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ABSTRACT Here we analyzed the innate fluorescence signature of the single micro-
bial cell, within both clonal and mixed populations of microorganisms. We found
that even very similarly shaped cells differ noticeably in their autofluorescence fea-
tures and that the innate fluorescence signatures change dynamically with growth
phases. We demonstrated that machine learning models can be trained with a data
set of single-cell innate fluorescence signatures to annotate cells according to their
phenotypes and physiological status, for example, distinguishing a wild-type Asper-
gillus nidulans cell from its nitrogen metabolism mutant counterpart and log-phase
cells from stationary-phase cells of Pseudomonas putida. We developed a minimally
invasive method (confocal reflection microscopy-assisted single-cell innate fluores-
cence [CRIF] analysis) to optically extract and catalog the innate cellular fluorescence
signatures of each of the individual live microbial cells in a three-dimensional space.
This technique represents a step forward from traditional techniques which analyze
the innate fluorescence signatures at the population level and necessitate a clonal
culture. Since the fluorescence signature is an innate property of a cell, our tech-
nique allows the prediction of the types or physiological status of intact and tag-free
single cells, within a cell population distributed in a three-dimensional space. Our
study presents a blueprint for a streamlined cell analysis where one can directly as-
sess the potential phenotype of each single cell in a heterogenous population by its
autofluorescence signature under a microscope, without cell tagging.

IMPORTANCE A cell’s innate fluorescence signature is an assemblage of fluores-
cence signals emitted by diverse biomolecules within a cell. It is known that the in-
nate fluoresce signature reflects various cellular properties and physiological statuses;
thus, they can serve as a rich source of information in cell characterization as well as
cell identification. However, conventional techniques focus on the analysis of the in-
nate fluorescence signatures at the population level but not at the single-cell level
and thus necessitate a clonal culture. In the present study, we developed a tech-
nique to analyze the innate fluorescence signature of a single microbial cell. Using this
novel method, we found that even very similarly shaped cells differ noticeably in their
autofluorescence features, and the innate fluorescence signature changes dynamically
with growth phases. We also demonstrated that the different cell types can be classified
accurately within a mixed population under a microscope at the resolution of a single
cell, depending solely on the innate fluorescence signature information. We suggest that
single-cell autofluoresce signature analysis is a promising tool to directly assess the taxo-
nomic or physiological heterogeneity within a microbial population, without cell tag-
ging.
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A cell’s innate fluorescence signature, an assemblage of autofluorescence signals
emitted by diverse biomolecules within the cell (1), is known to reflect various

cellular properties and physiological statuses. Previous studies have demonstrated that
analysis of fluorescence signatures, for example, when coupled with a principal-
component analysis (PCA), allows tag-free analysis of cell types and physiological status
within live and intact microbial colonies, bulk microbial culture suspensions (2, 3), active
sludges (4), mammalian tissues (5, 6), and mammalian cells (1, 7).

However, innate fluorescence signature analysis at the level of single microbial cells
has remained rare, with one notable exception (8), due mainly to the small cell size and
the fact that environmental microbial communities are often organized in a three-
dimensional (3D) space, for example, by the formation of a biofilm. Here we analyzed
single-cell innate fluorescence signatures of microbial cells under a microscope, within
both clonal and mixed populations of microorganisms. To this end, we developed a
minimally invasive method, which we call confocal reflection microscopy-assisted
single-cell innate fluorescence (CRIF) analysis, to optically extract and catalog the innate
cellular fluorescence signatures of each of the individual live cells in a three-
dimensional space. We combined reflection confocal microscopy (9, 10) and confocal
microspectroscopy techniques to achieve reliable extraction of the innate fluorescence
signatures from each of the individual cells. Using a range of model organisms, we
found that even very similarly shaped cells differ noticeably in their autofluorescence
features. Furthermore, we demonstrate that machine learning models can be trained
with a single-cell fluorescence signature data set to annotate cells according to their
type and physiological status.

