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Abstract 

Following protein adsorption/activation which is the first step after the contact of material surfaces 

and whole blood (part 2), fibrinogen is converted to fibrin and platelets become activated and 

assembled in the form of a thrombus. This thrombus formation is the key feature that needs to be 

minimized in the creation of materials with low thrombogenicity. Further aspects of blood 

compatibility that are important on their own are complement and leukocyte activation which are 

also important drivers of thrombus formation. Hence this chapter summarizes the state of 

knowledge on all of these cascades and cells and their interactions. For each cascade or cell type, 

the chapter distinguishes that which is in widespread agreement from what there is less of a 

consensus. 

Statement of significance 

This paper is part 3 of a series of 4 reviews discussing the problem of biomaterial associated 

thrombogenicity. The objective was to highlight features of broad agreement and provide 

commentary on those aspects of the problem that were subject to dispute. We hope that future 

investigators will update these reviews as new scholarship resolves the uncertainties of today. 

 

 

Introduction 

Biomaterials at once activate several defense systems of the body, Figure 1. The humoral systems 

of coagulation and complement strongly interact with platelets and immune cells and recently yet 
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more interactions between thrombogenic and immunologic processes have been discovered. We 

discuss those systems separately and then refer to the manifold interactions at the relevant sections. 

Coagulation Cascade 

Biomaterials drive the generation of thrombin and the conversion of fibrinogen to fibrin 

necessitating the administration of heparin or other anticoagulants. The cascade of clotting 

factors beginning with Factor XII are amongst those in the protein adsorbate [1]. Activation 

of the coagulation pathway also activates the kinin-kallikrein system (via FXIIa), 

complement (via Factor XIIa, kallikrein, thrombin) and platelets (via thrombin). When 

endothelium is damaged, for example via biomaterial implantation, thrombomodulin levels 

decrease and tissue factor increases creating another source of thrombin [2] and the potential 

for activation of the intrinsic pathway via thrombin-mediated activation of FXI.  

Follow on comments: 

In the absence of biomaterials, tissue factor is regarded as the key driver of coagulation following 

vascular injury. Biomaterial associated coagulation on the other hand can be related to the surface 

activity of contact phase molecules, which have a relatively strong abundance in the protein 

adsorbate, suggesting a prominent role for contact activation. Also polyphosphate nanoparticles 

on activated blood platelets were reported to activate coagulation via Factor XII [3]. However, it 

is interesting to note that under physiological conditions, the absence of Factor XII or other contact 

proteins (HMWK, kallikrein) has not been associated with abnormal bleeding [4]. Overall, 

evidence seems to suggest that FXII activation by biomaterial contact activates the intrinsic 

coagulation cascade, leading to formation of a clot. Yet there are other pathways that may augment 

or even replace the contact activation proteins in inducing biomaterial-induced coagulation.  

The surface of activated blood platelets accelerate the coagulation cascade to produce thrombin, 

providing an amplification path that also links platelet and protein-mediated thrombosis [5]. 

There are multiple links between inflammatory and coagulant pathways. The role of blood born 

tissue factor in leukocytes and perhaps blood platelets [6, 7] in thrombosis and blood clot 

propagation has been highlighted [8, 9], and consequently some have argued that leukocyte 

activation and tissue factor release (and the extrinsic pathway) are key drivers also for biomaterial 

induced coagulation in blood [10-13]. On the other hand, the relevance of blood-born tissue factor 

for initiation of the coagulation (in distinction to propagation) is not generally accepted. A 

correlation between leukocyte inflammatory response and tissue factor expression has been 

demonstrated in vitro [11]. While the contribution of tissue factor (TF) involvement in the 

initiation of clotting in an ovine hemodialysis-model was shown [13], a correlation between 

leukocyte activation and blood clotting could not be demonstrated under defined in vitro 

conditions [11]. The rapid inactivation of tissue factor in blood has been regarded as the reason for 

this. 

