
Computer Science • Vol. 5 • 2003

Bogdan St pie *

SOFTW A RE D EVELOPM EN T
COST ESTIM ATION M ETH ODS
AND RESEA RCH TREN DS
Early estirnation of project size and completion time is essential for successful project plan-
ning and tracking. Multiple methods have been proposed to estimate software size and cost
parameters. Suitability of the estirnation methods depends on many factors like software
application domain, product complexity, availability of historical data, team expertise etc.
Most common and widely used estirnation technicjues are described and analyzed. Current
research trends in software estirnation cost are also presented.

Keywords: software project effort, size estirnation, software cost

M E T O D Y ESTYM ACJI
K O S ZTÓ W PRODUKCJI O PR O G R AM O W AN IA
Wczesna estymacja rozmiaru i czasu zako czenia projektu jest kluczowa dla efektywnego
planowania i ledzenia post pów pracy. W celu rozwi zania problemu estymacji rozmiaru
i kosztów produkcji oprogramowania opracowano wiele metod. U yteczno ró nych metod
estymacji zale na jest od wielu czynników, takich jak obszar zastosowania oprogramowania,
z o ono produktu, dost pno danych historycznych, do wiadczenie zespo u itd. W ni
niejszym artykule zosta y przedstawione i przeanalizowane najcz ciej stosowane techniki
estymacji, jak równie najnowsze kierunki bada .

Słowa kluczowe: koszt produkcji oprogramowania, estymacja rozmiaru

1. Int roduct ion

The emphasis on software cost estirnation has been increasing gradually over last three
decades. Today, it is especially strong and visible si ce it provides the link between
the genera concepts of economic analysis and the world of software engineering. The
software cost estirnation techni ue is also an essential part of the foundation for the
good software management.

There are several approaches used by models to estimate software development
cost (effort to produce the software). Some are based on analogy, some on theory,
and others on statistics, but all of them consider size of the software product as the

* Post-graduate student at the Faculty of Electrical Engineering, Automatics, Computer Scien
ce and Electronics, AGH University of Science and Technology, Cracow, Poland, Bog
dan.Stepien@motorola.com

67

mailto:Bogdan.Stepien@motorola.com
mailto:Bogdan.Stepien@motorola.com

68 Bogdan St pie

most influential factor in predicting effort. Other factors that also affect effort are for
example product complexity, the experience of the development team, development
tool support, project coordination complexity, maturity of the technology in which
the software product is to be produced.

The aim of this article is to provide an overview of some software size and cost
estimation techni ues and to define their strengths and weaknesses. At the end of
the article, some of the areas of current and futur research in software estimation
techni ues will also be described.

2. Sof tware Size Est imat ion Techniques

2.1. Lines of Codę Count ing

Although the first dedicated books on software metrics were not published until mid-
1970’s, the history of active software metrics dates back to the mid-1960’s when
the Lines of Cod (LOC) metric was used as the basis for measuring programming
productivity and effort.

The LOC metric was, and still is, used routinely as the basis for measuring pro-
grammer productivity (LOC per programmer month) and as such LOC was assumed
to be a key driver for the effort and cost of developing software. Indeed, the early
resource prediction models (such as [17] or [4]) used LOC or related metrics as the
key size variable in predictive (regression-based) models.

Table 1
Strengths and weaknesses of the LOC method

Strengths Weaknesses
Simple metric and directly related to the
size

Indication of construction methods used

Suitable for estimation using the Wideband
Delphi process

LOC cannot be estimated reliably in the
early phases of the development cycle
unless data are available from similar, com-
pleted projects
Counting must always follow the same ru-
les defining the LOC measure and must be
independent of factors like coding style

Lines of Cod (LOC) counting is the simplest way to estimate the size of a softwa
re product. It provides simple and well understood metric. Usually LOC estimation
is performed by software developers experienced in similar projects and the method
is suitable for the Wideband Delphi process (this process will be described in section
3.2.1). The experts analyze the work packages and based on their own experience,
they derive the LOC estimate needed to fulfill the re uirements of each work package.

Defining a lin of cod is difficult (see Tab. 1) due to conceptual differences invo-
lved in accounting for executable statements and data declarations in different pro-

Software Development Cost Estimation Methods and Research Trends 69

gramming languages. The goal is to measure the amount of intellectual work put into
program development, but difiiculties arise when trying to define consistent measures
across different languages. To minimize these problems, the Software Engineering In-
stitute (SEI) definition checklist for a logical source statement is used in defining the
lin of cod measure. Pragmatically, there seems to be no real reason to choose one
definition over another, so long as the same definition is used consistently.

