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Abstract

We present a comprehensive study of system failures from 12 popular systems caused by
a peculiar type of network partitioning faults: partial partitions. Partial partitions isolate
a set of nodes from some, but not all, nodes in the cluster. Our study reveals the studied
failures are catastrophic; they lead to data loss, complete system unavailability, or stale
and dirty reads. Furthermore, our study reveals that these failures are easy to manifest,
they are deterministic, they can be triggered by isolating a single node, and without any
interaction with the system’s clients.

We dissected the implemented fault tolerance techniques in eight popular systems. We
identified four principled approaches for building a fault tolerance mechanism for partial
partitions and identified the shortcomings of the current approaches. The currently imple-
mented fault tolerance techniques are either specific to a particular protocol or implemen-
tation or may lead to a complete cluster shut down despite the availability of alternative
network paths between the nodes.

Finally, we present NIFTY, a generic communication layer that leverages the capa-
bilities of modern software-defined networking to monitor and recover the connectivity of
the cluster in case of partial network partitions. NIFTY is transparent to the application
running on top of it. We built NiftyDB, a database system atop NIFTY. NiftyDB im-
plements a set of optimizations that reduce the network overhead and operation latency
in case of partial network partitioning. Our analysis and evaluation show that the pro-
posed approach can effectively mask partial network partitioning faults without incurring
additional overheads.
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Chapter 1

Introduction

Distributed data management systems are the backbone of a wide range of modern appli-
cations and are expected to be highly available [1, 2] and to preserve the data stored in
them despite failures of devices, machines, networks, or even entire data centers [3, 4, 5].
Among these infrastructure failures, network partitioning is the most complex to handle[6,
7, 8, 9]. Network-partitioning fault tolerance pervades the design of all system layers,
from the communication middle-ware to data replication [6, 7, 9, 10] to API definition
and semantics[11, 12], and it dictates the availability and consistency levels a system can
achieve[13].

The recent increase in network complexity [14, 15] and the increased softwarization of
network components [16, 17], contribute not only to the frequency of network partitioning
failures (recent studies[18, 19, 20, 21] report that they occur as frequently as once a week
and take hours to repair), but also to the introduction of a peculiar type of network
partitioning faults [22]: partial partitions1. Partial partitions isolate a set of nodes from
some, but not all, nodes in the cluster. Figure 1.1 illustrates how a partial network partition
divides a cluster into three groups such that two groups (Group 1 and Group 2) are
disconnected while Group 3 can communicate with both Group1 and Group 2.

Our goal in this work is threefold: First, to characterize partial network partitioning to
understand the impact of these failures, to understand the specific sequence of events that
lead to them, and foremost, to identify opportunities for improving systems’ resiliency to
these faults. Second, to understand the fault-tolerance techniques implemented in popular
production-quality systems to tolerate partial network partitioning faults, and to identify

1This is commonly used name by practitioners in blogs and failure reports.
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Figure 1.1: Partial network partitioning. Group 1 and Group 2 are disconnected, while
Group 3 can communicate with both sides of the partial partition.

their shortcomings. Third, is to design a generic fault tolerance technique for partial
network partitions.

While we found 50 reports in 12 production systems’ of failures2 caused by partial
network partitioning (Chapter 3), numerous blog posts and discussions of this fault on
developers’ forums (Chapter 2), and fault tolerance techniques implemented in production
systems that are specifically designed to tolerate this type of fault (Chapter 4), we did not
find any mention of this type of fault or its fault tolerance techniques in the literature.
This is the first work to characterize and design a generic fault tolerance technique for this
type of fault.

An analysis of partial network partitioning failures. To characterize this type
of fault, we conducted a thorough study of 50 partial network partitioning failures from
12 widely used systems (Table 3.1). For each considered failure, we carefully studied the
failure report, logs, discussions between users and developers, source code, code patch, and
unit tests.

Failure Impact. Overall, we found that partial network partitioning faults lead to silent
catastrophic failures (e.g., data loss, data corruption, and data unavailability), with 24% of
failures leaving the system in a lasting erroneous state that persists even after the partition
heals.

2A fault is the initial root cause, if not properly handled it may lead to a user-visible system failure.
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Ease of manifestation. Oddly, it is easy for these failures to occur. The majority of the
failures were deterministic and required three or fewer frequently used events (e.g., read
and write), and all the failures can be triggered by partially partitioning a single node.

It is surprising that catastrophic failures manifest easily, given that these systems are
generally developed using good software engineering practices and are subjected to multiple
design and code reviews. Surprisingly, our analysis of the manifestation sequence of each
failure, ordering constraints, and timing constraints, shows that almost all the failures can
be reproduced through tests and by using only five nodes.

Dissecting the current fault tolerance techniques. We studied the fault tol-
erance techniques implemented in eight popular systems (Chapter 4), including VoltDB,
MapReduce, HBase, MongoDB, ElasticSearch, Mesos, Raft, and RabbitMQ. For each im-
plemented technique we analyzed the code, extracted the design principles, and identified
the design shortcomings. We identified four approaches for tolerating partial network par-
titioning: connectivity monitoring and graph-based recovery, checking neighbours’ view of
the network, verifying failure reports announced by other nodes, and naturalizing partially
partitioned nodes.

Our analysis reveals that all current fault tolerance techniques are either not generic
(i.e., are used to patch a specific system mechanism or protocol), or do not adequately
tolerate partial partitions (Chapter 4). For instance, all current generic fault tolerance
techniques can lead to complete system shutdown or to the loss of up to half of the nodes
in the cluster despite the presence of alternative routing paths around the partial partition.

Designing a generic fault tolerance technique. Our findings motivated us to build
network partitioning fault-tolerance system (NIFTY). NIFTY leverages the capabilities
of software-defined networking (SDN) to build a generic communication layer positioned
above the IP layer (Chapter 5). NIFTY monitors the connectivity in a cluster, and when
it detects a partial partition, it detours the traffic around the partition through interme-
diate nodes. NIFTY overcomes all the shortcomings present in modern fault tolerance
techniques.

To demonstrate our idea, we built NiftyDB, a VoltDB-based database engine that uses
NIFTY to tolerate partial network partitioning (Chapter 6). NiftyDB implements two
optimizations to reduce the system overhead, lower operation latency, and reduce the load
on intermediate nodes.

Our evaluation (Chapter 8) on a 28-node cluster with synthetic and real workload
benchmarks shows that the overhead added by using NIFTY is negligible. Furthermore,
we show that NiftyDB optimizations bring tangible performance gains: up to 13.8% higher
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throughput, 12.9% lower latency, and two orders of magnitude lesser load on intermediate
nodes compared to a vanilla implementation of VoltDB over NIFTY.
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Chapter 2

Causes of Partial Network
Partitioning

Modern networks are complex. They span multiple data centers [14, 23], use heterogeneous
hardware and software [20], and employ a wide range of middle boxes (e.g., NAT, load
balancers, route aggregators, and firewalls) [14, 18, 23]. Despite the high redundancy built
into modern networks, catastrophic failures are common [18, 19, 20, 21].

Recent reports indicate that network partitioning faults are common and happen at
different scales. Network partitioning can manifest in geo-replicated systems due to the
loss of connectivity between data centers. HP reported that 11% of its enterprise network
failures lead to site connectivity problems [20]. Turner et al. found that a network partition
occurs almost once every four days in the California-wide CENIC network [21]. In a
data center, a network partition can manifest due to failures in the core or aggregation
switches [19] or because of a top-of-the-rack (ToR) switch failure. Microsoft and Google
report that ToR failures are common and have led to 40 network partitions in two years
at Google [18] and caused 70% of the downtime at Microsoft [19]. Furthermore, NIC
failures [24] or bugs in the networking stack can lead to the isolation of a single node
that could be hosting multiple VMs. Finally, network-partition faults caused by correlated
failures of multiple devices are not uncommon [19, 21, 23]. Correlated switch failures are
frequently caused by system-wide upgrades and maintenance tasks [18, 19].

Unlike the classical complete network partitions, which split the cluster into two com-
pletely disconnected sides, partial network partitions disrupt the communication between
some of the cluster nodes. This leads to the division of nodes into three groups (Group 1,
Group 2, and Group 3 in Figure 1.1) such that two groups (Group1 and Group 2) are dis-
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connected while Group 3 can communicate with both Group1 and Group2. Despite finding
50 failure reports detailing system failures due to partial network partitions, numerous ar-
ticles and online discussion forums [25, 26, 27, 28] discussing the fault, implementations of
fault tolerance techniques in eight popular systems, and unit tests testing for the fault in
a popular SDN operating system framework (ONOS [29]), we did not find network failure
reports that detailed the root cause of partial network partitioning faults in production
networks. A few failure reports and blogs discussed the root cause of the partial partition
including the loss of connectivity between two data centers [20] while both are reachable
by a third center, the failure of additional links between racks [30, 31], network misconfig-
uration [32], firewall misconfiguration [32], network upgrades [33], and flaky links between
switches [34].
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Chapter 3

Analysis of Partial Network
Partitioning Failures

We conducted a comprehensive study of partial network partitioning failures reported in 12
production systems (Table 3.1). Our aim is to understand the specific sequence of events
that lead to user-visible system failures and to characterize these system failures to identify
opportunities for improving system fault tolerance.