RESULTS

Figure 1A shows an example data set acquired using our routine for the soil bacterial
strain Pseudomonas putida KT2440 (11). In each plane of a z-stack, a reflection confocal
image was acquired first, followed by six multichannel confocal microspectroscopy
images, in a sequence from longest to shortest excitation wavelength. The innate
fluorescence signatures of each of the individual cells (Fig. 1B) were reconstructed by
image processing that recognized the contours of each cell (Fig. 1C; see also Fig. S1 in
the supplemental material), creating a bundle of six fluorescence spectra (hyperspec-
trum) linked to the positional information for each cell. Any background fluorescence
(Fig. S2) was subtracted from the cell’s hyperspectrum. Figure 1D shows the part of the
image in which we assigned the hyperspectrum to one of the 221 cells in the field of
view (Fig. S3). The use of a confocal platform allows cellwise averaging to be performed
with either a two-dimensional (2D) (Fig. 1D and Fig. S3) or a 3D (Fig. S4) projection of
the z-stack data set.

The fluorescence signatures differed among 7 strains compared in this study. We
extracted innate fluorescence signatures from cell populations of bacterial, fungal, and
yeast strains. While minor within-population variability was observed for each popula-
tion (Fig. S5 and Movie S1), the population-averaged fluorescence signatures of the
populations differed noticeably (Fig. 2 shows the fluorescence signature averaged over
a population). To further resolve this interspecies variability, we performed PCA and
t-distributed stochastic neighbor embedding (t-SNE) analyses of taxonomically close
strain pairs. Distinct cluster formation upon t-SNE analysis and PCA (Fig. 3 and Fig. S6)
was observed between two soil bacterial species (Paenibacillus polymyxa ATCC 39564
and P. putida KT2440) as well as between wild-type (KT2440) and rifampin-resistant
derivative (KT2442) (12) strains of P. putida. Distinct cluster formations (Fig. S6) were
also observed between budding yeast (Saccharomyces cerevisiae YM4271) (13) and the
fission yeast Schizosaccharomyces pombe JY1 (14) as well as between the wild type and
a nitrogen regulator deletion mutant of the filamentous fungus Aspergillus nidulans
TN02A3 (15). These results indicate that the single-cell innate fluorescence signature
can vary considerably even among clonal populations. Our results also suggest that
even under the given same ambient conditions, different species or strains can gen-
erate considerably different innate fluorescence signatures.
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Machine learning models were trained by single-cell innate fluorescence signatures
to predict cell types. In most cases, for both the support vector machine (SVM) and the
convolutional neural network (CNN), the accuracy of two-class classification ap-
proached or exceeded 90% with a relatively small number (�100) of supervisor data
(Fig. 4A), corroborating the distinct clusters in the PCAs (Fig. S6). Furthermore, we
applied the trained models to predict cell types and annotate intact cells distributed in
a three-dimensional space, relying only on the fluorescence signature information.
Figure 4B shows the result of cell-by-cell classification superimposed on the recon-
structed confocal microscopy image of a mixed population of S. cerevisiae YM4271 and
S. pombe JY1. The innate fluorescence signature-based annotation matched the mor-
phological characteristics of the two species (S. pombe cells are larger and more
elongated than spherical S. cerevisiae cells) at an accuracy of 94.3% (standard deviation
[SD] � 5.1 [triplicate experiments]). Figure 4C shows an example of the predictive
annotation, where we applied the SVM model trained to �90% accuracy (Fig. 4A) in cell
type prediction, for a mixed population of P. polymyxa ATCC 39564 and P. putida
KT2440.