2.2. Funct ion Point Analysis

The concept of function points had its roots in the ’70s with companies like IBM.
Albrecht [1, 2] introduced the concept of function points as a software size measure
while considering the mor genera problem of measuring application development
productivity. His objective was to develop a software size measure that was indepen
dent of the implementation technology. To measure productivity, a measure of work
product (or output) has to be defined. For this Albrecht chose the function ualue to
be deliuered to the user.

Function points are useful estimators si ce they are based on information that
is available early in the project life cycle. To calculate the function value delivered to
the user, the number of inputs, outputs, in uires, and files (including interfaces to the
other programs) from the user perspective is counted, weighted, and summed. The
user function types should be identified, as defined below:

• Ex t e r n a l In p u t (In p u t s) - Count each uni ue user data or user control input
type that (i) enters the external boundary of the software system being measured
and (ii) adds or changes data in a logical internal file.

• Ex t e r n a l O u t p u t (O u t p u t s) - Count each uni ue user data or control output
type that leaves the external boundary of the software system being measured.

• In t e r n a l Lo g ica l Fi l e (Fi l es) - Count each major logical group of user data or
control information in the software system as a logical internal file type. Include
each logical file (e.g., each logical group of data) that is generated, used, or
maintained by the software system.

• Ex t e r n a l In t er f ace Fi l e s (In t er f aces) - Files passed or shared between so
ftware systems should be counted as external interface file types within each
system.

• Ex t e r n a l I n ąu i r y (Q u er ies) Count each uni ue input-output combination,
where an input causes and generates an immediate output, as an external in uiry
type.

Each instance of these function types is then classified by complexity level. The
complexity levels determine a set of weights, which are applied to their corresponding
function counts to determine the Unadjusted Function Points uantity (see Fig. 1).
This is the Function Point sizing metric used as input by COCOMO II estimation
model (described in section 3.4.1).

70 Bogdan St pie

Step 1. Determine function counts by type. The unadjusted function counts
should be counted by a lead technical person based on information
in the software re uirements and de-sign documents. The number of
each of the five user function types should be counted (Internal Logical
File (ILF), External Interface File (EIF), External Input (El), External
Output (EO), and External In uiry (EQ)).

Step 2. Determine complexity-level function counts. Classify each function co-
unt into Low, Average and High complexity levels depending on the
number of data element types contained and the number of file types
referenced. Use the following scheme:

For ILF and EIF
Record Data Elements

Elements 1-19 20-50 51+ ~
1 Iow Iow avg

2-5 Iow avg high
6+ avg high high

For EO and EQ

Record Data Elements
Elements 1-5 6-19 20+

0-1 Iow Iow avg
2-3 Iow avg high
4+ avg high high

For E l
Record Data Elements

Elements 1-4 5-15 16+ ~
0-1 Iow Iow avg
2-3 Iow avg high
4+ avg high high

Step 3. Apply complexity weights. Weight the number in each celi using the
following scheme. The weights reflect the relative value of the function
to the user.

 om plexity-W eight
Function Type Low Average High

Internal Logical Files 7 10 15
External Interfaces Files 5 7 10

External Inputs 3 4 6
External Outputs 4 5 7
External In uiries 3 4 6

Step 4. Compute Unadjusted Function Points. Add all the weighted functions
counts to get one number, the Unadjusted Function Points.

Fig. 1 . Function Point Count Procedur

Software Development Cost Estimation Methods and Research Trends 71

The standard Function Point procedur involves assessing the degree of influence
(DI) of fourteen application characteristics on the software project determined accor-
ding to a rating scal from 0.0 to 0.05 for each characteristic. The sum of 14 ratings
is added to a base level of 0.65 to produce a genera characteristics adjustment factor
that ranges from 0.65 to 1.35. Each of these fourteen characteristics, such as distribu-
ted functions, performance, and reusability, thus has a maximum of 5% contribution
to estimated effort.

Table 2
Strengths and weaknesses of the function points

Strengths Weaknesses
Not dependent on the construction method Not a technology independent measure

of size
Can be used early in the project life cycle The calculation of function points is com-

plex and tends to take a black box view
of the system

A normalized size Suitability varies for different classes
of software Systems

Albrechfs original work [1] has grown and mutated over the years - function-
point counting has now its own standards group, the International Function Point
Users Group. IFPUG has classes on function-point counting and reference manuals
with all of the rules. A function-point counting spreadsheet and other resources are
available from the [13]. Strengths and weaknesses of the method are summarized in
Table 2.

2.3. Use-case Points

Use-case Points are counted from the use-case analysis of a system. They are counted
during the early phases of an object-oriented project that captures its scope with use
cases. Each use-case is scaled as easy, medium, or hard to produce a point count.
The use-case points can be also adjusted for the projecfs technical and personnel
attributes, and then directly converted to hours in order to obtain a rough idea of a
nomina project Schedule.

