
R E S E A R CH A R T I C L E

Brain oscillatory activity as a biomarker of motor recovery in
chronic stroke

Andreas M. Ray1 | Thiago D. C. Figueiredo1 | Eduardo López-Larraz1 |

Niels Birbaumer1 | Ander Ramos-Murguialday1,2

1Institute of Medical Psychology and

Behavioral Neurobiology, University of

Tübingen, Tübingen, Germany

2TECNALIA, Health Department, Neural

Engineering Laboratory, San Sebastián, Spain

Correspondence

Andreas M. Ray, Institute of Medical

Psychology and Behavioral Neurobiology,

University of Tübingen, Silcherstraße

5, Tübingen 72076, Germany.

Email: andreas.ray@uni-tuebingen.de

Funding information

Bundesministerium für Bildung und Forschung,

Grant/Award Numbers: 13GW0053,

16SV7754; Deutsche

Forschungsgemeinschaft; Deutscher

Akademischer Austauschdienst, Grant/Award

Number: 91563355

Abstract

In the present work, we investigated the relationship of oscillatory sensorimotor

brain activity to motor recovery. The neurophysiological data of 30 chronic stroke

patients with severe upper-limb paralysis are the basis of the observational study

presented here. These patients underwent an intervention including movement train-

ing based on combined brain–machine interfaces and physiotherapy of several weeks

recorded in a double-blinded randomized clinical trial. We analyzed the alpha oscilla-

tions over the motor cortex of 22 of these patients employing multilevel linear pre-

dictive modeling. We identified a significant correlation between the evolution of the

alpha desynchronization during rehabilitative intervention and clinical improvement.

Moreover, we observed that the initial alpha desynchronization conditions its modu-

lation during intervention: Patients showing a strong alpha desynchronization at the

beginning of the training improved if they increased their alpha desynchronization.

Patients showing a small alpha desynchronization at initial training stages improved if

they decreased it further on both hemispheres. In all patients, a progressive shift of

desynchronization toward the ipsilesional hemisphere correlates significantly with

clinical improvement regardless of lesion location. The results indicate that initial

alpha desynchronization might be key for stratification of patients undergoing BMI

interventions and that its interhemispheric balance plays an important role in motor

recovery.
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1 | INTRODUCTION

Stroke is a major global health problem. The number of stroke vic-

tims has been rising in the past years all around the world. Millions

of stroke survivors are left with very limited motor function or com-

plete paralysis and depend on assistance (Feigin et al., 2016). Thera-

peutic approaches such as constraint-induced movement therapy

are not applicable to the group of patients with severe limb

weakness (Birbaumer, Ramos-Murguialday, & Cohen, 2008). How-

ever, brain–machine interface (BMI) training has demonstrated effi-

cacy in promoting motor recovery in chronic paralyzed stroke

patients (Ramos-Murguialday et al., 2013), and long term effects

(Ramos-Murguialday et al., 2019). Subsequent work has replicated

and confirmed BMI efficacy. Arm and hand movements are trained

using a body actuator (e.g., orthotic robots) that is controlled by

oscillatory activity of the brain (Ang et al., 2014; Frolov et al., 2017;

Received: 7 May 2019 Revised: 21 October 2019 Accepted: 13 November 2019

DOI: 10.1002/hbm.24876

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2019;1–13. wileyonlinelibrary.com/journal/hbm 1

https://orcid.org/0000-0001-9148-401X
https://orcid.org/0000-0001-5482-1347
mailto:andreas.ray@uni-tuebingen.de
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.24876&domain=pdf&date_stamp=2019-11-28


Kim, Kim, & Lee, 2016; Leeb et al., 2016; Mokienko et al., 2016;

Ono et al., 2014). Brain signals can thus travel to the limb muscles

along an alternative pathway. Contingently linking movement-

related patterns of brain activity and visuo-proprioceptive feedback

of the movement supports associative learning (Ramos-Murguialday

et al., 2012; Sirigu et al., 1995).

Changes in sensorimotor brain oscillations involved in planning

and execution of movements were used as control signals for the BMI

in the aforementioned studies. The sensorimotor rhythm (SMR) is an

oscillation within the alpha frequency range of the EEG during a

motionless resting state over the central-parietal brain regions. Move-

ment planning, imagination and execution lead to its suppression. In

the present work, we investigate EEG brain oscillations of the alpha

frequency, ranging from 8 to 12 Hz, over the motor cortex, and we

term them “alpha oscillations.”

Biomarkers could be defined as indicators “of disease state that

can be used as a measure of underlying molecular/cellular processes

that may be difficult to measure directly in humans” (Boyd et al.,

2017). When dealing with a condition as heterogeneous as stroke vali-

dated biomarkers of recovery could help plan treatments and support

efficient allocation of resource while maximizing outcome for the

patients. Alpha brain oscillations have been evaluated as markers of

ischaemia and predictors of clinical outcome in acute patients

(Finnigan & van Putten, 2013; Rabiller, He, Nishijima, Wong, & Liu,

2015). Desynchronization in the alpha frequency range has also been

investigated as a marker of stroke and a predictor of recovery in the

same patient group. Tangwiriyasakul, Verhagen, Rutten, and Putten

(2014) showed that the recovery of motor function was accompanied

by an increase of alpha desynchronization on the ipsilesional side. In

subacute patients presenting mild to moderate motor deficits recov-

ery lead to a similar increase of alpha desynchronization on the

affected hemisphere (Platz, Kim, Engel, Kieselbach, & Mauritz, 2002).

Furthermore, first attempts investigated correlations of alpha

desynchronization with motor improvements in chronically impaired

patients (Kaiser et al., 2012). In a controlled study, a group of subacute

patients with severe deficits used motor imagery, guided by a brain–

computer interface, in addition to their regular physiotherapeutic

rehabilitation protocol. They showed a higher probability for motor

improvements with increased alpha desynchronization (Pichiorri

et al., 2015).

