
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

January 2020

TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN

MULTI-PROVIDER SOFTWARE DEFINED NETWORK MULTI-PROVIDER SOFTWARE DEFINED NETWORK

DEPLOYMENTS USING A TRUSTED PLATFORM MODULE (TPM) DEPLOYMENTS USING A TRUSTED PLATFORM MODULE (TPM)

AND SECURE LEDGER AND SECURE LEDGER

Niranjan M. M

Nagaraj Kenchaiah

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
M, Niranjan M. and Kenchaiah, Nagaraj, "TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN
MULTI-PROVIDER SOFTWARE DEFINED NETWORK DEPLOYMENTS USING A TRUSTED PLATFORM
MODULE (TPM) AND SECURE LEDGER", Technical Disclosure Commons, (January 08, 2020)
https://www.tdcommons.org/dpubs_series/2848

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/286130745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2848?utm_source=www.tdcommons.org%2Fdpubs_series%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5930X

TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN MULTI-
PROVIDER SOFTWARE DEFINED NETWORK DEPLOYMENTS USING A

TRUSTED PLATFORM MODULE (TPM) AND SECURE LEDGER

AUTHORS:

Niranjan M M
Nagaraj Kenchaiah

ABSTRACT

The OpenFlow® protocol especially OpenFlow® Discovery Protocol (OFDP)

utilizes clear text Link Layer Discovery Protocol (LLDP) message exchanges to discover

network topology. Such exchanges lack security and may lead to network attacks such as

LLDP flooding, link fabrication, etc. Currently, the OpenFlow® protocol both in the case

of discovery (OFDP) as well during subsequent communication between a controller and

a switch (even with Transport Layer Security (TLS)) does not offer a way to understand

whether or not a discovered controller or switch is a trustworthy device. Presented herein

are techniques that provide Trusted Platform Module (TPM) and blockchain-based trust

establishment for OpenFlow® protocol communications that may be utilized between

controllers and switches in multi-provider software defined network (SDN) deployments.

DETAILED DESCRIPTION

The OpenFlow® protocol is often used for communication between controllers and

switches in SDN deployments. For Topology Discovery, the OpenFlow® defined

OpenFlow Discovery Protocol (OFDP) is used by controllers to discover the underlying

network topology using clear, non-authenticated Link Layer Discovery Protocol (LLDP)

packets. LLDP is an open and extendable part of the Internet protocol suite used in IEEE

802 to advertise the identity and abilities of the devices, as well as other devices connected

within the same network.

The OpenFlow® defined OFDP, however, is not a secure protocol. While LLDP

packets do carry information such as the chassis-id or system name, the protocol currently

does not offer a mechanism to determine whether or not discovered devices are trustworthy.

Further, the use of clear, non-authenticated LLDP packets to detect the links between

2

M and Kenchaiah: TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN MULTI-PROVIDER

Published by Technical Disclosure Commons, 2020

 2 5930X

switches makes OFDP vulnerable to a number of attacks such as switch spoofing, link

fabrication (e.g., LLDP duplication and LLDP injection), controller fingerprinting, LLDP

flood, etc.

One form of link fabrication may include packet duplication in which an attacker

can gain control over a host connected to a switch, determine the Datapath ID (DPID) of

the switch, and can fabricate a link by injecting fake LLDP packets into another switch.

Another form of link fabrication may include LLDP injection in which an attacker, by

monitoring the traffic, can obtain the LLDP content used by the controller, and can inject

the same LLDP packets into the network thereby creating bogus links between switches or

between the malicious hosts and switches.

For controller fingerprinting, consider that LLDP content is different from one

controller to another, which allows fingerprinting attacks on SDN controllers. For example,

an attacker that has control over a host can match the LLDP content received from a switch

(LLDP packets originate from the controller) against a controller signature database to

detect which controller is managing the network. Such information can then be used to

launch specific and more efficient attacks on the controller.

For switch spoofing, consider that each LLDP packet contains a version field, flags,

Time-to-Live (TTL) information, and Type-Length-Value objects (TLVs) for information

advertisement. Mandatory TLVs in OFDP include ChassisSubtype (which may be the

Media Access Control (MAC) address of the local port of the switch) and PortSubtype,

which can be used to track packets by a controller. By intercepting clear LLDP packets

containing MAC addresses, a malicious switch can spoof other switches to falsify the

topology graph of the controller.