The Use-case Points method was developed by Gustav Karner of Objectory (now
a part of Rational Software). In 1993, he did research on deriving estimates of a pro-
ject’s re uired Staff hours from the use cases. His work is an extension and modification
of Albrechfs work on function points [2] and his method should be used in conjunction
with other estimating methods.

Actors are defined as anything external to the system that interfaces with it.
Examples include people, other software, hardware devices, data Stores, and networks.
Use cases describe the things actors want the system to do, such as uerying the status
of an existing order.

72 Bogdan St pie

The Use-case Point counting procedur starts with determining for each actor,
whether it’s simple, average, or complex. You count how many of each kind you have
and multiply each by its weighing factor. After adding these products we get the total
unadjusted actor weights (UAW). Then, for each use case, you determine whether it’s
simple (three or fewer transactions), average (four to seven transactions), or complex
(eight or mor transactions) by counting its transactions, including secondary scena-
rios. Each use-case type is multiplied by the weighting factor and after adding these
products we get the unadjusted use-case weights (UUCW). The sum of the UAW and
the UUCW gives the unadjusted use-case points (UUCP): UAW + UUCW = UUCP

The Use-case Points method employs a technical and environmental factors mul-
tiplier that attempts to uantify areas such as ease of use and programmer motivation.
Those factors, when multiplied by the unadjusted use-case points, produce the adju-
sted use-case points, an estimate of the size of the software.

To estimate effort, Karner proposed a factor of 20 Staff hours per use-case point,
although many other factors can affect such a rat , including time pressure, uni ueness
of the architectural solution and programming language.

2.4. Object Points

Object Point estimation is a relatively new software sizing approach, but it is well-
matched to the application composition phase of software product development. It
is also a good match to associated prototyping efforts, based on the use of a rapid-
composition Integrated Computer Aided Software Environment (ICASE) providing
graphic user interface builders, software development tools, and large, composable
infrastructure and applications components. In these areas, it has compared well to
Function Point estimation on a nontrivial (but still limited) set of applications [3].
The Object Points are used for sizing in Applications Composition estimation model
of the COCOMO II.

Figur 2 presents the baseline COCOMO II Object Point procedur for estimating
the effort involved in Applications Composition and prototyping projects [5]. The
productivity rates in the figur are based on an analysis of the year-1 and year-2
project data in [3].

Definitions of terms in Figur 2 are as follows:

• NOP: New Object Points (Object Point count adjusted for reuse);

• srvr: number of server (mainframe or equivalent) data tables used in conjunction
with the SCREEN or REPORT;

• clnt: number of client (personal Workstation) data tables used in conjunction

with the SCREEN or REPORT;

• %reuse: the percentage of screens, reports, and 3GL modules reused from pre-
vious applications, pro-rated by degree of reuse.

Software Development Cost Estimation Methods and Research Trends 73

Step 1. Assess Object-Counts: estimate the number of screens, reports, and
3GL components that will comprise this app. Assume the standard
definitions of these objects in your ICASE environment.

Step 2. Classify each object instance into simple, medium and difficult com-
plexity levels depending on values of characteristic dimensions. Use the
following scheme:

For Screens
XT , . # and source of data tables
Numberof ------------------------------- ----------T b u R s ------------------- TbtaF8+------ --

lews eon ame (<2 srvr <3 clnt) (2/3 srvr 3-5 clnt) (>3 srvr >5 clnt)
< 3 simple simple medium
3-7 simple medium difficult
> 8 medium difficult difficult

For Reports

. T , , # and source of data tables
Numberof ---------Totar < 4 ~" " ----------Tbtid^S------------------- l5taT8+---------

lews eon ame (<2 srvr <3 clnt) (2/3 srvr 3-5 clnt) (>3 srvr >5 clnt)

0 or 1 simple simple medium
2 or 3 simple medium difficult

4+ medium difficult difficult

Step 3. Weigh the number in each celi using the following scheme. The weights
reflect the relative effort re uired to implement an instance of that
complexity level:

O bject Type - ,
Simple Medium Difficult

Screen 1 2 3
Reports 2 5 8

3GL Compoment 10

Step 4. Determine Object-Points: add all the weighted object instances to get
one number, the Object-Point count.

Step 5. Estimate percentage of reuse you expect to be achieved in this project.
Compute the New Object Points to be developed, NO P = (Object-

Points) (100-% reuse)/ 100.

