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Abstract  

Frontotemporal dementia (FTD) is an early onset dementia and is characterized by progressive 

atrophy of the frontal and/or temporal lobes. FTD is highly heritable with mutations in progranulin 

accounting for 5-26% of cases in different populations. Progranulin is involved in endocytosis, secretion 

and lysosomal processes, but its function under physiological and pathological conditions remains to be 

defined. Many FTD-causing nonsense progranulin mutations contain a premature termination codon 

(PTC), thus progranulin haploinsufficiency has been proposed as a major disease mechanism. Currently, 

there is no effective FTD treatment or therapy. 

Aminoglycosides are a class of antibiotics that possess a less known function to induce eukaryotic 

ribosomal readthrough of PTCs to produce a full-length protein. The aminoglycoside-induced 

readthrough strategy has been utilized to treat multiple human diseases caused by PTCs. In this study, we 

tested the only clinically approved readthrough small molecule PTC124 and eleven aminoglycosides in a 

cell culture system on four PTCs responsible for FTD or a related neurodegenerative disease amyotrophic 

lateral sclerosis. We found that the aminoglycosides G418 and gentamicin B1 rescued the expression of 

the progranulin R493X mutation. G418 was more effective than gentamicin B1 (~50% rescue vs <10%), 

and the effect was dose and time-dependent. The proganulin readthrough protein displayed similar 

subcellular localization as the wild-type proganulin protein. These data provide an exciting proof-of-

concept that aminoglycosides or other readthrough-promoting compounds are a therapeutic avenue for 

familial FTD caused by proganulin PTC mutations. 
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Introduction 

Frontotemporal dementia (FTD, also known as frontotemporal lobar dementia or FTLD) is a 

clinically and pathologically heterogeneous group of non-Alzheimer dementias characterized by 

progressive atrophy of the frontal and/or temporal lobes (1). FTD is characterized by gradual impairment 

of cognitive and language skills as well as personality and behavioral changes. It is the second most 

common dementia after Alzheimer’s disease (2). FTD is highly heritable with approximately 35-50% 

familial cases (3, 4). Several genetic mutations have been identified that cause FTD or related disorders, 

including mutations in the C9ORF72 (5), Fused in Sarcoma (FUS) (6), microtubule-associated protein 

tau (MAPT) (3), and progranulin (GRN) genes (3, 5, 7). Pathogenic mutations in progranulin were 

detected in ~10% of FTD cases and ~22% in familial FTD cases (8).  

Human progranulin encodes a 593 amino acid protein involved in many biological processes 

including development (9), wound repair (10), and neuroinflammation (11-13). Progranulin is localized in 

endosomes, Golgi (14) and lysosome, and it likely participates in endocytosis, secretion and lysosomal 

functions (15, 16). However, the molecular function of progranulin under physiological and pathological 

conditions remain to be defined. Many FTD-causing mutations in progranulin are nonsense mutations 

with a premature termination codon (PTC) that result in a truncated protein. Consequently, 

haploinsufficiency of functional progranulin has been proposed as a major contributor to FTD. Knockout 

(17) and knock-in (18) animal models demonstrated that progranulin haploinsufficiency cause FTD 

pathology. Additionally, restoring progranulin levels improved preexisting FTD pathology in progranulin 

deficient mice (19). The homozygous knockout caused lysosomal dysfunction similar to those observed 

in the human lysosomal storage disease neuronal ceroid lipofuscinosis (NCL), which was also partially 

rescued by restoring progranulin levels (19). Together, these results support the notion that restoring 

progranulin expression can be an effective therapeutic approach.  

Aminoglycosides are a class of gram-negative bacilli antibiotics that function by binding to 

bacterial ribosomes and interfering with protein translation (20). A lesser known function of 

aminoglycosides is to induce the eukaryotic protein translation machinery to readthrough PTC mutations 
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and yield a full-length protein. The aminoglycoside-induced readthrough strategy has been utilized in 

multiple diseases caused by PTC mutation, including cystic fibrosis (21, 22), Duchenne muscular 

dystrophy (DMD) (23), ataxia-telangiectsia (24), Rett’s syndrome (25, 26), and most recently junctional 

epidermolysis bullosa (27). Partial restoration of protein expression resulting from PTC readthrough has 

been demonstrated in in vitro assays, cell culture systems, mouse models, and human patients (28, 29). 