LLDP flooding is a form of Denial-of-Service (DoS) attack in which an attacker

generates enough fake LLDP packets to exhaust the link connecting a switch to a controller

as well as the controller resources.

Some current solutions for mitigating such attacks may include countermeasure

methods to avoid these attacks, however they do not consider potential side effects on

legitimate traffic flows. For example, for link fabrication, one solution may include

authenticating the LLDP packets by adding a key-Hash Message Authentication Code

(HMAC) as an optional TLV in the packets. However, this technique only works against

3

Defensive Publications Series, Art. 2848 [2020]

https://www.tdcommons.org/dpubs_series/2848

 3 5930X

fake LLDP injection but not against link fabrication by packet duplication. For LLDP

flood attacks, basic countermeasure methods like port blocking or packet filtering may not

be effective, especially in the case of very dynamic environments (e.g., multi-tenant cloud)

since connected hosts and switches change frequently, which may result in preventing

legitimate LLDP packets from reaching the controller.

Also in SDN deployments, OpenFlow® communications are provided over TLS

between controllers and switches. When a controller and a switch establish a

communication channel using TLS, they perform mutual authentication across a network,

typically based on certificates or a public key infrastructure. However, this may be

insufficient for cases in which a controller or switch may become compromised such that

they are no longer a trusted entity. As the OpenFlow® protocol is used during topology

discovery as well as for configuration of policies etc., it is important to know that a device

is trusted before involving the device in protocol flows.

Currently, the OpenFlow® protocol, both in the case of discovery (OFDP) as well

during subsequent communication between a controller and switch (even with TLS), does

not offer a mechanism to determine whether or not a discovered controller or switch is a

trustworthy device.

However, trustworthiness of a controller and switch should be verified during

discovery and subsequent communication between a controller and switch in SDN

deployments. This includes an integrity check for both hardware as well as software for all

the devices participating in OpenFlow® communications.

Secure computing environments often provide that connectivity is only to be

established with a trustworthy device. Thus, devices that are not trustworthy are to be

excluded from network operations as early as possible in the overall operational process.

In one implementation, trustworthiness of a device can be achieved through Attestation

(Stamping).

Attestation is a trusted computing technology which can be applied in hardware,

software (applications), and/or protocols, especially in networking, and can broadly be

divided into two Attestation methods including A) Bi-directional Attestation, and B)

Uni-directional Attestation.

4

M and Kenchaiah: TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN MULTI-PROVIDER

Published by Technical Disclosure Commons, 2020

 4 5930X

Trusted Platform Module (TPM) functionality can be embedded in a wide variety

of devices including Mobile phones, PCs and Routers. TPM functionality, also known as

also known as ISO/IEC 11889, may be a dedicated cryptographic device that supports

secure key generation and remote system attestation. Attestation, as defined by the Trusted

Computing Group (TCG), describes that the TPM functionality can be used as a hardware

root of trust and offer Proof of Integrity of a node, in which integrity may include hardware

integrity, software integrity, and/or runtime integrity.

Neither blockchain nor trusted computing (TPM) alone may provide a sufficient

level of network security for SDN deployments. Blockchain is not an authentication

technology (i.e., there is no authentication in blockchain), rather, blockchain is typically

used for encrypting messages. In a blockchain, data on the chain is

unchangeable/immutable such that the ledger never changes (i.e., it is known exactly who

sends data, but the data itself is not known). Further, once a block is recorded on a block

chain, it remains the same throughout time and is protected by mathematical algorithms.

Blockchain is an append-only distributed database technology, also known as a

distributed ledger. It allows a group of peers to maintain a database while guaranteeing its

integrity and assuring that all peers have equal rights as far as owning, accessing, and

managing the database are concerned. From a data structure perspective, the blockchain is

a singly linked list composed of structures called blocks. Each block, apart from the first

block (the genesis block), points to the previous block in the chain. If any of the earlier

blocks in the chain is tampered with, this change is propagated to every subsequent block,

thus assuring detection. Each block on the chain has a unique address, timestamp, and

relation with the previous block. This chaining mechanism also deters any adversary from

changing a target (historical) block as then it has to modify all the blocks that were

appended to the chain after the target block.