Step 6. Determine a productivity rat , PRO D = NOP / person-month, from
the following scheme:

Developers’ experience Verv T , . . . , Very
j t /—i a DT-. , Low Nomina High ,

and IC A S E maturity Low High

PROD 4 7 13 | 25 | 50

Step 7. Compute the estimated person-months: P M = N O P / PROD.

Fig. 2. Baseline Object Point Estimation Procedur in COCOMO II

74 Bogdan St pie

3. Sof tware Ef fort Est imat ion Techniques

3.1. Theoret ical Models

A theory-based effort estimation model was introduced by [17]. It is based on the
probability distribution called the Rayleigh curve. This curve presented on Figur 3
expresses manpower distribution on a project over time. The curve is modelled by the
differential e uation

^ = 2 Kate~at* (1)
d t K '

where ^ is the staff build-up rat , t is the elapsed time from the start of design to
product replacement, K is the area under the curve and represents total life-cycle
effort (including maintenance), and a is a constant that determines the shape of the
curve.

Fig. 3. Rayleigh Model

Putnam used productivity to link the basie Rayleigh manpower distribution mo
del to software size and technology factors. Productivity has been defined as the size
of the software product, S, divided by the development effort, E:

» = § (2)

To find E in the Rayleigh model, Putnam mad the assumption that the peak stafhng
level (top of the curve) corresponded to the development time. With this assumption,
the area under the curve represented development effort, E. E was found to be ap-
proximately 40% of K , the total life-cycle effort which is the total area under the
curve.

Putnam observed from project data that the mor productive projects had an
initial slower staff buildup and the less productive projects had an initial faster staff
buildup. He associated the initial staff buildup of a project with the difficulty of the

Software Development Cost Estimation Methods and Research Trends 75

project, D. The difficulty is represented on the Rayleigh curve as the slope of the
curve at time t = 0. By taking the derivative of Rayleigh e uation and setting t = 0,
difficulty is defined as:

D = $ (3)
zd

Putnam links the Rayleigh manpower distribution and software development effort.
He assumes that there must be a relation between difficulty, D , and productivity, P
and he finds this relationship to be:

P = aD ~ i (4)

By combining the e uations (2), (3), (4) and the assumption that E = OAK, we get
the cube root of total life-cycle effort K:

S
OAK - (i) '* (5)

S = OAaKh*

K * =
S

OAatj

(6)

(7)

E uation (8) introduces a technology factor, C, which is the product of 0.4 and
a. The technology factor accounts for differences among projects such as hardware
constraints, personnel experience, and prograraming emdronment. Putnam suggests
using 20 different values for C ranging from 610 to 57,314.

K = SM
C3Ą (8)

Development effort, E, is found by substituting E — OAK:

0)

Some Rayleigh curve assumptions do not always ho d in practice (e.g. fiat stafhng cu-
rves for incremental development; less than t4 effort savings for long Schedule stretch-
outs). Putnam has developed several model adjustments for these situations. It can
be seen from E uation (9) that the effort E increases as the third power of the size
S if the schedule remains constant. For a fixed program size, the effort E increases
with the inverse of the fourth power of td. The optimum development schedule can
be calculated from E uation (10) and it agrees with most statistical models used in
practice today.

td = 2.4E3 (10)
Strengths and weaknesses of the theoretical models in genera are summarized in
Table 3.

76

Table 3
Strengths and weaknesses of the theoretical models

Bogdan St pie

3.2. Expert ise-Based Techniques

Expertise-based techni ues are useful in the absence of uantified, empirical data
and are based on prior experience of experts in the field (Tab. 4). Based on their
knowledge and understanding of the proposed project, experts arrive at an estimate of
the cost/schedule/quality of the software under development. The obvious drawback
to this method is that an estimate is only as good as the expert’s opinion.

Table 4
Strengths and weaknesses of the expertise-based techni ues

Examples of Expertise-based techni ues include the Delphi techni ue, Rule-
Based Systems and the Work Breakdown Structure each of which are described in
the following subsections.

3.2.1. The Delphi Approach

The Delphi approach was originated at The Rand Corporation in 1948 originally
as a way of making predictions about futur events - thus its name, recalling the
divinations of the ancient Greek oracie. Since then, it has been used as an effective
way of getting group consensus.

The aim of the Delphi method is to combine expert opinion and prevent bias due
to position, status or dominant personalities. The method involves a panel of experts
who each respond separately to a specific en uiry via a series of uestionnaires. Their
responses are anonymous in the sense that non of the others know who is included
in the group or where each response originated from. As initial responses are mad
separately, new ideas may be introduced by individuals which other members of the
panel have not previously considered. Responses obtained from the panel are collated

Software Development Cost Estimation Methods and Research Trends 77

by a central coordinator and sent back to the respondents in a synthesized form. Then
the process is repeated. The aim of each iteration is to gradually produce a consensus
amongst the group, or alternatively for responses to become stable, si ce there is no
guarantee that a consensus will result and a rang of opinions or responses may be
produced instead of a single answer.