The impact of neutrophil elastase and cathepsin G on clot formation has also recently been further 

demonstrated in mice and highlights the complexity of the interactions taking place in clot 

formation and growth [14, 15]. 

Factor VII activating protease (FSAP or hyaluronic acid binding protein 2: HABP2) is a serine 

protease, supporting the extrinsic pathway of clotting activation by interfering with tissue factor 
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pathway inhibitor and by direct FVII activation. FSAP is activated by positively charged 

macromolecules [16] and surfaces [17] and may present an additional pathway of biomaterial 

induced coagulation activation. 

Reliable analysis of blood coagulation has to reflect the complexity of the different activation 

pathways. Clotting times using whole blood or plasma using one of the established methods are 

crude measures of the ability of a material to activate the coagulation cascade. Whether plasma or 

whole blood is used to assess the properties of a test material further is a critical parameter. The 

pure initiation of the coagulation cascade does not necessarily lead to thrombus formation, but, as 

indicated above, the propagation from coagulation to the clot requires the presence of activated 

platelets [5].  

Thrombin as a parameter of blood clotting is difficult to measure directly, because it is inactivated 

within seconds to the thrombin-antithrombin (TAT) complex, especially in presence of heparin. 

Prothrombin F1+2 fragment as byproduct of thrombin formation, the TAT-complex or 

fibrinopeptide A as byproduct of fibrin activation present more useful integral parameters of 

coagulation activation. More sophisticated measures such as thrombin generation rate may be 

more useful since one can incorporate such measures in mathematical models that may enable 

predictions under a wider range of experimental and perhaps even real-world conditions. A critical 

thrombin generation rate constant was one such parameter that was defined [18]. 

Ultimately though, all materials will drive plasma to coagulate following material contact unless 

anticoagulants are used. These levels of coagulation may not be clinically significant in many 

applications, but under in vitro conditions, placing blood in contact with a synthetic material will 

ultimately result in formation of a clot [19]. The lack of clinically significant levels of coagulation 

may arise from the dilutional effects of blood flow or from the continued presence of natural 

anticoagulants.  

The need to use anticoagulants during blood collection argues against the above noted key role of 

tissue factor, although it is possible that clot initiation happens prior to the blood hitting the test 

tube. In that case though, one could not produce a blood sample that would not clot, effectively 

muting the ability to even study the problem anywhere other than in a person implanted with a 

material, and post-surgical recovery.  

Hemolysis can influence thrombosis [20-22] through an effect on coagulation and other processes, 

although this is not well studied in the context of biomaterials. It has been thought that hemolysis 

is a consequence of shear stress in a device such as in a left ventricular assist device and not an 

effect of the material per se.  
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Platelet Activation 

Platelet activation through biomaterials occurs via adhesion to adsorbed proteins (mainly 

fibrinogen) and indirectly through biomaterials-induced activation of coagulation and other 

systems. Platelet activation leads to spreading, a change in shape [23] and adhesion to 

surfaces as well as to platelets or to other cells via the GPIIb/IIIa receptor and P-selectin. It 

boosts the coagulation cascade by expression of phosphatidylserine, leads to the formation 

of microparticles, thromboxane formation and release of granule content [5, 24, 25]. These 

activated platelets create a nidus for thrombin generation and ultimately, occlusive 

thrombus formation or embolization. Such activation by biomaterials has been noted in 

experimental animals in several clinical scenarios [26-28]. In other situations, platelet 

activation is a useful diagnostic of potentially adverse interactions [27, 29].  

Follow on comments 

Material surface properties will affect the exposure of platelet binding regions in adsorbed 

proteins, and therefore affect the adhesion/activation of platelets. There are good correlations 

between the exposure of the -chain dodecapeptide in fibrinogen and platelet adhesion [30-32].  

Platelet activation can occur with but also without adhesion to a material surface [26, 27]. 