In the present work, we investigated what changes in the oscilla-

tory activity of the brain a proprioceptive BMI coupled with physio-

therapy produces over the course of a training intervention and if

these correlate with recovery in severely paralyzed chronic stroke

patients. We hypothesized that functional motor improvements are

accompanied by an ipsilesional increase and a contralesional decrease

in alpha desynchronization indicating reorganization of compensatory

brain activity from the contralesional to the ipsilesional hemisphere.

We intend to establish alpha oscillatory activity as a biomarker of

motor impairment and as a building block of statistical models of

stroke neurorehabilitation.

2 | METHODS

2.1 | Study design of the original trial

Thirty chronic stroke patients took part in the original study (Ramos-

Murguialday et al., 2013). They presented no active finger extension

due to their severe motor impairment, as measured by the modified

upper limb Fugl-Meyer Assessment (FMA; Table 1). Apart from the

complete paralysis of one hand, the inclusion criteria were: age

between 18 and 80 years, at least 8 months since the insult, no psy-

chiatric or neurological condition other than stroke, no cerebellar

lesion or bilateral motor deficit, no epilepsy and a mini-mental state

(MMS) score of above 21. The patients were recruited publicly via

stroke associations, rehabilitation centers and hospitals within Ger-

many from December 2007 to March 2013. 504 patients were con-

tacted, out of which 263 did not meet the inclusion criteria,

202 declined to participate and 9 were excluded because of other rea-

sons, leading to a final pool of 30 patients. This number met the

criteria for statistical power calculated in study using a similar tech-

nique (Buch et al., 2008). Half of the patients showed lesions with

involvement of the motor cortex (“mixed” lesion type), the others

presented subcortical lesions only (“subcortical” lesion type). The pri-

mary clinical outcome measure of the original trial was the combined

modified Fugl-Meyer assessment (cFMA). It comprises the sum of the

arm and hand scores excluding scores related to coordination, speed

and reflexes. The maximum score is 54 points. Details on the move-

ments assessed in the cFMA test are presented in Supporting Infor-

mation, section 5. The assessment was administered at the post test

and two tests prior to the intervention. The mean of both baseline

FMAs was used to calculate the difference between the values before

and after the intervention.

2.1.1 | Standard protocol approvals, registrations,
patient consent

The original clinical trial and the analysis presented here were con-

ducted at the University of Tübingen, Germany. Informed consent

was obtained from all patients and the studies were approved by the

TABLE 1 Means and standard deviations of demographic data at the time of enrollment in the study

Sex Age (year) Time since stroke (months) Lesion side cFMA scores Lesion distribution

18 M/12 F 49.8 ± 12.4 68.5 ± 58.5 16 R/14 L 12.22 ± 8.82 Cont: 6 mixed/10 subcortical

Sham: 10 mixed/4 subcortical

Note: The column “lesion distribution” shows the number of mixed lesions (i.e., lesions including cortical and subcortical areas) and subcortical lesions in the

experimental group (“Cont”) and the control group (“Sham”).
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ethics committee of the Faculty of Medicine of the University of

Tübingen, Germany. Authorization has been obtained for disclosure of

the person recognizable in Figure 1.

We fully acknowledge that clinical trials should be registered pub-

licly for transparency. However, by the time the clinical trial of the

original study was conducted the registration of such trials was nei-

ther mandatory nor common practice, which is why the trial was not

registered. A posteriori registration of the trial is pending.

2.1.2 | Intervention protocol of the original trial

The patients were randomly divided into an experimental group

(n = 16) and a control group (n = 14). The original study was double-

blinded to avoid potential bias introduced by experimenters. In both

groups, electric brain activity was recorded using electroencephalog-

raphy (EEG). Changes in the SMR of the ipsilesional hemisphere dur-

ing movement attempts of fingers and arm were contingently

translated into movement of the arm and hand orthosis only in the

experimental group. Decrease of the power of the SMR with respect

to baseline led to movement of the arm or the hand and a relative

increase stopped the movement. In the control group, the setup was

similar but the movements executed by the robot were independent

of brain activity. The movements were triggered randomly but the

period of time the orthosis was moving was approximately equivalent

to that of the experimental group. Both groups received identical

physiotherapy after the BMI training. Each subject performed 17

± 1.8 (mean ± SD) sessions of BMI-training within a period of up to

6 weeks. Each session consisted of 165 ± 19.5 (mean ± SD) trials. A

training trial consisted of an intertrial interval (4–7 s), a preparation

phase (2 s) and the movement phase (5 s). The reader is kindly

referred to the original article for more details on the intervention

protocol. Lesion maps obtained by magnetic resonance imaging are

presented in Supporting Information of the original article (Ramos-

Murguialday et al., 2013).

2.1.3 | Neurophysiological recordings

EEG data were recorded using a 16-channel ActiCap from locations

Fp1, Fp2, F3, Fz, F4, T7, C3, Cz, C4, T8, Cp3, Cp4, P3, Pz, P4, and Oz

and a BrainAmp 32-channel amplifier (Brainproducts GmbH, Munich,

Germany). The ground electrode was placed at AFz and the reference

at FCz. Furthermore, EOG electrodes for detection of vertical and

horizontal eye movements were used and surface electromyography

electrodes (EMG) were fixed to four muscle groups on both upper

limbs (extensor carpi ulnaris, extensor digitorum, long head of the

biceps, external head of the triceps) in order to monitor movement

F IGURE 1 Schematics of the data acquisition phase and the offline analysis for EEG and EMG. Neurophysiological data was acquired using a
16 channel EEG cap and 4 bipolar EMG electrodes on each arm. EEG data were cleaned from eye movement artifacts and trials containing other
artifacts (e.g., cranial EMG, head movements, and so on). EMG data were analyzed to detect compensatory muscle contractions on the healthy
upper limb and on the paretic side during resting intervals to identify these trials as contaminated because the muscle activity is a sign of
undesired EEG activity. Only data free of artifacts were used for the final analysis of EEG oscillatory activity
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onsets or involuntary contractions. The signals were sampled at

500 Hz. The arm orthosis was a ReoGo rehabilitation robot (Motorika,

Cesarea, Israel). We used a robotic orthotic system developed in-

house to exert hand movements.