The single-cell innate fluorescence signature also reflected the physiological status
of cells, specifically the growth stages. The innate fluorescence signatures of P. poly-
myxa and P. putida changed over time (Fig. 5A), in parallel with the growth phase (Fig.
5B), while the morphology of the cells remained largely unchanged. Table 1 shows the
confusion matrix of the SVM model in the six-class classification among different
growth stages within each of the two soil bacteria. The SVM model consistently
predicted the correct growth stage with highest probability (with accuracy in the range
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FIG 1 (A) Reflection confocal microscopy (RCM) and confocal microspectroscopy images (labeled by their excitation wavelengths) of P. putida KT2440. Confocal
microspectroscopy images are represented as “true-color” images (i.e., the color in the image corresponds to the emission wavelength). Confocal reflection
microscopy images are represented as grayscale images that reflect the relative signal intensity. Histograms indicate relative fluorescence intensity spectra in
the range of 416 to 691 nm, for the pixel marked by a red cross in the microscopy images. Each bin of the histogram represents a spectral window with a width
of 8 nm. Cells appear darker than the background in the confocal reflection microscopy image due to the lower refraction index than for the coverslip. (B)
Reconstructed single-cell hyperspectrum presented as a surface plot and as a 2D grayscale image, with six rows for the six excitation wavelengths and a column
for each of the 32 bins of the emission spectrum. (C) Visual representation of cell contour recognition by the image analysis routine. A bright-red border
indicates the cell contour detected based on intensity gradients. (D) Visual representation of the link between each cell and its single-cell hyperspectrum. The
relative xy position (pixel counts from the top left corner in a 500- by 500-pixel image) of a cell center of mass and an identification number assigned to each
cell are shown beside each hyperspectrum. The images show the 2D projection of z-stack images. Bars, 10 �m.
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of 0.43 to 0.87) for both soil bacteria. Closer inspection revealed differences in the
temporal dynamics of cell physiology between the two soil bacteria. In P. putida, the
fluorescence signatures showed a biphasic change between stationary and log growth
phases, with stationary-phase fluorescence signatures being commonly characterized
by a strong long-wavelength emission peak, and the fluorescence signatures were
rather similar within each growth phase. In P. polymyxa, in contrast, the innate fluo-
rescence signatures constantly fluctuated throughout the culture period. These differ-
ential temporal dynamics were reflected in the classification result, where the SVM
model could accurately distinguish log-phase cells from stationary-phase cells for P.
putida but not P. polymyxa (Fig. 5C). Intriguingly, the SVM model trained by the data set
that includes all of the growth stages (6, 8, 10, 24, 30, and 52 h) classified the two
species at an accuracy of approximately 90%, regardless of the growth stage of the test
data (Fig. 5D). These results suggest that the machine learning models can be trained
to classify two populations of bacteria, even in the case where each population includes

P. putida KT2440 P. polymyxa ATCC39564

S. cerevisiae YM4271

A. nidulans TN02A3- areB
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FIG 2 Hyperspectra of bacterial, fungal, and yeast strains. Hyperspectra are presented as surface plots,
where x, y, and z axes represent excitation wavelengths, emission wavelengths, and averaged relative
fluorescence intensities (color scale), respectively. (A) P. putida KT2440, P. putida KT2442, and P. polymyxa
ATCC 39564; (B) the budding yeast S. cerevisiae YM4271 and the fission yeast S. pombe JY1; (C) wild-type
and nitrogen regulator mutant strains of the filamentous fungus A. nidulans TN02A3. Panels show the
hyperspectra averaged over each population of size n.
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cells of various physiological statuses. Taken together, these results indicate that
single-cell innate fluorescence is a transient signature and reflects dynamics of cellular
physiology that is unique to a cell type.

DISCUSSION

The fluorescence signature of a whole microbial colony or a bulk culture suspension,
the focus of traditional microbial autofluorescence research, is inherently an averaged
mixture of signals from a large number of cells as well as noncell signals of medium
components, secreted metabolites, and extracellular matrices. Our use of reflection
confocal microscopy, which provides an independent source of information to identify
cell contours, provides an important advance by allowing the selective extraction of
fluorescence signals from individual cells (see Fig. S1 in the supplemental material),
distributed in a three-dimensional space (Fig. S4).

Techniques to determine cell types or physiological status, such as DNA or cell
content extraction (16, 17), fluorescence in situ hybridization (FISH) (18), and the
introduction of fluorescent reporter genes into a genome, commonly require invasive
tagging or manipulation of the cells. In contrast, the fluorescence signatures that we
exploit are innate properties of the cells, and hence, our technique allows the predictive
annotation of cellular phenotype (Fig. 4) or physiological status (Fig. 5) of intact cells,
which is not constrained by the availability of genetic tools. The fact that this spatial
mapping can be achieved in a tag-free and noninvasive fashion implies that it can be
applied to the resolution of the temporal development of cell distribution and physi-
ological state, an ideal tool to analyze phenotypic heterogeneity within a cell popula-
tion. Another potential application would be streamlined screening, where one can
directly assess the potential phenotype of each candidate by their autofluorescence
signature without cell tagging, even prior to clonal culture.