It is important to understand that it cannot be proved that data that is written on the

chain is the data that was intended to be written. Thus, it is cannot be determined what a

device may write to the chain. Stated differently from a security perspective, there is no

evidence to identify how a private key may be protected on the chain. If all that is present

is the chain itself, it is difficult to identify the identity of a device that performed a

transaction, whether it was performed by a trusted device or was performed by a device

5

Defensive Publications Series, Art. 2848 [2020]

https://www.tdcommons.org/dpubs_series/2848

 5 5930X

that stole or borrowed the private key and performed the transaction. All that is known

that a device having the key performed the transaction.

TPM provides Proof of Integrity measurement and assurance. Proof of Integrity

measurement is not historical but related to the current state of either data or

hardware/software. Hence, along with Proof of Integrity, it is good to have freshness of

Proof of Integrity by maintaining even historical integrity values that can easily be verified.

For this, consider the following two conditions: 1) No entity should be able to change the

historical integrity and records, and 2) all the information is going to be in the public

domain. These two conditions can be satisfied with blockchain. Hence, what is needed is

trusted computing (TPM) along with Blockchain to increase the level of network security.

This proposal provides techniques to enhance security in multi-provider SDN

deployments by integrating TPM and blockchain technologies into the OpenFlow®

protocol for both topology discovery processes and also for subsequent communications

between controllers and switches over TLS in SDN deployments in order to incorporate

trustworthiness among participating devices.

The techniques of this proposal can be divided into two parts, remote attestation

and trustworthiness. For the techniques discussed herein, the term 'device' may generally

be used to refer to any of an SDN controller or switch.

Figure 1, below, illustrates example details associated with remote attestation

provided in accordance with the techniques of this proposal.

Figure 1

To facilitate remote attestation, various operations may be performed as follows:

6

M and Kenchaiah: TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN MULTI-PROVIDER

Published by Technical Disclosure Commons, 2020

 6 5930X

1. At boot time, a device may compute a Measurement List (ML), which may

include a hardware signature, a sequence of hashes of the software involved

in the boot sequence, primarily the BIOS, the boot-loader, kernel, software

implementing the platform, etc. The ML may also be used to capture the

device system states.

2. The ML (containing sequence of measurements) can be stored in a set of

registers called Platform Configuration Registers (PCRs). In particular, the

ML can be securely stored in the PCRs inside the local TPM of the device.

3. To attest the device, a remote Attester challenges the device with a nonce

"nU." The device queries the local TPM to create a message containing both

the ML and the “nU” and sign the message with a private key Attestation

Identity Key (AIK) of local the TPM. Generally, the AIK is a signing key

provided and certified by the TPM owner that can be used to sign PCR

quotes and certify other keys loaded into the local TPM.

4. The device sends this message to the remote Attester, which can verify the

message using a corresponding public key with respect to the private key

(AIK), thereby authenticating the device. By checking that the nonces

match and the ML corresponds to a configuration that is deemed trusted, a

remote Attester can reliably identify the device as a trusted device.

a. Verifying that a message has a correct signature guarantees that it

was produced by the TPM at some point in the past. Verifying that

a correctly signed message includes the nonce guarantees that the

message was produced by the TPM at some point after the

attester/verifier generated the nonce, which can prevents replay

attacks.

5. The remote Attester can communicate with the device over secure channel

with Public Key Cryptography.

6. The remote Attester can also read the boot event log and fresh PCR values

in the ML. The integrity of event logs can be validated by comparing the

actual PCR values to expected values from the log. The integrity state of the

device can then be evaluated (e.g., whether trusted firmware, boot loader,

7

Defensive Publications Series, Art. 2848 [2020]

https://www.tdcommons.org/dpubs_series/2848

 7 5930X

and/or OS kernel are running on the target device). The remote Attester can

also set a policy around these measurements, and enforce, for instance, that

an up-to-date kernel is running. With these measurements, any

compromised device can be detected. Thus, the remote Attester can verify

that a received ML is fresh, genuine, and has not been tampered with.

