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ABSTRACT: Hydrogen boride (HB) or hydrogenated borophene sheets are recently realized
two-dimensional materials that are composed of only two light elements, boron and hydrogen.
However, their catalytic activity has not been experimentally analyzed. Herein, we report the
catalytic activity of HB sheets in ethanol reforming. HB sheets catalyze the conversion of ethanol
to ethylene and water above 493 K with high selectivity, independent of the contact time, and
with an apparent activation energy of 102.8 ± 5.5 kJ/mol. Hence, we identify that HB sheets act
as solid-acid catalysts.

■ INTRODUCTION

Two-dimensional (2D) materials have great potential for
application as catalysts because of their unique properties such
as large surface areas and novel electronic states.1,2 Among 2D
materials, boron-related materials have unique characteristics
different from other 2D materials in that they have poly-
morphisms,3−5 i.e., there are a wide variety of stable 2D phases
owing to the capability to form multicenter bonding
configurations of boron.6 Single monoatomic 2D boron
(borophene) layers have been fabricated on solid surfaces
with several different stable structures,7 which is consistent
with theoretical predictions regarding polymorphs of bor-
ophene.8−10

These polymorph characteristics of 2D boron sheets provide
an opportunity to optimize the catalytic performance by tuning
the bonding configurations of the 2D boron network. For
example, it has been recently reported that boron nanosheets
exfoliated from bulk boron exhibited efficient electrocatalytic
performance for NH3 formation from N2 in neutral media.11

Recent experimental and theoretical studies also showed that
α-phase molybdenum diboride (α-MoB2) comprising noble
metal-free borophene subunits exhibits superefficient electro-
catalytic properties for the hydrogen evolution reaction.12

What we expect here is that these observed catalytic
performances will be further improved by optimizing the
electronic structure of 2D boron sheets through the adjusting
of the 2D boron bonding-network configurations as well as
conventional doping and/or composite formation.
This catalyst design concept with an attractive polymorph

2D boron character can be extended to hydrogenated
borophene (referred to as borophane) sheets, since the
polymorph 2D phases of borophane have been theoretically
predicted.5 However, the catalytic performance of borophane

has not been experimentally analyzed, to the best of our
knowledge.
Recently, we revealed that a type of borophane sheet, the

hydrogen boride (HB) sheet, with an empirical formula of
H1B1, can be experimentally prepared by exfoliation and
complete ion-exchange between protons and magnesium
cations in magnesium diboride (MgB2), with an average
yield of 42.3% at room temperature.13 Our extensive analysis
revealed that the prepared HB sheets did not show any long-
range order but have a local structure of a hexagonal boron
network with bridge hydrogens, as shown in Figure 1a.13 A
recent analysis using soft X-ray absorption and emission
spectroscopy at the B K-shell also supports this view and shows
the semimetallicity of HB sheets.14 HB sheets release their
hydrogen content as H2 molecules in a wide temperature range
from 423 to 1473 K.13 The hydrogen in HB has a character of
protons (H+) rather than that of hydrides (H−), based on the
B 1s core-level states, density functional theory calculations,
and the Hammett acidity function (H0, acid strength); the H0

