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ABSTRACT 

Presented herein is a quick scan method for signal integrity checks through 

sampling of four points under certain thermal condition.  The techniques presented herein 

use a machine learning trained model to ensure signal integrity check fidelity. 

DETAILED DESCRIPTION 

Eyescan is a technology that is widely used today to debug complex Signal Integrity 

(SI) issues.  Eyescan can provide valuable insight into the nature of signal imperfections 

that can lead to errors while a receiver attempts to interpret the value of an incoming bit. 

The basic eye measurement method takes samples around the center of a decision point in 

order to find the eye shape through Bit-Error-Rate(BER) calculation. Given the large 

number of sample points, the process of determining an acceptable eye window normally 

takes at least 25 minutes to finish, per lane, in software implementations which restrict its 

use for time-sensitive applications.  Even with the possible implementation as firmware for 

faster speeds, this process will take certain amount of firmware space and also increases 

the firmware design complexity.  In other words, traditional eyescan methods to determine 

the acceptable eye window take too long time (if implemented in software) and/or increases 

the size and complexity (if implemented in firmware). Such limitations limit the use of 

eyescan for time sensitive applications in real-time systems. 

As such, presented herein are Machine Learning Assisted Quick Eyescan 

(MLAQE) techniques (Quick Eyescan techniques) that are designed to significantly reduce 

1 5925X 2

Xu et al.: MACHINE LEARNING ASSISTED QUICK EYESCAN (MLAQE) FOR SIGNAL INTEGR

Published by Technical Disclosure Commons, 2020



the complexity needed to determine an acceptable eye window.  The MLAQE techniques 

presented herein:   

(1) Use typical samples along with the X axis and Y axis of a center eye, instead

of full scale samplings to cut the number of sampling points and to reduce

calculation time.

(2) Use a machine learning algorithm to train the eyescan model to ensure eye

measurement reliability with less sampling points as described in (1). In

addition to modeling sampling points, the thermal conditions are also part

of the modeling.

(3) Apply the trained eyescan model for eye window calculation to achieve

reliable eye window measurement with much less sampling points and

much shorter calculation time to meet real-time system requirement

The MLAQE techniques presented herein reduce the software calculation time for 

determination of the eye window from multiple minutes to less than a second, without 

losing fidelity.  As a result, the MLAQE techniques presented herein may be used for time 

sensitive applications, such as faster link bringup and recovery.  In addition to these 

software implementation advantages, the same trained quick eyescan model can be used in 

a firmware design with less complexity and less space usage. 

The Figure 1, below, demonstrates the traditional full scale eyescan scheme, as well 

as the MLAQE techniques presented herein.   
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In the traditional full eyescan, from the center point (row 18, col I) in Figure 1, 

sampling points are selected with step size 4 in the X axis and step size 8 in the Y axis to 

measure the Bit Error Ratios (BER). The BER of  -10 is set as the threshold so that all 

sampling points within the threshold BER of  -1 form a good eye window (marked in light 

blue color). The total 32 x 17 points are sampled to calculate the BER in order to accurately 

form the good eye window.  This may take more than 25-30 minutes to complete the 

calculation for a 25G lane.  The step size selection also affects the calculation (i.e., the less 

step size, the more sampling points, thus the more accurate eye window but the longer 

calculation cycle). 

In contrast to the traditional full scale eyescan, the MLAQE (Quick Eyescan) 

techniques presented herein operate to pick up the typical sampling points along the X axis 

and Y axis only, starting from the center point.  For the example, as shown below in Figure 

1, the Quick Eyescan only picks up the sample points from row 18 (X axis from the center 

point) and column I (Y axis from the center point). These Quick Eyescan points are marked 

as the green background in Figure 1. This reduces the total sampling points from “32 x 17” 

to “32+17.”  As such, the calculation time is reduced to less than a second. 

In Figure 1, the four points marked in bold (with red background) in the X axis and 

Y axis form an eye window which almost overlaps the eye window formed by a traditional 

full scale eye scan. The four points are determined based on the BER threshold crossing of 
 -10.   

In addition, the MLAQE techniques presented herein define a Passing Eye window 

(as shown by the ovals in Figure 1).  If the Passing Eye window is determined to coincide 

with the golden-colored oval in Figure 1 (which is contained by the measured eye window), 

then good signal integrity is present.  However, if the Passing Eye window is determined 

to coincide with the navy-colored oval in Figure 1 (which is not contained by the measured 

eye window), then good signal integrity is not present (i.e., this indicates poor signal 

integrity).   

As noted, the MLAQE techniques presented herein help reduce the calculation time 

for determination of the eye window.  However, reduction in sampling points may lead to 

a smaller eyescan window that makes it more difficult to contain the Passing eye window.  
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This could lead to a false determination of poor signal integrity.  The techniques presented 

herein address this issue through the use of a trained machine learning model. 

In general, the MLAQE techniques obtain four sampling points (two on X axis, and 

two on Y axis), where their neighbor sample points in the direction away from the center 

point cross the BER threshold.  Instead of using these points to form an eye window for 

comparison with the Passing Eye window, these four sample points are used as input 

features to a Linear regression model (or a 3-layer Neural Network model) to predict 

acceptable signal integrity. 

