting sites 

we visited (some sites appeared to be re-colonizing from seedlings), leaving only three 

potentially suitable sites for transplanting as shown in Figure 1.   

Further examination of site conditions revealed that two of these three would ultimately be 

unsuitable.  The Head of the Harbor Site (planting site #3, just west of Wauwinet) had fairly 

poor water quality as demonstrated by the light logger data (12.3% of ambient) and was 

therefore removed from consideration.  Planting site #2, at Pocomo Head, had better water 

quality (17.4% of ambient light), but was continually subject to strong water currents.  In the 

past, we have found strong currents hinder transplant establishment by undercutting and 

eroding the sediment from beneath the sampling frames. Currents could also exacerbate 

problems with drift algae and debris becoming caught on the planted eelgrass and frames.  

Therefore, this site was also removed as a potential planting site.   

Planting site #1 had the best water quality during the pre-planting monitoring period (April 

2010) with 18.1% of ambient light.  Yet this location also demonstrated potential limitations 

to success.  We were concerned that invasive macroalgae (primarily Codium fragile) could 

interfere with planting and expand into planted plots, hindering eelgrass survival and growth.  

Nevertheless, this location represented the best overall site conditions and met all other 

restoration area requirements (i.e., total area, water depth, etc.) based on existing conditions 

within the harbor in 2010.  The selected planting site and a reference area 200 meters to the 

west were marked using temporary stakes and existing conditions were assessed.  Resulting 

data were summarized and provided to the Nantucket Conservation Commission and Marine 

Department for review and comment prior to planting.  Light meters were also deployed in 

June and show the relative light environment at the planting site and its reference (Table 2).  

Light levels had declined in summer and were much lower at the planting site compared to its 

reference, despite being so close to one another and occurring at similar depth.    



 

9 

Table 2. Comparative light environment 20 cm above the marine bottom for 
potential and selected eelgrass planting sites in Nantucket Harbor.  Light intensity is 
reported as average lumens/ft2 from 10 AM to 2 PM on days with low tides 
occurring during the mid-day period relative to control sensors placed out of the 
water, reduced by 20% to correct for light scatter (Carruthers et al. 2001). 

April 2010 Intensity 
(lum/ft2) 

Light  
(% of Control) 

Site 1 1,950 18.1% 
Site 2 1,870 17.4% 
Site 3 1,324 12.3% 
Control 10,790   
June-July 2010     

Planting Site 1 1,287   9.4% 

Planting Reference 2,335 17.0% 

Control 13,698  

 

Harvesting and Planting 

We received invaluable volunteer assistance from the NLC as well as volunteers organized 

and provided by the UMASS field station in harvesting, planting and monitoring the donor 

and planting sites (Figure 4). In total, 6,050 plants were collected and 120 frames were set 

with plants and installed at the planting site using two types of frames (Table 3).  The 

majority of frames were removed on August 12th (seven weeks or more after installation) 

with the help of Chris Fuller, a local diver.  However, several frames were left for later 

retrieval in early fall 2010 to allow more time for transplants to better root and establish.  By 

mid-October, all frames deployed had been removed from the Harbor. 
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 Figure 4. Volunteers learning how to tie eelgrass shoots to frames.   

 
Table 3. Plant collection and planting schedule 

Date # Shoots # Frames Deployed 
Deployed Collected Jute Wire 
6/16/10 300 6 0 
6/22/10 2100 2 8 
6/23/10 1850 21 19 
6/24/10 0 13 15 
7/15/10 1800 14 22 

Total 6050 56 64 

 

Donor Site Assessment 

The donor site and adjacent reference site were each assessed for eelgrass cover and density 

as well as algal cover at 12 randomly selected locations in June, August and October 2010 

and again in August 2011.  Eelgrass was the dominant cover for both sites and most sample 

dates (Figure 5).  In June 2010, live eelgrass was mixed with minor amounts of dead eelgrass 
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and bare sediments in both donor and reference locations (Figure 5, Table 4).  In August 

following eelgrass collections, the cover of live eelgrass declined about 6% and drift 

macroalgae increased 20% in the donor area.  However, similar changes were noted in the 

donor reference area (eelgrass cover fell 16% and algae increased 15%; Figure 5), likely the 

result of seasonal water quality decline throughout Nantucket Harbor.  Sampling took place 

again in October, approximately three months following the final donor plant collection.  As 

the season progressed, macroalgae increased and reached similar percentage of cover 

compared to eelgrass (Figure 5, Table 4).  Cover of live and dead eelgrass, algae and bare 

sediment were very similar between donor and reference sites in October 2010.  In August 

2011, we observed more bare sand and less macroalgae, but similar amounts of eelgrass 

coverage in comparison to August 2010.  Despite noted changes in species composition and 

cover types over the observation period, no effects of donor collections were found for any 

of the measures of cover from August 2010 to 2011 (Figure 6).  In fact, the live eelgrass 

cover 13 months following the collections appeared to be greater than its reference, but the 

difference was not statistically significant. 

