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Abstract 

With the increase in usage of electric vehicles (EVs), the demand for lithium ion (Li-ion) batteries 

is also on the rise. A Li-ion battery pack in an EV consists of hundreds of cells and requires a 

battery management system (BMS). The BMS plays an important role in ensuring the safe and 

reliable operation of the battery in EVs. Its performance relies on the measurements of voltage, 

current and temperature from the cells through sensors. Sensor faults in the BMS can have 

significant negative effects on the system, hence it is important to diagnose these faults in real-

time. Existing sensor fault detection and isolation (FDI) methods are mostly state-observer-

based. State observer methods work under the assumption that the model parameters remain 

constant during operation. Through experimental results, this thesis shows that degradation can 

affect the long-term performance of the battery and its model parameters, hence it can cause 

false fault detection in state observer FDI schemes. This thesis also presents a novel model-based 

sensor FDI scheme for a Li-ion cell, that takes into consideration battery degradation. The 

proposed scheme uses the recursive least squares (RLS) method to estimate the equivalent 

circuit model (ECM) parameters in real-time. The estimated ECM parameters are put through 

weighted moving average (WMA) filters, and then cumulative sum control charts (CUSUM) are 

implemented to detect any significant deviation between unfiltered and filtered data, which 

would indicate a fault. The current and voltage sensor faults are isolated based on the 

responsiveness of the parameters when each fault occurs. Finally, the proposed FDI scheme is 

validated by conducting a series of experiments and simulations. Various injection times, fault 

sizes, fault types and cell capacities are considered. The results show that the proposed scheme 

consistently detects and isolates voltage and current sensor faults at different cell capacities in a 

reasonable time, with no false or missed detection. The preliminary findings are promising, but 

in order for the proposed FDI scheme to be utilized in practical settings, more work is needed to 

be done. The scheme should be expanded to include FDI for temperature sensors. In addition, 

other battery models as well as other fault diagnosis methods, specifically knowledge-based 

ones, should be investigated. Furthermore, additional experiments, including longer test cycles 

and extension to modules and packs testing, need to be conducted to obtain more data to 

improve the reliability of the FDI scheme.  
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1. Introduction 

The rise of gas prices and the negative effects of air pollution on public health and climate change 

have pushed the automotive industry to look for renewable energy sources and storage systems 

to provide for the needs of the future. Currently, non-renewable energy sources make up 27% of 

the energy used to meet the grid needs within the province of Ontario [1]. To decrease the 

dependency on non-renewable energy, the automotive industry has been developing electrified 

powertrains, which also help to increase overall vehicle efficiency and reduce emissions [2] [3] 

[4]. The electric vehicles (EVs) market is on the rise, due to factors such as cost-effectiveness, 

rising fuel prices, technological advancements, increasing R&D in the field, growing 

environmental concern worldwide, surge in government initiatives towards the protection of the 

environment [5]. Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and 

Battery Electric Vehicles (BEVs) have experienced a substantial increase in market share. In 2018, 

the global electric car fleet exceeded 5.1 million, up 2 million from the previous year and almost 

doubled the number of new electric car registrations [6]. The battery pack is a very important 

component in an EV, and most EVs nowadays are utilizing lithium-ion (Li-ion) battery pack as their 

energy storage system. 

Li-ion batteries are the most popular energy storage in the world, amounting to 85.6% of the 

energy storage system utilized in 2015. Although it has the highest price, it shows the lowest cost 

per cycle [7]. The substantial demand for Li-ion batteries is due to portable devices and EVs. EVs 

require an energy storage system that can provide a great amount of power to accelerate the 

vehicle, sustain the energy for a large distance, and last for a long period of time after the vehicle 

life span begins. Thus, Li-ion batteries are used in EVs due to their high power and energy density, 

long life span and reduced environmental impact.  

EVs require a battery system that consists of hundreds or thousands of single cells. In order to 

manage this large number of cells, the battery pack needs a battery management system (BMS). 

It is important that the performance of the BMS is accurate and reliable to ensure the 

performance and safety of EVs application. The functions of the BMS include state of charge 

(SOC) and state of health (SOH) estimation, battery safety and protection, cell monitoring and 
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balancing, charge control, and thermal management [8]. The functions are heavily dependent 

and can be seen in Figure 1. These functions rely heavily on voltage and current sensor 

measurements [9]. It is possible for the sensors to experience malfunctions during operation of 

the battery, due to manufacturing defects or environmental factors. The SOC and SOH estimation 

would be affected if there were any faults with the sensors, leading to over-charge and/or over-

discharge phenomenon which would degrade the battery faster. The current and voltage 

protection would also fail to work properly due to faulty sensors [10]. Therefore, it is critical to 

develop an algorithm that can reliably and accurately diagnose any faulty operation of the voltage 

and current sensors in real-time. 

 

 
Figure 1. The BMS features. [15] 
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1.1. Motivation  

There has been some research done on sensor fault detection and isolation (FDI) schemes, which 

are mostly state-observer-based.  All of these methods work under the assumption that the 

battery model parameters remain constant throughout the battery pack’s life span. However, 

the parameters can be affected by degradation, a significant property of battery operation. 

Currently, there has not been any mention of cell degradation in any FDI works done in literature. 

There are a few models used to illustrate battery behavior, but the equivalent circuit model 

(ECM) is the most widely used in FDI works [11]. The parameters of the ECM were derived using 

the conservation of species, conservation of charge, and reaction kinetics in [12]. The results 

show that the parameters have physical meanings and can be affected by the chemistry of the 

battery as well as the environment of operation. Therefore, the degradation of the battery would 

have some effects on the parameters. The existing FDI schemes can be improved by integrating 

degradation into the ECM. However, this has been proven to be a difficult task. Currently, battery 

degradation models can be obtained by fitting experimental data under constant conditions. 

However, this is not an appropriate model for battery degradation in EVs application due to its 

complex operating state [13]. Experimental models are also less accurate, time-consuming and 

costly. Adaptive models are more accurate but require training to estimate the parameters that 

correlate with degradation. Moreover, the models can have high computational effort which is 

not suitable for real-time BMS applications [14]. Another approach is needed to effectively 

diagnose faults while considering the effect of degradation on ECM parameters, which this thesis 

will present. 

 

1.2. Objectives and Contributions 

The main objectives of this thesis are to outline the background, confirm the degradation effect 

on the ECM parameters, design an FDI scheme for voltage and current sensor faults, and validate 

its performance using a series of experiments. As the ECM parameters are expected to change 

during battery operation due to the effect of degradation, this thesis studies and confirms this 
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effect through a series of experiments. The proposed FDI scheme uses the recursive least squares 

(RLS) method to estimate the ECM parameters in real-time, then applies a weighted moving 

average (WMA) filter coupled with a cumulative sum control chart (CUSUM) to detect any voltage 

and current sensor faults. The use of RLS is suggested because of its low computational demand 

and easy implementation [15]. The implementation of the WMA filter eliminates the concern of 

battery degradation, in addition to the effect of SOC and temperature on ECM parameters. 

Furthermore, the sensor faults are isolated based on the responsiveness of the parameters when 

a specific fault occurs. Finally, the Urban Dynamometer Driving Schedule (UDDS) cycle with 

sensor fault simulation is applied to validate and evaluate the performance of the proposed FDI 

scheme for a lithium iron phosphate (LFP) cell. The key contribution of this thesis is the novel 

ability of the proposed FDI scheme to operate reliably when the battery undergoes degradation. 

 

1.3. Thesis Outline  

The rest of this thesis is organized as follows. Chapter 2 discusses the background and literature 

focusing on battery basics, BMS, sensor faults and fault diagnosis methods. Chapter 3 outlines 

the battery model used and the details of the proposed FDI scheme. Chapter 4 provides the 

experimental design and analysis of the effect of degradation and various faults on the 

parameters. The evaluation of the proposed fault diagnosis scheme is presented in Chapter 5, 

and the resulting conclusions are given in Chapter 6. 
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2. Background and Literature Review 

2.1. Battery Basics 

2.1.1. Batteries and Cells 

A battery is a device that converts stored chemical energy into electrical energy by means of an 

electrochemical oxidation-reduction (redox) reaction. For a rechargeable battery, the process is 

reversed. The redox reaction occurring within batteries involves electrons being transferred from 

one material to another through an electric circuit.  [8] [16] [17]. Because batteries convert 

chemical energy into electric energy through an electrochemical process, they are not subject to 

the limitations of the Carnot cycle, unlike combustion engines, and thus batteries have higher 

energy conversion efficiencies [18]. 

A battery consists of one or more cells, connected in series and/or parallel. The cell consists of 

three major components: the anode, the cathode, and the electrolyte. The anode is the negative 

electrode or reducing electrode, which produces electrons and is oxidized during the redox 

reaction. The anode is usually selected based on some specific requirements, including reducing 

potential, good conductivity, stability, ease of fabrication and low cost. Hydrogen, lithium and 

zinc are some examples of materials that have been used as the anode [19]. The cathode is the 

positive electrode or oxidizing electrode, which accepts electrons and is reduced during the redox 

reaction. A good cathode material should be an efficient oxidizing agent and have a useful 

working voltage, and some common materials are metallic oxides, oxygen and halogens [19]. The 

electrolyte, usually liquid, is the ionic conductor that provides the medium for ions to transfer 

between the anode and cathode. It should be nonreactive with the electrodes, stagnant with 

change in temperature, safe and cost-efficient. It should also be ionically conductive but not 

electronically conductive to prevent internal short-circuiting. There are many shapes and 

configurations for the cells, including cylindrical, button, and flat, and the components are 

designed to fit different cell shapes [18]. 
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There are three common classifications for batteries: primary (nonrechargeable), secondary 

(rechargeable) and flow batteries. Primary batteries are normally discharged once and discarded 

due to their inability to be effectively recharged, but they have a good shelf life and high energy 

density at low discharge rates. They are a convenient, inexpensive and lightweight solution to 

many applications such as portable electronic devices, lighting, and cameras. Secondary batteries 

can be recharged electrically to their original state by passing the current in the opposite 

direction to that of the discharging process. They are used the same as primary batteries but 

instead of being discarded, they can be recharged to be used again. Some notable applications 

for this type of battery are cell phones and laptop computers. Secondary batteries usually possess 

traits like high power density and high discharge rate. Flow batteries utilize chemical energy 

outside of the battery in a fluid state. The fluid passes through the battery and reacts to produce 

electrical energy. An example of this type of battery is fuel cell [18]. 

 
Figure 2. Electrochemical operation of a cell (left-discharge, right-charge). [18] 

The operation of a cell (rechargeable) during the discharge and charge process is shown in Figure 

2. During discharge, the cell is connected to an external load and the electrons flow from the 
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anode to the cathode through the load. In the electrolyte, the ions flow to their respective 

destination, completing the electric circuit. During the charge, the current flow in reverse, 

provided by a power supply, and the oxidation and reduction processes occur in the opposite 

electrode of the discharge (the positive electrode is now the anode and the negative is the 

cathode).  

Some properties of batteries include voltage, capacity, energy, SOC and SOH: 

• The theoretical voltage of a cell can be calculated from the standard electrode potentials. 

It is the difference between the voltage potential of the two electrodes. The theoretical 

voltage is modified by the Nernst equation, which takes into account the non-standard 

concentration and temperature of the cell during its operation. The actual potential 

changes with time either because of use or self-discharge by which the activity 

(concentration) of the electroactive component in the cell is modified. The actual voltage 

produce will always be lower than the theoretical voltage due to polarisation. It is also 

affected by the resistance losses (IR drop) of the battery which depends on the load 

current and the internal impedance of the cell. These factors are dependent on electrode 

kinetics and thus vary with temperature, SOC, and the age of the cell. The actual voltage 

appearing at the terminal needs to be sufficient for the intended application [18]. 

• The capacity of a cell is determined by the mass of active material contained in the cell, 

measured in coulombs or ampere-hours. It is essentially the quantity of electricity that 

can be obtained from the active materials. The cell capacity represents the maximum 

amount of energy that can be extracted from the battery under certain specified 

conditions. However, the actual energy storage capabilities of the battery can vary 

significantly from the nominal-rated capacity, as the battery capacity depends strongly on 

the age and operational history of the battery, the charging or discharging regimes of the 

battery, and the temperature [18].  

• The energy of the cell considers both voltage and capacity, being the multiplication 

product of the two quantities. It is the maximum value in watthour that can be delivered 

by a specific electrochemical system. However, energy is not a good metric for cell 

specification because only a fraction of the theoretical energy of the battery is realized, 
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due to the need for electrolyte and other nonreactive components such as containers, 

electrodes and separators. Better metrics used for batteries to evaluate their 

performance are specific energy (Wh/kg) and energy density (Wh/L). The specific energy 

density is the energy that can be derived per unit weight of the cell. The energy density is 

the energy that can be derived per unit volume of the weight of the cell [18]. For example, 

the development of pouch cells significantly decreased the weight and volume of the cell, 

increasing its specific energy and energy density when compared to past cell shapes, and 

thus making it more efficient and viable to use. 