Although aminoglycosides have some potential side effects, such as impairment of mitochondrial 

translation in eukaryotic cells, their ability of inducing PTC readthrough has raised the possibility of 

treating human diseases caused by PTCs. Moreover, the new readthrough compound PTC124 (or ataluren) 

displayed beneficial effects in clinical trials (30) and was clinically approved to treat DMD in Europe in 

2014.  

We screened eleven aminoglycosides and PTC124 in a cell culture system to determine whether 

any compound can induce readthrough of progranulin PTC mutations in FTD or a FUS PTC mutation in 

the related neurodegenerative disease amyotrophic lateral sclerosis (ALS). The aminoglycosides 

gentamicin B1 and G418 (also known as geneticin) specifically rescued expression of the R493X 

mutation of progranulin but not other progranulin or FUS PTC mutations. G418 rescued R493X 

expression to nearly 50% of wild-type (WT) proganulin while gentamicin B1 rescued less than 10%. The 

readthrough effect was dose and time-dependent. Strikingly, the readthrough protein displayed similar 

subcellular localization patterns as WT proganulin. These results provide a proof-of-principal that 

aminoglycosides, or other compounds promoting progranulin PTC readthrough, could be an exciting 

therapeutic avenue for familial FTD caused by progranulin nonsense mutations. 

 

Result 

1. G418 and gentamicin induce readthrough of the progranulin R493X nonsense mutation. 

 We constructed WT progranulin and three plasmids each with a single nonsense mutation 

(Q125X, Y229X, or R493X) and a C-terminal Flag tag (Figure 1A). A full-length protein must be 

generated for the FLAG to be detected, thus a truncated progranulin will not be detected by FLAG 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddz280/5663506 by U

niversity of Kentucky Libraries user on 11 January 2020



5 
 

Western blotting. If readthrough of the progranulin PTC occurs, then progranulin will be detectable by 

FLAG Western blotting.  

We chose R493X, which is the most common nonsense mutation in progranulin-mediated 

familial FTD (8, 31), to test whether aminoglycosides could induce readthrough. N2A cells were 

transfected with the indicated plasmid, allowed to recover for 6 hours, and fresh media containing the 

aminoglycoside at the indicated concentrations was added to the cells for 24 hours. Cells were lysed and 

analyzed by Western blotting to determine the amount of progranulin protein. Among eleven 

commercially available aminoglycosides and PTC124, only gentamicin and G418 induced readthrough of 

R493X as evidenced by positive bands in FLAG Western blot (Figure 1B). The other nine 

aminoglycosides (kanamycin, streptomycin, amikacin, tobramycin, apramycin, neomycin B, netilmicin, 

paromomycin and sisomicin) and PTC124 did not have any detectable readthrough effect as no FLAG-

positive bands were observed. No signal was detected in lysate from cells transfected with R493X in the 

absence of any compounds, serving as a negative control. The FLAG-tagged WT progranulin was 

included as a positive control to define the expected progranulin-FLAG amount. In addition, Western 

analysis using a progranulin antibody that detects full-length protein and the R493X protein also 

demonstrated the expression of full-length progranulin from R493X plasmid in the presence of 

gentamicin or G418 (Figure 1B). It is noted that G418 induced a stronger effect than gentamicin.  

 We next tested whether G418 or gentamicin could induce readthrough of two additional 

progranulin nonsense mutations (Q125X or Y229X) and a FUS nonsense mutation R495X that has been 

identified in juvenile patients of the related neurodegenerative disease ALS. Interestingly, G418 did not 

have any readthrough effect on the progranulin Q125X or Y229X mutation as no full-length readthrough 

protein was detected by the FLAG antibody (Figure 1C). G418 did not induce readthrough of the FUS 

R495X mutation either since the full-length protein was not observed (Figure 1D). Similarly, gentamicin 

did not induce readthrough of Q125X, Y229X, or R495X either (Supplemental Figure S1). The above 

data collectively support that G418 and gentamicin specifically induced readthrough of the progranulin 
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R493X mutation. Thus, we focused on these two compounds and the R493X mutation in the rest of the 

study.  

 

2. G418 and gentimicin induce the readthrough of progranulin R493X in a dose- and time-dependent 

manner. 