Far uhar performed an experiment at Rand Corporation in 1970 where he gave
4 groups the same software specification and asked the groups to estimate the ef-
fort needed to develop the product [9]. Two groups used the Delphi techni ue and
two groups had meetings. The groups that had meetings came up with an extremely
accurate estimate as compared to the groups that used the Delphi techni ue. To im-
prove the estimate consensus obtained by the Delphi techni ue, Boehm and Far uhar
formulated an alternative method, the wideband Delphi techni ue [4].

The wideband Delphi approach can be described with following steps:

1. Coordinator provides Delphi instrument to each of the participants to review.

2. Coordinator conducts a group meeting to discuss related issues.

3. Participants complete the Delphi forms anonymously and return it to the Coor
dinator.

4. Coordinator feeds back results of participants’ responses.

5. Coordinator conducts another group meeting to discuss variances in the partici
pants’ responses to achieve a possible consensus.

6. Coordinator asks participants for re-estimates, again anonymously, and steps 4-6
are repeated for as many times as appropriate.

3.2.2. Rule-Based Systems

This techni ue has been adopted from the Artificial Intelligence domain where a
known fact fires up rules which in turn may assert new facts. An expert system is
built based on IF-THEN rules for representing the specialist knowledge gained from
a human expert (such as an experienced project manager). In this case it is the
knowledge about how to estimate a project cost. The expert system applies that
knowledge automatically to make decisions.

If the knowledge area is specific enough and well isolated, a reliable cost models
based on historical data can be constructed. As a result, the estimation procedur can
be automated and the project managers gain the ability to easily and uickly predict
the cost. An example rule from a rule-based system developed by Madachy is shown
below [15]:

IF Re uired Software R e lia b ility = Very High AND
Personnel Capability = Low THEN Risk Level = High

78 Bogdan St pie

3 .2 .3 . Work Breakdown St ructure

This techni ue of software estimating involves breaking down the product to be deve-
loped into smaller and smaller components until the components can be independently
estimated. The estimation can be based on analogy from an existing database of com-
pleted components, or can be estimated by experts, or by using the Delphi techni ue
described above. Once all the components have been estimated, a project-level esti-
mate can be derived by rolling-up the estimates.

As discussed in [4], a software Work Breakdown Structure (Fig. 4, 5) consists of
two hierarchies, one representing the software product itself, and the other represen-
ting the activities needed to build that product. The product hierarchy describes the
fundamental structure of the software, showing how the various software components
fit into the overall system. The activity hierarchy indicates the activities that may be
associated with a given software component.

Fig. 4. An Activity Work Breakdown Structure

i

Fig. 5. A Product Work Breakdown Structure

Softw are Development Cost Estimation Methods and Research Trends 79

3.3. Learning-Oriented Techniques

Learning-oriented techni ues use prior and current knowledge to develop a software
estimation model. Neural networks and Analogy estimation are examples of Learning-
Oriented Techni ues.

3.3.1. Neural Networks

In the last decade, many researchers explored neural networks as an alternative to
the other software cost estimation methods. Neural networks are based on the prin-
ciple of learning from example, no prior information is specified or supplied to the
network. Neural networks are characterized in terms of three entities, the neurons,
the interconnection structure and the learning algorithm.

Most of the software models developed using neural networks use backpropaga-
tion trained feed-forward networks (see Fig. 6). As discussed in [11], these networks
are architected using an appropriate layout of neurons. The network is trained with
a series of inputs and the correct output from the training data so as to minimize the
prediction error. Once the training is complete, and the appropriate weights for the
network arcs have been determined, new inputs can be presented to the network to
predict the corresponding estimate of the response variable.

Fig. 6. A Neural Network Estimation Model

80 Bogdan St pie

Wittig [19] developed a software estimation model using connectionist models
(synonymous with neural networks as referred in this section) and derived very high
prediction accuracies. Although, Wittig’s model has accuracies within 10% of the
actuals for its training dataset, the model has not been well-accepted by the software
engineering community due to its lack of explanation (Tab. 5).

Table 5
Strengths and weaknesses of the neural networks

Strengths Weaknesses
Accuracy compares favorably with other Re uires large training sets in order to give
methods good predictions
The method is objective and repeatable Accuracy is sensitive to decisions regarding

the net topology
Can be applied when only partial informa- Little explanation value - such models do
tion about project is available not help us understand needed software ef-

fort

Neural networks operate as “black boxes” and do not provide any information
or reasoning about how the outputs are derived. And si ce software data is not well-
behaved it is hard to know whether the well known relationships between parameters
are satisfied with the neural network or not. For example, both theory and other data
sources agree that if you’re developing a software product for futur reuse, mor effort
is re uired to make the components less dependent on other components.