3.1 Study Methodology

We studied 50 real-world failures from 12 popular distributed systems (Table 3.1). We chose
a diverse set of distributed systems to show that partial network partitioning faults do not
affect a specific type of distributed system and because these systems are widely used and
deployed. Our studied systems include two key-value storage systems and databases, two
file systems, an object storage system, three message-queuing systems, a data-processing
framework, a search engine, and two resource managers.

The 50 failures included in our study were selected from the publicly accessible issue
tracking systems for these projects as follows: First, we used the search tools in the issue-
tracking systems to identify tickets related to partial network partitioning. Because most
of the users and developers do not classify network partitioning failures when they report
them, we had to search for all network partitioning failures and then manually identify
the ones related to partial network partitioning failures. To search for the tickets, we used
the following keywords: “network partition,” “network failure,” “switch failure,” “network

7



Table 3.1: List of studied systems, the number of failures, and the number of catastrophic
failures. The shaded rows are the systems that implemented a fault tolerance technique
for partial network partitioning.

System Category
Failures

Total Catastrophic
Elasticsearch Search engine 17 17
MongoDB Key-value store 9 5
RabbitMQ Messaging 5 3
MapReduce Data processing 4 2
HBase Key-value store 3 2
Mesos Resource manager 2 1
HDFS File system 3 1
Ceph Storage system 2 2
MooseFS File system 2 2
Kafka Messaging 1 1
ActiveMQ Messaging 1 1
DKron Resource manager 1 1
Total - 50 38

isolation,” “split-brain,” and “correlated failures.” Second, we considered tickets that were
dated 2011 or later. Third, we excluded low-priority tickets that were marked as “Minor” or
“Trivial.” Fourth, we examined the set of tickets to verify that they were indeed related to
failures and excluded tickets that appeared to be part of the development cycle; for instance,
those that discuss a feature design. For each ticket, we studied the failure description,
system logs, developers’ and users’ comments, code patch, and unit tests. For tickets that
lacked enough details, we reproduced them using NEAT [22]. Table 3.1 shows the number
of failures we studied for each system.

3.2 Limitations

As with any characterization study, there is a risk that our findings may not be gen-
eralizable. Here we list three potential sources of bias and describe our best efforts to
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address them.

1) Representativeness of the selected systems. Because we only studied 12 systems, the
results may not be generalizable to the hundreds of systems we did not study. However,
we selected a diverse set of systems (Table 3.1). These systems follow diverse designs,
from persistent storage and reliable in-memory storage to volatile caching systems. They
use leader-follower or peer-to-peer architectures; are written in Java, C, Scala, or Erlang;
adopt strong or eventual consistency; use synchronous or asynchronous replication; and
use chain or parallel replication. The systems we selected are widely used: Kafka is the
most popular message-queuing system; MapReduce, HDFS, and HBase are the core of the
dominant Hadoop data analytics platform; and MongoDB is a popular key-value-based
database.

2) Sampling bias. The way we choose the tickets may bias the results. We designed
our methodology to include high-impact tickets. To make sure the tickets we studied are
of high impact, we eliminated all low-priority tickets and focused on tickets the developers
considered important. All presented findings should be interpreted with this sampling
methodology in mind.

3) Observer error. To minimize the possibility of observer errors, all failures were
reviewed and analyzed using the same detailed classification methodology, then discussed
in a group meeting before an agreement was reached.

3.3 Findings

In this section, we present nine findings our study revealed. In general, our study shows that
partial network partitioning failures have catastrophic effects and are silent. However, our
study also reveals ways to make systems more resilient to partial partitioning. For example,
we show which of a system’s components are more vulnerable to these failures and we show
that most of these failures are deterministic and can be reproduced with testing.

We found that the majority of partial network partitioning failures are due to design
flaws. This indicates that developers do not anticipate networks to fail in this way. Tol-
erating partial network partitions is complicated because these faults lead to inconsistent
views of a system state; for instance, nodes disagree on whether a server is up or down.
This confusion leads a part of the system to carry on normal operations, while another
part executes fault tolerance routines. Apparently, the mixing of these two modes is poorly
tested.

9



Table 3.2: Partial network partitioning failures impact. The percentages show how many
failures caused the corresponding impact.

Impact %
Data loss 24%
Complete system unavailability 20%
Stale read 16%
Data corruption 6%
Dirty read 4%
Data unavailability 4%


Catastrophic (76%)

Reduced availability 24 %
Other 2%

Finding 1: A significant percentage (76%) of the studied failures have a catastrophic
impact.
A failure is said to be catastrophic if it leads to a system crash or if it violates the system’s
guarantees. Table 3.2 shows the impact each of the failures we studied had on the system.
This finding indicates that partial partitioning failures have grave impacts and should be
considered in all stages of system development in order to reduce the chances of their
occurrence.

We found that data loss is the most common impact of partial network failures. For
example, in a MongoDB cluster consisting of three nodes, whenever there is a partial
partitioning that isolates a replica from the primary replica but not from the third replica,
the primary would keep operating as it can reach a majority of nodes, and the isolated
replica will also start an election as it is connected to a majority and is not connected
to the primary [35]. This leads to having two primaries in the cluster. If two different
clients are connected to each of the primaries and they update the same key, when the
partitioning is healed one of the updates will be lost.

Stale reads are another common effect of partial partitions. For instance, in an Elastic-
search cluster, a partial partition isolating the leader from some nodes in the cluster can
lead to electing a new leader while the old one still acts as a leader. If one of the leader
processes a write operation while the other process a read operation, the read operation
may return stale data [33].

In Elasticsearch, a dirty read happens when there is a partial partition between a
shard’s primary and one of its replicas, while the master node reaches both. If the primary
node receives a write request followed by a read request, the primary then replies with
unacknowledged data (as the write request did not reach one of the replicas). If the
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primary fails before the partition is healed, and the master chooses the replica on the other
side of the partition to become the new primary, then the previous read received by the
old primary is a dirty read as that write will never get committed.

In 24% of the failures, a partial partition unnecessarily leads to reduced system avail-
ability. For example, MongoDB’s design includes an arbiter process that participates in a
leader election to break ties. Assume a MongoDB cluster with two replicas (say A and B)
and an arbiter, with A being the current leader. Assume a partial network partition sepa-
rates A and B, while the arbiter can reach both nodes. B will detect that A is unreachable
and will start a leader election process; being the only contestant, it will win the leadership.
The arbiter will inform A to step down. After missing three heartbeats from the current
leader (i.e., B), A will assume that B has crashed, start the leader election process, and
become a leader. The arbiter will inform B to step down. This thrashing will continue until
the network partition heals [36]. MongoDB does not serve client requests during leader
election; consequently, this failure significantly reduces availability.

Finding 2: Most of the studied failures (84%) are silent – the user is not informed about
their occurrence.
Despite the dangerous effects of partial partitioning faults, most systems do not report to
the user that a failure has happened. Furthermore, the systems that send warnings to the
user when a failure occurs just send ambiguous warnings that the user cannot make use
of to fix the problem. For example, in Elasticsearch, whenever a partial partition isolates
a server node from the rest of the cluster (but not from the client), and the client tries to
send requests to the cluster he receives a generic error message [37], which does not inform
the user of the actual cause of the problem. This usually leads to delayed detection of
failures by system administrators, which in turn makes the problem worse.

Finding 3: Twenty-four percent of failures remain after the partitioning is healed.
We found that while the majority of failures only persist while there is a partial parti-
tioning in place, a significant number of failures persist even after the partition heals. For
example, in MapReduce, if a partial partition isolates the resources manager (RM) and
the AppMaster, but not between the AppMaster, shared storage (HDFS), and the client,
the RM will spawn a new AppMaster. This leads to running two AppMasters for the same
task, which could potentially cause data corruption [38]. Even more alarming is that even
after the partitioning is healed, the two AppMasters will continue to work in the same sys-
tem, which means that healing the partitioning alone would not solve the problem. Similar
behaviour is found in other systems.

Finding 4: Leader election, replication protocol, configuration change, and request routing

11



Table 3.3: Percentages of partial partitioning failure by mechanism.

Mechanism %
Leader election 38%
Replication protocol 18%
Configuration change 18%
Request routing 12%
Scheduling 6%
Data migration 6%
Data consolidation 2%

are the mechanisms most vulnerable mechanisms to network partitioning.
We studied the source of the failures that are triggered by partial network partitioning.
Table 3.3 presents the percentages of failures related to each of the system mechanisms.