We tested a series of G418 and gentamicin concentrations to examine the dose response of the 

readthrough effect. N2A cells were transfected with the R493X progranulin plasmid, allowed to recover 

for 6 hours, fresh media containing either G418 or gentamicin at 100, 500, 1000 or 2000 µg/ml was added 

to cells for 24 hours. Cells were then lysed and lysates analyzed by Western blotting. The readthrough 

was dose-dependent with the highest progranulin-FLAG signal corresponding to the highest concentration 

of compound (Figure 2A). Band intensity of the FLAG-tagged readthrough proteins were quantified as a 

percentage of the WT progranulin (the last lane in Figure 2A). A maximum readthrough of 33.8% was 

observed when cells expressing R493X progranulin were treated with 2000 µg/ml of G418 (Figure 2B). 

While G418 yielded >30% readthrough, the maximal concentration of gentamicin produced 8.6% 

readthrough.  

We next examined the readthrough effect of G418 and gentamicin with respect to time. In this 

experiment, 1000 µg/ml of G418 or 2000 µg/ml of gentamicin was added to cells for the indicated 

number of hours before cells were harvested for analysis. Readthrough of full-length progranulin was 

detected by both FLAG and the progranulin antibody after 12 hours of G418 treatment. After 12 hours of 

G418 treatment, the readthrough was 5% of the WT control and it increased up to 47.3% after 48 hours 

(Figure 3A-B). Treatment with gentamicin yielded a similar time-dependent readthrough though the 

maximum readthrough was less than 10% (Figure 3C). 

 

3. G418-induced readthrough protein displays similar subcellular localization as WT progranulin. 

Aminoglycoside-induced readthrough is predicted to introduce a near-cognate amino acid into the 

PTC site (32), thus it is necessary to evaluate whether the readthrough protein exhibits similar function as 
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WT progranulin. Since the function of progranulin is complex and there is no established progranulin 

activity assay, we examined the subcellular localization of the readthrough progranulin to determine if it 

is similar as WT. We co-transfected both N-terminal HA-tagged and C-terminal FLAG-tagged 

progranulin plasmids (Figure 4A) into N2A cells and determined their subcellular localization using 

immunofluorescence microscopy. Confocal images demonstrate that the HA-tagged and FLAG-tagged 

WT progranulin were largely co-localized (Figure 4B, top row). Analysis using NIS-Elements AR 

software (Nikon, v3.2) demonstrates a Mander's overlap coefficient (MOC) of 0.94, meaning the sum of 

the intensities of red pixels that also have green component divided by the total sum of red intensities is 

94% (33). Conversely, when HA-WT progranulin was co-expressed with R493X-progranulin-FLAG in 

the absence of G418, there was no FLAG staining (Figure 4B, middle row). Strikingly, the readthrough 

protein of R493X-progranulin-FLAG in the presence of G418 yielded robust FLAG signal that co-

localized with HA-tagged WT progranulin (Figure 4B, bottom row). The degree of co-localization as 

assessed by MOC is 0.97, comparable to that of the WT controls. 

Progranulin is reported to play a role in endocytosis, secretion, and lysosomal pathways (34). 

Therefore, we examined the co-localization of R493X-progranulin readthrough protein with the lysosome 

marker Lamp1. Transiently expressed WT progranulin (Figure 4C, top row, MOC of 0.59) and the G418-

induced R493X-progranulin readthrough protein (Figure 4C, third row, MOC of 0.67) shared a similar 

pattern, i.e. both were partially co-localized with Lamp1. As a positive control, endogenous progranulin 

was examined in N2A cells and observed to largely co-localize with Lamp1 (Figure 4C, bottom row, 

MOC of 0.97). There was no FLAG signal from cells transfected with R493X-progranulin in the absence 

of G418 (Figure 4C, second row), serving as a negative control. Similarly, WT progranulin (Figure 4D, 

top row, MOC of 0.63) and the G418-induced R493X readthrough protein (Figure 4D, third row, MOC of 

0.53) were partially co-localized with the Golgi apparatus marker GM130. As a positive control, the 

endogenous progranulin was also partially co-localized with GM130 (Figure 4D, bottom row, MOC of 

0.87). As a negative control, there was no FLAG signal in the absence of G418 (Figure 4D, second row). 