The individual SMR frequency was obtained from EEG recorded in

a calibration session on the day before the training. The power of the

EEG signal while the patients rested and while they were trying to

open and close the paretic hand was compared. The frequency range

showing the maximum variance between the two conditions as mea-

sured by the coefficient of determination r2 was defined as individual

SMR frequency. The most discriminative electrodes in the central-

parietal region were selected.

2.2 | Artifact detection

Even though the participants were instructed to minimize move-

ments of head and body during the recordings, contamination of

the EEG by movement artifacts could not be completely prevented

as the experiment involved movements of the body. Detection

and rejection of artifacts in the data were carried out using a fully

automated process (Figure 1). First, artifacts caused by eye move-

ments were removed from the EEG signal by way of extracting the

independent components representing these artifacts identified in

the EOG (Halder et al., 2007). Then, trials contaminated by cranial

muscle artifacts were detected. The EEG signal of all channels was

filtered between 110 and 140 Hz and the signal in each channel

was z-scored and the z-values were averaged per sample. A

threshold of 4 SDs was applied to remove trials containing arti-

facts. Afterward, a similar procedure was performed on the broad-

band EEG signal with a threshold of 20 standard deviations to

remove trials containing offset artifacts. The fieldtrip toolbox was

used for rejection of EEG artifacts (Oostenveld, Fries, Maris, &

Schoffelen, 2011). Finally, the EMG activity was analyzed. The

waveform length of the EMG was computed (Ramos-Murguialday,

Soares, & Birbaumer, 2010). Muscle contractions were identified

by the Waveform length exceeding 3 SDs of the data. Any such

arm or hand movement during the rest period or movements of

the healthy limb during the phase of the movement attempt led to

removal of the trial from the analysis.A session was excluded from

the analysis if less than 10% (16 trials) of all trials remained. If half

of the total number of sessions of a patient were removed, the

subject was excluded from the analysis. One patient was consid-

ered an influential outlier in the statistical modeling due to consis-

tent undesired synchronization of central alpha brain oscillations

during movement phases of the training in most sessions. This

patient was thus excluded from the analysis. The rigorous rejection

procedure led to a final pool of 22 subjects. This conservative pro-

cedure facilitates interpretability of the results. Descriptive statis-

tics on the rejection of trials and an overview of the number of

trials, sessions and subjects removed is presented in Supporting

Information, section 1.

2.3 | Movement-related features of the EEG power
spectrum

Movement planning, imagination, and execution lead to suppression

of brain oscillatory activity over the motor cortex. It has been shown

that stroke patients can (re-) learn to voluntarily modulate this rhythm

to control movements of their paretic limbs by way of robotic ortho-

ses (Buch et al., 2008; Ramos-Murguialday et al., 2013). The phenom-

enon is often defined as mμ rhythm or as SMR. There are various

works describing the effect within the alpha frequency range of the

EEG (Klimesch, Sauseng, & Hanslmayr, 2007; Kuhlman, 1978;

Pfurtscheller & Lopes da Silva, 1999). Similar synchronization and

desynchronization effects have been reported with other functional

relevance in the beta frequency range (van Wijk, Beek, &

Daffertshofer, 2012). Peak frequency and amplitude of the SMR vary

between individuals but movement-related desynchronization in

healthy populations spreads across the whole alpha range

(Pfurtscheller, 2003). As alpha oscillations may also constitute indica-

tors of underlying processes not related to movements it may be diffi-

cult to discern alpha central oscillations from genuine sensorimotor

oscillatory activity in patients involved in visuo-proprioceptive motor

tasks (Klimesch et al., 2007). However, since first, significant power

decreases in healthy subjects during execution of a BMI lasting sev-

eral seconds have mainly been found in the alpha frequency range

(Ramos-Murguialday & Birbaumer, 2015) and second, the SMR fre-

quency (defined as the frequency range with the largest difference

between movement attempts of the paralyzed limb and resting state)

in the original trial, were also centered in the alpha frequency band

(mean 10.6 Hz ± 4.8) we focused our analysis on the progression of

alpha desynchronization. Furthermore, to disentangle effects of indi-

vidualized SMR values used for BMI intervention from the general

alpha band, we also evaluated the progression of desynchronization in

the individual SMR frequency. More information can be found in

Supporting Information, section 4.

Nevertheless, recent work has identified beta oscillations as

potential therapeutic target for stroke rehabilitation because these

oscillations are involved in cortical disinhibition and have been

suggested as the rhythm connecting brain and muscles (Mima, Toma,

Koshy, & Hallett, 2001; Naros & Gharabaghi, 2015; Rossiter,

Boudrias, & Ward, 2014). Therefore, we also analyzed the progression

of desynchronization in the beta frequency band (12–25 Hz). More

information can be found in Supporting Information, section 4.

A previous work of our group on a similar dataset involving move-

ment attempts in chronic stroke showed the adverse influence of low

frequency (1–4) and high frequency (30–48 Hz, that is, gamma band)

artifacts on time-frequency analysis of movement-related

desynchronization and classification of EEG signals (López-Larraz

et al., 2018). Therefore, gamma oscillations (30–48 Hz) were not con-

sidered in the present analysis.

Event-related desynchronisation (ERD) was calculated following

Pfurtscheller and colleagues (Pfurtscheller & Lopes da Silva, 1999) as

the proportional decrease of EEG power in a movement attempt

interval, M, relative to a reference interval, R:
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ERD=
M−R
R

×100% ð1Þ

ERD over the sensorimotor cortex was extracted from both hemi-

spheres separately using the EEG signal of the electrodes C3, Cp3, P3

and C4, Cp4, P4, respectively, and within the alpha frequency band

(8–12 Hz). The power spectral density was computed using Welch's

method and the mean power of that frequency range was extracted.

