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ABSTRACT OF DISSERTATION

Multi-Scale Computational Studies of Calcium (Ca2+) Signaling

Ca2+ is an important messenger that affects almost all cellular processes. Ca2+

signaling involves events that happen at various time-scales such as Ca2+

diffusion, trans-membrane Ca2+transport and Ca2+-mediated protein-protein
interactions. In this work, we utilized multi-scale computational methods
to quantitatively characterize Ca2+ diffusion efficiency, Ca2+ binding thermo-
dynamics and molecular bases of Ca2+-dependent protein-protein interaction.
Specifically, we studied 1) the electrokinetic transport of Ca2+ in confined sub-
µm geometry with complicated surfacial properties. We characterized the
effective diffusion constant of Ca2+ in a cell-like environment, which helps to
understand the spacial distribution of cytoplasmic Ca2+. 2) the association
kinetics and activation mechanism of the protein phosphatase calcineurin (CaN)
by its activator calmodulin (CaM) in the presence of Ca2+. We found that
the association between CaM and CaN peptide is diffusion-limited and the
rate could be tuned by charge density/distribution of CaN peptite. Moreover,
we proposed an updated CaM/CaN interaction model in which a secondary
interaction between CaN’s distal helix motif and CaM was highlighted. 3) the
roles of Mg2+ and K+ in the active transport of Ca2+ by sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) pump. We found that Mg2+ most likely act
as inhibitor while K+ as agonist in SERCA’s transport process of Ca2+. Results
reported in this work shed insights into various aspects of Ca2+ signaling from
molecular to cellular level.
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Chapter 1 Introduction

1.1 Ca2+ Signaling is Important.

Ca2+ is an ubiquitous intracellular secondary messenger that impacts almost
all cellular processes.1 To name a few, in the heart, the excitation-contraction
coupling of heart muscle is tightly related to cytoplasm Ca2+ concentration
oscillating.2 In the brain, the Ca2+ influx to neurons through different Ca2+-
permeable channels can differentially regulate gene expression.3 In the lymp-
hocytes, the immune response is triggered by Ca2+ flux into the cytoplasm
from the extracellular space.4 Severe diseases such as cardiac arrhythmias
and Alzheimer’s disease (AD) are heavily associated with Ca2+ homeostasis
disruption and Ca2+ signaling dysregulation.5,6 Thus it is of great importance
to understand Ca2+ signaling mechanisms.

1.2 Ca2+ Signaling is Complicated

The task of deciphering Ca2+ signaling is challenging because of the complexity
of Ca2+ signaling network. The complexity is mainly manifested in the following
two aspects:

Multiple paths of Ca2+ uptake and release. The spatial and temporal
distribution of Ca2+ is complicated. Specifically, Ca2+ ions are heterogeneously
distributed in cell compartments and its concentration changes are precisely and
timely controlled through various exchangers/pumps/channels (Fig. 1.1(a)). In
the resting cell, the Ca2+ concentration in cytoplasm is ∼100 nM.7 This value
is ∼20,000 fold lower than the extracellular concentration.8 Upon activation,
the membrane-embedded voltage-gated Ca2+ channels allow extracellular Ca2+

flee into cytoplasm rapidly at the speed of ∼1 million Ca2+ ions per second per
channel.1 Subsequently, cytoplasmic Ca2+s are sequestered back into sarco/endo-
plasmic (SR/ER) at the rate about 10 Ca2+ ions per second by sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) pump.9 There also exists other Ca2+ chan-
nels and exchangers including Na+/Ca2+ exchanger (NCX)10 and ryanodine
receptors (RyRs).11 These exquisite Ca2+ uptake/release paths maintain a low
and heterogeneous intercellular Ca2+ concentration, yet allowing it to change
responsively upon stimulation. This exquisiteness, however, challenges the
modeling of cytosolic Ca2+ concentration as Ca2+ fluxes through all these paths
are strongly coupled in space and time.12,13

1



Figure 1.1: (a) Ca2+ concentrations in cellular compartments and the main
pumps/exchangers that maintain such concentrations. Image is adapted from
ref [1]. (b) Detailed Ca2+-triggered protein-protein interaction (PPI)s in cardiac
cell. Image is adapted from ref[14].

Ca2+ signaling engages countless protein-protein interactions. These
inter-actions are initiated by various Ca2+ binding proteins (CBP)s. CBPs
serve as interpreters that translate signaling information encoded in Ca2+

concentrations to altered cell functions. CBPs are capable of binding Ca2+

with a wide range of affinities, ranging from nM to mM.1 Although many
bear the commonly shared EF-hand (helix-loop-helix) Ca2+ binding motif,15

CBPs are generally divided into two categories, depending on if they undergo
significant conformational changes upon Ca2+ binding.8 The first group are
ones that do not undergo significant changes after binding Ca2+, resulting
in no protein-protein interaction (PPI)s triggered. The typical examples are
parvalbumin (PV) and calbindin, which are also named as "pure" Ca2+ buffers.16

The second group will experience large conformational changes to bind target
peptide/proteins after Ca2+ binding, including the S100 family of proteins17

and calmodulin (CaM) that regulates ∼ 300 targets.18 The PPI cascade initiated
by this group is complicated. For example, in the cardiac cell (Fig. 1.1(b)), Ca2+-
saturated CaM triggers the dephory-sphoration of nuclear factor of activated
T-cells (NFAT) via calcineurin (CaN). Following that, NFAT was translocated
into nuclueus and exerts regulatory effects on various genes transcription in T-
cells.14,19 Additionally, the CaM-dependent kinase (CaMK) family, which has
been reported to be involved in a wide range of cancer-related process20 and
cardiac remodeling,21 is also activated by Ca2+ signaling. The large number
of PPIs involved in Ca2+ signaling implies a thorough description of Ca2+

signaling mechanism is non-trivial.