of HB sheets is below 1.5 and above 0.43.13 From this
viewpoint, we can regard HB sheets as proton-covered 2D
boron sheets. We can thus expect that HB sheets would exhibit
intriguing catalytic performance for proton-related chemical
reactions and would be used as theoretically predicted
hydrogen-storage materials15,16 and in batteries.17−19 In this
work, we therefore examined the catalytic activity of HB sheets
in the ethanol-reforming reaction to clarify their acid/base
catalytic property and performance.
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■ RESULTS AND DISCUSSION
Figure 1b shows the conversion of ethanol as a function of
temperature at various W/F conditions (contact time); W/F
(g·min/mmol) is the weight of the catalyst (g) divided by the
flow rate of C2H5OH (mmol/min). The conversion was
estimated from the total amount of hydrocarbons in the
product (see the details in the Supporting Information). In
every case, we heated the sample at 573 K under Ar flow for 1
h prior to the measurement. It is clear that HB sheets exhibit
distinct ethanol conversion, whereas MgB2 (starting material
for the synthesis of HB) and B2O3 (product obtained by
heating B(OH)3, which is a byproduct in HB sheet synthesis,
to 400 K or more) exhibit no ethanol conversion. The
conversion by the HB sheets increases with an increase in W/
F; it is 90% at 573 K and W/F = 27.2 g·min/mmol. The
conversion remains constant for a long period. As an example,
the conversion at 573 K and W/F = 7.3 g·min/mmol as a
function of the reaction time is shown by blue circles in Figure
2a. In this case, the total amount of hydrocarbons at 13.4 h is
3.2 mmol, which is approximately half of the total B atom
numbers of used HB sheets. We also estimated the conversion
from the ethanol consumption, as shown by the red triangles in
Figure 2a (see the details in the Supporting Information). The
conversion calculated from the hydrocarbon production and
that from the ethanol consumption are almost the same at 12 h
(approximately 40%), indicating that the product hydrocarbon
does not accumulate on the catalyst HB sheets during the
steady-state catalytic process. These results hence indicate that
the HB sheets catalytically convert ethanol. It is notable that
pretreatment heating at 573 K causes inevitable hydrogen
release from HB as H2.

13 The maximum amount of released
hydrogen at 573 K could be estimated as approximately 33−50
atom % of HB based on the thermal desorption spectroscopy
(TDS) results13 (see the details in the Supporting
Information). It is implying that the stoichiometry of the HB
sheets showing the catalytic activity was not H:B = 1:1 but
approximately H:B = 1:2.5 ± 0.5 (if they were forming a
uniform structure).
We detected the catalytically converted products using gas

chromatography; they were predominantly ethylene and water,
together with other products such as methane, ethane, and a

trace amount of acetaldehyde, as shown in Figure 2b. The
selectivity of ethylene was relatively low at the early stage, i.e.,
0−4 h reaction time; this could be ascribed to the presence of
surplus hydrogen in HB compared with the amount of
hydrogen at the steady-state in HB at 573 K (details in the
Supporting Information). We observed the same character-
istics at all of the measured temperatures and W/F conditions,
as shown in Figure 3a,b; i.e., C2H4 was always the main

product, and the selectivity for the obtained total hydrocarbon
was almost the same. These results indicate that the major
catalytic reaction of ethanol reforming by the HB sheets is the
dehydration reaction: C2H5OH → C2H4 + H2O. It is known
that if a catalyst promotes the dehydration reaction of ethanol,
it is a solid-acid; however, if the dehydrogenation reaction
occurs, producing an acetaldehyde, the catalyst is a base
catalyst. The HB sheets are therefore solid-acid catalysts, which

Figure 1. (a) Photograph of HB sheets in powder form and schematic
of the proposed local structure.13 (b) Conversion of ethanol vs
temperature. The results for HB, B2O3, and MgB2 are plotted for
various W/F (g·min/mmol) conditions (contact time, weight of the
catalyst divided by the flow rate of C2H5OH).

Figure 2. (a) Conversion of ethanol on HB sheets as a function of
reaction time at 573 K and W/F = 7.3 g·min/mmol, estimated from
hydrocarbon production (blue circles) and ethanol consumption (red
triangles). (b) Selectivity vs reaction time.

Figure 3. (a) Selectivity of ethanol reforming by HB as a function of
temperature at W/F = 6.7 g·min/mmol. (b) Selectivity of ethanol
reforming by HB at 573 K and W/F = 6.7, 13.6, and 27.2 g·min/
mmol.
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is consistent with the H0 of the HB sheets (below 1.5 and
above 0.43)13 in terms of the acidic character.
Figure 4 shows the Arrhenius plot of the ethanol-reforming

reaction rate k, which was calculated by assuming a first-order

reaction, as k = (C2H5OH conversion [%])/100 × (C2H5OH
flux [mol/s])/(HB amount [mol]), for the results under
various W/F conditions with the HB sheets. As the obtained
linear lines are almost the same and they are independent of
W/F, the reaction can be (at least apparently) considered a
first-order reaction. To determine the exact reaction order and
mechanism, further kinetic analysis is required. From the slope
and the section, the apparent activation energy Ea and pre-
exponential factor A were estimated to be 102.8 ± 5.5 kJ/mol
and 3.5 × 104 s−1, respectively. The derived Ea is comparable to
the reported activation energies for the catalytic dehydration of
ethanol over Al2O3 (53−155 kJ/mol),20,21 the Lewis acidic Zr-
KIT-6 catalyst (79 kJ/mol),22 silica−alumina (125.5 kJ/
mol),23 and microporous Fe-ZSM-5 (137.7−271.1 kJ/mol).24