We found that leader election is the mechanism most vulnerable to partial partitioning
faults. In most cases, these failures lead to electing two leaders. For example, in both
Elasticsearch [39] and MongoDB [35], whenever there is a partial partitioning in which a
node cannot communicate with the current master, but can communicate with a majority
of nodes, that node will start an election and become a master, even though the previous
master is still operational and is connected to a majority of nodes. This failure leads to
data loss and stale reads.

We found that the replication protocol mechanism was the second most vulnerable
mechanism in systems. This was mostly the case in Elasticsearch and Ceph. For instance,
in Elasticsearch (discussed in more detail in Chapter 4), if there is a partial partitioning
isolating a shard’s primary node from most of that shard’s replica nodes and the master
node, while the client is connected to all nodes, there is a time window in which the primary
does not step down. In that time, the primary will acknowledge update requests to the
client without replicating them [40]. If the client then reads from another replica, it may
read stale data.

The rest of the failures were caused by flaws in configuration change, request routing,
scheduling, data migration or data consolidation protocols.

Finding 5: Most of the failures (60%) do not require a client to access any of the servers,
or require only that a client accesses one side of the partition.
To mitigate the effects of network partitioning, some systems seek to limit user access
to one side of the partition. However, this finding debunks this assumption, as most
partial partitioning failures do not require client access to both sides of the partition.

12



Table 3.4: Number of events required for partial network partitioning failure to manifest.

Number of events %
1 (Just a partial partition) 14%
2 8%
3 32%
4 14%
>4 32%

As an example of a failure that does not require a client access, in MapReduce, if a
partial partitioning isolates reducers from some mappers while both can reach the resource
manager, the resource manager will blacklist these mappers if they are reported by many
reducers event without any new client requests [41].

This finding indicates that system designers must consider the impacts of partial net-
work partitioning faults on all system operations, including asynchronous client operations
and offline internal operations.

Finding 6: The majority of failures (66%) require three or fewer events (other than the
partial partitioning) to manifest.
This finding shows that only a few events need to occur for a failure to happen. This is
dangerous, as in a real deployment of a distributed system many users will interact with
the system, increasing the probability of failure. Table 3.4 shows the number of events
needed to manifest a failure. We found that in 14% of cases, no events other than a single
partial partitioning fault needed to happen for a failure to manifest.

This is perilous, as a small number of events (mostly frequently used ones, such as reads
and writes) can lead to catastrophic failures.

Finding 7: All the studied failures manifest by isolating a single node, with 34 % of them
happening by isolating any replica.
We consider a node to be isolated if it happens to be on one of the partial partition sides;
that is it cannot communicate with some of the other nodes in the system. It is very
worrisome that all of the studied failures can manifest by isolating a single node. Isolating
a single node is generally more likely to happen than isolating more than one. This could
happen by a single malfunction of a network device such as a NIC or a ToR switch, or by
a single misconfigured firewall in one of the machines.

We further studied which nodes needed to be isolated for a failure to manifest (Ta-
ble 3.5). We found that 34% of the failures manifested by isolating any node in the system

13



Table 3.5: System connectivity during partial network partitioning.

Network Partition Characteristics %
Partition any replica 34%
Partition a specific node 66%
• Partition the leader 44%
• Partition a node with a special role 10%
• Partition a central service 8%
• Partition a new node 2%

Table 3.6: Timing constraints of failures.

Timing constraint %
No timing constraints 64%
Known timing constraints 34%
Nondeterministic 2%

regardless of its role. Among the failures that required the isolation of a specific node, we
found isolating the leader replica to be the most common (44%). Considering that in most
deployments a node plays multiple roles for different shards, isolating a leader is not a rare
occasion whenever a partial partitioning occurs. Partitioning a node with a special role
(such as an arbiter in MongoDB) caused 10% of the failures.

Finding 8: All of the studied failures except one are either deterministic or have known
time constraints.
Table 3.6 shows the timing constraints needed for a failure to happen. We noticed that
almost all the failures either had no timing constraints at all (i.e., whenever the event
sequence happens, a failure happens) or had known timing constraints. These known
timing constraints are either hard-coded in the system’s code or are configurable by the
end users, such as the number of heartbeat periods to wait before declaring that a node
has failed. Only one of the failures is non-deterministic, as it involves the interleaving of
multiple threads.

Finding 9: All failures can be reproduced with five nodes, and all but one can be reproduced
using a fault injection framework.
We found that these failures can be easily reproduced with small clusters of five or fewer
nodes to manifest (Table 3.7), with 78% of them requiring only three nodes. Furthermore,
we found that all the failures except one can be reproduced using a fault injection framework
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Table 3.7: Number of nodes needed to reproduce a failure

Number of nodes %
3 nodes 78%
4 nodes 20%
5 nodes 2%

such as NEAT [22] or Jepsen [42].

3.4 Insights

We presented a thorough study of partial network partitioning failures that occurred in
well-known production quality distributed systems. Our study revealed surprising findings:
It was remarkable that most of the failures we studied had catastrophic impacts on the
systems they affected and that the systems produced little to no useful information to users
when these failures occur. Our study not only revealed how dangerous partial partitioning
failures can be, but it also analyzed each of the failures to understand what leads to their
occurrence and which of the different system’s mechanisms are more susceptible to these
failures. Our findings indicate that the area of partial network partitions is a high-impact
research area that needs further research to improve systems’ resiliency and fault tolerance.

Although a previous study on network partitioning failures [22] revealed similar char-
acteristics to those of partial network partitioning failures, we found the two to have some
differences. For example, all partial network partitioning failures manifested by isolating a
single node, compared to 88% of generic network partitioning failures. This highlights the
poor understanding and testing of partial partitions in the development cycle.

Most production systems assume unreachable nodes to have failed. Even worse, in
the case of partial network partitioning, most of the studied failures are caused by the
underlying assumption that if a node can reach a service, all other nodes can reach that
service. Our analysis revealed the dangers of such assumptions especially in the presence
of a partial partitioning fault; this leads to a confusing system state wherein some parts
of the system assume another part is down while others presume the whole system to be
healthy.

Our study revealed the dangers of assigning a low priority to ToR switch failures espe-
cially as a single node isolation was the cause of all our studied failures. Additionally, our
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study shows that system designers need to consider partial partitioning failures through
the whole design and development cycle from its early stages.

We identified two approaches for improving systems resiliency to partial network parti-
tioning: testing and rerouting. Our analysis reveals that most of the failures are determin-
istic, use few common events, and require five nodes or fewer to reproduce them. These
characteristics indicate that testing using a framework that can inject network partition
faults can reveal most of these bugs. Second, is the feasibility of building a generic fault
tolerance technique for partial partitions. During a partial network partition, a partitioned
node can still reach some of the nodes in the cluster. One approach to mask this fault is
to reroute network packets around the partition using other nodes as proxies. We explore
this approach in Chapter 6.
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Chapter 4

Study of Current Fault Tolerance
Techniques

Our goal is to understand the fault tolerance techniques that are currently implemented
in eight production systems to tolerate partial network partitions. We studied the sys-
tem design of all the systems in Table 3.1 and studied all the code patches related to
the bugs we studied. We found that six of the listed systems changed the system de-
sign to tolerate partial network partitions, including MongoDB, Elasticsearch, RabbitMQ,
HBase, MapReduce, and Mesos. The rest of the systems either patched the code with an
implementation-specific workaround or have not fixed the reported bugs yet. In addition
to these six systems, we found that VoltDB [43] and Raft [7], although not having failure
reports related to partial partitions in their publicly accessible issue tracking systems, im-
plemented fault tolerance techniques to tolerate partial network partitions. We study the
fault tolerance techniques implemented in these two systems as well.

Our analysis reveals that modern systems use four main techniques to tolerate partial
network partitioning: Cluster-wide connectivity monitoring and building a global connec-
tivity graph, verifying node failure by asking neighbouring nodes, verifying reports of a
node failure by checking the suspected node, and neutralizing the partitioned nodes. In
the following section, we detail these techniques and discuss their shortcomings.

4.1 Cluster-wide connectivity monitoring

This technique monitors the connectivity of a cluster. When a partial network partition is
detected, it constructs a connectivity graph and uses it to inform the decisions of the recov-
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ery procedure. VoltDB follows this approach to build a generic fault tolerance technique
for partial partitions.

VoltDB is a strictly serializable distributed and replicated relational database system
that supports ACID transactions. VoltDB supports both sharding and replication of data
to multiple nodes. As our characterization in Chapter 3 shows, tolerating partial net-
work partitions is challenging and requires careful examination and testing of all system
operation paths and system modules to avoid the catastrophic effects of partial network
partitions, such as data loss and corruption. To avoid these catastrophic failures, VoltDB
uses the cluster-wide connectivity monitoring technique to detect a partial partition then
shut down all the nodes that are on the minority side of the partition (i.e., the side that
has fewer nodes). While this approach may significantly reduce system capacity and may
lead to complete system shutdown (as detailed next), it avoids the catastrophic effects of
partial network partitions.