Furthermore, the EEG power was averaged over the three channels

on each hemisphere. Note that because of averaging the power of the

three channels no other spatial filters were used. Mean ERD was com-

puted as described in Equation (1) over all trials of each session using

the EEG data of the last 4 s of the intertrial interval as reference R

and the EEG data of the movement attempt phase as M.

It is important to note that a larger relative difference between

neural activity during rest (synchronized, larger EEG power) and action

(desynchronized, smaller EEG power) is represented by a numerically

smaller, more negative ERD value (Equation 1) and vice-versa. We

thus report “strong” ERD when the ERD values are more negative and

“weak” ERD when they are less negative.

Works on brain oscillatory biomarkers of stroke rehabilitation

were often limited to predicting behavioral changes by brain activity

measured before and after spontaneous recovery or intervention

(Stinear, 2017). Here, a comparison of ERD during movement

attempts of the upper limb without the afferent input of the orthosis

before and after the intervention indeed did not reveal a generalized

change of ERD. For each patient a premeasurement and a post mea-

surement involving movement attempts of the paretic arm without

the orthosis were performed. The patients were asked to perform up

to 85 repetitions of 3 s of resting and 4 s of movement attempts. The

EEG data was preprocessed and the mean ERD of each patient before

and after the intervention (pre and post) was computed. A difference

of the ERD values between groups and time points could not be

found (see Supporting Information, section 3). In the present work,

however, we make use of the large amount of longitudinal neurophys-

iological data gathered during dozens of training sessions to infer on

the relationship of progression of changes of brain activity and behav-

ioral improvements. All the analysis was performed using EEG and

EMG data acquired during the interventional sessions, in which the

patients tried to move their paretic limb avoiding compensatory

movements and the limb moved according to the brain-controlled

robotic orthosis. During the intervention proprioceptive feedback

usually lead to an increased SMR desynchronization.

2.4 | Statistical modeling

In order to model the cross-sectional response (the clinical outcome

measure ΔcFMA) with the longitudinal predictors (progression of the

ERD across training sessions) we employed a two-stage modeling pro-

cess. First, the individual time courses of the ERD of all patients were

modeled using a linear mixed-effects model. In the second step, the

coefficients of these modeled time courses were used to predict each

patients' motor improvement.

Linear mixed-effects models are suited for describing longitudinal

physiological data because (a) they allow to reflect individual differ-

ences of intercepts and slopes with respect to population means;

(b) data may be modeled even though measurements are unequally

timed; (c) the number of measurements per subject is not required to

be equal (Lang et al., 2016) (for a thorough description of linear mixed

models, LMEMs, see [Verbeke & Molenbergs, 2001]). Shetty, Morrell,

and Najjar (2009) showed that estimating the value of the explanatory

variable(s) with a LMEM approach leads to the best regression param-

eters for predicting a clinical outcome.

Using this approach, in the first step of modeling a LMEM is con-

structed to estimate two coefficients per patient which describe the

initial state and the progression of the ERD of each patient through-

out the course of the intervention. The response variable (ERD) is thus

modeled by a general intercept (representing the mean initial ERD

value of all patients) and the general change over time (mean unit

change of the ERD per BCI-training session of all patients) as fixed

effects. Both intercept and change over time may vary for each

patient, and are therefore also introduced as random effects in the

LMEM. The model thus yields two coefficients per patient: the indi-

vidual progression of the ERD over time (the individual model slope),

and the subject-specific initial value of the ERD (the individual model

intercept). In the second step of the procedure a linear regression

model (LM) is constructed that predicts the change of the clinical out-

come (ΔcFMA) by the patients' individual dynamics of the ERD, which

are represented by the coefficients modeled in the first step of the

procedure. From this model an inference can be made if and how the

initial state of the ERD of each patient, the progression of the ERD

throughout the training and the interaction between these two fac-

tors predict the motor improvement. The flow-chart in Supporting

Information, section 2 provides an intuitive description of the model-

ing procedure.

To assess the interhemispheric asymmetry of brain activation dur-

ing recovery, the laterality coefficient is often used (Kaiser et al.,

2012; Pivik, Broughton, Davidson, Fox, & Nuwer, 1993; Tan-

gwiriyasakul et al., 2014; van Putten, 2007). The sign of the coeffi-

cient represents the laterality of the desynchronization, that is, which

of the hemispheres is more active during a certain condition such as

the movement of the paretic arm. In order to assess the progression

of the asymmetry of the interhemispheric oscillatory activity of the

brain, we expanded the laterality coefficient to encompass the tempo-

ral component (training progression). The progressive laterality coeffi-

cient (pLC) is computed as:

pLCERD = SH−SL

The change (i.e., slope) of the ERD for each patient, was extracted

from the LMEM from the data of both hemispheres (healthy hemi-

sphere: SH, hemisphere of the lesion: SL) and subtracted from each

other to form the pLC. This measure describes the progression of the

asymmetry of the desynchronization between both hemispheres over

the course of the training. It may reveal if the change of

desynchronization throughout the intervention was stronger on one
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hemisphere than on the other. The values of the pLCERD were corre-

lated with the primary clinical outcome ΔcFMA to investigate the rel-

evance of progressive brain activity asymmetry for motor

improvement.

3 | RESULTS

3.1 | Prediction of ΔcFMA from contralateral/
ipsilesional EEG changes

The linear models for the ERD in the alpha frequency range were con-

structed, each predicting ΔcFMA using the coefficients extracted

from the corresponding linear mixed effects model: the progression of

the ERD throughout the intervention sessions and the initial ERD

magnitude. An interaction term was included in the LM to investigate

if the initial ERD modulated the progression of the oscillatory activity.

An F-test of the regression equation was significant: F(3, 18) = 6.96,

p = .0026 and an adjusted r2 = .46.

In linear models with interaction terms two independent variables

might exert an effect on the dependent variable. They might also

modulate each other. In order to understand and interpret the interac-

tion the data is usually separated into smaller subsets (Aiken & West,

1991). One variable is “fixed” and defines these subsets while the

other variable is investigated independently within each subset. This

procedure allows to observe whether the value of the “fixed” variable

influences the “free” variable depending on the subset or not. If the

“fixed” variable is categorical the subsets are naturally defined. How-

ever, here, the variable of interest, initial ERD, is a continuous variable

and the separation is defined based on prior knowledge and the char-

acteristics of the data (Aiken & West, 1991). Given the amount of

data points a division into few subsets is the best choice.