 

Figure 5. Cover of eelgrass and algae in the donor and reference areas before (June 15) and after 
(August 18 2010, October 13 2010, and August 18 2011) eelgrass collections. 
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Table 4. Eelgrass cover and stem counts in the donor and donor reference sites.  Each mean represents 12 randomly located 
replicates within a 7 by 20 meter area; Quadrat size for % cover and invertebrates was 1 m2; Quadrat size for stem # was 0.1 m2. 
 

Collection 
Station 

Date (2010) Live 
Eelgrass 

Dead 
Eelgrass 

Algae Bare Shoots 
(# / 0.1 m2) 

Scallops 
(# / m2) 

Donor Site         
Mean   June 15 81.7 8.8 2.2 7.3 49.1 0.8 
St Dev 2010 5.4 4.5 1.4 3.3 12.0 1.0 
Donor Ref        
Mean  June 15 92.9 3.8 1.2 2.2 35.5 0.8 
St Dev 2010 2.6 1.7 1.4 1.9 8.6 1.1 
Donor Site        
Mean   August 18 69.6 1.7 22.9 5.8 36.9 3.3 
St Dev 2010 6.6 2.5 8.1 3.6 5.8 6.5 
Donor Ref        
Mean  August 18 77.1 2.5 16.7 3.8 38.3 1.8 
St Dev 2010 8.9 2.6 8.3 3.1 5.5 3.9 
Donor Site        
Mean   October 13 44.4 4.8 46.4 4.3 29.1 1.2 
St Dev 2010 7.2 3.6 8.5 6.4 9.8 0.7 
Donor Ref        
Mean  October 13 41.3 8.5 48.9 1.3 25.2 1.6 
St Dev 2010 6.2 6.3 5.1 2.6 6.7 2.1 
Donor Site        
Mean   August 18 75.4 2.7 3.2 18.8 64.3 0.6 
St Dev 2011 9.2 2.0 3.3 9.9 13.0 0.7 
Donor Ref      3.8  
Mean  August 18 69.8 2.9 4.7 22.2 66.7 0.3 
St Dev 2011 12.3 2.7 4.4 10.5 12.8 0.7 
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Figure 6. Live and dead eelgrass, algae and bare sediment cover at the Donor and associated Reference site.  Bars with different letters denote 
significant differences using Tukey’s post hoc test following a two-way ANOVA where the site by date interaction term was significant (except 
for bare sediment cover; p=0.0736).
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As one might expect, a short-term decrease in eelgrass shoot density was observed in 

sample plots immediately following donor plant harvest (Figure 7, Table 4).  Average shoot 

number in the reference area was similar on the first two dates, while shoot number in the 

donor area declined following collection of approximately 6,050 shoots.  The donor area 

encompassed 140 m2 and we estimate it originally had 68,600 shoots; after collection the 

second assessment was used to estimate 51,800 shoots (24% decline).  While variability in 

data collection may be responsible for some of the decline in shoot number (we 

extrapolated from 0.1m2 quadrats using twelve plots), many lateral shoots were discarded or 

not counted with the 6,050 shoots used for planting.  This is because only terminal shoots 

are counted for planting whereas terminals and laterals cannot be distinguished and are both 

counted in when counting stem density in underwater plots.  We were able to measure an 

immediate effect of the collection in a two-way Analysis of Variance (i.e., probability of no 

interaction effect was low: P= 0.0065).  However after three months of re-growth and 

recovery, no differences were found between donor and reference sites (13 October; Figure 

7).  Monitoring continued in mid-August 2011 and documented a strong rebound in shoot 

density at both areas, illustrating no long-term impacts to the donor bed following harvest. 