These results demonstrate that the G418-induced readthrough protein shared a similar sub-cellular 
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localization as the overexpressed WT progranulin in N2A cells, i.e. partial co-localization with lysosomal 

and Golgi markers. The endogenous progranulin showed a higher degree of co-localization with Lamp1 

and GM130. The results suggest that the induced readthrough protein possesses a similar function as WT 

progranulin. 

 

4. G418 treatment stabilizes full-length progranulin mRNA in cells.  

In addition to inducing readthrough, it has been reported that aminoglycosides can also stabilize 

mRNAs, which could enhance the readthrough effect (35, 36). Therefore, we employed qPCR to 

determine the mRNA levels in the absence and presence of G418. First, we observed a significant 

decrease of the full-length mRNA containing R493X PTC mutation as compared to WT progranulin, 

indicating that the R493X mutant mRNA was turned over more rapidly. In the presence of different doses 

of G418, the full-length mRNA containing R493X mutation increased up to two-fold as compared to that 

in the absence of G418 (Figure 5), suggesting that G418 indeed stabilized R493X mutant mRNA. These 

results indicate that the higher level of full-length progranulin mRNA in G418 treated cells may also 

contribute to the G418-induced readthrough. 

 

Discussion 

We examined whether aminoglycosides can induce readthrough of nonsense mutations in 

progranulin and FUS, two genes implicated in two related neurodegenerative diseases. R493X, Y229X 

and Q125X mutations in progranulin have been reported in familial FTD. R495X mutation has been 

found in juvenile familial ALS patients (37). Among 12 compounds tested (11 aminoglycosides and 

PTC124), we identified two aminoglycosides, G418 and gentamicin, that specifically induced the 

readthrough of R493X progranulin (Figure 1) in a dose- and time-dependent manner (Figures 2-3). G418 

displayed dramatically better efficacy than gentamicin with respect to both time and dose. Importantly, 

the induced readthrough protein shared similar lysosome and Golgi apparatus localization as the WT 

progranulin (Figure 4).  
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Among 14 nonsense progranulin mutations reported to be associated with FTD, R493X is the 

most frequent, accounting for ~20% of progranulin-mediated FTD cases (8, 31, 38). In contrast, Q125X 

and Y229X are rare (39, 40). ALS and FTD are highly related as they share a wide spectrum of clinical, 

pathological and genetic features (41), thus we included a FUS nonsense mutation implicated in ALS in 

this study. FUS R495X is a particularly severe mutation that leads to clinical manifestation in juvenile 

ALS patients (37). Among the four PTCs tested, readthrough was observed only for progranulin 493X 

upon G418 or gentamicin treatment whereas no readthrough was detected for Q125X or Y229X 

progranulin or R495X FUS (Figure 1). Previous studies have demonstrated that readthrough is mainly 

influenced by two factors: the nucleotide sequence of the PTC and the flanking nucleotides (42, 43). It is 

reported that the difficulty of reading-through a PTC increases from TGA to TAG to TAA (44). In 

addition, better readthrough efficiency was observed with a C or T at the upstream -1 position and C at 

the downstream +4 position (42). The sequences of these four nonsense mutations are compiled in Table 

1. The R493X mutation in human FTD patients has TGA as a PTC along with T at both upstream -1 nt 

and downstream +4 nt positions (Table 1). The combination of a favorable TGA PTC and a T at the -1 

position are possible reasons that G418 and gentamicin induced R493X readthrough. The PTC for Y229X 

is TAA, which is the most difficult stop codon for readthrough. Indeed, we did not observe any 

readthrough product from progranulin Y229X by either G418 or gentamicin. The PTC for Q125X is TAG 

and the flanking sequence is C at the -1 and T at +4 position, respectively. The TAG PTC is less optimal, 

C at -1 position is favorable but T at +4 position is less favorable. Consequently no readthrough was 

observed for Q125X. Similarly in the case of R495X FUS, the TAG PTC is less favorable, C at -1 

position is favorable, and G at +4 position is less favorable. These are likely factors explaining no 

detectable readthrough for R495X FUS.  