As shown in the Figure 2, below, the columns B/C/D/E define the four features 

which map to the four sampling points where their BERs are about to cross.  Their values 

are recorded to be the distance to the center eye.  The first sample (at row one) is the direct 

mapping of data collected/calculated in Figure 1. 
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 The eye window measurement may be affected by thermal conditions. As such, the 

techniques presented herein may add the component temperature as the fifth feature, as 

shown in column G of Figure 2, to be taken as an input to the machine learning model.  

Column H records whether the result is Passed (1) or Failed (0), based on the measurement.  

Column F records the center eye coordinates, for the adjustment purpose of the four 

features values (column B/C/D/E), but not directly used for features as input to the Machine 

learning model. 

The same measurements as in Figure 1 may be repeated to find the four optimal 

sample points and the component temperature. The result is recorded in the format of 

Figure 2.  The techniques presented here may either reload the system or inject errors on 

purpose so that it can cover both PASSED and FAILED scenarios in the repeated 

experiments. The same fault injection testing can be repeated in the environmental 

chambers so as to obtain the result under different thermal conditions. The output will be 

a table similar Figure 2 with four feature values plus temperature reading and a 

corresponding Passed/Failed output.  Each experiment result is shown as a row which 

forms the training data to find the optimal weights for each feature thru the machine 

learning algorithm. 

In certain examples, the Logical Regression may be used to build the training 

models.  Assuming four features as x1, x2, x3, x4, x5, corresponding to row B to row E, 

and row G, it is possible to have m rows in the table corresponding to the total number of 

m experiments.  By applying the logical Regression algorithm, it is possible to find the 

optimal weights array [W0, W1, W2, W3, W4, W5] (W0 is the bias) so that the system can 

use (x) to predict Passed (1)/Failed (0) where: 

 

 

In summary, the MLAQE techniques presented herein: 

 select four optimal sample points under various thermal conditions through 

our quick scan method. 
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 Train the Eyescan model by using the four selected points and measured 

temperature as features for machine learning algorithm to obtain the optimal 

weights array for each feature. 

 Use the trained Eyescan model in online calculation only for simplicity and 

accuracy. 

With logical regression functions, the trained model can achieve 95% or above 

accuracy. The prediction accuracy can be further improved to 99% if non-linear neural 

networks are used instead.  It is noted that the training is performed to find the optimal 

weight array, which imposes no performance impact on running time for a real-time 

system. 

The trained weights array [W0, W1, W2, W3, W4. W5] are directly programmed 

into software/firmware for Passed/Failed prediction. During run-time, the 

software/firmware uses the quick eyescan scheme to first find the four typical sampling 

points (X1, X2, X3, X4) and the component temperature X5 at measurement time, then use 

following formula to compute: 

 

 

The g(z) calculation may be complicated for some real-time system/firmware but 

the g(z) curve basically shows that g(z) is almost 1 for z > 4 and is almost 0 for z < -4. In 

other words, we only need to calculate: 

  
in the runtime system.  

 

 This helps simplify the calculation so that for z outside the window [-4, 4], the 

software/firmware can make a sure prediction, and for z within [-4,4] window, use the 

training data cut a line for Passed/Failed classification without going to the real g(z) 

calculation.  The trained weights may be updated based on further sampling in the real time 
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testing or field execution. The revised weights can be put into use through 

software/firmware upgrade. Or simply make them programmable as registers in the case 

of firmware.  

 If the running system has enough computing power, the machine learning model 

training can be put online as well (e.g., each time a link up scenario provides a PASSED 

sample, or a link down scenario provides an FAILED sample). In either case, the system 

samples the four typical eyescan points and temperature to build up the machine learning 

sample database on the fly.  Each time the database is updated, the system runs the machine 

learning algorithm to rebuild the model and reprogram the rebuilt model into the 

software/firmware.   The online model training helps build per-board based model for SI 

check at the cost of CPU and disk resources. This will further improve the SI check 

accuracy, given the model training/online model use assumes that all boards with the same 

type show the same SI characteristics. 

 It is a common practice to set the chip-to-chip drive strength for signal integrity in 

board design. These drive strength parameters are calculated and measured in the lab and 

provided to software to program them into the chip to ensure chip-to-chip signal integrity. 

This method has fundamental difference from the MLAQE proposed here, namely: 

 The drive strength parameters are static values to be programmed into the 

component’s registers to ensure signal strength between chips, mostly from the 

sender side. In both sender side and receiver side SI programming cases, they 

provide no way ensuring good receiving signals. These parameters are best-effort 

calculated values from the sender side only. They are statically used in the field. 

 The MLAQE helps detect signal integrity on the receiving side. It does not directly 

use the calculation result from the lab, but instead builds an eyescan model through 

machine learning. The trained model is programmed, but it is combined with real-

time dynamic eyescan measurement results and thermal conditions to provide much 

more accurate detection for signal integrity. 

 The MLAQE can also help improve robustness of traditional static SI drive strength 

setting. Instead of providing a group of static SI parameters for software to 

programming, the SI hardware team can provide a machine learning trained model, 

and the software will apply the model to the real time scenario to decide what SI 

9 5925X 10

Xu et al.: MACHINE LEARNING ASSISTED QUICK EYESCAN (MLAQE) FOR SIGNAL INTEGR

Published by Technical Disclosure Commons, 2020



parameters should be programmed into the chip. This will ensure more robust SI 

settings. 

 

 Figure 3, below, illustrates an offline model training with online use, in accordance 

the techniques presented herein.   

 

Figure 3 
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 Figure 4, below, illustrates online model training with online use, in accordance the 

techniques presented herein. 

 

Figure 4 
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