 
Figure 7.  Number of eelgrass shoots in 0.1 m2 quadrats collected at donor and adjacent reference 

areas before (June 15) and after (August 18 2010, October 13 2010, and August 18 2011) 
eelgrass collections.  Mean values +/- SE; different letters over bars denote shoot density was 
significantly different, based on Tukey’s post hoc means test.
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Planting Site Assessment 

Eelgrass and algal cover were assessed at the planting and reference sites before (June 

2010) and after planting (August and October 2010, August 2011) to assess the planting 

effort (Figure 8).  In August 2010, one month following planting, eelgrass cover increased 

from 0.1 to 0.4% at the planting site, but the increase was not statistically significant (Table 

5a and b).  Eelgrass cover at the reference site varied from 43 to 59% by date, but this 

variation was not significant based on Tukey’s post hoc test (Figure 9).  The only difference 

found was clear: the planted site averaged significantly less eelgrass than the reference site 

(0.3 vs. 51%, Figure 9).  The shallower edge of the planted bed was observed to have better 

planting success: 10 adjacent 1m2 plots contained an average of 1.9% eelgrass cover in 

August 2011. 

Because algae compete with eelgrass for light and growing space, we also assessed the 

cover of algae. The two-way ANOVA found that the cover of total algae varied 

significantly by site, date and their interaction, meaning that changes in algal cover over 

time differed between the planted and reference areas. When surveyed in June prior to 

planting, the proposed planting site had about 16% cover of Codium and other algae while 

the reference site had 7% algae (Table 5a).  At the planted site, Codium fragile, an exotic 

green alga which covered 14% of the seafloor in June, expanded to 19% cover in August 

and was joined by the exotic red alga Gracilaria tikvahiae (7% cover) and a blue green 

alga, Lyngbya spp. (25% cover; Table 5b).  The blue green presented significant problems 

for eelgrass survival because it formed a mat over the live plants, completely covering many 

of them and leading to high mortality within weeks of planting.  Although lowest in actual 

percentage cover, Gracillaria also presented a significant challenge to planting units 

because it rolled along the marine bottom like tumbleweed and collected on anything fixed 

(i.e., eelgrass frames as well as the plants themselves).  By October, the cover of total algae 

had continued to increase, with almost 70% cover at the planting site (Table 5b, Figure 9).  

Cover of live eelgrass at the planting reference site averaged 47% in June with only 7% 

cover of macroalgae (Figure 8, Table 5).  By August, macroalgae increased to over 40% 

cover, with most of the algae being Lyngbya.  By mid-October, live eelgrass cover had 

rebounded to 59% and algal cover fell to 23% at the reference bed (Figure 9).  It is not clear 
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why macroalgae declined in cover by October or why the light levels were so much higher 

at the reference bed.  However, the rebound of eelgrass in October might have been related 

to greater light levels reaching the plants (i.e., less shade from algae).  Cover of all algae 

likely declined in winter, and when the sites were sampled again in August 2011, 

differences in algae cover between planting and reference sites continued (54% in planting 

but only 13% in reference area; Figure 9).  

In addition to macroalgal competition, eelgrass must compete for light with phytoplankton.  

We found that water clarity was severely reduced by phytoplankton soon after planting.  

Light data from June and July demonstrated a significant decline in light penetration to the 

sea floor when compared with April data, falling by half to well under 10%, (representing 

the lower limit for eelgrass (Duarte 1991, Short et al. 1995). Phytoplankton blooms noted in 

July appeared to worsen at the planting site in August, darkening waters from orange-

yellow to rusty-red and reducing visibility to less than three feet.  In June, light meters were 

deployed at our planting reference bed and found light levels about twice as high compared 

to the planting site, even though the two light meters were only 200 m apart (Table 2).  Both 

macroalgae and phytoplankton appear to have had significant negative impacts on light 

resources and eelgrass survival at the planting site. 

 
 Figure 8. Cover of eelgrass and algae in the planting site and reference bed from before (June 16) to 

after planting (4 weeks: August 19; 12 weeks: October 13; and 13 months: August 17 2011). 
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Table 5a. Eelgrass and algae cover in planting and reference sites before planting*.  