            Aminoglycosides have been reported to exhibit readthrough effects on different PTC mutations in 

multiple genes including TP53, cystic fibrosis transmembrane conductance regulator (CFTR), DMD, and 

survival motor neuron (SMN1 and SMN2) (45). Gentamicin and G418 are the two most commonly used 

aminoglycosides in other studies, with G418 promoting readthrough at lower concentrations and with 
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higher efficiencies than gentamicin and other aminoglycosides such as amikacin, paromomycin and 

tobramycin (45). In this study, G418 also exhibited higher efficacy (~47.3% after 48 hours) on 

progranulin R493X mutation than gentamicin (no more than 10%) (Figure 1B, 2 and 3). The nearly 50% 

readthrough efficiency of R493X by G418 was better than the reported ~10% readthrough of the 

dystrophin PTC by G418 (23) and ~20-35% readthrough of the CFTR PTC by G418 (21, 22), and 

comparable to ~30-50% readthrough of the LAMB3 PTC by gentamicin (27). Conversely, nine other 

aminoglycosides or PTC124 showed no detectable effect (Figure 3). It is suggested that the interactions of 

aminoglycosides with 80S eukaryotic ribosomes are critical for the readthrough effect. Aminoglycoside-

ribosome interactions allows errors in tRNA selection and consequentially leads to the readthrough of 

PTCs. (20). In this study, among 12 compounds we tested (eleven different aminoglycosides and 

PTC124), only gentamicin and G418 showed readthrough effect. It is likely that the structure of these 

aminoglyucosides differ in a way to affect their binding modes to eukaryotic ribosomes, thus producing 

different readthrough efficiency. It is noted that PTC124 is not an aminoglycoside but has similar effect 

on ribosome to induce readthrough of PTCs (46). PTC124 is the only readthrough compound approved 

clinically to treat DMD in Europe (47). However PTC124 did not have any detectable effect on R493X 

progranulin. The results provide initial insights into the structure-activity relationship and will help future 

studies to design and develop novel compounds with better efficacy and specificity.  

          The aminoglycoside-induced readthrough inserts a near-cognate amino acid at the PTC position. It 

was reported that Gln, Tyr or Lys was inserted at UAA and UAG and that Trp, Arg or Cys was inserted at 

UGA (32). The frequency of insertion of individual amino acid was distinct for specific PTC codons and 

readthrough-inducing agents (32). Because of the unknown amino acid at the R493 position, it was 

necessary to examine whether the readthrough protein functions the same as WT progranulin.   

 Multiple studies reported that progranulin plays a role in lysosome (19, 48, 49). It has been 

reported to regulate the maturation of lysosomal hydrolases (50) and homozygous progranulin mutation 

leads to a lysosomal storage disease NCL (15, 51). In addition, progranulin itself is processed into 

granulin peptides (52, 53). Progranulin has been reported to be partially co-localized with lysosome 
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markers in multiple studies (18, 52). Indeed, we found that both endogenous and overexpressed WT 

progranulin co-localized with lysosome marker Lamp1 (Figure 4C). More importantly, the G418-induced 

readthrough protein from R493X was also partially co-localized with Lamp1, in a similar fashion as WT 

progranulin (Figure 4C). In addition, the R493X readthrough protein shared a similar pattern with WT 

progranulin as both were partially co-localized with the Golgi apparatus marker GM130 (Figure 4D). It is 

necessary to place an epitope tag at the C-terminus of the R493X mutant to allow specific detection of the 

G418-induced readthrough protein in confocal imaging studies as evidenced by the lack of FLAG signals 

in the absence of G418 (Figures 4B-4D). Progranulin can be targeted to lysosomes by two independent 

mechanisms that are mediated by sortilin (34) and prosaposin (54, 55), respectively. It is noted that the C-

terminal tagging may interfere with the sortilin-dependent trafficking since its C-terminus is critical to its 

interaction with sortilin (56). The partial co-localization of the FLAG-tagged WT progranulin and G418-

induced readthrough protein with the lysosomal marker Lamp1 (Figure 4C) is consistent with the 

previous studies. More importantly, the subcellular localization of the G418-induced readthrough protein 

is highly similar to that of WT progranulin (Figure 4). Thus, we suggest that the G418-induced 

readthrough protein likely functions similarly as WT progranulin. A definitive assay is needed in the 

future to determine the readthrough protein truly functions as the WT protein.  