Frequently, the activation level of adherent blood platelets is used as a measure of thrombogenicity 

and scored according to the platelet morphology. Small non-spreading cells are regarded as least 

activated while a pancake-like appearance show the highest activation level with several levels of 

pseudopod formation as intermediate stages [23, 33]. However, the platelet density on a surface 

and their morphology do not always correlate with thrombogenicity: various hydrogels are not 

thrombo-adhesive, but they support platelet aggregation and embolization. Furthermore, highly 

spreading blood platelets on hydrophobic materials are found which show clinically low 

thrombogenicity. A passivating effect of these blood platelets is assumed [34-36].  

 

Activated platelets upregulate surface receptors like GPIIb/IIIa and P-selectin (CD62P), which is 

an important marker of platelet activation in vivo. The tendency of activated platelets to form 

platelet-leukocyte aggregates and stick to surfaces may suppress the level of detected P-selectin 

expression and raise the need for alternative parameters [37]. Release products of platelets, such 

as PF4 or β-TG release are established parameters [38, 39]. The platelet-leukocyte aggregates as 

such correlate with thrombotic events with cardiovascular devices and are suggested as a marker 

of platelet activation [40]. Material-induced aggregate formation has not been consistently 

characterized in vivo, making it difficult to correlate results from in vitro studies as well as testing 

the validity of the in vitro models used. 

Platelet adhesion and activation are shear dependent processes. The platelet itself is shear sensitive 

[41, 42] and von Willebrand factor (vWF), the ligand for the platelet adhesion receptor GPIb, 

undergoes shear dependent exposure of the adhesion motifs [43]. Therefore, the response of 

platelets in arterial and venous settings may be different and hemocompatibility tests need to 

consider and report the shear conditions. Levels and types of shear stress highly differ depending 
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on the device and thus improvement in in vitro blood compatibility due to changes in material 

chemistry may have little clinical impact, because the influence of flow predominates [44]. As an 

extreme case, modern continuous flow LVADs can lead to bleeding by destruction of the high 

molecular weight vWF multimers that are critical for platelet adhesion in capillaries [45]. 

Activated platelets release 0.1 – 1 µm sized microparticles (MPs) budding off from the cell 

membrane. Several animal and clinical studies have demonstrated that these MPs contribute to a 

pro-thrombotic state through the expression of phosphatidylserine and TF. This is true not just for 

platelets MPs but also for endothelial cells, monocytes and neutrophils MPs [46]. Cardiovascular 

materials have demonstrated to induce MP formation with significant impact on thrombosis and 

inflammation in animal experiments as well as clinical studies, highlighting the need of the 

biomaterial community to assess these as a form of material-induced activation and a 

biocompatibility marker. The presence of microparticles generated by LVAD in patients is also 

believed to contribute to endothelial dysfunction inducing a prothrombotic and pro-inflammatory 

state in patients, which can also alter the ability of endothelial cells to release vasodilatory 

mediators [47, 48]. The direct link between MPs and adverse events (such as stroke, organ failure, 

myocardial infarction), however, remains difficult to identify due to the limited number of clinical 

studies and the small number of patients involved.  

Sefton believes that complement activation (particularly at the level of C1) is important for both 

adhesion and activation of blood platelets [49]. Recent research shows that C1q binds to platelets 

and is activated, leading to further complement activation through an increase in C3a [50-52]. The 

binding of C1q occurs either through a specific C1q receptor or through P-selectin after platelet 

activation. Complement activation may occur earlier than platelet activation, although it is likely 

that there is substantive crosstalk precluding such delineation. Given the crosstalk among these 

systems, platelet and leukocyte activation also occur in an interdependent fashion, albeit to 

different extents at different times.  

In vitro platelet analysis in the frame of hemocompatibility assessment has several limitations. It 

is difficult to determine when platelet activation by a biomaterial, observed in in vitro assays, 

becomes clinically relevant; the same is generally true for any hemocompatibility parameter. 