Planting Sites Date  
(2010) 

Live Z. 
marina 

Dead Z. 
marina 

Other 
Algae 

Codium Scallops 
(#/m2) 

Comments 

Planting Site #1 (30 x 30 m)       
Mean  June 16 0.1 0.0 2.3 14.2 0.0 Many slipper shells (Crepidula) 
St Dev  0.3 0.0 3.9 16.5 0.0  
 
Planting Reference Site         

      

Mean June 16 47.3 11.2 5.2 1.8 0.2 Bittium snails common;  
St Dev  20.7 9.7 8.1 5.4 0.5 A few slipper shells 

 
*Each mean represents the average of 20 randomly located replicate quadrats of 1m2 in size 
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Table 5b. Eelgrass and algae cover in planting and reference sites after planting*.  
   Live Z. 

marina 
Dead Z. 
marina 

Codium  Lyngbya Gracillaria Bare Scallops 
(#/m2) 

Comments 

Planting Site #1 (22 x 30 m)         
Mean  Aug. 19 2010 0.4 0.0 19.2 24.7 7.1 48.7 0.1 Many slipper shells 
St Dev  0.9 0.0 21.4 20.7 12.7 32.1 0.2  
Planting Reference Site         
Mean  Aug. 19 2010 43.3 ** 2.2 38.8 0.7 15.5 0.9 A few slipper shells 
St Dev  13.6  4.7 9.4 1.6 12.0 1.0  
          
Planting Site #1 (22 x 30 m)         
Mean  Oct. 13 2010 0.3 3.7 23.8 45.6 0.0 26.7 0.0 Many slipper shells  
St Dev  0.6 4.6 12.0 27.9 0.0 28.9 0.0 Lyngbya still dominant 
Planting Reference Site         
Mean  Oct. 13 2010 59.0 2.6 0.7 22.3 0.3 15.5 0.7 A few slipper shells 
St Dev  15.1 2.5 1.6 10.4 1.1 12.0 1.0  
          
Planting Site #1 (22 x 30 m)         
Mean  Aug. 17 2011 0.4 0.6 31.5 1.8 20.6 45.2 0.0 Many slipper shells 
St Dev  0.9 0.8 20.1 3.7 22.9 27.8 0.0 More algae in deeper 

part of bed 
Planting Reference Site         
Mean  Aug. 17 2011 54.6 11.5 0.0 1.3 11.5 21.2 0.6 Slipper shells common 
St Dev  19.0 9.3 0.0 4.6 8.8 20.9 0.7  

 
*Each mean represents the average of 20 randomly located replicate quadrats of 1m2 in size 
**Cover of dead eelgrass was included with the estimates of live cover for this date  
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Figure 9. Cover of eelgrass and algae and scallop densities in planted and reference areas before (June 2010) and two months (August 2010), four 
months (October, 2010) and thirteen months after planting (August 2011).  Bars with different letters indicate significantly different means 
following a two –way ANOVA and Tukey’s post hoc test.  
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Figure 10. Cover of different alga genera in planted and reference areas before (June 2010) 

and two months (August 2010), four months (October, 2010) and thirteen months after 
planting (August 2011).  In June, we noted ‘other algae’ besides Codium and these were 
primarily Gracilaria.  Bars with different letters indicate significantly different means 
following a two–way ANOVA and Tukey’s post hoc test. 
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Discussion  

An experimental eelgrass planting was conducted in June and July, 2010 in Nantucket 

Harbor following a site selection process that included field surveys, light measurements 

and observations of bottom type, bathymetry and water current.  Areas of recent eelgrass 

loss were examined, but most of the sites appeared to have abundant eelgrass seedlings and 

so were eliminated from consideration. Light is often limiting for eelgrass (Dennison et al. 

1993), so Planting Site 1, which had the most light (18.1% of ambient), was selected as the 

planting site.    

In order to provide plants for the experimental transplanting, over 6,000 eelgrass shoots 

were selectively harvested from a 140 m2 area within an extensive bed in Nantucket 

Harbor, located just west of the First Point of Coatue, near the inlet to Nantucket Sound. 

Four weeks following the final collection, impacts from our collection were shown by a 

24% decline in shoot density, but live eelgrass cover did not decline significantly. After 12 

weeks, no effects of collecting could be measured at the donor site for shoot density or 

cover, a result supported in the literature by others using donor beds for eelgrass restoration 

in our region (Davis and Short 1997, Leschen et al. 2007).  We returned to the site after 13 

months and again found no collection effect. 

Two planting techniques were used, divided approximately equally across the site, using 

metal wire frames (western half) and PVC pipe frames with jute (eastern half).  Overall, 

120 frames were deployed with 6,000 plants over an area of 7,200 square feet, about 70% 

of the 10,000 square foot area proposed.  Plants had difficulty establishing, with intense 

phytoplankton and macroalgal blooms shading the transplants the initial three months 

following transplanting.  After the first growing season, few of the 6,000 plants had 

survived.  Many of the frames had only one or two surviving plants, but several had a half-

dozen or more shoots that became established.  The poor survival of the plants prevented 

us from using statistical methods for comparing success between the two frame types (jute 

versus metal) but no differences were noted.   