• The SOC is defined as the available capacity expressed as a percentage of some reference, 

which can sometimes be the rated capacity of the cell, and sometimes its current (latest) 

capacity. It is not usually an absolute measure in Coulombs, kWh or Ah of the energy left 

in the cell. The fact that it is not an absolute measure combining with unclear reference 

point creates some confusion around the SOC estimation. The preferred SOC reference 

should be the rated capacity of a new cell rather than the current capacity of the cell. This 

is due to the fact that the cell capacity gradually reduces as the cell ages [18]. For example, 

towards the end of the cell's life, its actual capacity, even when the cell is fully charged, 

will be approaching only 80% of its rated capacity. Therefore, in this case, the cell SOC 

would only be 80% of its rated capacity [20]. Even though this is the case, some 

applications still use the cell’s current capacity as the reference point, including EVs [21]. 

This is because the SOC in EVs is normally regarded to as the “fuel” gauge. This value gives 

the users a sense of how much “fuel” is left in their battery. If the battery is indicating a 

“fuel” level of 80% even when it is fully charged, the users will believe that their battery 

is not working properly, even though this behavior should be expected from a battery. 

Using the current capacity rather than the rated capacity is usually a design shortcut to 

avoid the complexity of determining and allowing for the age-related capacity 

adjustments, which are often conveniently ignored.  

• The SOH is defined as the measurement of the general condition of a battery and its ability 

to deliver the specified performance compared with a fresh battery. It takes into account 

factors such as charge acceptance, internal resistance, voltage and self-discharge. It 
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measures the long-term capability of the cell and gives an indication, not an absolute 

measurement, of how much of the available "lifetime energy throughput" of the battery 

has been consumed, and how much is left [18]. In EVs application, it can be analogized to 

the "odometer" display function which indicates the number of miles traveled since the 

vehicle was new. 

 

2.1.2. Li-ion Batteries 

Since the application of EVs requires high power density and discharge rate, secondary batteries 

are the most suitable solution. The ability to be recharged also allows for convenience and cost 

savings, because of the complexity of battery replacement in that application [22]. One of the 

most important aspects involving the use of batteries in EVs is the range of the vehicle. Users 

want longer driving range and better performance, which requires a battery solution that has 

high energy and power density, low weight and small volume. Li-ion batteries satisfy many of the 

EVs application requirements [23]. As can be seen in Figure 3, they possess higher energy 

potential while maintaining a smaller size and weight compared to other rechargeable batteries.  

 
Figure 3. Ragone plot for different cell chemistry. [22] 
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Li-ion batteries utilize lithium compounds for both positive and negative electrodes. The Li+ ions 

move back and forth between the electrodes as the cell cycles. The negative electrode material 

is commonly graphite, used for its availability, cycling performance and safety, layered on a 

copper current collector. The positive electrode has been researched more, with many available 

materials such as LiCoO2 (LCO), LiMn2O4 (spinel), LiFePO4 (LFP) and Li(NiMnCo)O2 (NMC) [24] [25]. 

These materials each have different advantages which are appropriate for different applications, 

such as low cost, high thermal stability, long cycle life, high rate capability and high capacity.  

 
Figure 4. Reactions within Li-ion battery cell. [22] 

When a Li-ion cell is charged, the active material from the positive electrode is oxidized and the 

material from the negative electrode is reduced. During this process, lithium ions are 

deintercalated from the positive to the negative side [24]. The reactions are shown in Figure 4, 

where LiMO2 represents the metal oxide such as LiCoO2 and C represents the carbonaceous 

material such as graphite. The graphical schematic of the cell in operation of discharge and charge 

is shown in Figure 5. 
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Figure 5. Schematic of Li-ion cell in operation of discharge and charge. [22] 

 

2.1.3. Use of Li-ion Batteries in EVs Application 

The big and relatively new application for Li-ion cells between 2010 and 2020 is electrified 

vehicles [24]. Some advantages of Li-ion batteries allow for this to occur: long cycle life, broad 

operating temperature range, long shelf life, rapid charge capability, high-power discharge 

capability, high specific energy and energy density, and ability to be contained in a pouch (for size 

and weight reasons). However, there are also some disadvantages to Li-ion batteries, namely: 

not cost-efficient for big applications, susceptible to degradation at high temperature, needs for 

protective circuitry, capacity loss and possible thermal runaway when overcharged, venting and 
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possible thermal runaway when crushed [22]. Most of the disadvantages involve safety, and 

batteries used in automotive vehicles should be designed and built to the highest standard for 

the requirements of both safety and function of the application. Therefore, Li-ion batteries used 

in EVs typically employ a management system combined with mechanical disconnect devices to 

provide protection from overcharge, over-discharge or extreme temperature conditions [22]. 

 

2.1.4. Battery Degradation 

Li-ion batteries are the most commonly used energy storage system in EVs, due to its energy-to-

weight ratio and low self-discharge rate [18]. However, in order to make a significant impact on 

the existing automotive market, these batteries must satisfy performance requirements and last 

long enough for customers to be interested [26]. Battery degradation is one of the factors that 

can affect performance in EVs since it directly affects battery lifetime, the measure of battery 

performance and longevity. Degradation can be quantified as runtime on a full charge (estimated 

in Ah) or as the number of charge/discharge cycles until it degrades irreversibly [27]. For vehicle 

use, the end-of-life (EOL) point is defined to be when the battery has degraded to 80% of its 

original SOC [28].  

It was determined that the performance loss of the battery is caused by many different 

mechanisms [29]. These mechanisms are often difficult to identify and quantify due to the 

complexity of the reactions and physical changes taking place inside the battery while under 

operation. The common effects are capacity fade and impedance increase, but the degree of 

these are distinct depending on the conditions the battery operates at or is stored at and the 

materials that make up the battery [26]. While the degree of degradation can vary, its occurrence 

over time is inevitable. The aging mechanisms can be grouped into two categories, calendar aging 

and cycling aging. 

Calendar aging is the degradation of the battery over time when the battery is stored under open 

circuit potential (OCP) conditions [23] [30]. Essentially, the battery will lose its capacity with time, 

even if it is not being used. Even though the effect of calendar aging is less than that of cycling 
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aging, a vehicle is normally parked for most of its service life, hence, EV battery would experience 

this type of aging the most [23]. The loss of capacity in the cell with time can be reversible and 

irreversible loss [31]. The reversible capacity loss is the result of the spontaneous re-intercalation 

of the Li ions from the electrolyte into the unstable cathode when the cell is fully charged [32]. 

The irreversible capacity loss can be attributed to the side reactions occurring within the cells 

[31] [33]. These reactions can be caused by the operating conditions of the battery, namely 

temperature and SOC. With high temperatures, secondary reactions such as corrosion proliferate 

can occur, causing losses of usable lithium [26]. In research conducted by Grolleau et al., Li-ion 

cells stored at different temperatures were found to experience different degrees of capacity 

fade. Cells stored at 30oC experienced less than 10% capacity loss after 450 days of storage, while 

capacity fade was 20% for cells stored at 45oC. Cells stored at 60oC reached a 20% capacity loss 

after only 60 days [23]. For the effect of SOC, Ohue et al. showed that cells stored at the same 

temperature but different SOCs have different aging results. The cells stored at higher SOCs 

experienced increased degradation effect [34]. This is because, at higher SOC, there are 

significantly more Li ions available at the graphite electrode to partake in potential side reactions 

there. 

Cycling aging refers to aging mechanisms that occur within the cell while it is operating under 

load. The losses for this type of aging are typically irreversible [35]. They include the loss of 

capacity in the formation of the solid electrolyte interface (SEI) layer (occurs at both electrodes), 

loss of active materials due to dissolution, structural degradation and electrode delamination, 

and impedance increase from the formation of the SEI layer that passivates the active particle 

surface [35]. Aging can occur at both electrodes, but the most prominent loss of capacity has 

been determined to occur at the anode [17]. The primary source of aging at the anode is the 

formation of the SEI layer. As the cell is cycled, the graphite is exposed to the electrolyte resulting 

in the utilization of more lithium to form an SEI over the exposed surface. This leads to the loss 

of cyclable lithium in the cell as well as an increase in resistance on the electrode. There are also 

many other factors that can induce the aging of the battery at the anode, which are summarized 

in Figure 6. Aging can also occur at the cathode, due to structural factors and SEI formation, 

similar to the anode [30]. The electrolyte can also be a reason for cycling aging, since the 
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materials used in the electrolyte have the capability to undesirably react at low voltage [36]. This 

can sometimes produce gaseous species in the cell and lead to swelling of the cell, which is a 

major safety concern [37]. 

 

Figure 6. Causes for battery ageing at anode and their effects. [11] 

 

2.2. Battery Models 

In order to manage and control the battery with a smart system, it is necessary to understand 

how the battery behaves in various conditions. This prompts the need for mathematical modeling 
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of battery systems, in order to predict the system behaviors and provide appropriate safety 

measures. There have been many suggested battery models in literature, with different levels of 

detail depending on their intended use. 

Mathematical models for batteries started out as empirical relationships between measured 

parameters, such as battery voltage, overall resistance, temperature of the cell and remaining 

capacity. With more research being done on battery models, chemistry-based and physics-based 

models were developed. Some models are the combination of all the above. The three most 

commonly used types of battery models are electrochemical, empirical and electrical.  

Electrochemical models are based on the physical aspects of the battery and characterize power, 

current and voltage. The models use equations developed from the chemical processes that 

occur within the cell. Some examples of these equations include Fick’s law, Ohm’s law, the Butler-

Volmer and Tafel equations [33]. These models are usually highly accurate because they can 

describe the behavior of the battery in great detail. However, due to the level of detail of these 

models, they are often too complex and computationally inefficient, especially for the use of 

online applications like EVs. These models often involve a system of coupled time-variant spatial 

partial differential equations and battery-specific information that is difficult to obtain. The solver 

may take hours or even days to solve the equations within these models, making them unsuitable 

for real-time use. These types of battery models are mostly used in research settings, not in 

battery management systems for vehicles. 

Empirical models, also known as mathematical models, use experimental data from cells to 

predict behavior of the battery in similar conditions. These models only fit the data without 

considering the physical or chemical principles that would require large computing requirements. 

This is more feasible for real-time applications. However, they cannot offer any information on 

characteristics of the battery which are critical for use in control and optimization algorithms. 

Also, since they are only based on a limited amount of data in certain conditions, these models 

cannot predict with high accuracy the battery behavior in other operational conditions [38]. The 

EV applications are constantly in flux, hence, these models would not satisfy the requirements to 

be used in EVs [33]. With the rise of the data analysis and machine learning fields nowadays, 
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these models will eventually be developed to have the highest accuracy out of all the types of 

battery models, when an adequate amount of data is collected [38]. 

Electrical models predict the terminal characteristics of the battery, such as current and voltage, 

through variations of equivalent circuits [39]. An equivalent circuit is a theoretical circuit 

consisting of electrical components that represent various behaviors of the battery during its 

operation [20]. Electrical models can efficiently monitor the performance of the battery and 

other critical battery parameters such as SOC and SOH. They are more intuitive, useful and easy 

to use for engineers. Electrical models are becoming important in order to compute battery 

parameters, because of their adaptability (for real-time use). This ability to be adaptive makes 

electrical models the most feasible ones to be used in EVs. There are numerous electrical-based 

methods to model a battery, and a few of them taken from literature are illustrated below.  

 

2.2.1. Simple Battery Model 

This model consists of an open-circuit voltage (OCV) and a constant internal resistance, as can be 

seen in Figure 7. The internal resistance can be obtained from open-circuit measurements and 

one extra measurement with a load connected at the terminal. The terminal voltage V0 can be 

determined from open-circuit measurement [40]. 

 
Figure 7. Circuit of the simple battery model. [44] 

This model is simple and easy to work with, but it also has several disadvantages. It does not 

consider the varying internal resistance due to changes in SOC and electrolyte concentration. The 

undermining importance of SOC in this model makes it unviable to be used for battery monitoring 

in EVs. 
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2.2.2. Modified Battery Model 

This model has the same schematic as the previous model but with some improvements. In this 

model, the ESR is not constant but a function of the battery SOC. A common formula is shown 

below [41]. 

𝐸𝑆𝑅 =
𝑅0

𝑆𝑘
 (2.1) 

where 𝑅0 is the internal battery resistance when the battery is fully charged, k is the coefficient 

representing the battery discharge rate calculated using manufacturers data and  

𝑆 = 1 −  
𝐴ℎ

𝐶𝑖
 (2.2) 

where 𝐶𝑖  is the initial capacity of the battery when fully charged, and Ah represents the capacity 

used during operation. S, representing SOC, varies from 0 (fully discharged) to 1 (fully charged). 