3.3.2. Analogy Est imat ion

This method of effort estimation is based on comparison of a planned project with
previous projects that have similar characteristics. This model uses experts or stored
historical project data to determine the effort re uired to develop a software product.
For a new product it must be determined what subcomponent level is practical for
estimation. There must be an estimate of how many components will likely be in the
product. Experts compute the high, Iow, and most likely estimates for effort re uired
based on the differences between the new and previous projects. The method can
provide a detailed estimate of effort depending on how deep into the sub-components
the analogies are mad (Tab. 6).

Table 6
Strengths and weaknesses of the analogy estimation

Strengths Weaknesses
Based on representative experience Historical data and experience may be not

representative
High accuracy in case of very similar pro-
jects

Software Development Cost Estimation Methods and Research Trends 81

Case-based reasoning is an enhanced form of estimation by analogy. A database
of completed projects is referenced to relate the actual costs to an estimate of the cost
of a similar new project. Thus a sophisticated algorithm needs to exist which compares
completed projects to the project that needs to be estimated. After the current project
is completed, it must be included in the database to facilitate further usage of the
case-based reasoning approach. Case-based reasoning can be done either at the project
level or at the sub-system level. Case studies represent an inductive process, whereby
estimators and planners try to learn useful genera lessons and estimation heuristics
by extrapolation from specific examples.

3.4. Stat ist ical Models

Statistical models use data to derive the values for model coefficients. Regression
analysis is used to establish the relationship between model parameters and software
development effort. There are two forms of statistical models: linear and non-linear.

3.4.1. COCOM O II

COCOMO II effort estimation model is based on regression. It consists of three sub-
models, each one aiming to offer increased fidelity the further along one is in the
project planning and design process (Tab. 7).

Table 7
Strengths and weaknesses of the COCOMO II estimation

Strengths Weaknesses
Objective and not influenced by politics Size dependent estimation method
Repeatable, versatile and initially calibra- Needs to be calibrated to achieve better
ted predicability

The original COCOMO (Constructive Cost Model) model was flrst published
in [4], and reflected the software development practices of the day. In the last two
decades, software development techni ues changed dramatically, for example the so
ftware components becarne reusable, and new systems can be built using common
off-the-shelf software. That is why the authors formulated a new version of the model
called COCOMO II, which provides the following three sub-models for estimation of
software projects cost:

1. A pplication C om position model involves prototyping efforts to resolve poten-
tial high-risk issues such as user interfaces, software/system interaction, perfor
mance, or technology maturity. It uses object points for sizing.

2. Early Design model involves exploration of alternative software/system archi-
tectures and concepts of operation. It involves use of function points for software
product sizing and a smali number of additional cost drivers.

82 Bogdan St pie

3. Po st - A r ch i t ect u r e model involves the actual development and maintenance of
a software product. It uses source instructions and/or function points for sizing,
with modifiers for reuse and software breakage.

In the COCOMO II method the software development effort (in person months)
is modelled using the following e uation:

Effort = A x (S ize f x EM* (11)
i

where A is a multiplier that scales the effort according to the specific project condi-
tions, Size is the estimated size of a project in Kilo Source Lines Of Cod (KSLOC)
or Unadjusted Function Points (UFP), E is an exponential factor that accounts for
the relative economies or diseconomies of scal encountered as a software project in-
creases its size, and EM, are the effort multipliers. The coefficient E (scal exponent)
is determined by weighing the predefined scal factors SF, and summing them via
following formula:

E = 0.91 + 0.01 SF, (12)
i

Five scal factors has been defined - precedentedness, development flexibility,
architecture/risk resolution, team cohesion and process maturity. The number of the
effort multipliers depends on the model and varies from 7 in case of Early Design
model to 17 in Post Architecture model. The example effort multipliers are: reliability,
complexity, reuse, experience, Schedule acceleration and others.