We acknowledge that there are some limitations in this study. First, although
vitamins (e.g., flavin), coenzymes (e.g., NADH), and lipofuscin pigments are suggested
to be major sources of cellular autofluorescence (4), we have not analyzed which
intracellular molecules characterize the innate fluorescence signatures that distinguish
cell types. However, our results demonstrate the effectiveness of innate fluorescence
signature analysis as a tool for predicting cell types and physiological status, indepen-
dent of precise knowledge on how intracellular chemical compositions are mapped
onto innate fluorescence signatures. A combined analysis with single-cell metabolo-

FIG 3 Variance of two hyperspectrum matrix pairs of P. polymyxa (purple) (n � 491) and P. putida (yellow)
(n � 607) visualized using the t-distributed stochastic neighbor embedding (t-SNE) method.
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mics would help to resolve the chemical nature of the peaks found in the innate
fluorescence signatures. Second, while our results demonstrated that CRIF can reveal
intra- and interspecies variabilities in innate fluorescence signatures, we have not yet
systematically or exhaustively explored such variabilities (e.g., whether the difference
between genera is consistently greater than that between species), which is certainly an
attractive avenue. Nevertheless, we believe that the present study provides a techno-
logical breakthrough necessary for such exciting new explorations.

We recognize a few noteworthy trade-offs compared to more traditional methods.
First, in the current configuration, CRIF requires a confocal microscope with spectral
resolution, certainly a considerable investment compared to a simple fluorescence
microscope used for FISH and other fluorescence protein tagging techniques. Second,
for predictive annotation, the classification model requires innate fluorescence signa-
tures sampled under a range of conditions, to confer robustness against environmental
variables, although we have demonstrated that constructing such a robust classifica-
tion model is possible (Fig. 5D). This need for a robustly pretrained classification model,
stemming from the fact that an innate fluorescence signature reflects the physiological
state or “the instantaneous phenotype” of a cell (Fig. 5A), suggests that well-
characterized species/strains are suitable targets for the predictive annotation tech-
nique. Other applications of CRIF, on the other hand, would depend less on, and are not
necessarily constrained by, such prior knowledge. For example, analysis of the pheno-
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FIG 4 (A) Two-class classification accuracies of the SVM (top row) and the CNN (bottom row) models with various numbers of supervisor data. The y axes denote
classification accuracy between P. polymyxa ATCC 39564 and P. putida KT2440, P. putida KT2440 and P. putida KT2442, wild-type (WT) and nitrogen regulator
mutant strains of the filamentous fungus A. nidulans TN02A3, and the budding yeast S. cerevisiae YM4271 and the fission yeast S. pombe JY1. Data show average
accuracies of 100 models trained independently, with bars representing the standard deviations. (B) Superposition of virtual labels (blue, S. cerevisiae; red, S.
pombe) on a mixed population of S. cerevisiae and S. pombe JY1. The left black-and-white panel shows a maximum-intensity projection image calculated from
the z-stack of reflection confocal images, and small panels show typical morphologies of S. cerevisiae (SC) and S. pombe JY1 (SP). (C) Superimposition of virtual
labels (blue, P. polymyxa; red, P. putida) on a mixed population of P. polymyxa ATCC 39564 and P. putida KT2440. Note that a certain portion of the cell
population was not recognized by the image processing algorithm that detected the signal intensity gradient in a reflection confocal microscopy image. Virtual
labels are generated based on classification by the SVM model pretrained with 100 supervisor data for each species, which is generated with an isolated
(nonmixed) population. The image shows a 3D (B) or 2D (C) projection of z-stack confocal reflection microscopy images. Bars, 10 �m.
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typic heterogeneity within a clonal microbial population by dimensionality reduction
(Fig. 3 and Fig. S5 and S6) does not require a pretrained classification model.