Multiple studies suggest that, in addition to the readthrough effect, G418 could also stabilize 

mRNA by antagonizing nonsense-mediated decay (NMD) in mammalian cells (22, 35, 36). Treatment 

with G418 treatment increased the level of Xeroderma pigmentosum complementation group C (XPC) 

mRNA containing nonsense mutations to about 20%-70% of normal level, which exerts a smaller but 

similar effect as NMD inhibitor cycloheximade (57). Here, we also observed that the mRNA level of 

R493X increased from ~30% of WT progranulin in the absence of G418 to ~60% with G418 treatment 

(Figure 5). We suspect that the binding of G418 to the eukaryotic ribosome, which triggers the translation 

machinery to continue translation until the real stop codon is reached, would be an effective way to 

avoiding the activation of NMD. While the absence of NMD activation would in turn make it possible for 
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cells to maintain a higher level of PTC-containing mRNA, leading to a higher efficiency in readthrough. 

It is noted that both mechanisms can be leveraged in future translational studies.  

 In summary, we discovered that gentamicin and G418 can induce readthrough of progranulin 

493X mutation to produce full-length progranulin protein in an in vitro cell culture model. Our study 

provides a proof-of-principle that gentamicin and G418 hold therapeutic potential for FTD patients 

harboring progranulin nonsense mutations. Future studies include the development of new analogs of 

gentamicin and G418 with higher readthrough efficiency and lower toxicity. We also plan future studies 

to test whether G418 can induce readthrough, correct the haploinsufficiency, and mitigate the 

pathological phenotype in progranulin-mediated FTD animal models such as R493X knock-in mice.  

 

Material and Methods 

Plasmids 

The WT progranulin plasmid with a C-terminal FLAG tag (pC-Flag-PGRN-WT) was purchased 

from Sino Biological Inc. (Cat.HG10826-CF). Three nonsense mutations, Q125X, R229X and R493X, 

were generated using Q5 site-directed mutagenesis kit (New England Biolabs Inc., Cat.E0554S) to 

introduce a single nucleotide substitution in the WT progranulin gene (Figure 1A). The WT progranulin 

with an N-terminal HA tag (HA-PGRN) was also generated by subcloning using the p3xHA vector (58) 

and HindIII and BamHI sites. 

 

Antibodies 

The primary antibodies for Western analysis and immunofluorescence microscopy were mouse 

anti-Flag (Sigma, F3165), rabbit anti-Actin (Cell Signaling Technology, Cat. 8457), mouse anti-Flag 

(Sigma, A8592), rabbit anti-PGRN (Novus, NAP1-87324), goat anti-PGRN (R&D, AF2420), sheep anti-

progranulin (R&D, AF2557-SP), rabbit anti-HA (Santa Cruz, sc-805), mouse anti-HA (Santa Cruz, sc-

7392), rabbit anti-Lamp1 (Cell Signaling Technology, 9091S), goat anti-Lamp1 (R&D, AF4320), rabbit 

anti-GM130 (Cell Signaling Technology, 12480P) and rabbit anti GM130 (Novus, NBP2-53420SS). The 
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secondary antibodies were Alexa Fluor 488 donkey anti-mouse (Life Technologies, A-21202), Alexa 

Fluor 568 donkey anti-rabbit (Life Technologies, A-10042), and Alexa Fluor 568 donkey anti-goat (Life 

Technologies, A-11057).  

 

Cell culture, transfection and drug treatment 

N2A cells were maintained in DMEM (Sigma, D5796) supplemented with 10% fetal bovine 

serum, 100 unit/mL penicillin, and 100 μg/mL streptomycin. Transient transfection was performed using 

Lipofectamine 2000 (Invitrogen, Life Technologies, Grand Island, NY, USA). 2 µg of total plasmid was 

used for each well of 6-well plate unless otherwise described. After 6 hours transfection, fresh medium 

containing aminoglycoside at indicated concentrations was added to cells. Cells were applied to following 

experiments after exposed to drugs at certain time points. All cells were kept in a humidified incubator at 

37 °C under 5% CO2/95 % air. 

Eleven aminoglycosides were tested in this study: G418 (Sigma-Aldrich, Cat.4727878001), 

Gentimicin (Sigma-Aldrich, Cat.G1397), Kanamycin (Gold Biotechnology, Cat.K-120-25), Streptomycin 

(Sigma-Aldrich, Cat.S9137), Amikacin (Alta Aesar, Cat.J67496), Tobramycin (Alta Aesar, Cat.J62995), 

Apramycin (Sigma-Aldrich, Cat.A2024), Neomycin B (Sigma-Aldrich, Cat.N6386), Netilmicin (Alta 

Aesar, Cat.J66302), Paromomycin (Alta Aesar, Cat.J61274), Sisomicin (Sigma-Aldrich, Cat.S7796). 