VoltDB follows a peer-to-peer approach for implementing this technique. Every node
in the system periodically sends a heartbeat to all nodes in the cluster. If a node loses
its connectivity to any node in the system, it will suspect that a partial network partition
occurred and will start the recovery procedure. The recovery procedure has two phases:
In the first phase, the node that detected the failure broadcasts the list of nodes it can
directly reach. Upon receiving this message, all nodes in the cluster in their turn will
broadcast their connectivity information to all nodes in the cluster. In phase two, every
node combines the information received from all other nodes into a connectivity graph for
the cluster. Each node independently analyses this graph and uses a deterministic policy
to respond to the partial partition. In the current VoltDB implementation, every node will
detect the largest fully connected group of nodes in the graph, and each node that is not
in this group will shut itself down. To handle the pathological case in which the cluster
experiences a complete partition that exactly halves the nodes of the cluster into two equal
groups, the group that has the node with the lowest id in the cluster resumes operation,
while the group on the other side of the partition shuts down. Finally, the surviving group
of nodes will check that they have a replica of every data shard in the new group. If there
is shard with no reachable replica then the entire VoltDB cluster shuts down.

The nodes that shut down do not automatically rejoin the cluster even after the network
partition heals. To add those nodes back to the cluster an administrator needs to stop the
cluster, reconfigure it, and start it again.

Shortcomings. The VoltDB approach has several shortcomings that make it inad-
equate for modern cloud deployments. First, in the best case, it will unnecessarily shut
down up to half of the cluster nodes, reducing the system performance and fault tolerance
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ability. Second, the approach may lead to a complete system shut down if all replicas
of a shard are on the minority side of the partition or if the cluster is halved into two
equal groups and the node will the lowest id crashes. In the latter case, the two halves
will assume the node with the lowest id is on the other side of the partition and both will
shutdown. Third, the proposed approach is not bulletproof - it takes time until the partial
partition is detected and the nodes on the minority side shut down. During this time, new
operations may lead to catastrophic failures.

4.2 Checking with neighbours

This approach is used by RabbitMQ and Elasticsearch. In this approach, every node in the
system monitors its connectivity to all nodes in the system through periodic heartbeats.
If it detects that a certain node (say node X) is unreachable, it will rely on information
provided by other nodes to verify if the other nodes can reach X. If other nodes can reach
X, then a partial partition is detected and the node will execute a recovery procedure.
Note that, unlike the graph-based approach discussed in Section 4.1, this approach does
not build a graph and does not run a deterministic recovery procedure to guarantee that
all nodes seeing the partial partition execute the same actions.

In RabbitMQ [44], every node periodically sends heartbeats to all other nodes to detect
failures and exchange information. Upon the discovery of a partial partition, a node in
RabbitMQ can apply one of the following configurable policies:

• Change to a complete partition: A node that uses this policy drops its connection
with all nodes that can reach the other side of the partition. This changes the
partition from a partial to a complete partition with both sides working and accepting
client requests. This configuration may lead to data inconsistency and will require
running a data consolidation mechanism after the partition is fixed (detailed next).

• Pause: To avoid data inconsistency, once a node discovers the partial network par-
tition it pauses its activities. It resumes its activities only when the partition heals.

• Pause if anchor nodes are not reachable: RabbitMQ configuration can specify
a subset of nodes to act as anchor nodes. If a node can not reach any of the anchor
nodes, it will pause. This approach may not solve a partial partition problem and
may lead to multiple complete partitions. Consequently, this policy requires running
a data consolidation mechanism when a partition heals.

19



After a partition heals, RabbitMQ provides two data consolidation policies: adminis-
trator intervention, in which the administrator decides which side of the partition should
become the authoritative copy of data, and auto-heal, in which the system decides on the
winning version of the data based on the number of clients and nodes connected to each
partition.

RabbitMQ’s approach has two serious shortcomings. First, changing a partial partition
to a complete partition may lead to multiple divergent copies of the data that are hard
to consolidate. Second, the pause policy may lead to pausing all the nodes on both sides
of the partition severely affecting data availability and system performance. In the worst
case, it may bring the entire cluster down.

Elasticsearch [45] has a single master that is responsible for cluster-wide operations.
The master is deterministically assigned to the node with the smallest id. If a node cannot
reach the master, then it contacts all other nodes it can reach and asks them if they can
reach the master node, if any node can reach a master then a partial network partition is
detected, and the affected nodes will keep trying to reach the master. If none of the nodes
can reach the master, then a leader election protocol is executed to elect a new master
(i.e., the node with the smallest id among the reachable nodes).

This approach can lead to a complete cluster unavailability [46]; for instance, if none
the nodes can reach the master except one node (say node X). If node X has the smallest
id among the connected nodes, then all the nodes in the cluster will assume it is the new
master, but node X will refuse to be a new master since it can reach the old master.
Effectively, the cluster will not have a master and will be unavailable until the network
partition is healed [46].

4.3 Failure verification

Using this approach, if a node receives a notification that a certain node is unreachable, the
receiving node will try to contact that specified node and verify that it is indeed unreachable
before applying the fault tolerance technique. This approach is not generic and is often
applied as a part of a particular protocol. This approach is used by MongoDB [47] and
Raft [7] as part of their leader election protocols. Upon discovering that the leader is
unreachable, a node will call for an election and ask all other nodes to vote for itself.
Other nodes only participate in the election if they verify that the leader is unreachable to
them as well. If another node in the cluster can reach the leader, then it ignores the call
for the election. If a partial network partition isolates a minority of nodes from the leader,
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then this approach prevents electing a new leader and avoids the leader election thrashing
failure discussed in Section 3.3.

This failure verification is not generic; for instance, in ElasticSearch if a partial partition
isolates a primary replica from a secondary replica while both replicas are reachable by the
cluster master node, then the primary replica will notify the master node that a replica is
unreachable and request an alternative replica. As the master can reach all the replicas,
it will ignore the failure report, rendering the partition unavailable for future writes if the
cluster is configured with synchronous replication to all replicas [48]. This bug was fixed
by assigning new replicas whenever a primary cannot reach one of the old replicas.

4.4 Leader neutralizes partitioned nodes

One challenge of handling partial network partitions is that both sides of the partition may
change the shared data. To avoid this problem in leader-based systems, this approach tries
to neutralize all the nodes that are not reachable by the leader. How a node is neutralized
is specific to the application and implementation.

In Mesos, whenever a node stops receiving heartbeat messages from the master for
some time, it pauses and tries to contact the master to rejoin the cluster. Effectively, in
case of partial network partitions, the node will pause until the network partition heals.

In HBase, shards are stored on a shared storage system (HDFS) and managed by HBase
nodes. If a leader cannot reach one of the HBase nodes, then before assigning the shards of
that node to another node, the master will rename the shard directory in HDFS, effectively
neutralizing the old replica from making any further changes. If an HBase node can access
its shard, then it shuts down.

In MapReduce, if the manager node cannot reach one of the AppMaster nodes, it will
reschedule the tasks assigned to that AppMaster to a new AppMaster. This approach
introduces the possibility that two AppMasters will work on the same task and lead to
data corruption [38] in the shared HDFS file. To avoid this problem, AppMasters use two
approaches to indicate that they completed a task: they inform the manager, and write a
completion record in a shared log on HDFS. When a manager starts a new AppMaster to
re-execute a task, the new AppMaster first checks the shared log for a completion record.
If it finds a record then the task is completed and it does not re-execute the task.
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Summary

None of the implemented fault tolerance techniques is adequate for modern cloud systems.
Failure verification and neutralizing partitioned nodes are protocol- and implementation-
specific, and the current approach for checking with neighbours and the graph-based tech-
nique may lead to complete system shutdown or significant loss of system performance
or storage capacity. This motivated us to explore a generic fault tolerance technique for
partial partitions that helps tolerate these failures without significant changes to current
distributed systems (Chapter 5).
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Chapter 5

System Design

To overcome the limitations of current fault tolerance techniques, we designed a network-
partitioning fault-tolerant communication layer (NIFTY). NIFTY leverages the capabilities
of software-defined networking (SDN) to build a generic communication layer positioned
above the IP layer. NIFTY monitors the connectivity in a cluster; when NIFTY detects
a partial partition, it detours the traffic around the partition through intermediate nodes.
While NIFTY maintains the connectivity between the nodes in case of partial partitions, it
may impose high network overhead. We present two optimization techniques to reduce the
network overhead (detailed in the next chapter). We designed NiftyDB, a VoltDB-based
database system that can tolerate partial network partitions. NiftyDB changes the fault
tolerance technique in VoltDB to use NIFTY and implements the two optimizations.

In the rest of this chapter, we present an overview of the SDN technology in Section
5.1, then present the NIFTY design in Section 5.2. In the following chapter, we present
the design of NiftyDB.

