
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

January 2020

PROTECTING AGAINST MALICIOUS LOGINS ON VIRTUAL PROTECTING AGAINST MALICIOUS LOGINS ON VIRTUAL

MACHINES USING BLOCKCHAIN MACHINES USING BLOCKCHAIN

Sarthak Sharma

Lovepreet Singh

Yegappan Lakshmanan

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Sharma, Sarthak; Singh, Lovepreet; and Lakshmanan, Yegappan, "PROTECTING AGAINST MALICIOUS
LOGINS ON VIRTUAL MACHINES USING BLOCKCHAIN", Technical Disclosure Commons, (January 09,
2020)
https://www.tdcommons.org/dpubs_series/2858

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Technical Disclosure Common

https://core.ac.uk/display/286130755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2858?utm_source=www.tdcommons.org%2Fdpubs_series%2F2858&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5927X

PROTECTING AGAINST MALICIOUS LOGINS ON VIRTUAL MACHINES
USING BLOCKCHAIN

AUTHORS:

Sarthak Sharma
Lovepreet Singh

Yegappan Lakshmanan

ABSTRACT

Presented herein are techniques that involve utilizing a blockchain-based

methodology that provides a defense against rollback attacks on a virtual machine and is

scalable for other application areas. In one example, a solution is provided to avoid

rollback attacks during restoration of a virtual machine under the assumption of a malicious

host and hypervisor. Techniques presented herein also address problems associated with

an untrusted host under certain assumptions.

DETAILED DESCRIPTION

Malicious login attempts on a virtual machine (VM) are typically rate limited by

blocking the number of wrong attempts that can be entered by a user. However, this is not

an effective method to stop the number of login attempts as the state of a virtual machine

can always be restored and played back in order to restore the number of login attempts.

By restoring a virtual machine in this manner, the malicious login attempts on the virtual

machine can effectively become infinite.

The state of a virtual machine is easily accessible from the hypervisor and host. In

some instances, the state of a virtual machine can also be gained through other side

channels using various hacks or other malicious means. Thus, through the use of such

hacks or malicious means, it may be possible to gain unlimited attempts at hacking a virtual

machine, which opens a security vulnerability.

Consider an example in which a malicious entity performs ten password attempts

to try and login to a virtual machine. In this example, the malicious entity would be locked

out of future attempts unless the state of the virtual machine is replayed or forked, in which

case the malicious entity could potentially have infinite attempts.

2

Sharma et al.: PROTECTING AGAINST MALICIOUS LOGINS ON VIRTUAL MACHINES USING BL

Published by Technical Disclosure Commons, 2020

 2 5927X

Techniques presented herein utilize a blockchain-based methodology that provides

for the ability to defend against malicious agents gaining infinite login attempts to a virtual

machine. Additionally, techniques presented herein address problems that may be

associated with an untrusted host under certain assumptions.

A solution is provided to prevent a malicious agent from reusing the same state of

a virtual machine in order to obtain infinite login attempts. In at least one implementation,

a component providing secure computation (e.g., Intel® SGX, ARM® TrustZone®, etc.)

can be utilized to perform techniques associated with the solution. A secure shared storage

for blockchain with frequent updates from non-adversarial agents may also be utilized in

order to avoid a host taking control of the blockchain ledger. For example, the secure

computation component on the host can be utilized in order to validate the blockchain and

also to perform operations on an input pre-committed on the ledger by a host. Using pre-

commitment, the solution can limit the host from providing different inputs on the same

virtual machine state, thereby securing the virtual machine against such attacks launched

by the host.

Consider a mathematical description and definition of the set-up of the blockchain

solution in which O denotes an object of interest. In one example, consider that this could

be a disk image for a virtual machine that needs to be protected against a rollback attack.

In this example, let TF denote a trapdoor function (note, this mathematical description may

not follow the exact definition of a set, but a general understanding of trapdoor functions

may be utilized for this description).

Further, let O' <- TF(O) and K be the key to invert the trapdoor function. Therefore,

O <- TFInv(K, O') is a probabilistic polynomial-time (PPT) algorithm, but otherwise there

does not exist a PPT algorithm to invert TF without the knowledge of K. Additionally, Let

P be a PPT program that generates the valid key K based upon a given input. In one

example, this input may be a user password or the like. Mathematically, a description can

be provided such as: K <- P(I), where I is the input to the program (e.g., the password in

this example).

Additionally, let EP <- E(K', P), where EP denotes an encrypted program which is

encrypted using an authenticated encryption with associated data (AEAD) algorithm E

3

Defensive Publications Series, Art. 2858 [2020]

https://www.tdcommons.org/dpubs_series/2858

 3 5927X

using key K'. The AEAD can be used in order to hide the details of converting I to K from

the host (using encryption) and to avoid changes (such as bit flips) to P by changing EP.