The development time T D E V is derived from the effort according to the following
formula:

TDEV = C x (Effort)F (13)

Latest calibration of the method shows that the multiplier C is e ual to 3.67 and
the coefficient F is determined is a similar way as the scal exponent:

F = 0.28 + 0.002 £ SF* (14)
i

When all the factors and multipliers are taken with
e uations for effort and Schedule are as follows:

Effort = 2.94 x (Size)1'1

TDEV = 3.67 x (Effort)3'18

4. Current Research Areas

The research of new and mor accurate size and effort estimation methods led to revi-
sing former models and approaches to this problem. New estimation methods include
many variants of the Function Point Analysis, Putnam model, application of fuzzy
logie, neural networks and multi-agent systems. Examples of these new approaches
are described in this section.

their nomina values, the

(15)

(16)

Software Development Cost Estimation Methods and Research Trends 83

4.1. Unif ied Modelling Language

Many researchers are currently examining the elements of the Unified Modelling Lan
guage (UML) in order to find the relationships with the elements of the estimation
methods. For example Stutzke [18] proposed a way to use the UML elements to es-
timate the size in Unadjusted Feature Points. Feature Points method is a refinement
to the Function Point Analysis which introduces changes to improve applicability to
systems with significant internal processing (e.g., operating systems, Communications
systems) - this allows accounting for functions not readily perceivable by the user,
but essential for proper operation.

Other example in this area is a mapping between UML elements and Fuli Function
Points (another variation of the Function Points Analysis targeted towards realtime
system and embedded applications) proposed by [6].

Some areas such as accounting for reuse or research on how productivity depends
on the architecture choice, or the development process still need to be investigated.
These methods also re uire validation and assesing of their accuracy.

4.2. Fuli Funct ion Points

Fuli Function Points (version 1.0) was proposed in [16] with the aim of offering a
functional size measure specifically adapted to realtime software. The field tests have
shown that Fuli Function Points is also suited to measuring the functional size of MIS
(management information systems) software. This fact coupled with the feedback re-
ceived from organizations which have used Fuli Function Points si ce version 1.0 was
released in 1997, have motivated the authors to improve the method. Many improve-
ments proposed led to the next generation of functional size measurement method -
version 2.0 of the COSMICFFP measurement method.

The COSMIC-FPP method is designed to be applicable to software from the
domains of application software, real-time software and their hybrids. The method
involves applying a set of rules (see [8] for detailed description of the rules) and
procedures to a given piece of software as it is perceived from the perspective of
its Functional User Re uirements. The result of the application of these rules and
procedures is a numerical “value of uantity” representing the functional size of the
software, from user’s perspective.

4.3. Fuzzy Analogy

An extension (fuzzification) of the Analogy Estimation estimation method was pro
posed in [12]. The new approach, called Fuzzy Analogy, is based on reasoning by
analogy, fuzzy logie and linguistic uantifier. Fuzzy Analogy is composed of three
steps - identification of similar projects, evaluation of similarity between projects and
adaptation. The categorical data from the similar projects, such as factor data of the
COCOMO model, are represented by fuzzy sets rather then classical sets.

84 Bogdan St pie

This methods can handle correctly the imprecision and the uncertainty when
describing software project. Fuzzy Analogy is also applicable when the variables are
numeric (no uncertainty). First software prototypes and emprical validation of the
approach were just started.

4.4. Automat ion

The automation of the estimation process reduces the measurement costs and speeds
the process. There are two main areas of research in the automation of the software
functional size measurement process. The first one covers methods based on the source
cod analysis (retro-engineering). An example framework for automating Function
Points counting from source cod can be found in [20].

The other one includes methods based on specifications and case-tools. The func
tional size measure can be automatically generated from designs in UML (see section
4.1) once mapping between the UML elements and the estimation method rules is
defined. Formalization of the IFPUG defnition of function points using the formal
specifcation language B was proposed in [10]. The goals of the formalization were to
provide an objective defnition of function points (which should reduce variance due
to interpretation) and to automate function point counts for B specifcations.

5. Summary and Conclusions

This article has presented an overview of a variety of software estimation techni ues
classifying them in broad categories. The strengths and weaknesses of each of these
approaches have been discussed, suggesting in which situation one techni ue might
be mor appropriate to use than another. Current research trends and examples of
new methods were also presented.

As it can be seen for the article, there is no silver bullet method for software
estimation. The idea size estimation method would define a relatively simple metric
directly related to product size, would not depend on chosen construction technology
and could be applied starting early in project life-cycle.

The current software size metrics are either simple and construction method
dependent or are complex and have limited applicability. Also not all of them are easy
or possible to use in early project phases. The comparison of chosen characteristics
of the size estimation methods is presented in Table 8.

Since most of the software elfort estimation methods take the product size as
an input parameter, it is crucial to chose the best possible size estimate in order to
obtain stratifying effort predictions. To minimize risk of method inaccuracy at least
two independent size estimation methods shall used to derive an average size estimate.

The idea effort estimation techni ue would be repeatable and objective, would
take into consideration historical project data and could handle various exceptional
circumstances that can have impact on development time. Currently no method sa-
tisfies all of these criteria.