This model takes into account the change in SOC, but it does not illustrate the transient behavior 

of the battery and the transient time constant.  

 

2.2.3. Thevenin-Based Model 

As can be seen in Figure 8, the Thevenin model uses a resistor and an RC parallel pair to predict 

the battery response to a transient load at a particular SOC where the OCV is assumed to be 

constant [42]. The Rself-discharge represents the self-discharge phenomena of the battery. The Rseries 

accounts for the internal resistance of the battery and the parallel RC network represents the 

transient behavior of the battery and the time constant for the transient conditions. This is a 

good model because it has the ability to accurately describe the battery behavior while retaining 

a certain degree of simplicity. However, it cannot capture runtime information of the battery. 
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Figure 8. Thevenin equivalent model including transient behavior. [44] 

 

2.2.4. Impedance-Based Model 

This model consists of Rseries and Lseries to account for the internal resistance of the battery, and 

impedance Zac to model the electrochemical portion of the battery, as shown in Figure 9. The 

impedance-based model uses electrochemical impedance spectroscopy to obtain an ac-

equivalent impedance model in the frequency domain, and then uses an equivalent network (Zac) 

to fit the impedance spectra [43]. This model only works for a constant SOC and temperature 

setting, and also, the fitting process for this model is complex and non-intuitive, hence it is not 

commonly used for EV applications. 

 
Figure 9. Impedance-based battery model. [44] 

 

2.2.5. Runtime-Based Model 

This model comprises of three different parts, as shown in Figure 10. The first part represents the 

transient behavior of the battery with Rtransient and Ctransient. The second part consists of Vlost, Rself-
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discharge and Ccapacity, which are the voltage lost due to internal losses, the self-discharge resistance 

and the total capacity of the battery. The last part characterizes the terminal voltage Vbatt and 

SOC of the battery through the internal resistance Rseries [42]. This model uses a complex circuit 

network to simulate the battery runtime and behavior under a constant discharge current, but it 

cannot predict accurately for varying load currents. The required current profile to be drawn for 

an EV is normally a dynamic one, hence this model would not be desirable for the use in EV 

applications.  

 
Figure 10. Circuit of runtime-based model. [44] 

 

2.3. Battery Management System 

The BMS is an important element to keep EVs safe, reliable and efficient. It not only controls the 

operational conditions of the battery to prolong its service life and ensure its safety but also 

provides accurate estimation of the SOC and SOH for the energy management modules in EVs. In 

order to fulfill these tasks, a BMS has several components and functional requirements to control 

and monitor the operation of the battery [45]. 

The design of a BMS is complex and requires some considerations about the application’s specific 

needs, the context of the system, and the characteristics of the cells. From these considerations, 

a list of requirements can be developed. In general, the BMS component and functional 

requirements include: acquisition of temperature, voltage and current, data communication 

between BMS master module and slave modules and between battery pack and surrounding 
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applications, and other requirements on robustness against electromagnetic interference (EMI), 

contactors, redundancy of the system in terms of functional safety, galvanic isolation of 

functional systems, balancing and power consumption, size weight, etc. [46]. The structure of a 

typical BMS for EV applications is shown in Figure 11. The BMS can monitor different parameters 

in a battery pack (temperature, voltage, current, capacity, SOH and coolant flow) to determine if 

any problems arise in the battery and take necessary actions to mitigate the issues [8]. One of 

the more significant issues is the battery exceeding the operational limits. For example, 

overcharging can have a very damaging effect on the cells [47]. The BMS is responsible for 

estimating the battery SOC from measured quantities and preventing overcharging phenomenon 

based on the SOC estimation [45]. This would require accurate information from the 

measurements of the battery parameters such as voltage and current.  

 

Figure 11. Structure of a typical BMS for EV applications. [46] 

The voltage measurements are done on both cell and pack level. While the cell voltages are just 

a few volts, the pack voltage can reach over 800V in some applications [48]. Therefore, the BMS 
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needs to distinguish between cell voltage measurement and pack voltage measurement. The sum 

of the cell voltages must be identical to the total pack voltage, which can be a criterion for fault 

detection [49]. The acquisition of cell voltages is usually through integrated BMS frontend chips 

with an absolute accuracy of 1mV and a full range scale of 12 to 16 bits. The better the voltage 

accuracy, the better the SOC estimation. However, using only voltage data is not sufficient to 

determine a cell’s SOC [46]. Information regarding the current measurements is also needed for 

accurate SOC estimation.  

Current acquisition is important for dynamic SOC determination because a method to estimate 

SOC is coulomb counting, which simply integrates the current flowing in or out of a battery. This 

method is only an additional one and does not have sufficient reliability due to the fact that 

current sensors can undergo drift and offset, otherwise know as faults, but it is still used as 

reference for other methods [46]. Current acquisition devices can be divided into two sensor 

technologies, galvanically connected and isolated. An example of the galvanically connected 

technology is the shunt resistor current sensing, where a low-resistance high-precision resistor 

combines with a high-precision voltage measurement system to determine the current. An 

example of the isolated current acquisition is the use of electromagnetic properties of the current 

to obtain the magnetic field strength with Hall sensors. Based on the Hall effect, when the current 

flows through the Hall sensor, the sensor creates a voltage that is proportional to the product of 

magnetic flux density and current [50] [51]. Current sensors, as well as voltage sensors, are very 

important to the operation of the BMS and battery. However, despite having great accuracy after 

multiple iterations of improvement in the industry, they are still subjected to having faulty 

operation, which can lead to inefficient and unsafe operation of the battery, and EV applications 

in general. 

 

2.4. Battery Faults and BMS Faults 

A fault is defined as a deviation of at least one property or parameter of the system from the 

standard conditions. Faults are commonly classified as actuator faults, sensor faults and 

component/parameter faults. They can affect the control action from the controller, produce 
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measurement errors or change the input/output properties of the system, which leads to 

degradation and damage of the system [52].  

There are multiple faults that can be caused by the operation of the battery. Some common faults 

are overcharging, over-discharging, sulphation, physical damage and short-circuiting. These 

faults are specifically battery faults caused by electrochemical reasons and can be detected by 

the BMS to assure minimum damage to the application. However, in order to detect these faults, 

the BMS measurements from the battery (voltage, current and temperature) need to be reliable. 

Because the devices used for the measurements are sensors, the BMS are mostly susceptible to 

sensor faults. 

Readings from the sensors in the BMS have an important role in estimating other characteristics 

of the battery. For instance, as mentioned before, the measurements from voltage and current 

sensors can affect the estimation of SOC. A ±1mV voltage accuracy system used to calculate SOC 

in an NMC cell can have a base error of 0.2%. If the same accuracy is used to acquire an LFP cell’s 

SOC, then a base error of 5.9% can be expected for the SOC estimation [46]. Inaccurate SOC 

estimation can lead to overcharge and over-discharge phenomena as well as undesirable faulty 

controls of the BMS, which can result in poor performance and fast aging of the battery. It is 

desirable to avoid these faults by using the highest-performance sensors, but there is still a need 

for a secondary plan in case the sensors fail to operate correctly. A reliable fault detection and 

isolation scheme for BMS sensors is required to fulfill this need. 

The BMS current and voltage sensors used in EVs application are Hall effect sensors. Therefore, 

the two main faults can be categorized as bias (offset) and gain (scaling) faults. Bias fault is a 

constant offset from the sensor signal during normal operation. Gain fault happens when the 

measurement magnitudes are scaled by a factor while the signal form itself does not change. The 

faults are considered additive and can be modeled as follows [10]: 

�̃� = 𝑦 + 𝑓 (2.3) 

where �̃� is the measured value of current and voltage from the sensors, 𝑦 is the actual current or 

voltage, and 𝑓 is the sensor fault.  
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2.5. Sensor FDI Methods in Literature 

 
Figure 12. Typical fault diagnosis methods. [11] 

There are many FDI schemes used for various applications in different industries, depending on 

the nature of the application. The main categories for fault detection methods include analytical 

model-based methods, signal-processing-based methods, and knowledge-based methods, as can 

be seen in Figure 12. Signal-processing-based methods do not require system modeling, making 

them simpler to develop while having better dynamic performance. However, the drawbacks of 

these methods are the inability to detect fault early and hence, the inability to locate faults 

correctly. Also, the calculation requirement for these methods is always larger compared to 

model-based methods. Knowledge-based methods are suitable in the case of complicated and 

nonlinear systems, where developing a system model is a difficult task. They take both experience 

and knowledge into consideration, which can potentially make them artificially intelligent and 

highly accurate. However, the training process and rule establishment for these methods are 

time-consuming and require an immense amount of data in order to be usable. Model-based 

methods are great for linear system diagnosis, but Li-ion batteries are nonlinear electrochemical 

systems. These are still the most appropriate methods for fault detection in BMS since they do 
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not require a great amount of computational effort, and the nonlinear aspect can be resolved 

using nonlinear theory, adaptive observers and qualitative methods (filters) [11]. Most of the FDI 

schemes for sensor faults in Li-ion batteries in literature have been model-based methods.  

The reviews on sensor fault mechanism and diagnosis approaches for Li-ion batteries can be 

found in [8] and [11]. Desirable characteristics of a fault detection and isolation (FDI) scheme 

include quick detection and diagnosis, isolability, robustness, adaptability, low modeling 

requirements and a reasonable balance between storage and computational requirements [53]. 

Several existing FDI methods were able to accomplish some of the desired characteristics stated 

above. An extended Kalman filter was used in [10] to diagnose sensor faults but fault isolation 

was not achieved. This study confirms that the battery can be over-charged or over-discharged 

due to sensor faults, caused by the inaccuracy of SOC estimation. In [54], the nonlinear parity 

equation approach coupled with sliding mode observers were used to develop an FDI scheme to 

detect sensor faults for a single battery cell. A set of Luenberger and learning observers were 

used in [55] for simultaneous single-fault isolation and estimation of a faulty cell in a battery 

string. In [56], an FDI strategy using structural analysis theory and statistical inference residual 

evaluation was presented, but the computational effort was rather high, hence, not appropriate 

for a real-time application like the BMS. An FDI scheme using sliding mode observers with 

equivalent output error injection was introduced in [57], with findings that false detection rate is 

affected by variation in model parameters. This means that if the model parameters change, the 

FDI scheme will become unreliable. All of the methods in current literature are forms of state 

observers, and require the knowledge of battery parameters, which can be affected by 

degradation, a significant property of battery operation. These FDI schemes operate under the 

assumption that the model parameters do not change, which is untrue with the constant 

occurrence of degradation. There has not been any mention of cell degradation in any FDI works 

done in literature, hence, all of the FDI schemes mentioned above will become unreliable at some 

point of the battery operation, when the parameters have changed enough due to degradation 

and started to affect the state observers. Given the nature of EV applications, degradation of Li-

ion batteries is inevitable, and it is impossible to perform characterization of the battery to obtain 

updated values for model parameters once the pack is in the vehicle. Therefore, it is necessary 
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to develop and implement an FDI scheme that can decouple and isolate the effect of fault and 

degradation during battery operation to make the BMS sensor fault diagnosis more reliable. 

 

2.6. Online Parameter Estimation Methods for Fault Diagnosis 

The battery system is one that many have looked at and researched to understand extensively, 

which is why there are many models to describe its behaviors during operation and rest. Because 

the battery models are readily available, with some being very simple but reliable for the purpose 

of monitoring, the fittest BMS sensor fault diagnosis strategy is model-based. This can be seen in 

previous literature publications shown in the previous section. However, all of the existing FDI 

methods use state estimation and not parameter estimation. It can be seen that with the 

inevitable occurrence of degradation, state estimation is not a suitable method, as it requires 

knowledge of the process parameters and assumes them to be constant. After some investigation 

into the literature, it can be determined that the use of the parameter estimation method for 

BMS sensor fault diagnosis has not been thoroughly researched in any work. 

Online parameter estimation method for fault diagnosis is the diagnosis of any parameter drifts 

when the system is operating in real-time. It requires accurate parametric models of the process 

and assumes the process parameters to be either constants or dependent only on state variables 

[58]. For example, in the case of the BMS using the Thevenin based model, the parameters are 

dependent on the current and voltage of the battery the most. Other state variables that can 

affect the parameters are temperature and SOC, but to a lesser degree. Degradation is also 

known to affect the parameters and needs to be filtered out by some means. Therefore, if there 

are any abrupt changes in the measurements of current and voltage (caused by faulty operation 

of the sensors), they should reflect on the estimated values of the parameters and fault detection 

would be made available then. 

The procedure for parameter estimation methods is outlined below: 

𝑦(𝑡) = 𝑓(𝑢(𝑡), 𝜃) (2.4) 
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The model parameters 𝜃 are estimated from the measurements y(t) and u(t). Changes in the 

parameters are then computed. Using methods of pattern recognition, these changes can be 

related to process faults. There are some common parameter estimation techniques such as least 

squares, instrumental variables and estimation via discrete-time models [59]. Recursive least 

squares method is one that has been suggested and used in many BMS algorithms in literature, 

for the purpose of estimating parameters and SOC online. Since the estimation is a time series, 

instead of a residual generation (prediction versus measurement) method, the fault would have 

to be detected using a change point detection method. 