5.1 Overview of Software-Defined Networking

The SDN architecture divides the network into two planes: data and control. The data
plane is a traffic forwarding plane that uses the information in the switch forwarding tables
to forward messages. The control plane is an external process that controls the switch by
altering the entries in switch forwarding tables. The communication API between the
controller and the switches is based on the widely-adopted OpenFlow standard [16].
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Figure 5.1: NIFTY design. A partial network partition isolates node 1 and 2 from node 3
and 4 while node 5 can communicate with all. Node 1 and node 2 install forwarding rules
that forward traffic destined to node 3 or node 4 through node 5.

The OpenFlow standard [16] facilitates external control of single-switch forwarding
tables. It allows inserting or deleting forwarding rules. Each forwarding entry includes a
matching rule and an action list. If a packet matches a rule, the actions in the actions list
are performed in order on the packet. OpenFlow has a rich set of matching rules including
wild cards for matching IP and MAC addresses, protocol or port numbers. The actions
include packet forwarding to a specific switch port, dropping the packet, sending the packet
to the controller, or modifying the packet. The possible modifications include changing
the source/destination MAC/IP addresses. OpenFlow controllers can update, delete, or
extend the validity of the existing rules at any time. These capabilities enable fine-grained
control of network operations and facilitate application-specialized traffic engineering.

5.2 NIFTY Design

NIFTY is a peer-to-peer system in which every machine in the cluster runs a NIFTY
process, and all nodes have the same role. NIFTY processes collaborate in monitoring
cluster connectivity, recovering from network partition faults, and classifying the cluster
nodes based on their connectivity. To mask a network partition, NIFTY tries to reroute
packets around the partial partition through the end nodes. For instance, in Figure 5.1, a
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partial network partition isolates node 1 and 2 from node 3 and 4. Node 5 is still able to
reach all nodes. In this scenario, once NIFTY detects the partial partition, it will reroute
packets exchanged between nodes 1 and node 3 through node 5; that is the packets between
1 and 3 will be sent to 5, which will act as a router and forward the packets to the other
side of the partition.

Connectivity monitor. To monitor the end-to-end connectivity between cluster
nodes, each NIFTY process monitors its connectivity with every other NIFTY process
in the cluster by periodically sending a heartbeat to all processes in the cluster and main-
taining a connectivity bitmap. The connectivity bitmap is a compact bitmap that indicates
which nodes are directly reachable. If a NIFTY process misses three heartbeats from an-
other NIFTY process, it assumes that the communication with that process is broken and
updates its connectivity bitmap. To detect when the communication between nodes re-
covers, NIFTY processes continue to send heartbeats to disconnected nodes even after a
partition is detected.

Recovery. Every NIFTY process maintains a connectivity graph that tracks the con-
nectivity between all the nodes in a cluster. To build and maintain this graph, each NIFTY
process periodically sends its connectivity bitmap to all other nodes. To reduce overhead,
the bitmap is piggybacked on heartbeat messages.

When a NIFTY process detects a change in the connectivity graph (e.g., a node be-
comes unreachable or a partition has healed and connectivity is restored) it initiates the
route discovery procedure. The route discovery procedure uses the connectivity graph to
find alternative routes to the unreachable nodes or restores direct routes after a network
partition is healed. To find the best communication routes, NIFTY can use standard net-
work routing protocols. In our design, we used the classical distance-vector protocols using
the Bellman-Ford algorithm [49, 50], as our characterization revealed that most network
partitions involve a single partition and require simple rerouting paths. We use hop count
as route weight. Using hop counts as a routing metric naturally favours direct connections,
when they exist, over rerouting through intermediate nodes.

Route deployment. To deploy the new routes between end nodes, NIFTY leverages
the capabilities of software-defined networking. NIFTY uses OpenFlow and Open VSwitch
to route packets between end nodes. For instance, to reroute packets sent by node 1 to
node 3 through node 5 in Figure 5.1, the NIFTY process on node 1 will install rules on
its local Open VSwitch to change the destination MAC address of any packet destined to
node 3 to that of node 5. Whenever node 5 receives a packet that is destined to node 3, it
changes the destination MAC address back to node 3’s MAC address, and sends the packet
out where it will finally be received by the final target (node 3).
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Listing 5.1: Retrieving the list of bridge nodes in the system and checking if the current
node is a bridge node or not

vector<s t r i ng> br idge nodes = DV: : getBridgeNodes ( ) ;
i f ( f i n d ( br idge nodes . begin ( ) , b r idge nodes . end ( ) , my ip )

!= br idge nodes . end ( ) )
cout<<” This i s a br idge node” ;
. . .

else
cout<<” This i s not a br idge node” ;
. . .

Node classification. Each NIFTY process analyzes the connectivity graph to identify
which nodes are on the same side of the network partition (e.g., nodes 1 and 2 in Figure
5.1) and which nodes are not affected by the partition and can reach all cluster nodes.
We call these nodes “bridge” nodes (e.g., node 5 in Figure 5.1). The list of cluster nodes
and their classification is provided through an API to the database engine running atop
NIFTY. Listing 5.1 shows the API for retrieving the list of bridge nodes and checking if
the current node is a bridge node or not.
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Chapter 6

NiftyDB

NIFTY is transparent to applications running on top of it, and no application changes
are required to use NIFTY. As NIFTY routes packets through intermediate nodes, it may
increase operation latency as packets need to traverse longer paths, increase the load on
bridge nodes, and increase the network load. To lessen this overhead, a system using
NIFTY can be optimized to reduce the amount of data forwarded through the bridge
nodes. The way to do so is application-specific and may entail relocating processes in a
cluster, reducing quality of service [51, 52, 41], or reducing harvest [1].

In this thesis, we explore optimizations that can improve the performance of distributed
database systems under partial network partition faults. We built NiftyDB, a database
system that extends integrated VoltDB with NIFTY and implements optimizations to
reduce the traffic on bridge nodes. We identified two opportunities to reduce the load on
bridge nodes (i.e., nodes that can reach all nodes in the cluster and are used to detour
traffic around partial partitions). The rest of this chapter first presents an overview of
VoltDB, then details the two optimizations.

6.1 VoltDB Design Overview

VoltDB is a strictly serializable distributed and replicated relational database system that
supports ACID transactions. VoltDB allows the sharding of tables based on a specific
column. Sharding is then automatically handled by VoltDB (the number of shards is not
specified by the user). The user specifies the replication factor (known as k-factor) for the
cluster. The k-factor specifies how many times each of the shards is replicated, and how
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many simultaneous node failures the cluster can tolerate. More specifically, each of the
shards is replicated (k+1) times, and the cluster is guaranteed to operate correctly under
the presence of a maximum of k simultaneous node failures.

VoltDB replicates the received queries to all shard replicas and then will have the
replicas apply the queries locally. To achieve a strict order of the queries across all replicas,
VoltDB employs two entities: SPIs and an MPI. An SPI (single partition initiator) is
responsible for ordering queries that target a single shard. All queries are directed to the
SPI at first. The SPI then replicates the queries to all shard replicas and makes sure that all
surviving replicas have executed the queries before marking them as committed. An MPI
(multi-partition initiator) is responsible for ordering queries that target multiple shards.
It achieves that by dividing a query into multiple segments, each targeting a different
shard. It then forwards these to the specific SPI responsible for each shard. When a
multi-partition read operation is issued (say a join request), the MPI forwards segments of
the request to each involved SPI. It then gathers the data from the different SPIs before
sending the result of the request to the VoltDB node the client had contacted to issue the
request.

6.2 Optimizing Multi-Shard Operations

Multi-shard operations, such as joins, are complex operations that involve multiple shards.
An MPI process is responsible for scheduling, sequencing, and serving multi-partition trans-
actions across shards. The MPI executes part of the query plan on SPIs and gathers all
partial results, aggregates the results, and sends the final result to the client (directly or
through an intermediary node).

VoltDB chooses the node with the lowest id (i.e., the first node to run in a VoltDB
cluster) as the cluster MPI. If a partial network partition isolates the MPI from some of the
SPIs, all the communication with those SPIs will be forwarded through the bridge nodes,
significantly increasing operation latency, bridge node load, and network overhead. To
avoid these drawbacks, when a partial network partition is detected, NiftyDB migrates the
MPI processes to a bridge node (if it is not already on one). One approach to performing
this migration is to kill the old MPI process and start a new one on the new node. This
approach will cause current multi-shard operations to fail and clients to retry them. An
alternative approach is to redirect new requests to the new MPI and keep the old MPI
running until it finishes its ongoing operations. NiftyDB uses the first approach due to its
ease of implementation.
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6.3 Optimizing the Client Protocol

VoltDB clients send their queries to any node in the VoltDB cluster. For single shard
queries, the node only answers the query if it is the SPI of the requested shard, otherwise,
it will forward it to the SPI that can answer the query. For multi-shard queries, the node
will forward the query to the MPI process. When a node forwards the client request to
another SPI or the MPI, it acts as the client proxy. When the MPI or the target SPI
completes processing the query, it will send its response to the client proxy, which in turn
forwards the results to the client.