Further, let VM <- {EP, O', ...} denote a VM image that can be restored on a host

and let L denote a ledger maintained by a third party using a protocol similar to blockchain.

The ledger is to be present at a shared location maintained by a third party in order to avoid

any forgery by the possibly malicious host. In addition, let C be the public certificate of

the third party maintaining the shared ledger. The public certificate (C) can be used to

verify whether L is a fake ledger or not since the host may fake network communications

and present a fake ledger. Let SL denote the signature by the third party over a hash of the

ledger.

Finally, let OID be an identifier (ID) provided by a user to uniquely identify each

distinct copy of O. This can be a publicly known identifier used to calculate how many

times attempts have been made to compute O.

For the present example, consider various steps (in which certain steps may be

highlighted in Figure 1, below) as follows:

 A user sets up K', C, OID and any other data for the secure

computation unit (e.g., SGX : SetupSGX(K', C, OID, ...)), as

generally shown in Step 1 for Figure 1.

 When the host would like to restore the VM image, the host is to

execute P in order to restore O.

 The host pre-commits to a given input by declaring (H(I), OID) on

a ledger L maintained by a third party and H is a one-way function

(preferably a cryptographic hash function), as generally shown at

Step 2 in Figure 1. Further, the host requests L and SL from the third

party, which is sent to the host as shown at Step 3 in Figure 1.

 The host sends (EP, L, H, I, SL) to the secure computation unit, as

generally shown at Step 4 in Figure 1.

 The secure computation unit verifies the authenticity of ledger L

using C and SL and, further, verifies the integrity of ledger L using

hash values present in the ledger.

4

Sharma et al.: PROTECTING AGAINST MALICIOUS LOGINS ON VIRTUAL MACHINES USING BL

Published by Technical Disclosure Commons, 2020

 4 5927X

 The secure computation unit verifies any state that it is to check. In

this example, this can be the number of times a login has been

attempted for the VM in which the latest commitment corresponding

to OID corresponds to H(I).

 If everything looks fine, the secure computation unit computes P

from EP using the stored key K': P <- D(K', EP), where D denotes

the decryption function corresponding to E.

 The secure computation unit executes P upon input I to compute K

in which K <- P(I), as generally shown at Step 5 in Figure 1.

 The secure computation unit returns K to the host (e.g., K <-

SGX(EP, L, H, I, SL), as generally shown at Step 6 in Figure 1.

 The host computes O <- TFInv(K, O') and follows up with further

processing on the VM. In this example, this can include restoring

the snapshot of the VM.

Thus, the above steps and Figure 1, below, illustrate that blockchain can be utilized to

protect against rollback attacks launched by the hypervisor on a virtual machine.

Figure 1

5

Defensive Publications Series, Art. 2858 [2020]

https://www.tdcommons.org/dpubs_series/2858

 5 5927X

In some implementations, the techniques discussed above may be valid only to

unlock an object of interest a first time. Once the object of interest is unlocked, additional

security may not be provided for subsequent snapshotting/restoring. Thus, the techniques

are assumed to be secure only for cases in which some secret object needs to be unlocked,

similar to the case of unlocking a smart phone or the like.

Techniques presented herein may also be applied to other applications such as, for

example, to provide limited execution of certain proprietary algorithms. This may be

helpful for instances in which there is a need to provide trial versions of an algorithm that

is limited by a number of times it can be used. For example, consider that P is a proprietary

algorithm that an entity desires to keep secret from a host in which the host is only allowed

to execute the proprietary algorithm an N number of times. In this example, there is no

need for TF, O, and O' and K will denote the output of P that is of interest to the host. For

such an application, the ledger can be used to limit the number of times the host executes

the proprietary algorithm.

 In summary, techniques presented herein utilize a blockchain-based methodology

that provides a defense against rollback attacks on a virtual machine and is scalable for

other application areas. In one example, a solution is provided to avoid rollback attacks

during restoration of a virtual machine under the assumption of a malicious host and

hypervisor. Techniques presented herein also address problems associated with an

untrusted host under certain assumptions.

6

Sharma et al.: PROTECTING AGAINST MALICIOUS LOGINS ON VIRTUAL MACHINES USING BL

Published by Technical Disclosure Commons, 2020

	PROTECTING AGAINST MALICIOUS LOGINS ON VIRTUAL MACHINES USING BLOCKCHAIN
	Recommended Citation

	Microsoft Word - 1133105_1