 

2.7. Change Point Detection Methods 

A change point is defined as an abrupt variation in time series data. Time series data are 

sequences of measurements over time describing the behavior of systems [60]. These behaviors 

can change due to external events and/or internal systematic changes [61]. The purpose of 

change point detection (CPD) is to find abrupt changes in data when a property of the time series 

has changed [62].  

CPD algorithms are often categorized as online or offline. Offline algorithms analyze the entire 

data set at once, in batch mode, and identify where the change occurred. These are often used 

in climate change analysis or medical condition monitoring. Online, or real-time, algorithms can 

detect change while running concurrently with the monitored process. They process each data 

point as it becomes available and aim to detect the change point when the system change occurs 

[63]. From a practical standpoint, it is impossible to perfectly detect changes in real-time because 

of the complexity of most applications. There is a lag for any CPD algorithms, but the goal is 

always to minimize this lag.  

There are two types of online CPD algorithms, supervised and unsupervised. Supervised methods 

require a sufficient amount of training data, essentially machine learning algorithms. 

Unsupervised methods include likelihood ratio methods, subspace models, probabilistic 

methods, clustering, and graph-based method. These are used depending on the application and 
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the nature of the system. Subspace model, cumulative sum control chart (CUSUM) and clustering 

methods are common CPD algorithms, but they do not exhibit good performance for noisy data 

or highly dynamic systems [60]. One possible solution is to smooth the time series out before 

implementing a CPD method, using a low pass filter such as a weighted moving average (WMA) 

filter. 

 

2.8. Drive Cycles 

A drive cycle is a set of data that represents an actual driving situation by plotting vehicle speed 

versus time. Drive cycles are normally produced in order to assess the performance of the 

vehicles regarding several metrics, including fuel consumption and emissions [64]. The 

Environmental Protection Agency (EPA) uses different types of drive cycles for different vehicles 

and scenarios, varying in duration, distance and speed profile. Some common drive cycles run by 

the US EPA are the Urban Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy 

Test (HWFET), the Federal Test Procedure (FTP), and the Inspection and Maintenance Driving 

Schedule (IM240) [65]. 

 
Figure 13. The Urban Dynamometer Driving Schedule speed profile. [65] 
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Drive cycles are also often used in vehicle simulations. The data obtained from simulating drive 

cycles in vehicles can lead to meaningful findings for the powertrain components such as the 

battery pack. Battery operation in EVs can be simulated and observed when a vehicle is running 

a drive cycle. This is more cost-effective and less time-consuming for experimental testing of 

batteries. The drive cycle can also be translated into a current profile, which can then be used to 

run a separate laboratory test for a specific cell instead of obtaining measured data from a pack 

in the vehicle.  

The EPA UDDS is commonly called the "LA4" or "the city test" and represents city driving 

conditions. It is used for light-duty vehicle testing [64]. The speed profile of the UDDS drive cycle 

is shown in Figure 13 above. It is the most common drive cycle in battery simulation and testing. 

 

2.9. Cell Characterization 

Cell characterization is a very important step in battery testing because it helps researchers to 

understand how a particular cell behaves in certain conditions and predict its behavior in another 

simulated condition. Simulation of cell operation is necessary due to the fact that some 

experiments can be unrealistic to conduct because of cost, time and/or physical constraints. Cell 

characterization includes three main tests: capacity test, SOC-OCV curve construction, and Hybrid 

Pulse Power Characterization (HPPC) test to determine battery model parameters [66]. 

There are various types of battery testing equipment. One that is commonly used is from the 

manufacturer Maccor. The Maccor equipment can charge and discharge the battery using 

different current and voltage profiles, and measure and record various battery metrics during the 

runs. The data obtained from the Maccor equipment is often reliable and can be used to 

determine the battery parameters and also to simulate the battery performance. Figure 14 shows 

an example of the Maccor 4200. 
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Figure 14. The Maccor 4200. [67] 

The capacity test is carried out by discharging the cell at a constant current, at a user-selected C-

rate (normally ranged from 0.5 to 2), until the cell reaches its upper voltage limit. Then, the cell 

is discharged at a constant voltage (the upper limit), until the current reaches a relatively small 

value, close to 0. The process is repeated for charging [68]. The capacity test should be conducted 

multiple times for a cell to obtain a reliable value for its capacity. Figure 15 shows the current, 

voltage and capacity profiles for the charging portion of the capacity test. The capacity then is 

calculated from the data obtained as follow: 

𝑄 =  𝐼 ∗ ∆𝑡 (2.5) 

where Q is the charge or capacity in coulombs (1 Ah = 3600 Coulombs), I is the current in A and t 

is the time in seconds. 
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Figure 15. Current, voltage, capacity profiles for the charging portion of the capacity test. [69] 

For the construction of the SOC-OCV curve, a constant discharge of C/25 rate is performed on 

the cell, running from the upper voltage limit to the lower voltage limit of the cell. At the 

beginning and end of the SOC range, the discharge rate should be C/50 rate for a more refined 

curve, because the OCV often changes drastically at the extremes of the SOC. The process is 

repeated for the charging of the cell. SOC can be calculated as the ratio of the remaining useful 

capacity over the initial capacity of the cell at full charge. The OCV is the average of all the 

measured voltages at each SOC, normally in the SOC interval of 0.01. Figure 16 shows an example 

of an SOC-OCV curve for an NMC cell. This experiment should be repeated multiple times in order 

to obtain the average values for the OCV at different SOC so that the curve is more reliable. 
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Figure 16. SOC-OCV curve for an NMC cell. 

The HPPC test is used to determine dynamic power capability within the cell’s usable voltage 

range. Its profile includes both discharge and charge pulses. The data obtained from this test can 

be used to derive performance characteristics such as peak power and available energy. This test 

can also help with determining the voltage response curves, from which the ohmic (fixed) cell 

resistance and cell polarization resistance as a function of SOC (or capacity) can be obtained. 

These are parameters in some battery models, such as the Thevenin based model. 
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The pulse profile includes a discharge pulse for 10 seconds, followed by a rest period of 40 

seconds, then a 10-second charge pulse. The pulses can range from C/3 to 3C rate, depending on 

the purpose of the experiment. The entire HPPC test is made up of single repetitions of this pulse 

profile, followed by discharge to the next 10% increment of the SOC. The SOC can be calculated 

from the fully charged cell capacity (determined from the capacity test) and the remaining 

capacity (calculated using coulombs counting of the cell in operation). An hour of resting period 

is standard between each 10% SOC interval [68]. The HPPC test is run within the range of voltage 

limits specified by the cell manufacturer. An example of an HPPC test with 2 pulse profiles is 

shown in Figure 17. 

 
Figure 17. Current profile for 2 pulses in HPPC test. [68] 
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3. Proposed FDI Algorithm 

3.1. Battery Model 

The most common model used to describe battery behaviors in EVs application is the equivalent 

circuit model. For an LFP battery running drive cycles that are highly dynamic such as UDDS, an 

ECM with at least two RC pairs is recommended [45]. This is because the first order ECM neglects 

the effect of diffusion. However, the higher the model order is, the more computational effort it 

demands, due to the larger number of model parameters. For the implementation of the 

proposed FDI, it is not required for the model to have great accuracy, since the extraction of ECM 

parameters is used to monitor the state of battery operation, rather than to model the battery 

performance. Therefore, in order to optimize the computational complexity of the approach, the 

first order ECM is used in this thesis. The simplified ECM model is shown in Figure 18. 

 
Figure 18. Schematic of a first-order ECM. 

The state-space equation of this battery model can be expressed as follows: 
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𝑈1̇ =
𝐼

𝐶1
−

𝑈1

𝐶1𝑅1
 

(3.1) 

𝑈𝑒𝑞 = 𝑂𝐶𝑉 − 𝑈1 − 𝐼𝑅0 

In order to perform the proposed recursive approach on the model, an autoregressive exogenous 

model is needed. This is done through obtaining the transfer function of the battery impedance 

from Equation (3.1) in the s-domain, as shown in Equation (3.2). The transfer function is then 

discretized using the basic forward Euler transformation method, in which s is replaced by 
1−𝑧−1

𝑇.𝑧−1   

where T is the sampling time. The discretization is shown in Equation (3.3) below. 

𝐺(𝑠) =  
𝑈2(𝑠)

𝐼(𝑠)
= −𝑅0 −

𝑅1

1 + 𝑠𝑅1𝐶1
 (3.2) 

𝐺(𝑧) =  
𝑎2 + 𝑎3𝑧−1

1 + 𝑎1𝑧−1
 (3.3) 

where 

𝑎1 =
𝑇

𝑅1𝐶1
− 1 (3.4) 

𝑎2 = −𝑅0 (3.5) 

𝑎3 = 𝑅0 −
𝑇

𝐶1
−

𝑇𝑅0

𝑅1𝐶1
 (3.6) 

R1 and C1 can be determined as follows: 

𝑅1 =
𝑎1𝑎2 − 𝑎3

1 + 𝑎1
 (3.7) 

𝐶1 =
𝑇

𝑎1𝑎2 − 𝑎3
 (3.8) 
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The autoregressive exogenous model then can be obtained as follows: 

𝑦𝑘 = 𝑂𝐶𝑉𝑘 + 𝑎1(𝑂𝐶𝑉𝑘−1 − 𝑦𝑘−1) + 𝐼𝑘𝑎2 + 𝐼𝑘−1𝑎3 (3.9) 

with 𝑦𝑘 , which can be rewritten as: 

𝑦𝑘 = 𝜃𝑘
𝑇𝜙𝑘 (3.10) 

where 

𝜃𝑘 = [1;  𝑎1,𝑘;   𝑎2,𝑘;   𝑎3,𝑘] (3.11) 

𝜙𝑘 = [𝑂𝐶𝑉𝑘;   (𝑂𝐶𝑉𝑘−1 − 𝑦𝑘−1);  𝐼𝑘;   𝐼𝑘−1] (3.12) 

The values for OCV in Equation (3.12) will be determined from the OCV-SOC relationship. The 

OCV-SOC curve will be obtained experimentally. The SOC is normally estimated by the BMS, and 

the OCV will be determined from the SOC value and the established OCV-SOC curve, simply 

through a look-up table. This reduces the computational effort for 𝜃𝑘 , which gives more accurate 

ECM parameter estimations. Equations (3.10-12) will be used in the proposed RLS algorithm, and 

Equations (3.5), (3.7) and (3.8) will be used to extract the ECM parameters for the purpose of 

fault diagnosis. 

 

3.2. Recursive Least Squares Algorithm 

The RLS algorithm used in this thesis employs an optimal forgetting factor to give more weight to 

recent data, avoiding the saturation phenomenon [70]. The forgetting factor is applied to the 

parameter vector 𝜃𝑘 . The recursive algorithm of Equation (3.10) can be represented as follows: 

𝐾𝑘 =
𝑃𝑘−1𝜙𝑘

𝜆 + 𝜙𝑘
𝑇𝑃𝑘−1𝜙𝑘

 (3.13) 
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𝑃𝑘 =
𝑃𝑘−1 − 𝐾𝑘𝜙𝑘

𝑇𝑃𝑘−1

𝜆
 (3.14) 

𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝜃𝑘−1
𝑇 𝜙𝑘) (3.15) 

where 𝜃𝑘  is the estimated parameter vector 𝜃𝑘 , 𝐾𝑘 is the algorithm gain, 𝑃𝑘 is the covariance 

matrix and 𝜆 is the forgetting factor, which is normally in the range of [0.95, 1] and will be tuned 

later to give optimal results. The values of 𝜃0 and P0 are initially guessed. The schematic diagram 

for the RLS algorithm is shown in Figure 19. 

 

 
Figure 19. Schematic diagram of the RLS algorithm. 

 

3.3. Weighted Moving Average Filter 

WMA is a low-pass filter that is used for smoothing fluctuations, such as noise, in a time series to 

allow for more reliable trend analysis. Additionally, one can use WMA to compute short-term 

forecasts of time series [71]. The RLS-estimated ECM parameters are time series that contain 

noise and small fluctuations due to operational conditions (SOC and temperature) and 

degradation of the cells. A fault, however, is expected to affect the parameters more significantly. 

Therefore, the difference between WMA-filtered and unfiltered values of the ECM parameters 

during normal operation of the battery should be considerably smaller than when a fault first 
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occurs. The WMA chosen for the proposed FDI is a two-term WMA to minimize storage 

requirements. The formula is presented in Equation (3.17). 