Once the device is verified as trusted, it can be added to the blockchain of trusted

devices and thus, added to the distributed secure ledger. With the distributed secure ledger,

all the blockchain enabled devices would know the trustworthiness of all other peer devices

before connecting to them. Here Remote Attester would do the functionality of Miner when

compared with Blockchain.

To provide trustworthiness for an SDN deployment, SDN controllers can be

enabled with blockchain functionality and acts as a blockchain node. The SDN Controllers

may be provided with information regarding the trustworthiness of switches connected in

the SDN deployment and/or the trustworthiness of other SDN Controllers in multiple

provider deployments. If SDN switches (or controllers) do not supports blockchain

functionality, then a bidirectional Attestation method can be used to verify the

trustworthiness of devices in an SDN deployment.

Techniques herein provide for integrating the process of remote attestation into the

OpenFlow® TLS handshake protocol, which can be achieved by modifying the client key

exchange messages in the OpenFlow® TLS handshake protocol using keys and signatures

generated by a local TPM so as to provide the required level of security and trust. In one

example, TLS 1.3 can be extended with a new ExtensionType as defined in

https://tools.ietf.org/html/rfc8446#section-4.2.

Figure 2, below illustrates example details associated with trustworthiness provided

in accordance with the techniques of this proposal.

8

M and Kenchaiah: TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN MULTI-PROVIDER

Published by Technical Disclosure Commons, 2020

 8 5930X

Figure 2

To provide trustworthiness in accordance with techniques of this proposal, various

operations may be performed as follows:

1. An OpenFlow® TLS client (Attestator) "C" creates a non-predictable nonce

"Nc" and sends it along with its identity to a server (challenger) "S". This

message may be a client hello message as prescribed for the OpenFlow®

TLS handshake.

2. The server responds with a server hello message, which contains a

non-predictable nonce "Ns" generated by the server and the certificate of

server signed by a trusted certificate authority (CA) (e.g., SIG_CA(S, PKs)).

This message may be a server hello message as prescribed for the

OpenFlow® TLS handshake.

3. The message that the client sends back to server may similar to the client

key exchange message in OpenFlow® TLS handshake with the following

modifications (as illustrated in Figure 2, above):

a. The client sends a Measurement List (ML) along with the session

secret encrypted with server's public key "PKs".

b. The client owns a pair of public/private Rivest-Shamir-Adelman

(RSA) keys, referred to as AIK keys, generated by the local TPM.

The client also obtains an AIK certificate which contains the AIK

9

Defensive Publications Series, Art. 2848 [2020]

https://www.tdcommons.org/dpubs_series/2848

 9 5930X

public key signed by a trusted CA. The client sends this AIK

certificate to the server to authenticate itself.

c. The client sends a TPM Quote response to the server. In order to

obtain a TPM Quote from the local TPM, the client sends a hash of

the two nonces and the session secret to the local TPM and requests

a quote signed by the AIK. The local TPM returns the signature over

PCR values and the given hash by AIK private key.

d. The server validates whether the AIK certificate of the client was

signed by a trusted CA and belongs to a genuine TPM. The server

then verifies the freshness of Quote response by comparing a hash

of the nonces and the secret with the signed hash. Next, the server

validates the integrity of ML by verifying the hash of ML against

the PCR value in the signature. Finally, the server validates

individual entries in the ML by comparing the hashes against

acceptable values.

4. If the integrity of the client platform is trusted by server in the above step,

then the server and client continue to exchange messages according to the

OpenFlow® TLS handshake protocol to establish a secure session.

In summary, techniques of this proposal provide TPM and blockchain-based trust

establishment for OpenFlow® protocol communications that may be utilized between

controllers and switches in multi-provider SDN deployments. For example,

trustworthiness can be provided between controllers and switches during network topology

discovery and/or between controllers when communicating in multi-provider SDN

deployments.

10

M and Kenchaiah: TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN MULTI-PROVIDER

Published by Technical Disclosure Commons, 2020

	TRUSTWORTHINESS AMONG CONTROLLERS AND SWITCHES IN MULTI-PROVIDER SOFTWARE DEFINED NETWORK DEPLOYMENTS USING A TRUSTED PLATFORM MODULE (TPM) AND SECURE LEDGER
	Recommended Citation

	Microsoft Word - 1134609_1