In case of a partial network partition, if the client sends a query to a VoltDB node, and
the target SPI for that query is on the other side of the partition, then the client query
and the result will have to be forwarded through a bridge node.

NiftyDB modifies the client protocol to reduce the instances in which queries or the
results are forwarded through the bridge nodes. In NiftyDB, the NIFTY process that re-
ceives the request will identify the bridge nodes and reply to the client with their addresses.
The client then directly sends queries to one of the bridge nodes at random. Following this
approach reduces the number of hops a request and the corresponding reply take before
getting the results back to the client.
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Chapter 7

Implementation

We used C++ to implement NIFTY as described in Chapter 5. NIFTY directly installs
forwarding rules to the underlying Open VSwitch whenever a connectivity change is de-
tected. NIFTY further provides an API through which other systems can know which of
the nodes are bridge nodes. Our implementation is comprised of fewer than 600 lines of
code.

To create a partial partition, we implemented a simple network partitioning that uses
the end-hosts open-flow tables to install rules that would drop packets from some other
nodes in the cluster.

NiftyDB was implemented in two parts: We first modified the VoltDB code by edit-
ing/adding fewer than a hundred lines of code to the LeaderElector class which is a class
that uses ZooKeeper to orchestrate all elections that occur in VoltDB and SpScheduler
class that is responsible for SPI allocations and operations in the system. For optimizing
the client protocol, we further used the API provided by NIFTY to change the nodes to
which the clients are connected to.
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Chapter 8

Evaluation

We evaluate the overhead using NIFTY adds and the effectiveness of the optimizations
implemented in NiftyDB. First, we show the overhead added to the network and end-hosts
by running NIFTY to a cluster of VoltDB nodes and how the cluster performs under a
partial partition. We then discuss the effects of the optimizations discussed in Chapter 6
by comparing NiftyDB to a cluster of VoltDB with NIFTY.

8.1 Platform and setup

We used a cluster of 28 nodes in CloudLab [53]. Each of the nodes has a 64-bit Intel
Xeon D-1548 with eight cores at running at 2.0 GHz, 64GB of RAM, and a 10 Gbps NIC.
We used Open VSwitch v2.5.5 and VoltDB v9.0. Some of the nodes are used to run the
database system and the rest of the cluster to run clients.

Workload: We used two kinds of workloads to evaluate different parts of the system:
the Yahoo benchmark with a uniform distribution, and a synthetic benchmark that consists
of SQL join query requests. Client nodes issue requests and receive results in a closed loop.
The number of clients per node varies per benchmark; for the Yahoo benchmark, we have
150 client threads per physical node, while in the synthetic benchmark we have 16 client
threads per physical node.

In all settings, VoltDB was configured with 12 sites per node with a redundancy value
(k = 1); when we run six VoltDB nodes, this gives a total of 36 partitions in the VoltDB clus-
ter. Before running any of the workloads, we pre-populated the database with 10, 000, 000
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rows, each with a size of 1KB, giving the database a total size of 10 GB (20 GB for the
synthetic workload).

We compare the following alternatives.

• VoltDB. We used VoltDB as our performance baseline when we ran experiments
without a network partition. We did not run VoltDB for experiments that involve a
partial network partition as it does not provide the same level of fault tolerance as
NiftyDB and may halt the entire cluster.

• VoltDB-NIFTY. This configuration runs VoltDB atop NIFTY without any changes
to VoltDB. With this configuration, NIFTY masks partial partitions, improving
VoltDB fault tolerance.

• NiftyDB. This is our system with the two optimizations enabled.

We ran each experiment 30 times. What we report is the average of these 30 runs.

8.2 NIFTY Overhead

Every NIFTY process periodically sends its connectivity information to all nodes in the
cluster and reacts when a change in connectivity is detected. In this section, we measure
the overhead added by NIFTY. In particular, we compare the average latency (Figure
8.1a) and the throughput (Figure 8.1b) of VoltDB and VoltDB over NIFTY (VoltDB-
NIFTY). We used VoltDB-NIFTY in two configurations: VoltDB-NIFTY, which runs the
system without partial partitions, and VoltDB-NIFTY-P, which runs the system with a
network partition that splits the six-node VoltDB deployment into three equal groups (i.e.,
two nodes on each side of the partition and two bridge nodes). We used the read-only
workload C of the Yahoo benchmark [54].

Figure 8.1 compares the throughput and average latency when increasing the number of
clients. Figure 8.1 shows that NIFTY overhead is negligible: the difference in throughput
and latency of VoltDB compared to VoltDB-NIFTY is negligible even in the presence of a
network partition, which requires rerouting a third of the requests through a bridge node.
NIFTY overhead is negligible; although it exchanges periodic messages, these messages
are small (around 250 Bytes). For perspective, VoltDB nodes exchange around 230 KB of
data every second, three orders of magnitude more than NIFTY.
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Figure 8.1: NIFTY overhead effect on systems. Yahoo read-only benchmark comparing a
cluster of VoltDB, VoltDB with NIFTY, and VoltDB with NIFTY under a partial partition.

We ran the same experiment with two other Yahoo workloads: workload B with 95%
reads and 5% writes, and workload A with 50% reads and 50% writes. Our results with
those workloads are similar to workload C.

8.3 NiftyDB Optimizations

In this section we evaluate the effectiveness of the two optimizations implemented in
NiftyDB.

8.3.1 Multi-Shard Optimization

The multi-shard optimization in NiftyDB migrates the MPI processes to a bridge node
to reduce network load and operation latency. To evaluate the effectiveness of this opti-
mization we deployed VoltDB over NIFTY on nine nodes and created a partial network
partition with four nodes on each side of the partition and one bridge node. We evaluated
the effect the location of the MPI process has on system performance and imposed over-
head. We compare three MPI placements: in the client-side of the partition (client-side in
Figure 8.2), in a bridge node (bridge side), and in the side opposite to the client (opposite
side). We note that the bridge side placement represents NiftyDB.
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Figure 8.2: MPI placement effect on VoltDB-NIFTY’s performance using a synthetic
benchmark of multi-shard join queries.

Workload. We used a synthetic benchmark that touches multiple shards. We used
two tables of 20 fields. Each field is 50 bytes. We populated the database with 20 GB of
data before running the experiments. To use multiple shards, clients issue a range query
that joins the two tables on the primary key. The client issues a query with a range that
includes four primary keys, consequently, the query result size is limited to four rows with
a total size of 8 KBs. We had to use a simple query in our benchmark as the open-source
version of VoltDB has limited support for multi-shard joins.

Figure 8.2 shows (a) the system throughput and (b) the average latency for the three
possible MPI placements. The figure shows that the average query’s latency is reduced
by up to 10.8% and the throughput is improved by 12.6% when the MPI is placed on a
bridge node. The main reason for this improvement is that having the MPI on a bridge
node reduces the number of hops each of the join queries have to go through before the
MPI accumulates all the results and replies back to the client-proxy node.

We measured the amount of data forwarded through the bridge nodes for each one of
those configurations and found that placing the MPI on the bridge node imposes the least
overhead on the system. While placing the MPI on a bridge node resulted in forwarding
72 MB through bridge nodes, placing the MPI on the client side leads to forwarding 5 GB,
and on the opposite side to forwarding 6.5 GB (for the case of 128 clients).
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Figure 8.3: Client-proxy location’s effect on VoltDB-NIFTY’s performance using the read-
only Yahoo benchmark

8.3.2 Client Protocol Optimization

The client protocol optimization in NiftyDB reduces the operation latency and reduces the
system overhead by limiting the number of times in which queries and their results traverse
a bridge node. To evaluate the effectiveness of this optimization we deployed VoltDB over
NIFTY on ten nodes and created a partial network partition with one node on one side
(minority side), eight nodes on the other side (majority side) and one node as a bridge
node. We used this configuration with an asymmetric partition to measure the impact of
client location. With VoltDB we evaluated three client placements: on the minority side
(minority in Figure 8.3), on bridge (bridge), and majority (majority). We used a single
shard workload using the Yahoo benchmark workload detailed at the beginning of this
chapter.

Figure 8.3 shows (a) system throughput and (b) average latency while varying the
number of clients. The results show that placing the client on the bridge node achieves the
highest throughput and lowest operation latency. We observed 13.8% higher throughput
and 12.9% lower latency compared to clients connected to the minority side, and 8.3%
higher throughput and 6.5% lower latency compared to clients connected to the majority
side. This is because this configuration reduces the number of hops a request and the
corresponding reply can take. Clients placed on the minority side experience the worst
performance as most of the requests/replies will have to traverse a bridge node. The client
on the majority side experiences slightly higher latency as some requests need to traverse
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Figure 8.4: CDF of latency for the different client-proxy locations, taken at 600 clients

a bridge node.