Furthermore, even though there is no standardized definition, “strong

initial ERD” and “weak initial ERD” may be meaningful for the inter-

pretation. For these reasons, we split the data into equal subsets at

the median. The procedure supports intuitive visualization of the lin-

ear model (Breheny & Burchett, 2016). Moreover, it facilitates inter-

pretation of the analysis of the brain activity on the healthy

hemisphere because we saw that the ipsilesional brain activity of the

patients is modulated differently in the subgroups. We thus show the

correlation of the progression of ERD and ΔcFMA for two subgroups

presenting relatively strong and relatively weak initial ERD (higher and

lower than the median). The median value of the initial ERD is

Medianα = − 29.96% (Figure 2). Those patients presenting a relatively

strong ERD at the beginning of the intervention (Figure 2, panel on

the left) improved if their ERD progressively increased throughout the

training. In contrast, those patients whose ERD was already relatively

weak at the beginning of the intervention (Figure 2, panel on the right)

improved if their ERD progressively decreased throughout the train-

ing. These relationships are also reflected in visualization of time-

frequency representations (cf., Supporting Information, section 7). It is

noteworthy that four patients of the control group presented a nega-

tive change of their cFMA score regardless of their ERD progression

throughout the intervention (two squares below the zero line in

Figure 2).

The progression of the ERD in the beta frequency range

(12–25 Hz) and the individual SMR frequency were also analyzed in

the same way as the data of the alpha frequency range to comple-

ment the analysis. The results and plots are presented in Supporting

Information, section 4. In summary, the F-test of the regression equa-

tion of the model of the beta band was not significant. The linear

model for the individual SMR frequency was significant (F

F IGURE 2 Linear model predicting the improvement of motor function (ΔcFMA) on the hemisphere of the lesion. Linear model predicting the
improvement of motor function (ΔcFMA) by the initial ERD and the progression of the ERD of the alpha frequency range on the ipsilesional
hemisphere over sessions: Adjusted r2 = 0.46; F(3, 18) = 6.96, p = .0026. For improved visualization of the effects of both explanatory variables in
the model the patients are separated into two cross-sections showing relatively strong ERD (left panel) and a second group showing relatively
weak initial ERD (panel on the right).For the patients showing strong ERD the inverse linear relationship of the variables suggests that the more
these patients increase their ERD the larger the improvement. For the patients showing a relatively weaker ERD at the beginning of the training,
the opposite relationship is apparent
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[3,18] = 3.475, p = .038). The fit was lower than that of the model for

alpha: r2 = .26.

3.2 | Prediction of ΔcFMA from ipsilateral/
contralesional EEG

We examined how the progression of the ERD of the healthy hemi-

sphere relates to the clinical improvement depending on the initial

ERD of the lesioned hemisphere. Knowing that the initial ERD on the

ipsilesional hemisphere interacts with the ERD progression patients

were again separated into the same two subgroups accordingly (rela-

tively strong and relatively weak ipsilesional ERD). The progression of

the ERD on the healthy hemisphere during movements of the paretic

arm and hand were modeled for both subgroups. These linear models

predicted the change of the clinical outcome measure ΔcFMA. For

the subgroup showing relatively weak ERD at the beginning of the

intervention on the ipsilesional hemisphere the model showed a sig-

nificant positive linear relationship: Adjusted r2 = 0.47; F(1,9) = 9.05,

p = .0148. For the other subgroup, the patients showing relatively

strong initial ERD, however, the F-test for the regression equation

was not significant: Adjusted r2 = −0.11; F(1,9) = 0.0072, p = .93

(Figure 3).

In summary, the patients presenting a relatively weak ipsilesional

ERD at the beginning of the intervention, presented a larger motor

improvement if their ERD decreased on the healthy hemisphere

(i.e., activating their contralesional hemisphere less) during paretic

hand movements using the BMI.

3.3 | Prediction of ΔcFMA from interhemispheric
asymmetry of brain activation

To investigate the interhemispheric asymmetry during motor recov-

ery, the progressive laterality coefficient pLCERD was used to predict

the clinical change ΔcFMA. The F-test for this linear regression equa-

tion was significant: F(1, 20) = 9.11, p = .007 with an adjusted r2 = .28

(Figure 4). The analysis thus demonstrated that the patients who pro-

gressively produce more ipsilesional relative to contralesional brain

oscillatory activity (stronger desynchronization) in the alpha band dur-

ing the course of training improved motor function.

Since the model predicting change on the Fugl-Meyer scale from

the ERD of the contralateral/ipsilesional hemisphere was significant

for the individual SMR frequency, we also analyzed the inter-

hemispheric asymmetry in this frequency band. The results and plots

are shown in Supporting Information, section 4. In summary, the F-

test for this linear regression was not significant but showed a trend

(F[1,20] = 3.76, p = .067). The fit of the model to the data was low:

r2 = .1161.