PTC124 was purchased from MedChemExpress (Cat. 775304-57-9).  

 

Western Blots 

Cells were lysed in RIPA buffer (Millipore Sigma, Cat.20-188), centrifuged at 1000 g for 10 mins 

to remove debris, and then subjected to SDS electrophoresis. After electrophoresis, gels were proceeded 

for transferring onto nitrocellulose membranes. The membranes were then blocked with 5% milk in 

TBST (100 mM TRIS-HCl, pH7.5, 0.9% NaCl, 0.1% Tween-20) and incubated with indicated primary 

antiboides in the same solution. All immunoblotting images were acquired using a BioRad ChemiDoc MP 

system. 
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Immunofluorescence Microscopy 

Cells were seeded on gelatin coated glass coverslips and transfected with progranulin constructs. Twenty-

four hours later with or without drug treatments, cells were rinsed with 1× PBS, fixed with 4 % 

formaldehyde in 1× PBS, and permeabilized with 0.25 % Triton-X100 in 1× PBS. The samples were 

mounted by applying Vectashield Mounting Medium (Vector Laboratories) and visualized using a Nikon 

A1 confocal microscope with a 60× objective. Mander’s overlap coefficients (MOE) were calculated 

using NIS-Elements AR (Nikon, v3.2, 64 bit) to assess protein colocalization. 

 

Quantitative PCR 

Total RNA was extracted with Aurum total RNA mini kit (BioRad, Cat.732-6820), and cDNA 

was generated with SuperScript III first-strand synthesis system for RT-PCR (Invitrogen, Cat. 18080-051). 

Quantitive PCR was performed using SYBR Green (ThermoScientific, Cat.4309155). Beta-actin primers: 

forward 5’-AGA GCT ATG AGC TGC CTG AC-3’; reverse 5’-GGA TGT CAA CGT CAC ACT TC-3’. 

Primers used for full length progranulin mRNA (including flag encoding sequence) is: forward 5’-CGT 

GAA GGC TTG ATC CTG CGA GA-3’, reverse 5’-CTT ATC GTC GTC ATC CTT GTA ATC-3’. 

Annealing temperature for both beta-actin and progranulin qPCR reaction were 60 °C. 
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Figure Legends 

Figure 1. G418 and gentamicin induced readthrough of progranulin PTC mutation R493X. (A) 

Schematic diagram of WT progranulin and PTC mutations examined in this study. Each construct has a 

C-terminal FLAG tag. (B) Examination of potential readthrough effect of 11 aminoglycosides and 

PTC124 on R493X proganulin. N2A cells were transfected with WT or R493X proganulin, allowed to 

recover, and treated with two different concentrations of each compound for 24 hours. Cell lysates were 

generated, separated by SDS-PAGE, and analyzed by Western analysis using anti-FLAG (top), anti-

progranulin (middle), and anti-actin (lower) antibodies. Among 12 compounds tested, only G418 and 

gentamicin induced FLAG bands, demonstrating positive readthrough effect. WT progranulin was 

included as a positive control. No transfection or no compound treatment were included as negative 

controls. For the anti-progranulin blot, the lower band is the R493X truncated protein and the higher band 

is full-length progranulin. (C) G418 had no readthrough effect on two other FTD mutations Q125X and 

Y229X. No full-length readthrough protein was observed in the FLAG blot. In the anti-progranulin blot, 

the higher band is WT progranulin and the lower band is the Q229Y truncated protein. The Q125X 

truncated protein was visible with longer exposure. (D) Examination of G418 on the R495X mutation of 

FUS responsible for familial ALS. WT or R495X FUS was tagged with FLAG at the N-terminus. N2A 

cells were transfected with WT or R495X FUS, allowed to recover, and treated with three concentrations 

of G418 for 24 hours. Cells were harvested and cell lysates were subjected to SDS-PAGE and Western 

analysis using anti-FLAG (top) and anti-actin (lower) antibodies. The slightly higher band is WT FUS 

and the lower band is R495X truncated FUS. G418 did not induce readthrough of R495X FUS.  
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Figure 2. G418 and gentamicin induced dose-dependent R493X progranulin readthrough. (A) 