𝑃𝑓,𝑘 = 𝜆𝑊𝑀𝐴𝑃𝑖,𝑘 + (1 − 𝜆𝑊𝑀𝐴)𝑃𝑓,𝑘−1 (3.17) 

where 𝑃𝑓,𝑘  is the kth WMA value, 𝑃𝑖,𝑘 is the kth unfiltered value obtained from RLS (𝑃 represents  

R0, R1 and C1) and λWMA  is the weighting factor. The discrepancy between Pf,k and Pi,k is 

characterized by an absolute fractional error term, as shown in Equation (3.18). 

𝑒(𝑃𝑘) =  |
𝑃𝑖,𝑘 − 𝑃𝑓,𝑘

𝑃𝑓,𝑘

| (3.18) 

 

3.4. Cumulative Sum Control Chart 

The error is monitored using CUSUM, a common change-point detection algorithm, which 

accumulates deviations of data and signals when the cumulative sum exceeds a certain threshold. 

The algorithm is outlined in Equation (3.19) below [72]:  

𝑆(𝑒(𝑃𝑘)) = max {0, 𝑆(𝑒(𝑃𝑘−1)) + 𝑒(𝑃𝑘) − (µ0 − 𝐿𝜎)} (3.19) 

where S is the cumulative sum value, S(e(P0)) = 0,  e is the absolute fractional error from 

Equation (3.18),  µ0 and σ are the mean and standard deviation of the error population, and  L is 

a specified constant. 

In this thesis, the λWMA  value from Equation (3.17) is set to 0.01, since it is more favorable for 

the filter to obtain a smooth line which can adapt to minor changes over a long period of time, 

such as noise or degradation effect. In Equation (3.19), the expected value for µ0 is 0 and 𝜎 is 

estimated experimentally (0.0001 for R0, 0.005 for R1 and 0.005 for C1). During normal 

operation, the unfiltered values should not deviate from the smooth filtered line, because the 

amplitude of those fluctuations (noises due to changes in SOC, temperature, or degradation) is 

not significant. When a fault occurs, the unfiltered values would diverge significantly from the 
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smooth filtered series. The CUSUM algorithm detects this divergence by indicating a fault 

(F(Pk) = 1) when S(e(Pk)) exceeds an experimentally calibrated threshold J, as shown in 

Equation (3.20). 

𝐹(𝑃𝑘) = {
1  𝑖𝑓 𝑆(𝑒(𝑃𝑘)) > 𝐽 

0 𝑖𝑓 𝑆(𝑒(𝑃𝑘)) < 𝐽 
 (3.20) 

 

3.5. Fault Isolation 

The method outlined in this chapter, summarized in Figure 20 (Pk represents the parameters), 

can only be used for fault detection, not fault isolation. The full proposed FDI scheme will be 

shown in Section 4.8, after determining the effects of different sensor faults on the ECM 

parameters. Since there has not been any work done in literature to determine fault effects on 

the parameters, some experiments will need to be performed to obtain this data before 

completing the full FDI scheme. Preliminary experiments done for this thesis showed that the 

fault isolation can be achieved based on the fault detection (response) time of the parameters 

when a certain fault occurs (each parameter is sensitive to a certain fault); this will be confirmed 

in the next chapter. 

 
Figure 20. Fault detection schematic not including fault isolation. 
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4. Experimental and Results 

4.1. Purpose of Experiments 

There is a number of experiments that need to be run in order to characterize the battery cell, 

observe the effect of degradation on the cell and determine the effect of sensor faults on the 

ECM parameters to establish the completed FDI scheme. The data obtained from the 

experiments can also be used for fault simulation and fault diagnosis validation. The experiments 

include cell characterization tests (capacity, OCV-SOC, and HPPC), UDDS simulation runs and cell 

degradation runs. 

The cell characterization gives information about the cell capacity, OCV-SOC curve, and cell 

parameters using HPPC. The capacity indicates the SOH of the cell, with which cell degradation 

can be observed. The OCV-SOC curve can be used to create a look-up table, matching the OCV to 

the SOC in an interval of 1%. This is used to estimate the OCV in the RLS algorithm to increase the 

accuracy of the parameter estimation. The HPPC test is done to obtain the cell model parameters. 

The results show the effect of degradation on the parameters, and are also used to confirm the 

inaccuracy of state observer FDI methods when degradation occurs. 

The UDDS simulation runs mimic the current profile that the cell would experience in an EV 

running a UDDS drive cycle. This run consists of 32 consecutive UDDS drive cycles, lasting a total 

of 43,808 seconds (approximately 12 hours). The results from this run give the cell voltage profile 

corresponding to the input current profile. The data obtained from this can be used to estimate 

the ECM parameters using RLS in order to observe how the parameters of an operating cell are 

affected by degradation as well as sensor faults. This data can also be used to simulate sensor 

faults because it is unrealistic to create and control sensor faults in real life. Finally, it can be used 

to validate the performance of the proposed FDI scheme. After the sensor fault is injected (in 

simulation), the series of data is run through the fault diagnosis algorithm to see if and when the 

fault is detected and isolated.  

The cell degradation run is essentially the complete charge and discharge of the cell, being 

repeated multiple times for a long duration. This run normally lasts for approximately 5 days, and 
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the cell capacity test is conducted after every degradation run in order to confirm cell 

degradation. The purpose of the degradation run is to expedite the progress of cell degradation. 

The details of the test sequence for all the experiments will be outlined in Section 4.2, along with 

the laboratory setup. The current profiles for UDDS and degradation runs will be shown in Section 

4.3. 

 

4.2. Experimental Setup and Sequence 

For the experiments, graphite/LiFePO4 (LFP) cells produced by A123 Systems, which are designed 

for power-type applications, were used. LFP cells have a theoretical capacity of 170mAh/g and a 

redox potential of around 3.43 V with the Li electrode. LFP is commonly used as a cathode 

material because it has a high thermal stability which makes it safe, a low toxicity, and a low cost 

compared to cathodes such as LiCoO2. The salt used for the electrolyte is LiPF6, but the solvent 

solution was not determined. The specifications of the cell at its initial state are listed in Table 1. 

Table 1. LFP cell specifications. 

Cell dimension (mm) 7.25 x 160 x 227 

Cell weight (g) 496 

Nominal cell capacity (Ah) 19 

Nominal cell voltage (V) 3.3 

Voltage limit (V) 2.0 – 3.65 

Operating temperature (ᵒC) -30 to 55 

The experimental setup consists of a battery test system (Maccor 4200), connected to a testing 

station and a computer. The test components are shown in Figure 21. The cell is connected to 

the Maccor. There are two thick wires connected to the positive and negative terminal of the cell 

in order to charge and discharge the cell. The charge and discharge current profile can be set up 
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on the computer software for Maccor. There are also two thin wires connected to the cell, serving 

the purpose of measuring the voltage of the cell. Run settings and controls are done with 

computer software. Other battery characteristics such as capacity and energy are calculated in 

the software, and presented in the data along with time, voltage and current. All experiments 

were carried out at a room temperature of 23ᵒC. The current is assumed to be positive when 

discharging and negative when charging. The data was collected at a frequency of 1 Hz and then 

stored in the computer.  

 
Figure 21. Experimental setup. 

The experimental sequence begins with all three cell characterization tests. The OCV-SOC test 

only needs to be carried out once because the curve does not change significantly within the 

planned cell degradation range (only down to 80% initial capacity). The HPPC will be conducted 

twice, at different capacities, only to confirm the accuracy of the RLS algorithm and show how 

state observer FDI methods become unreliable when degradation occurs. The capacity tests need 
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to be performed after every degradation run, in order to confirm that the cell has degraded and 

quantify the degradation progress [13]. After the initial cell characterization, the main testing 

cycle, including UDDS (12 hours) and degradation (5 days), is run and repeated multiple times, 

with the capacity test being performed in between each cycle. The test procedure is shown in 

Appendix A. 

 

4.3. Current Profiles  

The profiles for the three cell characterization tests were outlined in Section 2.9. The two test 

profiles in the main testing cycle (the UDDS drive cycle and the degradation cycle) are shown in 

Figures 22 and 23. The degradation cycle simply consists of charging and discharging multiple 

times between the extreme limits of the cell to degrade it quickly. The UDDS drive cycle was 

translated and scaled into a current profile using a powertrain model in Simulink. It was run from 

the cell SOC of 100% to 20%. The powertrain model is from a built-in blockset in Simulink. The 

battery component was changed to consist of the LFP cells being tested, with the configuration 

of 80S1P. Battery model parameters from HPPC were input into the battery model in the 

powertrain. The powertrain was then simulated in Simulink to run a UDDS drive cycle and the 

current profile was obtained for the pack, and ultimately scaled down for a single cell. 

 
Figure 22. UDDS drive cycle current profile. 
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Figure 23. Degradation cycle current profile. 

 

4.4. Cell Characterization Results 

As mentioned before, the cell capacity was captured at the beginning of each testing cycle and it 

best represents the cell degradation, since capacity decreases with degradation [13]. A total of 8 

main cycles were conducted, hence there are 8 different cell capacity values captured. The 

capacity results are presented in Table 2.  

Table 2. Initial cell capacity for each test cycle. 

Cycle 1 2 3 4 

Capacity (Ah) 18.26 18.01 17.84 17.66 

Cycle 5 6 7 8 

Capacity (Ah) 17.32 16.93 16.61 16.47 

 

The OCV-SOC relationship was also established and a look-up table was built, which is used to 

estimate the cell OCV for the RLS algorithm. The OCV-SOC curve is assumed to change minimally 

with cell degradation going from 100% down to 80% of the initial capacity, hence only one curve 
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is used for all cell capacities in the RLS algorithm. The results can be seen in Figure 24. The look-

up table is shown in Appendix B. 

 
Figure 24. Experimental result for OCV-SOC relationship. 

 

Figure 25. Fitting of one HPPC charge/discharge pulse at 80% SOC at capacity 16.22 Ah. 
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The HPPC test was performed at cell capacity of 17.51 Ah and 16.22 Ah. The data was analyzed 

using MATLAB scripts, specifically the “nlinfit” built-in function, which are shown in Appendix C, 

in order to obtain the first-order ECM parameters at different SOC levels (from 10% to 90%). An 

example fitting plot is shown in Figure 25. All fitting efforts resulted in errors of less than 0.02%. 

The results are shown in Figure 26 (a), (b), (c).  

 

 

(a) 

(b) 
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Figure 26. Parameter fitting results from HPPC test. (a) R0; (b) R1; (c) C1. 

The results from the HPPC test confirm that the ECM parameters are affected by the capacity of 

the cell, or ultimately by cell degradation. It can be observed that R0 does not show any clear 

trend, but R1 can be seen to increase with capacity decreasing while 𝐶1 decreases. This will be 

discussed further in Section 4.6. 

 

4.5. Effect of Degradation on State Observer FDI Schemes 

The parameters used in state observer FDI schemes are normally obtained through HPPC results, 

as can be seen in [9] and [10]. The HPPC test is usually run when the battery is at its initial state, 

and then the parameters are input into the state observer FDI algorithms, where they are used 

to calculate the voltage from the battery current. The predicted voltage is then compared with 

the measured voltage, with filters such as Kalman filters, and any discrepancy after that would 

signify a fault. This type of FDI scheme is only reliable under the assumption that the parameters 

remain constant throughout the life of the battery. At a later stage in the battery life, the 

predicted voltage value will deviate significantly from the measured voltage because the model 

parameters are no longer accurate.  

(c) 



 

 47  
 

An example is shown in Figure 27, presenting the comparison between measured voltage and 

predicted voltages using appropriate and inappropriate (fixed initial) parameters. As can be seen 

in Figure 27 (b), using parameters at the corresponding cell capacity leads to more accurate 

voltage estimation compared to using parameters at higher cell capacity. The mean absolute 

percent error when using parameters estimated at 16.22 Ah is 0.5%, while the mean absolute 

percent error when using parameters estimated at 17.51 Ah is 0.7%. It can be concluded that 

using fixed initial parameter values will eventually lead to false fault detection in the state 

observer methods, since the faults are detected from the deviation between the measured and 

predicted voltage. Therefore, existing state observer FDI schemes are not reliable when the 

battery undergoes the process of degradation. 

 

 

(a) 
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Figure 27. Experimental vs modeled voltage for UDDS cycle run using initial ECM parameters 

and degraded ECM parameters. (a) Full cycle; (b) Zoomed in. 

 

4.6. Effect of Degradation on ECM Parameters 

The RLS estimation was used to estimate the ECM parameters for the UDDS drive cycle at 

different cell capacities. The selected value for λ is 0.9999 after some tuning, as it gives optimal 

estimation accuracy for the LFP cell tested. Figure 28 shows how degradation affects these 

parameters. The degradation effect is more apparent in this figure than in Section 4.4. The effect 

of degradation on R0 does not show any clear trend. However, it can be clearly seen that R1 

increases while 𝐶1 decreases with degradation. This makes sense as the RC pair represents the 

(b) 
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charge-transfer phenomenon, and degradation can affect the amount of available charge in the 

battery which is simply capacity. The changes in these parameters are not significant in a short 

amount of time, i.e. a few drive cycles, but can be very prominent over the lifetime of the battery.  