F IGURE 3 Linear model predicting the improvement of motor
function (ΔcFMA) on the healthy hemisphere. Linear model predicting
the improvement of motor function (ΔcFMA) by the progression of
the ERD of the alpha frequency range on the healthy hemisphere
over all sessions for the patients showing relatively weak initial ERD
on the ipsilesional hemisphere: Adjusted r2 = 0.45; F(1,9) = 9.05,
p = .015. Better recovery was achieved when the ERD on the healthy
hemisphere decreased in the course of the training

F IGURE 4 Relationship between improvement and
interhemispheric difference of changes of the ERD in the alpha band.
Relationship between improvement and interhemispheric difference
of changes of the ERD in the alpha-band: Adjusted r2 = 0.279; F
(1, 20) = 9.11, p = .0068. Values on the x-axis express the difference
between the progression of the ERD on the healthy hemisphere and
the ipsilesional side. Positive values on this axis indicate that
throughout the training patients exhibited stronger ipsilesional ERD,
negative values indicate a stronger ERD on the healthy hemisphere.
The regression indicates that the larger a difference is found the
better the motor improvement
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4 | DISCUSSION

We investigated how the brain oscillatory activity of severely

impaired chronic stroke patients changes throughout a brain-

controlled robotic intervention for motor rehabilitation of the upper

limb and how it relates to the functional motor improvement. We

found that dynamics of event-related desynchronization in the alpha

frequency range (ERD) significantly correlate with motor improve-

ment. Most notably, patients showing a relatively strong ERD on the

side of the lesion at the beginning of the intervention improved when

progressively increasing ERD during movements of the paretic arm in

the course of the intervention. Patients showing a relatively weak

ERD on the affected hemisphere improved when progressively

decreasing ERD. Furthermore, we found larger motor improvements

in patients with a progressively larger ERD on the hemisphere of the

lesion as compared to concomitant ERD on the healthy hemisphere.

The results indicate that the patients might have used two strategies

to gain control over the orthoses to link brain oscillatory activity and

upper limb movement. Their success rebalancing ipsi−/contralesional

activity plays an important role in impairment reduction.

Considering that the proprioceptive feedback was initiated based

on the individual SMR ERD, patients who could elicit a strong ERD at

the beginning could learn to control the robotic orthosis BMI more

easily. We show that a strong ERD on the ipsilesional side during

movement attempts of the paretic limb and a subsequent further

increase of the ERD was linked to recovery whereas a strong ERD on

the healthy hemisphere was not. The results indicate that generating

a strong ERD on the hemisphere of the lesion may suffice to regain

control of the paretic limb via BMI and to reduce motor impairment. It

was indicated that patients without transfer of ERD from the contra-

to the ipsilesional hemisphere do not improve as predicted by the

concept of learned nonuse (Daly & Wolpaw, 2008). A linear relation-

ship between the relative progressions of the ERD on both hemi-

spheres was observed. The modeling presented, links greater

improvement of motor function to stronger ERD on the affected

hemisphere than on the healthy hemisphere during BMI intervention.

Patients with weak ERD during movement attempts of the paretic

arm at the beginning of the intervention improved if they showed pro-

gressively reduced ERD on the hemisphere of the lesion and an even

more pronounced progressive reduction of desynchronization on the

healthy hemisphere. One additional explanation to the learned nonuse

model of rehabilitation for this phenomenon is that when having

acquired proficiency in performing the motor task, reduced ERD rep-

resents more efficient inhibition of systems that are not task-relevant

on the ipsilesional side (Klimesch et al., 2007; Taub et al., 1994).

Moreover, a connection between alpha synchronization of the EEG

and focalized suppression of areas involved in generation of move-

ments irrelevant to the task is assumed (Klimesch et al., 2007;

Pfurtscheller, Stancák, & Neuper, 1996). The reduction of

desynchronization on the healthy hemisphere as compared to the

affected hemisphere indicates less recruitment of the healthy hemi-

sphere during the course of the training as predicted by the model of

learned nonuse (Taub et al., 1994). Experiments have shown that

interhemispheric inhibition from the healthy to the affected hemi-

sphere is associated with deficient motor recovery (Murase, Duque,

Mazzocchio, & Cohen, 2004). Concordant with this interpretation the

increased desynchronization of the healthy hemisphere is associated

with poorer recovery (Kaiser et al., 2012).

The stratification of the patients into two subgroups (relatively

strong and weak ERD) after investigating the linear model paved the

way to a concise interpretation of the results obtained. Learning to

control a BMI involving proprioceptive feedback modulates

desynchronization of the SMR (Ramos-Murguialday et al., 2012). The

group receiving sham feedback might have had a lower or no effect of

the practice on the modulation of their SMR. Nevertheless, random

correct feedback was sometimes administered, because the orthoses

might have also moved while patients correctly produced ERD and

both groups received identical physiotherapy after BMI training. Since

almost all patients showed some behavioral change, we assumed that

the neurophysiological data could explain these changes, which was

the main goal of this investigation. The number of patients analyzed

did not allow for a robust analysis including stratification by feedback

group. There was no difference in number of trials rejected due to

EEG or EMG artifacts between the feedback groups. For these rea-

sons we collapsed the analysis across both feedback groups. The oscil-

latory signature of recovery was our target. A study with a larger

number of participants than presented here could potentially uncover

whether or not there are differences of the progression of alpha ERD

throughout the training depending on if the patients received correct

or sham feedback. Behavioral effects of the feedback group have

already been investigated in the primary analysis (Ramos-Murguialday

et al., 2013). Moreover, for generalizing it is important to reduce vari-

ance in the data caused by noise. Previous work of our group clearly

showed the adverse effects of artifacts on the analysis of EEG power

where gamma band activity overshadowed activity in the lower bands

and suggested ways to avoid or minimize their influence on BMI con-

trol and posterior analyses (López-Larraz et al., 2018). We ensured

robustness of the results presented by way of employing the conser-

vative fully automatic rejection procedure.

The longitudinal analysis of the desynchronization of beta oscilla-

tion does not allow concise interpretation because the model is not

significant. An explanation could be that beta desynchronization is not

upheld throughout the whole trial, as has been shown in a healthy

population (Ramos-Murguialday & Birbaumer, 2015). There, signifi-

cant beta desynchronization only occurred in the beginning of the

movement period of the trials. In the present analysis the spectral

activity was computed over the whole movement period of trials. Fur-

thermore, we might not be able to capture the dynamics of beta oscil-

lations in terms of linear modeling of desynchronization. More

complex metrics such coherence might be more suited (Nicolo et al.,

2015). The longitudinal analysis of the individual SMR frequency band

shows weaker fits of the model than the analysis of the alpha band.