The formation rate of ethylene on our HB catalyst at 573 K
and W/F = 7.3 g·min/mmol was 2.4 ± 0.1 mmol/g·h (Figure
2). Although this is not the formation rate at the optimal
catalytic condition, here, we compare it with those of the other
reported catalysts. Chen and co-workers reported that the
formation rate of ethylene from ethanol using the commercial
SynDol (Al2O3−MgO/SiO2) catalyst was 7.8 mmol/g·h at 591
K, with a weight hourly space velocity (WHSV) of 0.23 h−1 in
a fixed-bed reactor (this value is calculated using the reported
yield of the ethylene, which is 0.22 g/gcat·h).25 They also
reported a higher formation rate of 535 mmol/g·h on Ti/γ-
Al2O3 at 633 K and WHSV of 26 h−1 using the microreactor
(calculated using a value of 15 g/gcat·h).25 The formation rate
of HB sheets is, thus, lower than that of the state-of-the-art
catalysts but is in the same order as that of the commercial
SynDol catalyst.
Finally, we herein discuss the possible reaction mechanism

and active sites as well as the acid property of the HB sheets. In
the case of ethanol reforming on a zeolite catalyst,26−32 diethyl
ether (C2H5OC2H5) is formed as a result of a two-molecule
reaction. Diethyl ether then converts to ethylene at strong
Brønsted acid sites. The number and the strength of strong
Brønsted acid sites in the catalyst are thus reported to
determine the catalytic activity for ethylene formation. Since
HB sheets show weaker H0 (1.5 ≥ H0 ≥ 0.43)13 compared
with that of zeolites (e.g., −3.0 ≥ H0 ≥ −8.2 of H-Zeolite),33

we can expect the formation of diethyl ether rather than
ethylene on HB sheets, based on the trend of zeolite. However,
we observed ethylene instead of diethyl ether on the HB sheets
(Figures 2 and 3). Thus, the reaction is considered to proceed
as a single molecule reaction via the formation of an ethoxy

(C2H5O−) species rather than the two-molecule reaction via
the formation of diethyl ether. Indeed, the derived apparent
activation energy (102.8 ± 5.5 kJ/mol) from Figure 4 is similar
to that for the decomposition of the ethoxy intermediate
generated from ethanol on a zeolite (122 ± 3 kJ/mol).34 The
ethoxy species can thus be formed prior to ethylene on HB;
this will be investigated using infrared spectroscopy in our
future work. Concerning the active site, the bridge-type
hydrogen in the HB sheets and/or terminal-type hydrogen at
the edge of the HB sheets can be expected to act as the
Brønsted acid sites. However, as described above, the
stoichiometry of the HB sheets used in this work for the
catalytic activity measurements is not H:B = 1:1 due to the
inevitable hydrogen release as H2 at the pretreatment heating
of 573 K (release as much as 33−50% of hydrogen in HB).
Thus, we cannot simply assign the hydrogen atoms of the
outermost surface (bridge- and/or edge-type of hydrogens) of
HB (Figure 1a) as the active sites. There is a possibility that
the boron atom that does not bond with hydrogen acts as the
Lewis acid site if a hydrogen vacancy is created locally and the
boron atom adopts a simple sp2 bonding configuration with
surrounding boron atoms (Figure 1a) without any electron in
its pz orbital. On the other hand, if the charges in the HB
sheets are delocalized well to supply electrons to the pz orbital
of a bare sp2-bonded boron atom (at hydrogen vacancy), the
boron atom may act as a Brønsted base, similar to the lattice
oxygen in zeolite, and promote the dehydrogenation of ethoxy
to form ethylene. According to our catalytic activity measure-
ments for the HB sheets without pretreatment heating (Figure
S4), the selectivity is different from that shown in Figure 3.
This difference in selectivity can be attributed to the difference
in the hydrogen amount in HB, as in the case of the origin of
the induction period shown in Figure 2b (see the details in the
Supporting Information). We can hence at least classify that
the HB and heated HB (hydrogen-deficient-HB) have different
catalytic properties (i.e., different acid sites). However, the
active sites cannot be solely determined by our current
experimental results. At least it should be clarified whether the
hydrogen-deficient HB consists of a uniform stoichiometric
structure or defective structure. Further investigation is thus
required to determine the exact active sites of the HB solid-
acid catalyst, e.g., the careful structure characterization, infrared
spectroscopy analysis with pyridine, NH3, and CO2 adsorption,
and H0 measurements with quantitative density, as a function
of the pretreatment heating temperature (i.e., hydrogen
amount in HB).