Analysis of both cell morphology (19) and innate fluorescence signatures allows us
to infer cellular taxonomy (Fig. 4) and physiological state (Fig. 5), and both sources can
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of size n. (B) Time course of the optical density at 600 nm (O.D.600) for P. polymyxa ATCC 39564 (open circles) and P. putida KT2440 (filled circles). Growth data
are the averages of results from triplicate experiments. (C) Classification accuracy between the log and stationary phases of P. polymyxa ATCC 39564 (blue) and
P. putida KT2440 (red) cells by the SVM with various numbers of supervisor data. (D) Two-class classification accuracy for P. polymyxa ATCC 39564 and P. putida
KT2440 cells by the SVM with various numbers of supervisor data, with all growth stages included. Bars show the standard deviations.

TABLE 1 Confusion matrices of growth stage prediction by the SVM models

Model

No. of instances of indicated growth stagea

6 h 8 h 10 h 24 h 30 h 52 h

P. putida
Prediction

6 h 17 5 2 1 0 0
8 h 5 15 6 0 0 0
10 h 5 1 14 1 0 0
24 h 3 0 0 6 2 2
30 h 0 0 0 5 8 1
52 h 1 2 0 1 3 20

Accuracy 0.55 0.65 0.64 0.43 0.62 0.87

P. polymyxa
Prediction

6 h 23 2 3 0 3 3
8 h 2 14 3 0 2 0
10 h 2 2 62 2 4 3
24 h 1 0 2 9 1 0
30 h 2 0 8 1 10 2
52 h 1 1 2 1 1 8

Accuracy 0.74 0.74 0.78 0.69 0.48 0.50
aShading denotes correct identifications.
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be tapped in a minimally invasive fashion. In regard to this point, we suggest that the
innate fluorescence signature is, for characterization of a microorganism, as important
as its morphology. The technique to isolate, recognize, and track the innate fluores-
cence signatures of each of the individual cells in three-dimensional space developed
in this study will bring about a unique opportunity to probe into the dynamics of
heterogenous microbial populations, all in a minimally invasive and tag-free fashion.

MATERIALS AND METHODS
Strains and culture conditions. The bacterial and fungal strains (Pseudomonas, Paenibacillus,

Aspergillus, Saccharomyces, and Schizosaccharomyces) used in this study are listed in Table 2. For routine
culture, Pseudomonas and Paenibacillus cells were grown in liquid LB medium or on LB agar plates at
30°C. Aspergillus nidulans wild-type and mutant strains were cultured in supplemented minimal medium
at 28°C overnight in chambered cover glasses (20). Yeast strains were grown in yeast extract-peptone-
dextrose (YPD) medium (Sigma-Aldrich, St. Louis, MO, USA) or on YPD agar (Sigma) plates at 30°C. An
orbital shaker (600 rpm) was used for liquid cultures.

Experimental setup. A 1-mm-thick 0.8% (wt/vol) agarose slab placed on a glass slide was used to
hold cells for routine confocal scanning microscopy imaging, in order to maintain cells under wet
conditions. The agarose slab was placed in a well of a silicone gasket (1 mm thick), and a 1-ml aliquot of
the cell suspension was placed on the agarose slab and then gently covered by a glass coverslip. For
imaging, we used an upright confocal laser scanning microscope (LSM 880; Carl Zeiss, Oberkochen,
Germany) equipped with a 63�, 1.4-numerical-aperture (NA) plan apochromat objective, differential
grating, and 32 descanned spectral channels with a GaAsP photoelectron multiplier tube (PMT) array. For
reflection confocal microscopy (9, 10), cells were illuminated with a 514-nm laser, and the scattered light
was collected through a half-reflection mirror (NT 80/20) and a 1-Airy-unit (AU) pinhole. For multichannel
confocal microspectroscopy, cells were illuminated with one of six laser lines (405, 458, 488, 514, 543, and
633 nm), and the emission was collected through a dichroic mirror and a 1-AU pinhole. The voxel sizes
were 0.264 by 0.264 by 0.674 �m and 0.264 by 0.264 by 0.871 �m (x by y by z) for confocal reflection
microscopy and confocal microspectroscopy, respectively. MBSInVis405, MBS458, MBS488, MBS458/514,
MBS488/543, and MBS488/543/633 beam splitters (Carl Zeiss) were used for 405-, 458-, 488-, 514-, 543-,
and 633-nm excitation, respectively. The emission within the range of 416 to 691 nm was binned into 32
spectral channels, with each channel having a spectral width of 8 nm. The illumination intensity for each
excitation wavelength was measured with a laser power meter and adjusted to 50 �W under the 63�
objective. The pixel dwell times were 1.03 �s and 2.06 �s for confocal reflection microscopy and confocal
microspectroscopy, respectively.