Figure 28. Estimated ECM parameters at various cell capacities. (a) R0 estimation at different 

cell capacities; (b) R1 estimation at different cell capacities; (c) C1 estimation at different cell 

capacities. 

(a) (b) 

(c) 
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The qualitative and quantitative results from RLS are consistent with the findings from the HPPC 

tests in Section 4.4. Therefore, the accuracy and reliability of the RLS algorithm can be confirmed, 

and RLS can be used with great confidence for the purpose of fault detection. 

One important detail should be noted, that these changes in ECM parameters due to degradation 

normally take a long period of time to occur in practical applications such as EVs. In general, a 

battery is considered to have approached its end of life in EVs application when it reaches about 

80% of its original capacity [20]. Most studies have found that an EV battery lifespan ranges from 

8 to 10 years, which is consistent with the length of many vehicle manufacturers’ warranty terms 

[73]. The range of capacity shown in Figure 6 above is within 80-90% of the original cell capacity. 

Therefore, for a short period of time such as a few drive cycles, the degradation effect would be 

very minimal. 

 

4.7. Effect of Faults on ECM Parameters 

The changes in the parameters when the fault is injected are expected to be more significant 

than other noises such as changes with degradation, SOC or temperature [74]. In order to confirm 

this, bias and gain faults were injected into the UDDS drive cycles at various cell capacities, times 

and sizes. Then the RLS algorithm was performed on the runs containing faults. The WMA filter 

was also applied to confirm its ability to smooth out insignificant noises and its inability to mask 

faults as normal noises. 

The effects of the faults were found to be similar across fault types regardless of the injection 

time and fault size. An example is shown in Figure 29, where a voltage gain fault of +10% was 

injected at the time 30,000 s.  
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(c) 
(d) 

(a) (b) 
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Figure 29. Unfiltered and WMA-filtered ECM parameters obtained from RLS estimation 

algorithm during normal operation versus when a fault occurs. (a) R0 during normal 

operation; (b) R0 when a fault occurs at time 30,000 s; (c) R1 during normal operation; (d) R1 

when a fault occurs at time 30,000 s; (e) C1 during normal operation; (f) C1 when a fault occurs 

at time 30,000 s. 

When the gain fault occurs on the voltage sensor, as shown in Figures 29 (b), (d) and (f), the 

parameters diverge significantly away from their original trends. This confirms the significance of 

the effect of sensor faults on the estimated parameter values. It can also be seen from Figures 

29 (a), (c) and (e) that the unfiltered values follow the WMA-filtered line closely during normal 

operation, while Figures 29 (b), (d) and (f) show that the two lines deviate significantly at the time 

the fault occurs. This shows that the sensor fault effect is much greater than the effect of other 

factors such as SOC or temperature. This also confirms the workability of the proposed change-

point detection method using WMA and CUSUM. The noises during normal operation are 

minimal compared to the deviation caused by sensor faults. Therefore, CUSUM should be able to 

identify sensor faults from the deviation between WMA-filtered values and unfiltered values, due 

to the faults’ significant effect on the estimated ECM parameter values obtained from RLS [75]. 

(e) (f) 
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It should be noted that the ECM parameters estimated by RLS require some time to converge. 

This can be seen at the beginning of Figures 29 (a) to (f). Therefore, the proposed FDI scheme 

would not be able to reliably detect sensor faults for the first hour of battery operation. 

Considering the long lifespan of Li-ion batteries and the unlikelihood of sensor faults happening 

within the first hour of operation, it is reasonable to assume there is no fault during the 

converging period of the RLS algorithm. Another solution for this would be to run the RLS 

algorithm on the battery for a short period of time to calibrate and stabilize the estimation values 

before implementing the full FDI scheme.  

 

4.8. Completed FDI Schematic with Fault Isolation 

It was discussed in Section 3.5 that the combination of WMA and CUSUM can only detect sensor 

faults from the RLS estimation but cannot isolate the faults. More studies need to be done to 

determine how differently the faults affect the parameters. After multiple fault simulations, one 

particular point was noted during runs, that the parameters do not respond to the faults at the 

same time, and there was a pattern in the response time. It was found that 𝑅0 deviates from its 

trend the earliest when current sensor faults occur. Moreover, either 𝑅1 or C1 responds the 

fastest to voltage sensor faults, while 𝑅0 takes a longer time to respond. This observation is 

consistent throughout all simulation runs. This can be explained through the derivation of the 

RLS algorithm. In Equation (3.4), (3.5) and (3.9), it can be seen that 𝑅0 is the only component in 

𝑎2, which is the parameter of 𝐼𝑘  (current), while 𝑅1 and 𝐶1 are the components in 𝑎1, which is 

the parameter of 𝑦𝑘−1 (voltage). Therefore, abnormality in current would affect 𝑅0 more and 

faults in voltage would affect 𝑅1 and 𝐶1 more. 

From these findings, it is possible to establish a fault isolation schematic to complement the 

proposed fault detection method. If the CUSUM identifies a fault from 𝑅0, it will be classified as 

a current sensor fault. If the fault is detected from 𝑅1 or 𝐶1, it will be classified as a voltage sensor 

fault. It is inconclusive due to the lack of data, whether these faults would have the same effects 

on a different type of cell, but this will be focused on and further validated in future studies. For 

this thesis, the FDI scheme will be based on the observations from the tested LFP cell. The 
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completed FDI scheme includes the fault detection portion presented in Chapter 3, with the 

addition of the newly established fault isolation method. The final scheme is shown in Figure 30. 

This FDI algorithm will be used to diagnose sensor faults and validated through simulation in the 

next chapter. 

 
Figure 30. Proposed fault detection and isolation scheme. 
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5. Fault Detection Scheme Evaluation 

This chapter shows the validation results for the proposed FDI scheme. The UDDS drive cycle was 

selected to be used for validation as it is a realistic daily drive cycle. The experimental runs 

consisted of multiple UDDS cycles, as described in Section 4.3. The experimental setup is 

described in Section 4.2. The same set of data obtained in Chapter 4 was also used for the 

simulations in this chapter. The simulations were conducted at various decreasing cell capacities. 

Sensor faults of different sizes were injected into the drive cycle at various time points. The FDI 

scheme was validated at all tested capacities to ensure faults can be diagnosed before and after 

the cell underwent degradation. The simulation of the FDI scheme was run in MATLAB. The full 

MATLAB script is shown in Appendix E. 

 

5.1. Simulation of Sensor Faults  

Based on the content outlined in Section 2.4, the types of sensor faults chosen for the simulations 

are bias and gain faults. The selected bias faults for the voltage sensor are [±0.1 V; ±0.5 V], while 

the gain fault is [±10%]. The selected bias faults for the current sensor are [±4 A; ±7 A] and the 

gain fault is [±10%]. These faults can be simulated with Equation 2.3, where the actual 

measurement, after the fault is injected, is offset with a constant value (bias) or with a fraction 

of its value (gain). The simulation of the fault is done with a MATLAB function script, where the 

fault size, the fault type, the data file and the fault position are the inputs. The script is shown in 

Appendix D. 

 

5.2. Voltage Sensor Fault Detection 

Multiple voltage sensor faults were injected at different cell capacities in simulation. In this 

section, one specific case will be shown and discussed in more details as an example. At a cell 

capacity of 16.47 Ah, a bias fault of +0.5 V was added to the voltage sensor at the time 30,000 s. 
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The diagnostic results are plotted in Figure 31. Figure 31 (a), (c) and (e) show the deviation 

between the filtered and unfiltered RLS parameter estimation values in terms of absolute percent 

error, and the calculation for this error follows Equation 3.18. As can be seen, the error increases 

significantly shortly after the fault injection time (t = 30,000 s). Figure 31 (b), (d) and (f) show the 

corresponding CUSUM values for the errors, as calculated using Equation 3.19. The threshold J 

values for CUSUM were determined to be 0.01, 0.1 and 0.1 for R0, R1 and C1, respectively. These 

were obtained by running the algorithm without any fault. The CUSUM values should not exceed 

the thresholds in the case of normal operation, and the threshold values were determined from 

this criterion. These threshold values are constant for all simulation runs and for this specific cell, 

but most likely not for all types of cells. Therefore, it should be noted that calibration needs to 

be done for other cells, before applying the proposed FDI scheme, in order to determine the 

CUSUM threshold values. Looking closer to the time region when the fault occurs, it can be seen 

that both CUSUM values for 𝑅1 and C1 exceed the threshold at 30,002 s, which is 2 seconds after 

the voltage sensor fault occurs. The CUSUM value for 𝑅0 takes much longer to respond to the 

fault (856 seconds after fault injection), which is expected for voltage sensor faults and helps to 

achieve correct fault isolation. Referring back to Figure 30 which shows the completed FDI 

scheme, the behavior seen with the CUSUM leads to the conclusion that this is a voltage sensor 

fault. The detected voltage sensor fault signal is plotted in Figure 31 (g). It is concluded that, for 

this simulation run, the FDI scheme has successfully detected and identified the sensor fault after 

2 seconds.  

(a) 
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(b) 

(c) 

(d) 
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Figure 31. Errors and diagnostic results in the case of voltage sensor fault. (a) Error from R0; 

(b) CUSUM control chart for R0; (c) Error from R1; (d) CUSUM control chart for R1; (e) Error 

from C1; (f) CUSUM control chart for C1; (g) Isolated voltage sensor fault FU signal. 

(e) 

(f) 

(g) 
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It is not possible to present all graphical results for every simulation run, so the results are better 

shown as the summary of the detection time for the runs. Table 3 presents results for the 

detection time of the voltage sensor faults with different fault sizes and cell capacities at an 

injection time of 30,000 s. As can be seen, larger fault size prompts faster detection time, and 

cell capacity does not have any clear effect on the detection time.  

Table 3. Summary of detection time for voltage sensor faults with different fault sizes and cell 

capacities. 

Fault 

injected 

Capacity 

(Ah) 

18.26 18.01 17.84 17.66 17.32 16.93 16.61 16.47 Average 

-0.1 V 

Detection 

time (s) 

14 13 19 12 11 12 10 11 12.57 

+0.1 V 80 34 44 110 34 115 19 125 70.13 

-0.5 V 2 2 3 2 2 2 2 2 2.13 

+0.5 V 2 2 3 2 2 2 2 2 2.13 

-10% 3 3 4 3 3 3 3 3 3.13 

+10% 4 4 5 3 3 3 3 3 3.50 

 

 

5.3. Current Sensor Fault Detection 

Similar to the simulation done for voltage sensor fault diagnosis validation, current sensor faults 

of various sizes were injected at different available cell capacities. The specific case that will be 

shown as an example is at a cell capacity of 16.47 Ah, where a gain fault of +10% was injected at 

the time 30,000 s. The diagnostic results are plotted in Figure 32. The absolute percent errors are 

also found to increase briefly after the time of fault injection, as seen in Figure 32 (a), (c) and (e). 

Figure 32 (b), (d) and (f) show that the CUSUM values all exceed their respective thresholds after 

the fault occurs. The results obtained are similar to the ones in Section 5.2, with the only 
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difference being the response time of the parameters. The CUSUM value for the error of R0 is 

the fastest to exceed the threshold, at 30,166 s, while the CUSUM values for 𝑅1 and 𝐶1 exceed 

their thresholds some time afterward, at 30,376 s and 30,241 s, respectively. This indicates a 

current sensor fault according to the proposed FDI scheme. Figure 32 (g) shows the detected and 

isolated current sensor fault signal. The detection time for the current sensor faults suffers from 

a delay compared to the one for the voltage sensor faults, as the CUSUM values take longer to 

pass the thresholds. Lowering these thresholds should give faster detection time but risks giving 

false fault detection, which is a common trade-off in practice [9].  

(a) 

(b) 
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(c) 

(d) 

(e) 
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Figure 32. Errors and diagnostic results in the case of current sensor fault. (a) Error from R0; 

(b) CUSUM control chart for R0; (c) Error from R1; (d) CUSUM control chart for R1; (e) Error 

from C1; (f) CUSUM control chart for C1; (g) Isolated current sensor fault FI signal. 

Table 4 summarizes the results for detection time for the current sensor at an injection time of 

30,000 s with different fault sizes and at different cell capacities. The quantitative results are 

higher than the ones of voltage sensor faults, but the qualitative observations remain. The larger 

the fault size, the faster it is detected. Cell capacity is not observed to have any significant effect 

on fault detection. 

 

(f) 

(g) 
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Table 4. Summary of detection time for current sensor faults with different fault sizes and cell 

capacities. 