■ CONCLUSIONS

We found that hydrogen boride or hydrogenated borophene
sheets catalyze the conversion of ethanol to ethylene and water
above 493 K, with high selectivity, independent of the contact
time, and an apparent activation energy of 102.8 ± 5.5 kJ/mol.
We hence consider hydrogenated borophene sheets to be
novel, nonmetal, and two-dimensional solid-acid catalysts that
have great potential for application as hydrogen-storage
materials and in batteries.

■ EXPERIMENTAL SECTION

Materials. HB sheets were prepared using a previously
reported ion-exchange method.13 Specifically, MgB2 powder
(1.0 g, 99%, Rare Metallic Co., Ltd., Tokyo, Japan) in
acetonitrile (300 mL, 99.5%, Wako Pure Chemical Industries

Figure 4. Arrhenius plot of the ethanol-reforming reaction rate (k) in
the presence of HB sheets for W/F = 27.2, 13.6, and 6.7 g·min/mmol.
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Ltd., Osaka, Japan) was mixed with a solution of an ion-
exchange resin (60 mL, Amberlite IR120B hydrogen form,
Organo Corp., Tokyo, Japan) and acetonitrile (200 mL) in a
Schlenk flask under a nitrogen atmosphere, where water
inclusion is sensitive to the product35 and thus careful removal
of water was done beforehand. This mixture was stirred using a
magnetic stirrer at 400 rpm for 2 days at room temperature.
The supernatant was then kept for 1 day at 255 K to physically
separate the byproduct B(OH)3. Dried HB sheets were
prepared by heating the resulting liquid at 343 K while
pumping with a liquid nitrogen trap. For all of the syntheses,
we carefully confirmed the product by X-ray photoelectron
spectroscopy to confirm the absence of Mg and the presence of
negatively charged B without oxidized B as reported
previously.13 Moreover, we recently confirmed using atomic
force microscopy (AFM) that our HB sheets mostly consist of
a few to several tens of layers. The details of AFM with
statistical analysis will be published in our future work.
Catalytic Activity Measurements. To determine the

catalytic activity, gaseous ethanol was introduced into the HB
sheets using an argon carrier gas under atmospheric pressure in
a homemade fixed-bed flow reactor. The product gas was then
analyzed using a thermal conductivity detector in a gas
chromatograph (GC-8A, Shimadzu, Kyoto, Japan) equipped
with Molecular Sieve 5A and Porapak Q at the downstream
end of the reactor. The catalytic conversion was estimated
from the total amount of hydrocarbon production using the
following relation

= [

]

[ × ] ×

ethanol conversion (%) (number of total carbon in 

detected hydrocarbon molecules)(mol/min)

/ introduced ethanol molecules 2 (mol/min) 100

As shown in Figure 2a, the conversion was also estimated from
ethanol consumption as follows

= [

− ]

[ ] ×

ethanol conversion (%) (introduced ethanol molecules

detected ethanol molecules) (mol/min)

/ introduced ethanol molecules (mol/min) 100

The selectivity was estimated using the following relation

= ×

selectivity of specific product (%)
total amount of specific product (mol)

total amount of products (mol)
100

The catalytic activity was determined under various W/F
conditions (g·min/mmol), which is the weight of the catalyst
(g) divided by the flow rate of C2H5OH (mmol/min); W/F
was controlled by adjusting the flow rate of C2H5OH and the
weight of the sample. The W/F conditions used in this work
are listed in Table S1.
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