Consequently, use of the term “highly activating” is of limited value without quantitative 

definition. Despite evidence that platelet functions and reactivity from patients with cardiovascular 

disease differ from healthy individuals [53-55], pre-clinical in vitro studies continue to be 

performed with the blood of healthy donors. This estimation of hemocompatibility therefore does 

not necessarily reflect the clinical performance and more tests with blood from patients should be 

performed.  
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Complement 

The complement system, made up from more than 30 proteins is evolutionary related to the 

blood coagulation cascade and contributes to host defense. Biomaterials activation of the 

complement cascade leads to the release of reactive fragments C3a, C5a and SC5b-9 to 

plasma while complement proteins including C1q and C3b are often found in the protein 

adsorbate [56, 57]. The alternative pathway is particularly relevant for surfaces bearing a 

nucleophile group (OH, NH2) capable of covalent binding of C3b [58, 59]. Complement 

inhibitors such as Factor H or C1q inhibitor may also bind to biomaterial surfaces or be 

incorporated into the protein adsorbate, such that complement activation is downregulated 

[60]. 

 

Follow on comments: 

Different pathways may be involved in biomaterials induced complement activation [61]. Surface 

induced activation of the alternative pathway was reported to be a consequence of nucleophilic 

surface groups – but several reports propose that this effect is conferred via adsorbed proteins and 

not via the chemical moiety itself [62, 63]. Some suggest [59] that mostly hydroxylic groups are 

responsible for strong complement activation and activation through amino groups seems to be 

less relevant. The classical pathway may be activated by C1q binding to non-specifically adsorbed 

immunoglobins (IgG, IgM) on a foreign surface as well as to non-self patterns on surfaces and 

gets activated to initiate the complement cascade [64]. Only few reports propose a mannose 

pathway involvement through adsorbed, glycosylated proteins [65] or nanoparticles [66].  

Besides the activation of the complement cascade, biomaterials may affect also the course of the 

cascade. Complement inhibitors (Factor H, C1q inhibitor) interacting with surfaces crucially 

modulate the resulting complement activation [57]. Surface topography on a nanoscale range, like 

the high surface curvature of nanoparticles can sterically prevent the interaction of adsorbed 

complement factors and thus block the propagation of the complement cascade [67]. 

Activation of the complement system mainly has inflammatory consequences. Complement 

fragment C5a is a strong activator of myeloid leukocytes via their complement receptor C5aR1 

(CD88). The adhesion of these cells to a complement-activating surface is mainly triggered by the 

presence of surface-bound complement fragment C3b [58].  

Complement activation induced by the biomaterial at the site of implantation may also lead to 

deposition of complement products on endothelial cells and production of endothelial 

microparticles which can contribute to the pro-inflammatory and thrombotic state [68]. C1q has 

also been shown to modulate endothelial cells behavior and to play a role in angiogenesis [69]. 

While these processes have been studied in vitro and in thrombotic diseases, they have been poorly 

characterized with cardiovascular devices [68].  

The complement system also has several links to the coagulation system, both of which proceed 

in parallel in the protein adsorbate: coagulation factor XIIa can activate complement component 

C1 and thrombin can function as a C5 convertase [70]. In addition, the fibrinolytic plasmin has 

activity as a C5 convertase [71]. The complement system can modify coagulation by activating 

leukocytes to express and activate blood-born tissue factor [11, 70, 72, 73] or plasminogen 
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activator inhibitor (PAI-1) [74]. As mentioned above, activated platelets can support complement 

activation by binding complement fragments to P-selectin and the C1q receptor [49, 75]. 

Heparin acts as inhibitor in both systems by association with either antithrombin (coagulation) or 

factor H (complement).  

Complement activation in vitro is typically measured in serum, since calcium and magnesium are 

required cofactors (precluding the use of citrate or EDTA) and heparin is an inhibitor of some 

reactions but not all, complicating result interpretation. If whole blood or blood plasma has to be 

used, then hirudin can be used as anticoagulant, as it does not interact with the complement system 

[76]. The soluble fragment complement C5a is a possible analyte for the common, terminal 

complement pathway. Fast binding of C5a to its receptor on granulocytes may quench the 

concentration of the free peptide [77] and quantification of the soluble terminal complement 

complex (sC5b-9) has been suggested as a more reliable parameter to determine the activation of 

the complement cascade [78]. If differentiation between the classical or alternative pathway is 

desired, then quantification of Bb (alternative pathway) and C4d (classical pathway) or the use of 

specific inhibitors can help, however in advanced stages usually the whole complement cascade is 

activated. 