An explanation might be that this analysis included some patients that

were rewarded for SMR desynchronization in the beta frequency

range during the intervention (see Supporting Information, section 4,
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Table S2). In healthy populations significant power decreases during

execution of a BMI task lasting several seconds have mainly been

found in the alpha frequency range (Ramos-Murguialday & Birbaumer,

2015) and movement-related activity is known to spread across the

whole alpha range (Pfurtscheller & Lopes da Silva, 1999). This result

underlines the potential of alpha desynchronization as a biomarker as

it explains the variance of the changes in the Fugl-Meyer scores bet-

ter than the other frequency ranges.Alpha ERD was also evaluated in

the pre and post assessment of the trial. The patients performed

repeated movement attempts of their paralyzed arm. We found no

difference of alpha ERD between the pre and the post assessment

and between groups (see Supporting Information, section 3). The fact

that alpha ERD did not change from pre to post despite the behavioral

changes could be attributed to the lack of proprioceptive feedback in

the assessment and the difference in task (one is controlling the hand

open/close movements of an orthosis by way of modulation of their

SMR and the other one is a natural attempt to open and close the

hand). Since the patients only performed movement attempts and

they did not use the exoskeleton that provided them with propriocep-

tive input (their hands were completely paralyzed) during the pre and

post assessments, the sensorimotor activity differs, as this type of

feedback influences the modulation of brain rhythms (Ramos-

Murguialday & Birbaumer, 2015). Furthermore, the classifier used in

the BMI rewarded differences from the intertrial interval (consider as

rest) and the task (attempt to move to downregulate the SMR power

and move the orthosis) SMR power using the last 15 s of data for both

cases to create the two data distributions (more information can be

found in the Supporting Information of the original trial (Ramos-

Murguialday et al., 2013)). Therefore, they could efficiently move the

orthosis by either increasing power during inter trial interval, decreas-

ing power during BMI task or both, to decrease variability of the dis-

tributions. This fact allowed each patient to choose their own strategy

implicitly. These reasons and their initial ERD modulation ability make

a general prepost comparison of ERD values complicated without the

use of a robotic orthosis. Probably a stratification of this comparison

should be done, and unfortunately, the number of patients in the pre-

sent work limits that comparison and does not allow drawing any con-

clusion. Due to these results, it might be difficult to generalize or use

alpha as biomarker if the screening is not executed with a brain-

controlled orthosis. This finding suggests investigation of alpha ERD

in pre- and postassessments of movement-attempts that include pro-

prioceptive feedback in future trials, as passive movements modulate

desynchronization (Ramos-Murguialday & Birbaumer, 2015). Inclusion

of passive movements via orthoses could be a complementary mea-

sure for assessment of ERD with proprioceptive feedback (as has

been already suggested using electrical stimulation [Cho, Vidaurre,

Hoffmann, Birbaumer, & Ramos-Murguialday, 2011]) that would need

to be tested in future trials.

Even smallest improvements on the Fugl-Meyer scale could mean

a relevant behavioral change especially in these severely chronically

paralyzed patients, in which no spontaneous behavioral improvements

are expected. The FMA changes are particularly meaningful for model-

ing and they are preserved in the long-term (Ramos-Murguialday

et al., 2019). The test–retest reliability of the Fugl-Meyer test is very

high (Platz et al., 2005), but its sensitivity especially in severe patients

might not be sufficient. Therefore, several measures were taken to

ensure that the changes in the original study are adequately captured.

First, the assessors were blinded to group allocation to avoid a poten-

tial retest bias. If there had been a general repetition effect all patients

should have improved, which is not the case. Second, the mean of

both baseline FMAs was used to measure improvement (Whitall et al.,

2010). Statistical analysis of the Fugl-Meyer values of arm and hand of

the two baseline assessments for the present cohort showed that the

distributions are not different (Wilcoxon signed-rank test: p = .30).

This underlines that the test–retest reliability of the FMA is high in

our sample. Third, the assessment focused only on the upper limb

motor scores of arm and hand without coordination and speed, and

without scores related to reflexes, further reducing variability (Crow &

Harmeling-van der Wel, 2008). Further trials with longer treatment

duration or refined methods should boost the behavioral effects to

skills of functional relevance. To better understand our results, we

repeated our statistical modeling for the arm and hand motor skills

separately and observed significant models only for the arm part. This

was expected, as most patients had larger motor improvement in the

proximal part of the arm. This larger variability in the arm scores is

explained by the progression of the ERD in the alpha band, confirming

the results obtained with the combined arm and hand Fugl-Meyer

scores. The hand scores alone could not be explained by the linear

model, probably because of the lower variability of motor improve-

ment scores (cf., Supporting Information, section 5). In this case, the

large impairment of our patients (part of the inclusion criteria) and the

low sensitivity and ordinal origin of the Fugl-Meyer scale limits our

modeling. However, trials in acute or low-to-mild-to-severe patients,

and/or longer and refined trials might also increase recovery of hand

limb motor skills, which then might also be explainable by ERD

progression.

Although cortical integrity is reflected in oscillations of the senso-

rimotor network measured by ERD, the cortical or subcortical location

of the lesion was not a confounder of the modeling procedure (Park,

Kwon, Kim, Lee, & Kim, 2016; Ray, Lopez-Larraz, Figueiredo,

Birbaumer, & Ramos-Murguialday, 2017). First, inclusion of the lesion

location as factor did not affect the predictive power of the LMEMs.

A likelihood ratio test of a model comparison of a model with and a

model without the factor lesion location did not show a significant dif-

ference (χ2 = 4.25, p = .12). Second, LMEMs allow for individual varia-

tions of intercept and slope of the progression of the ERD. That is

why the relative individual change of ERD throughout the training can

be compared between patients with different lesion characteristics.

Moreover, in the patients with mixed lesions (subcortical and cortical)

damage of the precentral gyrus and the postcentral gyrus did not lead

to differences in expression of alpha ERD during the premeasurement

(cf., Supporting Information, section 6).

Linear mixed-effects models are suited for describing physiological

data because they acknowledge individual deviations from the popu-

lation mean and account for unequal number and unequal spacing of

data points (Lang et al., 2016). However, each model is a simplification
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of the data. Learning processes in Neurofeedback have also been

described with much higher orders (Gunkelman & Johnstone, 2005).