Gentimicin and G418 induced readthrough of progranulin R493X in a dose-dependent manner. N2A cells 

were transfected with WT or R493X proganulin, allowed to recover, and treated with increasing 

concentrations of G418 or gentamicin for 24 hours. Cell lysates were generated, separated by SDS-PAGE, 

and analyzed by Western analysis using anti-FLAG (top), anti-progranulin (middle), and anti-actin (lower) 

antibodies. For the anti-progranulin blot, the lower band is the R493X truncated protein and the higher 

band is full-length progranulin. (B) Band intensities were quantified to determine the dose response of 

readthrough efficiency. All FLAG bands were normalized against corresponding actin bands and the 

individual readthrough band was subsequently compared to the WT progranulin (the last lane in A). *, 

p<0.1; **, p<0.01; ***, p<0.001. 
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Figure 3. Time dependent readthrough effect by gentamicin and G418 on progranulin R493X. (A) 

G418 induced readthrough of R493X mutation of progranulin in a time-dependent manner. Cells were 

treated as in Figure 1 and lysates analyzed by Western analysis using an anti-FLAG (top blot), anti-

progranulin (middle blots), and anti-actin (lower blot) antibodies. The two middle blots are a short and 

long exposure of the anti-progranulin analysis.  (B) Band intensities were quantified to determine 

readthrough efficiency of the time-course. All FLAG bands were normalized against corresponding actin 

bands and the individual readthrough band was compared to the WT progranulin (the last lane in A). **, 

p<0.01; ***, p<0.001. (C) The time-course of gentamicin-induced readthrough effect on R493X. 
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Figure 4. Subcellular localization of the G418-induced R493X readthrough and WT progranulin. 

(A) A schematic of N- and C-terminal tagged WT progranulin and expected proteins in the absence and 

presence of G418. All G418 treatment was 1000 µg/ml for 24 hours in this figure. (B) Top: The N-

terminal HA-tagged and C-terminal FLAG-tagged WT progranulin are largely co-localized in N2A cells. 

Middle: N2A cells expressing HA-tagged WT progranulin and FLAG-tagged R493X-progranulin in the 

absence of G418. No FLAG signal was observed in the absence of G418. Bottom: N2A cells expressing 

HA-tagged WT progranulin and FLAG-tagged R493X-progranulin in the presence of G418. The FLAG-

tagged R493X readthrough protein co-localizes with the HA-tagged WT progranulin. A histogram shows 

green (FLAG) and red (HA) signals along the cross section line drawn in the zoom view for each row. 

The concurrence of green and red signals demonstrates the co-localization of FLAG- and HA-tagged 

proteins. (C) The overexpressed WT progranulin (top), the G418-induced readthrough full-length protein 

(third row), and the endogenous progranulin (bottom) are partially co-localized with lysosome marker 

Lamp1. No FLAG signal was observed in the absence of G418 (second row). (D) The overexpressed WT 

progranulin (top), the G418-induced readthrough full-length protein (third row), and the endogenous 

progranulin (bottom) are partially co-localized with Golgi marker GM130. No FLAG signal was observed 

in the absence of G418 (second row). Scale bars, 20 µm. 
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Figure 5. mRNAs levels of WT and R493X progranulin in the absence and presence of G418. N2A 

cells were exposed to G418 treatment for 24 hours with indicated concentrations after transfection. 

Primers specific for full length PGRN mRNA were used for qPCR. All results were normalized to full 

length WT progranulin in non-treated cells. N.S.: no significance. **, p<0.01; ***, p<0.001. 
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Table 1. PTC and flanking sequences of the nonsense mutations. 

 

 WT sequence PTC sequence Flanking sequence 

           -1   +4 

R493X progranulin CGA TGA CGTGAAGGCTTGATCCTGCGAGA 

Y229X progranulin TAT TAA CAGTGGGAAGTAAGGCTGCTGCC 

Q125X progranulin CAG TAG GGGTGCCATCTAGTGCCCTGATA 

R495X FUS CGA TGA TGGAGGCTTCTAGGGGGGCCGGG 

Favorable factors  TGA>TAG>TAA     C or T @-1 

         C @+4 
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Abbreviations 

FTD: frontotemporal dementia 

PTC: premature termination codon 

ALS: amyotrophic lateral sclerosis 

NCL: neuronal ceroid lipofuscinosis 

DMD: Duchenne muscular dystrophy 

NMD: nonsense-mediated decay 
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