The critical threshold for complement related incompatibility is undefined, yet it is presumed that 

higher amounts indicate greater incompatibility. While 5 mg/mL SC5b-9 is readily detectable, it 

is unclear whether this level (~ 1/3 of positive controls such as zymosan) is biologically significant.  
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Leukocyte Activation 

Like platelets, myeloid leukocytes (neutrophils and monocytes) may adhere or be activated 

on a surface. Their adhesion to biomaterials is mediated via different factors with adsorbed 

proteins (fibrinogen, fibronectin and iC3b) being of primary importance. Upregulation of 

CD11b, loss of L-selectin, release of reactive oxygen species (oxidative burst), neutrophil 

elastase, cathepsin G or IL-8 are typical markers of activation [79, 80]. These release 

products lead to local tissue damage and recruitment and activation of more inflammatory 

cells.  

Follow-on comments 

Triggers for leukocyte activation on materials mainly are adsorbed proteins and adherent platelets. 

Additionally, mechanical factors and contamination with endotoxins may induce leukocyte 

activation.  

Adsorbed and soluble complement products are the most prominent triggers of granulocyte and 

monocyte activation. Above all the anaphylatoxic peptides C3a and C5a induce cell activation [12] 

while adherence to the surface is mediated through surface-bound iC3b that binds to CD11b/CD18 

[81]. Other pathways, such as kallikrein-induced activation, also contribute to the activation [82] 

and adherence can occur to already adsorbed and activated platelets [83, 84]. Little is known about 

how eosinophils react to bare materials, yet there is evidence that they may become activated with 

drug-coated materials (such as stents) [85, 86]. 

Physical factors of biomedical devices, such as disturbed flow in LVAD and cardiopulmonary 

bypass (CPB), also present a source of leukocyte activation and contribute to a pro-thrombotic and 

pro-inflammatory state of leukocytes [80].   

An additional “external” factor that may also affect leukocyte activation are lipopolysaccharides 

(LPS) from Gram negative bacteria, which are also commonly known as endotoxin. They can 

easily contaminate the surface of cardiovascular devices and biomaterials synthesized in the lab 

[87]. A contaminated surface can activate several components of the inflammatory and thrombotic 

response in blood. Therefore all materials should be tested for endotoxin contamination prior to in 

vitro and in vivo studies [88, 89].  

The first innate inflammatory response against foreign materials in blood includes neutrophils and 

monocytes. When activated, internal cell reorganization will lead to the presentation of CD11b 

and other adhesion ligands on the cell surface. This enables the cells to adhere to the surface and 

to interact with other neutrophils, monocytes and platelets. Additionally, they release soluble 

factors (elastase, myeloperoxidase) and microparticle and can form neutrophil extracellular traps 

(NETs). 

Similarly to platelet microparticles, leukocyte microparticles play a role in hemostasis and 

inflammation and contribute to pathological conditions [90]. No in vitro study has yet 

characterized the mechanisms associated with material-induced leukocyte microparticles. There is 

however clinical evidence that leukocyte microparticles generated with cardiovascular devices 

such as CPB and LVAD also contribute to endothelial dysfunction and coagulation [47, 48]. 



  

 
9 

 

Granulocyte activation also can lead to NETosis (neutrophil extracellular trap formation), which 

is characterized by the expulsion of nuclear DNA along with citrullinated histones and granular 

content (e.g. elastase) [91]. These components are highly thrombogenic [92] and have been 

identified in thrombi from coronary arteries [93] and from failed stents [86]. While these have 

become an area of active research in thrombosis and inflammation [94, 95], the biomaterials 

community has been slow to recognize the potential impact of NETs in biocompatibility and 

limited in vitro studies exist. Recently, Sperling and Maitz suggested that NETs may also 

contribute to biomaterial-induced thrombogenicity [96]. The formation of NETs was also observed 

on CoCr (a common biomaterial used in stents) in the presence of platelets in vitro [97]. 