The model coefficients provide the best description of the data in a

least squares sense and the LMEM including subject-specific slopes

describes the data significantly better than a model not allowing devi-

ation from the general slope. A likelihood ratio test of a model com-

parison shows a significant difference (χ2 = 6.57, p = .038). However,

even with the flexibility that linear-mixed effects models allow,

assuming linear progression of the ERD values could be an over-

simplified description of the true time course. Moreover, the two-

staged linear modeling employed in the present work could introduce

further simplification due to the second modeling step, which might

blur the results. On the other hand, linear models allow for the

description of the underlying processes with only a few parameters,

which is an advantage for intuitive interpretation and quantitative

comparison of the models and necessary for the two-stage analysis

employed here.

Four patients of the control group showed a decline of their motor

function regardless of the dynamics of their ERD throughout the

intervention (two squares below the zero line in Figure 2). It has been

suggested that the contingency of brain-activity and visuo-

proprioceptive feedback is key to cortical reorganization and recovery

(Ramos-Murguialday et al., 2013). Noncontingent feedback interfered

with learning and thus could worsen motor impairment

(e.g., reinforcing maladaptive synergies), which could happen with

open-loop control of body actuators (e.g., robotics and electromag-

netic stimulation) or during physiotherapy.

The present results in severe chronic stroke indicate that EEG

oscillatory activity can predict recovery of these patients and links its

progression to functional motor recovery, and therefore mark it as a

promising biotarget for rehabilitation interventions. In heterogeneous

conditions such as stroke, biomarkers could play an important role in

informing treatment pathways (informed patients stratification). Mane

et al have recently shown that the predictive power of EEG-based

markers may be specific to the intervention methodology (Mane et al.,

2019). Studies of oscillatory brain activity during motor imagery and

movement of the paretic hand of moderately to severely affected

chronic stroke patients (Kaiser et al., 2012) as well as subacute

patients of mild to moderate (Platz et al., 2002) and severe impairment

(Pichiorri et al., 2015) support our findings suggesting that the level of

impairment is negatively correlated to the desynchronization of alpha

oscillations on the ipsilesional hemisphere. Moreover, an increase of

ipsilesional ERD was observed after spontaneous recovery in acute

stroke (Tangwiriyasakul et al., 2014) with concomitant lack of ERD on

the healthy hemisphere, which indicates our results might generalize

in acute and sub-acute stroke patients. The sensorimotor ERD magni-

tude has also been shown to correlate with recovery in spinal cord

patients (López-Larraz, Montesano, Gil-Agudo, Minguez, & Oliviero,

2015), supporting the validity of this metric as a viable and easily

obtainable biomarker of clinical progress in patients suffering from

motor impairments and as a measure of brain plasticity (Takemi, Mas-

akado, Liu, & Ushiba, 2015). Moreover, the presence of alpha oscilla-

tions at cortical sites of the sensorimotor systems reflects the intact

balance of thalamic circuits, particularly reticular thalamic recurrent

inhibition of thalamocortical afferents (Steriade, Gloor, Llinas, da

Silva, & Mesulam, 1990). Lack of these oscillations in relaxed wakeful-

ness and sleep thus does not allow the excitatory blockade of inhibi-

tory reticular-thalamic and centro-thalamic circuits at the ipsilesional

thalamo-cortical system. Reappearance of the delicate excitatory-

inhibitory balance in the thalamocortical circuits after stroke in the

course of a learning process directly targeting this oscillatory mecha-

nisms, clearly supports the neurophsyiosological logic of BMI strate-

gies (Birbaumer & Cohen, 2007; Birbaumer, Elbert, Canavan, &

Rockstroh, 1990).

Stinear et al. (2017) proved the performance of their sequential

algorithm PREP2. It is based on clinical, neurophysiological and neuro-

imaging markers. Not only does it correctly predict the clinical out-

come for 75% of patients after stroke, but it also shows that

transcranical magnetic stimulation and clinical tests may replace much

more expensive assessments such as magnetic resonance imaging

without loss of accuracy. EEG-based biomarkers of stroke could serve

the same purpose of improving treatment outcome while reducing

effort. Furthermore, biomarkers of stroke and recovery could also

support stratification of participants for clinical trials and thus improve

statistical power by reducing unexplainable variance. In the present

analysis changes in alpha ERD are only found in the data of the train-

ing, which underlines the proprioceptive and longitudinal aspect.

Using an orthosis providing proprioceptive feedback when recording

data for pre- and postassessments could enable an evaluation. This

would increase the effort of obtaining the data for the screening but

might support patient stratification based on the model presented

here: If a patient shows strong ERD in the assessment the interven-

tion could focus on further strengthening of desynchronization. If the

patient has less ability to generate ERD on the ipsilesional hemisphere

the intervention could focus on bilateral asymmetry. Indeed, all

patients might profit from changing the focus of down-regulating

ipsilesional alpha oscillations to modulating the interhemispheric bal-

ance of alpha oscillations, which might represent a more beneficial

bio-target (i.e., BMI control signal) for EEG-based BMI applications in

stroke rehabilitation.

Our results constitute a building block of more generalizable sta-

tistical models of the process of motor recovery in chronic stroke.

However, it is important to emphasize that models as the one pres-

ented here only show correlations to outcome variables. Despite the

statistical strength of the predictions no causal inference can be made.

Therefore, including further neurophysiological markers and clinical

information would improve the prediction of outcome, informing pro-

cedures and tracking of progress. The present results encourage more

efforts to pool data of stroke rehabilitation procedures like the

ENIGMA Stroke Recovery initiative (http://enigma.ini.usc.edu/ongo-

ing/enigma-stroke-recovery/) to conceive statistical models that will

further improve predictive power of and conclusions drawn from data

such as presented here. Quantitative statistical comparison of perfor-

mance of different markers and different combinations and sequences

of markers could eventually yield the optimal procedure and best out-

come for the individual patient.
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