Reconstruction of single-cell fluorescence signatures. A custom MATLAB (MathWorks, Natick, MA,
USA) routine was used to reconstruct a hyperspectrum, which has the illumination and the emission
wavelengths as axes, for each of the individual cells. The hyperspectrum, the visual representation of
innate fluorescence signatures, is linked to each cell’s three-dimensional positional information. Each cell
is defined using reflection confocal microscopy, which often excels in the definition of morphological
information compared to fluorescence confocal microscopy, particularly when fluorescent signals are
weak (see Fig. S1 in the supplemental material). For relatively small cells (e.g., bacterial cells) distributed
on a 2D plane, each cell region in the reflection confocal image was segmented and cataloged by
determining their outline in a maximum-intensity projection image calculated from the z-stack of the
reflection confocal images using a 2D intensity gradient method. For larger cells (e.g., yeast) or cell
populations distributed three dimensionally, the cell boundary surfaces were directory determined with
3D volume data. We then used each of the cataloged cell regions as a mask to calculate the signal
intensity averaged over the corresponding cell regions in each of the six multichannel confocal
microspectroscopy images, thereby obtaining six emission spectra for each cell. This operation thus
creates a bundle of six fluorescence spectra (hyperspectrum) linked to the positional information for each
cell. For machine learning purposes, a Laplacian filter function (MATLAB) was applied to the 6-by-32
hyperspectrum matrices. To account for any background fluorescence deriving from medium compo-
nents or the experimental setup (e.g., agarose and coverslip), the hyperspectra of the noncell regions

TABLE 2 Microbial strains used in this study

Species Strain Description Reference

Pseudomonas putida KT2440 Soil bacterium 11
KT2442 Rifampicin-resistant variant of KT2440 12

Paenibacillus polymyxa ATCC 39564 Obtained from the ATCC

Aspergillus nidulans TN02A3 Wild type 15
ΔareB Nitrogen regulator deletion mutant of TN02A3 15

Saccharomyces cerevisiae YM4271 Obtained from the ATCC 13

Schizosaccharomyces pombe JY1 Wild type 14
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were also generated and averaged over the area (2D) or space (3D), which were then subtracted from
the hyperspectrum of the cells. Figure S2 shows the typical background fluorescence in our experimental
setups.

Classification using machine learning models. We employed principal-component analysis (PCA)
and the t-distributed stochastic neighbor embedding (t-SNE) method (21), which has been widely used
to reduce dimensions of multidimensional data, to visualize the variance of hyperspectra within a cell
population. A support vector machine (SVM) model (22) and a convolutional neural network (CNN) model
(23) running in the Python language were used to classify the different types of cells. The SVM and CNN
models were constructed and trained using the scikit-learn package and the Chainer package (https://
chainer.org/), respectively. For the CNN model, we constructed and trained a four-layer CNN, consisting
of two convolutional layers and two linear layers. For both training and classification with the SVM, we
generated a 192-dimensional cellular fluorescence intensity vector from the six fluorescence spectra
(each made up of 32 spectral channels) linked to each cell. For the CNN, a 6-by-32 hyperspectrum matrix
was generated out of the six fluorescence spectra associated with each cell and used as the input to the
first convolutional layer. The classification models were trained using a varying number (in the range of
2 to 200) of fluorescence intensity vectors or hyperspectra randomly chosen from the population. The
CNN model was trained over 100 epochs, with each epoch consisting of 100 minibatch training cycles.
The classification accuracy was evaluated using 50 fluorescence intensity vectors randomly chosen from
the population, excluding those that were used for training.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM

.00608-19.
SUPPLEMENTAL FILE 1, PDF file, 1.2 MB.
SUPPLEMENTAL FILE 2, MOV file, 4 MB.
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