Figure 8.4 shows the CDF of latency for the three different settings, taken at the point
when 600 clients accessed the system. The figure shows that having the clients connected
to a bridge node leads to an improvement in the latency of the system when compared to
the two other settings. Overall, we found that having a client-proxy on a bridge node leads
to up to 12% better latency than having client-proxies on the minority side (taken at 60th
percentile).
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Chapter 9

Related Work

To the best of our knowledge, this is the first in-depth analysis of distributed systems fault
tolerance mechanisms targeting partial network partitioning. This is further the first work
to describe and implement a generic layer that provides partial partitioning fault tolerance.
Our manual analysis of a large number of partial network partitioning failures allowed us to
identify common vulnerabilities and to find failure characteristics that can improve system
designs and testing.

A large body of previous work analyzed failures in distributed systems. A subset
of these efforts focused on specific component failures such as physical [55] and virtual
machines [56], network devices [19, 21], storage systems [57, 58], software bugs [59], and
job failures [60, 61, 62]. Another set characterized a broader set of failures, either for a
specific domain of systems and services, such as HPC [63, 64, 65], IaaS clouds [66], data-
mining services [67], hosting services [2, 68], and data-intensive systems [69, 59, 60], or for
generic systems such as the work done by Yuan et al. [70]. Our work complements these
efforts by focusing on failures triggered by partial network partitioning.

Alquraan et al. [22] studied 136 network partitioning failures from 25 distributed
systems. Chapter 3.4 shows how the characteristics of partial partitioning failures differ
from generic partitioning failures as reported in [22]. Alquraan et al. further developed
the NEAT tool that can be used to test different systems components against the different
kinds of partitions. We used NEAT in this paper to reproduce some of the failures to
understand their intricate details. Furthermore, using NEAT we were able to find a new
failure in Elasticsearch as detailed in Chapter 4.

Recent research projects utilize SDN capabilities to provide load balancing [71, 72],
access control [73], seamless VM migration [74], improve MPI performance [75] and to
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improve system security, virtualization and network efficiency [76]. Others have used SDN
capabilites to build complete systems or protocols, including key-value stores [77, 78],
consistency protocols [79, 80, 81], and load balancers [82, 83].

Open VSwitch technologies have mostly been used in the domain of network virtualiza-
tion, as used by Google in their virtualization platform Andromeda [84], and in overlay net-
working [85]. Furthermore, Open VSwitch is used in network traffic measurement [86, 87],
and in the implementation of SDN-based firewalls [88].

Consistency in a partitioned network: a survey: The CAP theorem as presented
in [13], states that in the presence of a network partition, systems can either maintain data
consistency or service availability, but not both. We found that system designers either
choose one of the two, e.g., data consistency as in VoltDB [43] and HBase [89], or let the
system users make that choice via configuration as in RabbitMQ [44].
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Chapter 10

Conclusion and Future Work

We conducted a comprehensive study of 50 failures related to partial partitions in 12 widely
used distributed systems. We then presented nine findings compiled from the studied fail-
ures. Our findings show that partial partitioning failures are some of the most catastrophic
and silent failures in modern distributed systems.

We then dissected all the systems that solved tickets related to partial network parti-
tioning to understand their generic techniques for dealing with partial partitions. Overall,
from studying eight systems, we found that they all follow one of four approaches to deal-
ing with partial partitioning: constructing a cluster-wide graph of nodes, asking neighbors
if they see the same partition, verifying the non-existence of a partial partition before
conducting an election, and having the master neutralize unreachable nodes.

We presented NIFTY: A generic layer to work around partial partitions by monitoring
the health of cluster nodes and restore connectivity whenever the partition heals. While
all the studied systems perform in reduced redundancy, availability, or completely become
unavailable in the presence of partial partitions, using NIFTY atop any of the systems
makes it tolerant to partial partitions without the underlying system realising the presence
of the fault. We show how NIFTY could be augmented with a distributed system and
how it can further be optimized to improve their performance under a partial partition
by building NiftyDB: A database system that is built atop VoltDB and that leverages the
monitoring API of NIFTY.

Our evaluation revealed that NIFTY adds negligible overhead to the network when
the system is not under a partition and under most kinds of partitions while providing
the underlying system with protection against partial partitions. We further show that
NiftyDB’s optimization reduces the overhead in the system under some kinds of partitions.

39



References

[1] Eric A Brewer. Lessons from giant-scale services. IEEE Internet computing, 5(4):46–
55, 2001.

[2] David Oppenheimer, Archana Ganapathi, and David A Patterson. Why do internet
services fail, and what can be done about it? In USENIX symposium on internet
technologies and systems, volume 67. Seattle, WA, 2003.

[3] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui
Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. {TAO}:
Facebook’s distributed data store for the social graph. In Presented as part of the
2013 USENIX Annual Technical Conference USENIX ATC 13), pages 49–60, 2013.

[4] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V
Madhyastha. Spanstore: Cost-effective geo-replicated storage spanning multiple cloud
services. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 292–308. ACM, 2013.

[5] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Google’s globally distributed database. ACM Transactions
on Computer Systems (TOCS), 31(3):8, 2013.

[6] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[7] Diego Ongaro and John Ousterhout. In search of an understandable consensus al-
gorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[8] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an
engineering perspective. In Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, pages 398–407. ACM, 2007.

40



[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: amazon’s highly available key-value store. In ACM SIGOPS
operating systems review, volume 41, pages 205–220. ACM, 2007.

[10] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. Zab: High-performance
broadcast for primary-backup systems. In 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems & Networks (DSN), pages 245–256. IEEE, 2011.

[11] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J Spre-
itzer, and Carl H Hauser. Managing update conflicts in bayou, a weakly connected
replicated storage system. In SOSP, volume 95, pages 172–182, 1995.

[12] Douglas B Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agree-
ments for cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 309–324. ACM, 2013.

[13] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. Acm Sigact News, 33(2):51–59, 2002.

[14] Data center: Load balancing data center, solutions reference nework design. Technical
report, Cisco Systems, Inc., 2004.

[15] Cisco data center infrastructure 2.5 design guide. Cisco Systems, Inc., 2011.

[16] Openflow switch specification, version 1.5.1 (onf ts-025). Open Networking Founda-
tion, 2015.

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Program-
ming protocol-independent packet processors. ACM SIGCOMM Computer Commu-
nication Review, 44(3):87–95, 2014.

[18] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
Evolve or die: High-availability design principles drawn from googles network infras-
tructure. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 58–72. ACM,
2016.

[19] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network fail-
ures in data centers: measurement, analysis, and implications. ACM SIGCOMM
Computer Communication Review, 41(4):350–361, 2011.

41



[20] Daniel Turner, Kirill Levchenko, Jeffrey C Mogul, Stefan Savage, Alex C Snoeren,
Daniel Turner, Kirill Levchenko, Jeffrey C Mogul, Stefan Savage, and Alex C Snoeren.
On failure in managed enterprise networks. HP Labs HPL-2012-101, 2012.

[21] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and Stefan Savage. California fault
lines: understanding the causes and impact of network failures. ACM SIGCOMM
Computer Communication Review, 41(4):315–326, 2011.

[22] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany. An
analysis of network-partitioning failures in cloud systems. In 13th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 18), pages 51–68,
2018.

[23] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Experi-
ence with a globally-deployed software defined wan. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 3–14. ACM, 2013.

[24] bnx2 cards intermittantly going offline. https://www.spinics.net/lists/netdev/

msg152880.html. Accessed: 2019-07-05.

[25] Simon J Maple and Ian Robinson. Transaction recovery in a transaction processing
computer system employing multiple transaction managers, October 20 2015. US
Patent 9,165,025.

[26] Christian Maihofer. A survey of geocast routing protocols. IEEE Communications
Surveys & Tutorials, 6(2):32–42, 2004.

[27] Matthew Milano and Andrew C Myers. Mixt: a language for mixing consistency in
geodistributed transactions. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 226–241. ACM, 2018.

[28] Observability in paxos clusters. https://davecturner.github.io/2017/08/18/

observability-in-paxos.html. Accessed: 2019-05-18.

[29] Onos 1.4 test plan - ha. https://wiki.onosproject.org/pages/viewpage.action?
pageId=7439437. Accessed: 2019-05-18.

[30] Partial network partitions and obstacles to innovation. https://rachelbythebay.

com/w/2012/02/16/partition/. Accessed: 2019-05-18.

42

https://www.spinics.net/lists/netdev/msg152880.html
https://www.spinics.net/lists/netdev/msg152880.html
https://davecturner.github.io/2017/08/18/observability-in-paxos.html
https://davecturner.github.io/2017/08/18/observability-in-paxos.html
https://wiki.onosproject.org/pages/viewpage.action?pageId=7439437
https://wiki.onosproject.org/pages/viewpage.action?pageId=7439437
https://rachelbythebay.com/w/2012/02/16/partition/
https://rachelbythebay.com/w/2012/02/16/partition/


[31] Partial network partition and retries. https://github.com/elastic/

elasticsearch/issues/6105. Accessed: 2019-05-18.

[32] Healthchecking is not transitive. https://www.robustperception.io/

healthchecking-is-not-transitive. Accessed: 2019-05-18.