.   



 

 22 

The significance of the macroalgae was documented through estimates of percentage 

cover, whereas light measurements showed the decline in water clarity from phytoplankton 

blooms to less than 10% ambient.  Our pre-restoration monitoring indicated light intensity 

was sufficient at this site to support eelgrass transplants.  However, by mid-summer light 

levels declined and macroalgae began to foul the plants, creating poor conditions for 

eelgrass establishment and resulting in high mortality.  In August, Codium increased to 

19% cover, and Gracilaria grew to 7% cover, but the worst impact was from a 

filamentous-forming blue-green bacterium of the genus Lyngbya.   

Lyngbya appears as dark green strands growing on the bottom and attached to seagrass.  It 

is known locally as witch’s hair (personal communication with Chris Fuller), and can 

easily be misidentified as a macroalgae.  When we returned in August following planting, 

Lyngbya covered 25% of the planting area, increasing to 46% cover in October and 

forming complete mats over the planted eelgrass, smothering it.  Lyngbya blooms appear to 

be infrequent in marine environments, with a much-studied bloom of Lyngbya majuscula 

in Moreton Bay, Australia that smothered seagrass beds and posed human health risks and 

tourism impacts (Watkinson et al. 2005).  Florida has harbored Lyngbya blooms on both 

coasts, affecting seagrass beds in Sanibel and Captiva Island embayments (Paerl et al. 

2008), and covering coral reefs along the southeastern coast (Paul et al. 2005). 

The following summer, Lyngbya was present, but we did not observe the thick coverings 

on our planted eelgrass or on eelgrass at the reference meadow.  Instead we found over 

20% cover of Gracilaria in August 2011 at the planting site (Table 5b).  This seaweed 

presents a different challenge since it moves along the bottom and fouls anything fixed, 

such as rooted seagrass.   A variety of studies have shown Gracilaria blooms fueled by 

discharge of groundwater nutrients compete with eelgrass for light and is associated with 

eelgrass declines in the region (Short and Burdick 1996, Hauxwell et al. 2003, Short et 

al. 2006, Fox et al. 2008).   

In the case of Nantucket Harbor, it appears that a combination of macroalgae (Codium 

and Gracilaria), blue-green bacteria (Lyngbya) and phytoplankton blooms have severely 

impacted eelgrass transplants at Site 1 and may be responsible for general eelgrass 
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declines in the Harbor. The rapid blooms in macroalgae and phytoplankton are likely the 

result of nutrient additions to the Harbor through groundwater. Although no specific 

change analysis was made for Nantucket Harbor in a recent report by Costello and 

Kenworthy (2010), they found a general decline in eelgrass cover throughout 

Massachusetts bays, except where nutrient loading was decreased.  Sites in Boston 

Harbor and Gloucester expanded in eelgrass coverage (Costello and Kenworthy 2010), 

and in Boston, planted eelgrass restorations were successful (Leschen et al. 2010).  

In March 2010, we made observations of eelgrass seedlings throughout the Harbor, 

including many areas thought not to contain eelgrass (based on aerial photographs, MASS 

GIS eelgrass distributions, and local knowledge).  Combined with our planting and 

monitoring results, our observations suggest that reestablishment of eelgrass beds in 

Nantucket Harbor is not limited by the distribution of seedlings, but by shading from 

phytoplankton and macroalgal blooms that resulted in levels of light too low to support 

eelgrass establishment during the summer months in 2010.  Further trials to establish 

eelgrass could focus on planting early in the season (mid-spring) ahead of algal blooms.  

However over the long term, eelgrass may continue to decline in the Harbor from 

phytoplankton and macroalgal competitors that bloom in response to nutrient enrichment.  

To prevent further losses, we recommend: 1) prevention of physical damage to beds from 

development and marine activities such as losses from mooring chains; and 2) assessment 

of nutrients entering the Harbor through groundwater and other sources followed by 

development of a long-term program to reduce nutrient loads to the Harbor.   
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Appendix 1. Raw light and temperature data from Hobo™ light meters and loggers from a) April; 

and b) June/July deployments in 2010.  Note that ambient daytime temperatures are high, due to 

being in direct sunlight. 

a)  April 2010 

  

  
 
 
b) June-July 2010 
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