Software Development Cost Estimation Methods and Research Trends 85

Table 8
Characteristics of the size estimation methods

Size estimation method name Complexity of Construction Suitable for
the metric and method early project

method independent phases
Lines Of Cod Low No No
Function Points High Yes Yes
Use-case Points Medium Yes Yes
Object Points Medium Yes No

Although new techni ues based on rule systems, agents or neural networks were
developed, they are not widely used in the real-life projects. They have not gained po-
pularity with the software engineering community either because of limited applicabi-
lity or poor results and their black-box approach to estimation. Chosen characteristics
of widely used effort estimation methods are presented in Table 9.

Table 9
Characteristics of the effort estimation methods

Effort estimation Repeatable Objective Historical data
method name used
Putnam Model Yes Yes No
Wide Band Delphi No No Yes
COCOMO II Yes Ye ̂ Only by

recalibration
Analogy Yes No Yes

The main conclusion we can draw from this article is that the key to arriving at
solid estimates is to use a variety of methods and tools and then to investigate the
reasons why the estimates obtained using one method might differ significantly from
those provided by another. Also during a project, the estimates shall be revised often
to help to keep a software project on track.

References

[1] Albrecht A. J.: Measu ng Application Development Productmity. Proceedings of
the Joint SHARE, GUIDE, and IBM Application Development Symposium, Oct.
14-17, 1979

[2] Albrecht A. J., Gaftney J.E.: Software Function, Source Lines of Cod , and De-
yelopment Effort Prediction: A Software Science Validation. IEEE Transactions
on Software Engineering, vol. 9, No. 2, November 1983

[3] Banker R., Kauffman R., Kumar R.: An Empi cal Test of Object-Based Out-
put Measurement Met cs in a Computer Aided Software Engineering (CASE)
Enuironment. Journal of Management Information Systems, 1994

86 Bogdan St pie

[4] Boehm B.W .: Software Engineering Economics. Englewood Cliffs, New Jersey,
Prentice-Hall 1981

[5] Boehm B. W., Clark B., Horowitz E., Westland C.: Cost Models for Futur So
ftware Life Cycle Processes: COCOMO 2.0. Annals of Software Engineering Spe-
cial Volume on Software Process and Product Measurement, Arthur J. D., Henry
S.M. (Eds.), Amsterdam, The Netherlands, J.C. Baltzer AG, Science Publishers
1995

[6] Bevo V., Levesque G., Abran A.: Application of FFP method from a specification
with UML notation: First test and questions raised. International Workshop on
Software Measurement 1999

[7] Conte S., Dunsmore H., Shen V.: Software Engineering Metrics and Models.
Benjamin/Cummings, Menlo Park, Ca. 1986

[8] Common Software Measurement International Consortium, COSMIC-FPP Mea
surement Manua , version 2.1, 2001

[9] Far uhar J.A.: A Preliminary Inguiry Into the Software Estimation Process.
RM-6271-PR, The Rand Corporation, 1970

[10] Diab H., Frappier M., St-Denis R.: Counting Function Points From B Specifica-
tions. International Workshop on Software Measurement, 1999

[11] Gray A. R., MacDonnell S. G.: A Comparison of Technigues for Deueloping Pre-
dictiue Models for Software Metrics. Information and Software Technology 39,
1997

[12] Idri A., Abran A., Khoshgoftaar T. M.: Fuzzy Analogy: A New Approach for Soft
ware Cost Estimation. International Workshop on Software Measurement, 2001

[13] International Function Point Users Group, http://www.ifpug.org

[14] Kitchenham B.: Software Deuelopment Cost Models. [in:] R. Rook (Ed.),
Software Reliability Handbook, London, U.K., Elsevier 1990

[15] Madachy B.: Heuristic Risk Assessment Using Cost Factors. IEEE Software,
May/June 1997

[16] Pierre D., Maya M., Abran A., Desharnais J.: Adapting Function Points to Real
Time Software. IFPUG Conference, Fali 1997

[17] Putnam L.H.: A General Empirical Solution to the Macro Software Sizing and
Estimating Problem. IEEE Transactions on Software Engineering, July 1978,
345-361

[18] Stutzke R. D.: Using UML Elements To Estimate Feature Points. International
Workshop on Software Measurement, 1999

[19] Wittig G.E., Finnie G.R.: Using Artificial Neural Networks and Function
Points to Estimate 4 GL Software Deuelopment Effort. Australian Journal of
Information Systems, 1994

[20] Ho V. T., Abran A.: A Framework for Automating Function Points Counting
from Source Cod . International Workshop on Software Measurement, 1999

http://www.ifpug.org