It is generally considered that biomaterials do not induce an adaptive, lymphocyte dependent 

immune response [98] but this may deserve more attention in hemocompatibility research [99]. 

There are a few cases, like nickel or chromium allergy, where released ions transform self-proteins 

to foreign epitopes and induce a T-cell response. It is startling that in the absence of an antigen, T 

cells can be activated, but it was reported that cytokines at the inflammatory site around the implant 

may cause a non-clonal bystander activation of T-cells [100]. A recent paper [101] points to a 

pivotal role for B cells in the foreign body response. 

The activation of immune responses sometimes also has distinct beneficial effects. Microbial 

infection is a persistent risk for implant materials in the body and antimicrobial defense is a leading 

task of neutrophil granulocytes. The antimicrobial capacity of biomaterials-adherent neutrophils 

however is still largely unexplored [102], which significantly affects our ability to design 

cardiovascular biomaterials that can resist infection. Whole blood incubation was shown  to 

support anti-microbial activity against various gram-positive and gram-negative strains [103]. On 

the other hand, other studies indicate that neutrophils have been shown to promote bacterial growth 

and to create a protective environment for biofilms [104, 105]. 

More positive effects of material-induced inflammation were noted for endothelial regeneration 

following vascular prosthetic implants [106]. Activated neutrophils can support monocyte 

infiltration and subsequent phenotype switching may suggest a beneficial impact [107]. Since 

biomaterial implantation, inter alia, damages blood vessels, transmigration through activated 

endothelium may not be the primary mechanism for generating of monocyte-derived tissue 

macrophages. In addition, there are tissue resident macrophages that are different from the 

monocyte-derived phenotype [108]. Conversely, the inflammatory response in the surrounding 

tissue induced by cardiovascular implantation may also result in the release of macrophage wound 

healing factors that could promote endothelialization.  

In the context of an inflammatory response, the variety of cytokines generated will dictate the 

consequences of that response. Pro-inflammatory properties (M1) of macrophages activated by 

Interferon γ and pro-regenerative properties (M2) after activation by IL4 or IL10, for example, are 

observed [109] in vitro. The relevance of these clear M1/M2 distinctions in vivo is less clear, , 

although the notion of phenotypic differences among macrophages has been exploited in recent in 

vivo biomaterial studies [110, 111]. It has also been suggested that neutrophils can exhibit distinct 

phenotypes and may thus play different roles in inflammation, all the more so in the presence of 

biomaterials [112-114]; but this concept is not yet widely accepted.  
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Leukocyte activation manifests itself in diverse forms, and the mechanisms of crosstalk between 

platelets and leukocytes have been well demonstrated, blurring the line between inflammation and 

thrombosis [84]. Activated leukocytes can directly contribute to plasma coagulation on various 

pathways. They express tissue factor and contribute to coagulation in the process of thrombosis 

[12, 115-117]. The relevance of this pathway in biomaterial-associated thrombogenicity, however 

is unclear [11]. 

In addition to local effects of cell adhesion / activation systemic clinical consequences that have 

been directly related to leukocyte activation include infection, myocardial infarction as well as 

organ injury and failure [80, 118]. Leukocyte removal filters have been introduced in 

cardiopulmonary bypass (CPB) [119] yet released inflammatory mediators from the trapped cells 

could contribute to the inflammatory response [120]. 

In an in vitro model, the determination of leukocyte activation is limited to local effects. 

Additionally, usually blood donation is done by healthy donors while clinical complications may 

result from the altered state of leukocytes in ill patients. Leukocytes are generally in a state of 

higher activation in cardiovascular diseases, such as in heart failure and left ventricular dysfunction 

[121, 122]. This can further contribute to complications following implantation of a medical 

device. Preclinical hemocompatibility testing will need to address these clinical conditions better 

in the future. 
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