Fault 

injected 

Capacity 

(Ah) 

18.26 18.01 17.84 17.66 17.32 16.93 16.61 16.47 Average 

-4 A 

Detection 

time (s) 

143 201 190 474 152 560 251 179 268.75 

+4 A 147 188 174 492 136 543 237 182 262.38 

-7 A 43 65 27 22 57 44 46 37 42.63 

+7 A 44 54 92 15 54 38 44 36 47.13 

-10% 175 125 201 29 142 188 176 218 156.75 

+10% 195 251 181 377 269 180 196 166 226.88 

 

 

5.4. Overall Results 

For both voltage and current sensors, more simulations were conducted at different injection 

times to further test the validity and effectiveness of the proposed FDI scheme, but it is 

impossible to show all the results individually, so a summary will be presented. The injection 

times are set at 10,000 s, 20,000 s and 30,000 s. The considered faults for the voltage sensor are 

[±0.1 V; ±0.5 V; ±10%], while the considered faults for the current sensor are [±4 A; ±7 A; ±10%]. 

Approximately 300 runs with and without faults were simulated. Table 5 shows the results for 

maximum, minimum and mean detection time (DT - time from fault occurrence to correct 

detection and isolation of fault), false detection rate (FDR - fraction of tests that fault is detected 

where there is no fault) and missed detection rate (MDR - fraction of tests that fault is not 

detected where there is a fault). It can be concluded from the summary of results that voltage 

and current sensor faults, on an LFP cell, are successfully detected within a reasonable time using 

the proposed FDI scheme, with no false detection or missed detection. 



 

 64  
 

Table 5. Summary of the performance evaluation metrics. 

 DTmax (s) DTmin (s) DTmean (s) FDR (%) MDR (%) 

Voltage sensor 

fault 

136 2 19 0 0 

Current sensor 

fault 

560 15 172 0 0 
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6. Conclusions and Recommendations 

6.1. Conclusions 

The objective of this thesis is to confirm the degradation effect on the ECM parameters, design a 

model-based sensor FDI scheme for a Li-ion cell used in EVs with cell degradation consideration, 

and validate its performance using a series of experiments and simulations. The proposed FDI 

scheme should satisfy the requirements of quick detection and diagnosis, isolability, and low 

modeling and computational requirements. Cell characterization tests, UDDS drive cycles and 

degradation cycles were carried out on an LFP cell using the Maccor battery test system to collect 

data to assist with the main framework. The conclusions from the previous chapters of this thesis 

are summarized as follows: 

1) An FDI scheme is proposed to detect voltage and current sensor faults in the BMS. The 

scheme utilizes the RLS algorithm because of its quick convergence and low 

computational requirements. The RLS is applied to the ECM, a simple battery model, to 

estimate its parameters in real-time. The estimated parameters are then filtered by the 

WMA filter. Results from experiments and fault simulations show that, during normal 

operation, the parameters follow a relatively linear trend, but when a fault occurs, they 

all deviate from their original trends shortly after. Any significant deviation in the trend 

of the parameters is detected by the CUSUM control chart, signifying a fault. The 

threshold values for the CUSUM are calibrated using normal runs without any faults. 

Finally, fault isolation is achieved based on the response time of the parameters when a 

sensor fault occurs as certain parameters respond faster to specific types of fault. If the 

CUSUM identifies a fault from 𝑅0 first, it will be classified as a current sensor fault, while 

if the fault is detected from 𝑅1 or 𝐶1 first, it will be classified as a voltage sensor fault. 

2) Results from HPPC and RLS parameters estimation show that cell degradation affects 

the ECM parameters significantly over time. The degradation is shown through the 

decrease in cell capacity, from 18.26 Ah to 16.47 Ah. Even though in EVs application the 

degradation process can take years to manifest, it still makes state observer FDI schemes 

unreliable because they work under the assumption that the battery model parameters 
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remain constant. The modeled and predicted state (voltage) values will ramify as the 

parameters change, especially as the battery approaches its end of life in EVs. The changes 

in parameters due to degradation, however, do not affect the performance of the 

proposed FDI scheme as it only detects large deviations (caused by sensor faults) in a 

short timeframe, and degradation does not cause sharp fluctuations in the ECM 

parameters. 

3) The proposed sensor FDI scheme is validated and evaluated with experimental data in 

combination with fault simulation in MATLAB. The data used to validate the 

performance of the FDI scheme is generated from running UDDS drive cycles on the LFP 

cell. Various injection times, fault sizes, fault types and cell capacities are considered. The 

validation results show that the proposed scheme consistently detects and isolates 

voltage sensor faults and current sensor faults at different cell capacities in a reasonable 

time, with no false or missed detection.  

 

6.2. Recommendations  

The objective of this thesis, as stated in Section 6.1, has been met, but there is some more work 

that can be done in the future to improve the proposed BMS sensor FDI scheme. The following 

recommendations outline areas of focus for future work in the testing of LFP batteries and 

potential methods to improve the workability of the FDI scheme presented in this work. 

1) The FDI scheme can be expanded to include fault diagnosis for temperature sensor. 

There are three main sensors in the BMS (voltage, current, and temperature). Voltage and 

current sensors have been addressed in this thesis. It will be interesting to study the effect 

of temperature on the model parameters and how it influences the proposed Li-ion cell 

fault diagnosis. Two approaches to integrate temperature sensor FDI into the existing 

scheme are suggested. A separate FDI algorithm can be developed for temperature 

sensor exclusively to work in conjunction with the existing scheme, while the effect of 

temperature sensor faults on the existing scheme is studied. Alternatively, a new model, 

instead of the first-order ECM, can be developed and implemented to include 
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temperature, and the FDI algorithm (RLS, WMA, and CUSUM) is modified appropriately 

to accommodate the new model.  

2) Other battery models, including both electrochemical and electrical, can be explored 

for more accurate modeling of the Li-ion battery behavior. For example, the second-

order ECM should be investigated. The computational cost and the performance of the 

new FDI scheme (second-order ECM) can be compared to the current one (first-order 

ECM) to determine if the trade-off is justifiable. Electrochemical models, despite their 

complexity, should be investigated as well, since they usually include temperature. This 

fits well with the scope discussed in the first recommendation.  

3) Longer test cycles with more variety of profiles need to be conducted on the cell to 

improve the reliability of the FDI results. The duration of the current test cycle is 12 

hours, and it only includes the UDDS drive cycle. Ideally, the experiment should include 

UDDS, HWFET, rest periods and other stochastic current profiles, and run for two weeks 

to a month, possibly much longer if realistic degradation is desired. Because of the time 

constraint of this thesis, it was not feasible to carry out such long-term experiment. 

However, an experiment of this nature is currently under development and will start in 

the near future.  

4) Other fault diagnosis methods, specifically knowledge-based methods such as machine 

learning, should be investigated. Currently, the amount of data collected is not suitable 

for machine learning. As discussed in the previous point, more dynamic experiments with 

longer duration will be conducted in the future. Once a sufficient amount of data has been 

obtained, machine-learning-based fault detection or similar methods should be 

developed for BMS sensors. This will eliminate the dependency on battery models and 

improve the reliability of the FDI. 

5) The extension of fault diagnosis from LFP cells to other types of cells, and to battery 

modules/packs should be examined. Consistency is an important trait of any FDI scheme. 

Therefore, Li-ion cells with different chemistry should also be investigated to validate the 

proposed FDI scheme. Data obtained can also be used to observe whether cell chemistry 

would have any effect on the response time of the parameters when a fault occurs, and 
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effectively confirm the fault isolation algorithm. Moreover, since the cells in a battery 

module/pack can behave differently, it is also necessary to conduct experiments with 

multiple cells in series or parallel. This is an important study to validate the workability of 

the proposed FDI scheme in practical applications, especially in the case of EVs where a 

battery pack consists of hundreds of cells. 

6) The worst-case scenario where the fault occurs during the shutdown period of the 

vehicle should be investigated. The current scheme can only detect faults during 

operation, not when the BMS is turned off. If there is a fault during this period, the fault 

will go undetected because the proposed scheme assumes normal operation at the 

beginning. Therefore, this is an important case to look into to improve the completeness 

of the FDI scheme.  

7) A study on ECM parameters measured by Electrochemical Impedance Spectroscopy 

should be conducted. This study is necessary to observe the difference between the 

estimated parameters and measured parameters. If the two values are similar to a 

reasonable degree, the algorithm can be improved to detect deviations between the 

measured and predicted values, to replace the current method of change detection in a 

time series which is less reliable. 
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Appendix A: Test Procedure 

• Select Channel 9 by clicking on it  

• If the channel is not clear, the current data needs to be saved before continuing 

• Click “ViewData data viewer” in top righthand corner (third button from the left) 

• Select “File → Save As”, enter the filename and file location to save the data as a .txt file 

• Follow the file naming convention: TestName_MonthDay.txt 

• A “Print Range” prompt will appear with “All” being the default, click OK 

• Once the confirmation message appears reading “File Saved”, click the Stop button in 

the top righthand corner (the symbol is a Red Square) which will archive the data in 

Channel 9 

o Do NOT click the Stop button before saving as the Stop button will clear the data 

from the channel – go to ViewData data viewer first to save the data then click 

Stop 

• At this point, the channel is clear and ready to begin another test 

• Right click and select “Start Test” or click the Play button in the top righthand corner 

• Scroll through tests to select the desired test 

o For UDDS: LFP_UDDS_Kien.000 

o For RegD: LFP_RegD_Kien.000 

o For Degradation: LFP_Degradation_Kien.000 

o For Capacity: LFP_Capacity_Kien.000 

• When test is complete, channel will read “Complete” with all green text 

• UDDS and RegD will take approximately one day to complete and they will complete on 

their own 

• Degradation must be terminated by the user after 5 days 

o Click the Pause button in the top righthand corner then save the data, then click 

Stop 

• Testing order: Capacity, UDDS, RegD, Degradation 

• Pictures shown below: Maccor user interface, UDDS test, degradation test 
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Maccor user interface 

 

UDDS test procedure in Maccor 
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Degradation test procedure in Maccor 
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Appendix B: OCV-SOC Look-up Table 

OCV SOC 

0.00 2.24941 

0.01 2.80739 

0.02 2.92579 

0.03 3.00159 

0.04 3.05804 

0.05 3.10301 

0.06 3.14031 

0.07 3.17066 

0.08 3.19517 

0.09 3.20547 

0.10 3.20941 

0.11 3.21186 

0.12 3.21386 

0.13 3.21612 

0.14 3.21896 

0.15 3.22401 

0.16 3.22945 

0.17 3.23441 

0.18 3.23903 

0.19 3.24324 

0.20 3.24767 

0.21 3.25191 

0.22 3.25590 

0.23 3.25966 

0.24 3.26303 

0.25 3.26602 

0.26 3.26884 

0.27 3.27182 

0.28 3.27460 

0.29 3.27719 

0.30 3.28028 

0.31 3.28266 

0.32 3.28536 

0.33 3.28779 

0.34 3.28993 

0.35 3.29223 

0.36 3.29446 

0.37 3.29603 

0.38 3.29705 
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0.39 3.29774 

0.40 3.29808 

0.41 3.29887 

0.42 3.29930 

0.43 3.29977 

0.44 3.30019 

0.45 3.30032 

0.46 3.30084 

0.47 3.30120 

0.48 3.30151 

0.49 3.30191 

0.50 3.30216 

0.51 3.30237 

0.52 3.30262 

0.53 3.30299 

0.54 3.30313 

0.55 3.30374 

0.56 3.30382 

0.57 3.30400 

0.58 3.30447 

0.59 3.30462 

0.60 3.30495 

0.61 3.30543 

0.62 3.30570 

0.63 3.30630 

0.64 3.30689 

0.65 3.30757 

0.66 3.30852 

0.67 3.30953 

0.68 3.31104 

0.69 3.31280 

0.70 3.31500 

0.71 3.31819 

0.72 3.32254 

0.73 3.32795 

0.74 3.33298 

0.75 3.33619 

0.76 3.33816 

0.77 3.33924 

0.78 3.33995 

0.79 3.34039 

0.80 3.34071 

0.81 3.34096 
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0.82 3.34148 

0.83 3.34194 

0.84 3.34210 

0.85 3.34254 

0.86 3.34281 

0.87 3.34310 

0.88 3.34355 

0.89 3.34398 

0.90 3.34440 

0.91 3.34494 

0.92 3.34567 

0.93 3.34622 

0.94 3.34719 

0.95 3.34849 

0.96 3.35072 

0.97 3.35562 

0.98 3.36773 

0.99 3.40754 

1.00 3.57995 
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Appendix C: MATLAB Script - Fitting of First-Order ECM 
Parameters from HPPC 
%% Oct 27/2018 

% Code for estimating the ECM model parameters from HPPC 

tests  

% Input is HPPC data that is a cell with n HPPC tests  

% Each HPPC tests has one column of time (s), then current 

(in A), and voltage 

% (in V) 

% The HPPC test should start with the first element being 

the cell at rest 

% before the 1C discharge.  