[33] cluster broken after switches upgrade. https://github.com/elastic/

elasticsearch/issues/9495. Accessed: 2019-05-18.

[34] using map output fetch failures to blacklist nodes is problematic. https://issues.

apache.org/jira/browse/MAPREDUCE-1800. Accessed: 2019-05-18.

[35] Asymmetrical network partition can cause the election of two primary nodes. https:
//jira.mongodb.org/browse/SERVER-9730. Accessed: 2019-07-05.

[36] Arbiters in pv1 should vote no in elections if they can see a healthy primary of
equal or greater priority to the candidate. https://jira.mongodb.org/browse/

SERVER-27125. Accessed: 2019-07-05.

[37] Partial network partition and retries. https://github.com/elastic/

elasticsearch/issues/6105. Accessed: 2019-07-05.

[38] Mapreduce ticket 4832. https://issues.apache.org/jira/browse/

MAPREDUCE-4832. Accessed: 2019-07-05.

[39] minimum master nodes does not prevent split-brain if splits are intersecting. https:
//github.com/elastic/elasticsearch/issues/2488. Accessed: 2019-05-20.

[40] A network partition can cause in flight documents to be lost. https://github.com/
elastic/elasticsearch/issues/7572. Accessed: 2019-07-05.

[41] Nodemanagers die on startup if they can’t connect to the rm. https://issues.

apache.org/jira/browse/MAPREDUCE-3963. Accessed: 2019-07-05.

[42] Jepsen: A framework for distributed systems verification, with fault injection. https:
//github.com/jepsen-io/jepsen. Accessed: 2019-07-05.

[43] Voltdb in-memory database platform. https://www.voltdb.com/. Accessed: 2019-
07-05.

[44] Rabbitmq message broker. https://www.rabbitmq.com. Accessed: 2019-07-05.

43

https://github.com/elastic/elasticsearch/issues/6105
https://github.com/elastic/elasticsearch/issues/6105
https://www.robustperception.io/healthchecking-is-not-transitive
https://www.robustperception.io/healthchecking-is-not-transitive
https://github.com/elastic/elasticsearch/issues/9495
https://github.com/elastic/elasticsearch/issues/9495
https://issues.apache.org/jira/browse/MAPREDUCE-1800
https://issues.apache.org/jira/browse/MAPREDUCE-1800
https://jira.mongodb.org/browse/SERVER-9730
https://jira.mongodb.org/browse/SERVER-9730
https://jira.mongodb.org/browse/SERVER-27125
https://jira.mongodb.org/browse/SERVER-27125
https://github.com/elastic/elasticsearch/issues/6105
https://github.com/elastic/elasticsearch/issues/6105
https://issues.apache.org/jira/browse/MAPREDUCE-4832
https://issues.apache.org/jira/browse/MAPREDUCE-4832
https://github.com/elastic/elasticsearch/issues/2488
https://github.com/elastic/elasticsearch/issues/2488
https://github.com/elastic/elasticsearch/issues/7572
https://github.com/elastic/elasticsearch/issues/7572
https://issues.apache.org/jira/browse/MAPREDUCE-3963
https://issues.apache.org/jira/browse/MAPREDUCE-3963
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://www.voltdb.com/
https://www.rabbitmq.com


[45] Elasticsearch: Distributed search & analytics. https://www.elastic.co/products/
elasticsearch. Accessed: 2019-07-05.

[46] Partial network partitioning leads to cluster unavailabilitys. https://github.com/

elastic/elasticsearch/issues/43183. Accessed: 2019-07-05.

[47] Mongodb: The database for modern applications. https://www.mongodb.com/. Ac-
cessed: 2019-07-05.

[48] Faulty recovery caused by partial network partitions. https://github.com/elastic/
elasticsearch/pull/8720. Accessed: 2019-07-05.

[49] Deep Medhi and Karthik Ramasamy. Network routing: algorithms, protocols, and
architectures. Morgan Kaufmann, 2017.

[50] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks, vol-
ume 2. Prentice-Hall International New Jersey, 1992.

[51] If block report races with closing of file, replica is incorrectly marked corrupt. https:
//issues.apache.org/jira/browse/HDFS-2791. Accessed: 2019-07-05.

[52] Splitlogmanger async delete node hangs log splitting when zk connection is lost.
https://issues.apache.org/jira/browse/HBASE-5606. Accessed: 2019-07-05.

[53] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,
Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Em-
manuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and operation of
CloudLab. In Proceedings of the USENIX Annual Technical Conference (ATC), pages
1–14, July 2019.

[54] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154. ACM, 2010.

[55] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud com-
puting hardware reliability. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 193–204. ACM, 2010.

[56] Robert Birke, Ioana Giurgiu, Lydia Y Chen, Dorothea Wiesmann, and Ton Engbersen.
Failure analysis of virtual and physical machines: patterns, causes and characteristics.

44

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://github.com/elastic/elasticsearch/issues/43183
https://github.com/elastic/elasticsearch/issues/43183
https://www.mongodb.com/
https://github.com/elastic/elasticsearch/pull/8720
https://github.com/elastic/elasticsearch/pull/8720
https://issues.apache.org/jira/browse/HDFS-2791
https://issues.apache.org/jira/browse/HDFS-2791
https://issues.apache.org/jira/browse/HBASE-5606


In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 1–12. IEEE, 2014.

[57] Daniel Ford, François Labelle, Florentina Popovici, Murray Stokely, Van-Anh Truong,
Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in globally distributed
storage systems. 2010.

[58] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are disks
the dominant contributor for storage failures?: A comprehensive study of storage
subsystem failure characteristics. ACM Transactions on Storage (TOS), 4(3):7, 2008.

[59] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Jeffry Adityatama, Kurnia J Eliazar, Agung Laksono, Jeffrey F
Lukman, Vincentius Martin, et al. What bugs live in the cloud? a study of 3000+
issues in cloud systems. In Proceedings of the ACM Symposium on Cloud Computing,
pages 1–14. ACM, 2014.

[60] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin, and Tao Xie.
A characteristic study on failures of production distributed data-parallel programs.
In Proceedings of the 2013 International Conference on Software Engineering, pages
963–972. IEEE Press, 2013.

[61] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. Failure analysis of jobs in com-
pute clouds: A google cluster case study. In 2014 IEEE 25th International Symposium
on Software Reliability Engineering, pages 167–177. IEEE, 2014.

[62] Peter Garraghan, Paul Townend, and Jie Xu. An empirical failure-analysis of a large-
scale cloud computing environment. In 2014 IEEE 15th International Symposium on
High-Assurance Systems Engineering, pages 113–120. IEEE, 2014.

[63] Nosayba El-Sayed and Bianca Schroeder. Reading between the lines of failure logs:
Understanding how hpc systems fail. In 2013 43rd annual IEEE/IFIP international
conference on dependable systems and networks (DSN), pages 1–12. IEEE, 2013.

[64] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Morris Jette, and Ra-
mendra Sahoo. Bluegene/l failure analysis and prediction models. In International
Conference on Dependable Systems and Networks (DSN’06), pages 425–434. IEEE,
2006.

45



[65] Bianca Schroeder and Garth Gibson. A large-scale study of failures in high-
performance computing systems. IEEE transactions on Dependable and Secure Com-
puting, 7(4):337–350, 2009.

[66] Theophilus Benson, Sambit Sahu, Aditya Akella, and Anees Shaikh. A first look at
problems in the cloud. HotCloud, 10:15, 2010.

[67] Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Haibo Lin, Haoxiang Lin, and Tingt-
ing Qin. An empirical study on quality issues of production big data platform. In
Proceedings of the 37th International Conference on Software Engineering-Volume 2,
pages 17–26. IEEE Press, 2015.

[68] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D Sa-
tria, Jeffry Adityatama, and Kurnia J Eliazar. Why does the cloud stop computing?:
Lessons from hundreds of service outages. In Proceedings of the Seventh ACM Sym-
posium on Cloud Computing, pages 1–16. ACM, 2016.

[69] Ariel Rabkin and Randy Howard Katz. How hadoop clusters break. IEEE software,
30(4):88–94, 2012.

[70] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U Jain, and Michael Stumm. Simple testing can prevent most criti-
cal failures: An analysis of production failures in distributed data-intensive systems.
In 11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), pages 249–265, 2014.

[71] Nikhil Handigol, Mario Flajslik, Srini Seetharaman, Nick McKeown, and Ramesh
Johari. Aster* x: Load-balancing as a network primitive. In 9th GENI Engineering
Conference (Plenary), pages 1–2, 2010.

[72] Richard Wang, Dana Butnariu, Jennifer Rexford, et al. Openflow-based server load
balancing gone wild. Hot-ICE, 11:12–12, 2011.

[73] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Resonance: dy-
namic access control for enterprise networks. In Proceedings of the 1st ACM workshop
on Research on enterprise networking, pages 11–18. ACM, 2009.
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