% The test assumes that the SOC does not change within the 

hppc window 

  

%% Parameters to change in the code 

currentLimit = 0.01; % Current above this limit will be 

considered as 1C current   

iniPar = [0.002;0.002;11000];  

  

%% Parameters used in algorithm  

xIni = 0; 

[m,n] = size(dataHPPC{1}); 

outputPar = zeros(3,n);  

modelError = zeros(m,n);  

vModel = zeros(m,n);  

  

%% Running the objective function and solving for the 

parameters 

for i = 1:n 

    time = dataHPPC{1}(:,i); 

    current = dataHPPC{2}(:,i); 

    vExp = dataHPPC{3}(:,i); 

    vActual = dataHPPC1{3}(:,i); 

    % Find the ocvCurve value right before the HPPC test 

starts  

    index = find(current>currentLimit); 

    ocvVoltage = vExp(index(1)-1); 

     

    % Obtaining the parameter estimates 

    fun = 

@(beta,x)ObjectiveFunction(beta,x,ocvVoltage,xIni); 
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    outputPar(:,i) = 

nlinfit([time,current],vExp,fun,iniPar); 

     

    % Running the voltage model with the given battery 

parameters 

    vModel(:,i) = 

ObjectiveFunction(outputPar(:,i),[time,current],ocvVoltage,

xIni); 

    modelError(:,i) =  abs((vModel(:,i) - 

vActual)./vActual)*100; 

     

    % Plotting scripts for the voltage model 

    figure 

    plot(vModel(:,i)) 

    hold on 

    plot(vActual) 

     

end 

  

output = {outputPar, vModel, modelError}; 

 

%% A model that takes a single current value and calculates 

the voltage 

% response 

% Inputs - current: the current value going into the cell 

%        - tSample: the time sample for the data points 

%        - xPrev: The previous state values for Vrc  

%        - ocvVotlage: The open circuit voltage for the 

cell.  

%        - ECM_Parameters: The parameters of the ECM (r1, 

r2, C, Capacity) 

  

% Outputs - vModel: The model voltage for the cell at a 

particular current 

% input 

%         - XTimUp: The updated state values for Vrc 

  

  

function [vModel,XTimUp] = Model_Thevenin (current, 

tSample, xPrev, ocvVoltage, ECM_Parameters) 

  

% Model Parameters 

r1 = ECM_Parameters(1); 
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r2 = ECM_Parameters(2); 

C = ECM_Parameters(3); 

  

tau = r2*C; 

  

%% State Time Update 

XTimUp = exp(-tSample/(tau))*xPrev + r2*(1-exp(-

tSample/tau))*current; 

  

%% The voltage response from the model 

vModel = ocvVoltage-XTimUp(1)-r1*current; 

  

end 

 

%% The objective function for the least square algorithm  

  

function [vModel] = ObjectiveFunction(ECM_parameters, 

input, ocvVoltage,  xNew) 

  

time = input(:,1); 

current = input(:,2);  

  

%% Using the initial terminal voltage as the OCV voltage.  

vModel = zeros(length(current),1);  

vModel(1) = ocvVoltage; 

  

for i = 2:length(current) 

    [vModel(i),xNew(1,i)] = Model_Thevenin (current(i), 

(time(i)-time(i-1)), xNew(1,i-1), ocvVoltage, 

ECM_parameters) ; 

end 
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Appendix D: MATLAB Script – Simulation of Sensor 
Faults 
% Fault creation (simulation) 

function [data] = FaultSim(file1, sensor, fault, faultsize, 

pos) 

 

% Load data 

 

load(file1); 

clean_data 

time = data(:,1); 

U = data(:,2); 

I = data(:,3); 

SOC = data(:,4); 

OCV = data(:,5); 

n = length(time); 

  

% Fault selection and addition. U and I represent voltage 

and current 

% sensor faults, respectively. B and G represent bias and 

gain faults, 

% respectively. 

 

if sensor == 'U' 

    if fault == 'B' 

        for i1 = pos:n 

            U(i1) = U(i1) + faultsize; 

        end 

    elseif fault == 'G' 

        for i2 = pos:n 

            U(i2) = U(i2)*(1+faultsize/100); 

        end 

    end 

elseif sensor == 'I' 

    if fault == 'B' 

        for i3 = pos:n 

            I(i3) = I(i3) + faultsize; 

        end 

    elseif fault == 'G' 

        for i4 = pos:n 

            I(i4) = I(i4)*(1+faultsize/100); 

        end 
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    end 

end 

  

data(:,2) = U; 

data(:,3) = I; 

end 
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Appendix E: MATLAB Script – FDI Algorithm Simulation 
and Evaluation 
% Final Script - FDI Simulation and Evaluation 

  

clc 

clear 

  

% Load initial guesses for each data file 

load('InitialGuess.mat') 

  

% Seting up faulted data 

% FaultSim(datafile,U/I,B/G,fault size,fault location) 

position = 30000; 

data = FaultSim('UDDS_Apr25.mat','U','G',0,position); 

test = 1; %for initial guess 

  

% Input data from file 

time = data(:,1); 

U = data(:,2); 

I = data(:,3); 

SOC = data(:,4); 

OCV = data(:,5); 

  

% RLS 

T = 0.5; 

n = length(time); 

  

R0_ini = InitialR0(test); 

R1_ini = InitialR1(test); 

C1_ini = InitialC1(test); 

  

P = diag([0.00005,0.02,0.00005,0.00005]);  

U_mod = zeros(n,1); 

R0_curve = zeros(n,1); 

R1_curve = zeros(n,1); 

C1_curve = zeros(n,1); 

U_mod(1) = U(1); 

  

R0 = R0_ini; 

R1 = R1_ini; 

C1 = C1_ini; 
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R0_curve(1) = R0_ini; 

R1_curve(1) = R1_ini; 

C1_curve(1) = C1_ini; 

for i = 2:n  

    [R0,R1,C1,K,P,Umod] = 

RLS_func_1st(R0,R1,C1,U(i),I(i),U(i-1),I(i-

1),T,OCV(i),OCV(i-1),P); 

    U_mod(i) = Umod; 

    R0_curve(i) = R0; 

    R1_curve(i) = R1; 

    C1_curve(i) = C1;     

end 

err = immse(U,U_mod); 

  

% Weighted moving average 

R0_pre = zeros(n,1); 

R1_pre = zeros(n,1); 

C1_pre = zeros(n,1); 

R0_pre(1) = R0_ini; 

R1_pre(1) = R1_ini; 

C1_pre(1) = C1_ini; 

res1 = zeros(n,1); 

res2 = zeros(n,1); 

res3 = zeros(n,1); 

S1 = zeros(n,1); 

S2 = zeros(n,1); 

S3 = zeros(n,1); 

F1 = zeros(n,1); 

F2 = zeros(n,1); 

F3 = zeros(n,1); 

% Equation 3.17 

for i = 2:n 

    R0_pre(i) = 0.01*R0_curve(i) + 0.99*R0_pre(i-1); 

    R1_pre(i) = 0.01*R1_curve(i) + 0.99*R1_pre(i-1); 

    C1_pre(i) = 0.01*C1_curve(i) + 0.99*C1_pre(i-1); 

end 

  

% CUSUM 

for i = 1000:n 

    % Equation 3.18 

    res1(i) = abs(R0_curve(i)-R0_pre(i))/R0_pre(i); 

    res2(i) = abs(R1_curve(i)-R1_pre(i))/R1_pre(i); 

    res3(i) = abs(C1_curve(i)-C1_pre(i))/C1_pre(i); 

    % Equation 3.19 
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    S1(i) = max(0, (S1(i-1) + res1(i-1)-0.0001)); 

    S2(i) = max(0, (S2(i-1) + res2(i-1)-0.005)); 

    S3(i) = max(0, (S3(i-1) + res3(i-1)-0.005)); 

end 

  

%Fault detection 

for i = 1000:n 

if S1(i) > 0.01 

    F1(i) = 1; 

end 

if F1(i-1) == 1 

    F1(i) = 1; 

end 

if S2(i) > 0.1 

    F2(i) = 1; 

end 

if F2(i-1) == 1 

    F2(i) = 1; 

end 

if S3(i) > 0.1 

    F3(i) = 1; 

end 

if F3(i-1) == 1 

    F3(i) = 1; 

end 

end 

  

DT = min([find(F1,1) - position; find(F2,1) - position; 

find(F3,1) - position]); 

  

%Fault isolation 

if F1(DT+position) > 0 

    fprintf('The fault was detected after %d seconds and 

isolated to be a current sensor fault',DT) 

elseif F2(DT+position) > 0 | F3(DT+position) > 0  

    fprintf('The fault was detected after %d seconds and 

isolated to be a voltage sensor fault',DT) 

else 

    fprintf('There was no fault detected') 

end 

  

%Plotting 

closeup = 28000:32000; 
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figure 

plot(closeup,res1(closeup)); 

xlabel('Time (s)') 

ylabel('APE R0') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

figure 

plot(closeup,res2(closeup)); 

xlabel('Time (s)') 

ylabel('APE R1') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

figure 

plot(closeup,res3(closeup)); 

xlabel('Time (s)') 

ylabel('APE C1') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

figure 

plot(closeup,S1(closeup)); 

hold on 

plot(closeup,ones(size(closeup))*0.01,'r--'); 

xlabel('Time (s)') 

ylabel('CUSUM APE R0') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

figure 

plot(closeup,S2(closeup)); 

hold on 

plot(closeup,ones(size(closeup))*0.1,'r--'); 

xlabel('Time (s)') 

ylabel('CUSUM APE R1') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

figure 

plot(closeup,S3(closeup)); 

hold on 

plot(closeup,ones(size(closeup))*0.1,'r--'); 

xlabel('Time (s)') 

ylabel('CUSUM APE C1') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

  

figure 
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plot(closeup,F1(closeup)); 

xlabel('Time (s)') 

ylabel('Fault F_I') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

figure 

plot(closeup,F2(closeup)); 

xlabel('Time (s)') 

ylabel('Fault F_U') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

figure 

plot(closeup,F3(closeup)); 

xlabel('Time (s)') 

ylabel('Fault F_U') 

set(gca, 'FontName', 'Calibri') 

set(gca, 'FontSize', 16) 

  

figure 

plot(time,R0_curve); 

hold on 

plot(time,R0_pre); 

a2 = axes(); 

a2.Position = [0.5 0.5 0.3 0.3]; % xlocation, ylocation, 

xsize, ysize 

plot(29000:31000,R0_curve(29000:31000)) 

hold on 

plot(29000:31000,R0_pre(29000:31000)); axis tight 

annotation('ellipse',[.625 .225 .05 .07]) 

annotation('arrow',[.65 .65],[.32 .43]) 

  

figure 

plot(time,R1_curve); 

hold on 

plot(time,R1_pre); 

a2 = axes(); 

a2.Position = [0.5 0.5 0.3 0.3]; % xlocation, ylocation, 

xsize, ysize 

plot(29000:31000,R1_curve(29000:31000)) 

hold on 

plot(29000:31000,R1_pre(29000:31000)); axis tight 

annotation('ellipse',[.625 .225 .05 .07]) 

annotation('arrow',[.65 .65],[.32 .43]) 
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figure 

plot(time,C1_curve); 

hold on 

plot(time,C1_pre); 

a2 = axes(); 

a2.Position = [0.5 0.5 0.3 0.3]; % xlocation, ylocation, 

xsize, ysize 

plot(29000:31000,C1_curve(29000:31000)) 

hold on 

plot(29000:31000,C1_pre(29000:31000)); axis tight 

annotation('ellipse',[.625 .225 .05 .07]) 

annotation('arrow',[.65 .65],[.32 .43]) 

 

% RLS function 

function [R0,R1,C1,K,P,Umod] = 

RLS_func_1st(R0,R1,C1,Uk1,Ik1,Uk0,Ik0,T,OCV1,OCV0,P) 

% Equation 3.4 

a1 = T/(R1*C1) - 1; 

% Equation 3.5 

a2 = -R0; 

% Equation 3.6 

a3 = R0 - T/C1 - (T*R0)/(R1*C1); 

lambda = 0.99999; 

theta = [1 ; a1 ; a2 ; a3]; 

phi = [OCV1; (OCV0-Uk0); Ik1; Ik0]; 

% Equation 3.10 

Umod = transpose(theta)*phi; 

% Equation 3.13 

K = (P*phi)/(lambda + transpose(phi)*P*phi); 

% Equation 3.14 

P = (P-K*transpose(phi)*P)/lambda; 

% Equation 3.15 

theta = theta + K*(Uk1-transpose(theta)*phi); 

a1 = theta(2); 

a2 = theta(3); 

a3 = theta(4); 

% Equation 3.5 

R0 = -a2; 

% Equation 3.7 

R1 = -(a3-a1*a2)/(1+a1); 

% Equation 3.8 

C1 = -T/(a3-a1*a2); 

end 