1.3 Understanding Three Prototypical Aspects of Ca2+ Signaling

Toward a quantitative description of Ca2+ signaling, we focused on three
prototypical phenomena: cellular Ca2+ diffusion, Ca2+-mediated protein-protein

2



interaction (PPI) and Ca2+ active transport through the sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) pump (Fig. 1.2).

Celluar Ca2+ diffusion. Ca2+ signaling efficiency is in part determined by
Ca2+ diffusion rate. This is because the signaling transduction requires Ca2+

ion to diffuse from where it is stored (SR/ER) to where it is utilized by proteins
controlling Ca2+-dependent signaling processes. In cellular environment, the
compartmentalized Ca2+ concentration signifes the importance of Ca2+ diffusion
in nanodomains.22 Under such scale, Ca2+ diffusion is influenced by intracellular
crowders such as proteins, nucleic acids and membranes that can have non-
neutral surfaces.23,24 Ca2+ ion diffusion is also coupled with the co-/counter-
transport of other cellular ions (mostly K+, Na+, Mg2+ and Cl−). In addition,
buffer proteins can significantly change Ca2+ diffusion efficiency as they selectiv-
ely bind Ca2+.16 To understand how Ca2+ diffusion is influenced by the
interplay of these factors, we simulated Ca2+ diffusion in mesoporous silica
channels that have comparable scales as cellular nanodomains.25 Further the
controllable surface chemical properties of silica material makes it a good
system to study cellular Ca2+ diffusion. Specifically, the surfaces of silica
materials are covered with functional silanol (Si-OH) groups.26 Si-OH has been
experimentally shown to have the protonated state (Si-OH+

2 ) and deprotonated
state (Si-O−)26 and the latter has the ability to bind Ca2+.27 By tuning Si-OH
group density and equilibrium constants of the (de)protonation/Ca2+ binding
reactions, precise surface charge densities and degree of Ca2+ adsorption could
be achieved. The effects of crowders charge and Ca2+ adsorption on Ca2+

diffusion could be rigorously investigated in this model, which could deepen
our understanding of Ca2+ diffusion in cellular environment.

3



Figure 1.2: Overall view of specific projects in the thesis. In project 1 (Chapter 2),
the diffusion of Ca2+ through charged crowders in confined cellular geometry
was studied via partial differential equation (PDE)-based continuum model.
In projects 2 and 3 (Chapter 3 and 4), the molecular basis of Ca2+ dependent
Calcineurin (CaN)/Calmodulin (CaM) interaction was studied via molecular
dynamics (MD), Brownian dynamic (BD) simulations and Markov sate model
(MSM). Specifically, the binding rate constants as well as the interaction model
between calcineurin (CaN) and CaM was studied. In project 4 (Chapter 5), the
binding affinities of Ca2+, Mg2+ and K+ in sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA) were studied via molecular dynamics (MD) and mean sphere
approximation (MSA). The roles of Mg2+ and K+ in the SERCA’s transport cycle
of Ca2+ were also investigated.

Ca2+-mediated PPI interaction. Additionally, we studied the activation
mechanism of the protein phosphatase calcineurin (CaN) by its activator calmo-
dulin (CaM) in the presence of Ca2+. The significance of this PPI are two folds: 1)
CaM and CaN are key nodes in Ca2+ signaling network that control neural and
cardiac developments and can be detrimentally activated under pathological
stimuli. CaM is a highly conserved Ca2+ sensor across all mammalian species28

that binds as many as ∼300 targets.18 Meanwhile, CaN is a phosphatase that
plays an important role in various processes such as T-cell activation and cardiac
development.29,30 2) The CaN/CaM pair provides us an appropriate model to
study intrinsically disordered peptide (IDP)-involved PPIs, which is a growing
interest due to the prevalence of IDP-mediated signaling transduction.31 The
regulatory domain of CaN, at which CaM binds, is intrinsically disordered.32–35

IDPs are proteins that lack of well-defined secondary structures at physiological
conditions. Many IDPs gain structural stability after binding to their globular
protein partners.31,36–38
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We specifically evaluated the binding rate constant of CaN’s intrinsically
disordered regulatory domain to CaM. The binding rate plays an important role
in cell function as many biochemical reactions must occur rapidly sometimes
in a diffusion-limited regime.39 While progress has been made on predicting
the association rates of structured proteins,40 characterizing the association
process of IDP is challenging because of the structural flexibility.41 Part of the
complexity is the dual role of electrostatics exerted in the association process. On
one hand, intramolecular electrostatic interactions govern IDPs’ conformational
ensemble compactness,42,43 which correlates with the accessibility of binding
site to protein partners. On the other hand, intermolecular long-range electrostatic
interactions drive protein-protein association.44 We explored this dual role
of electrostatics in the CaN/CaM PPI model. The role on conformational
properties was investigated by performing extensive molecular dynamics (MD)
on CaN regulatory domain constructs bearing different charge densities. The
role on driving association was investigated via Brownian dynamics (BD) that
simulate the diffusional encounter of representative CaN structures to CaM.
At last, the two effects were taken together via a stochastic model reported in
ref[45] to give the effective association rate constant of CaN regulatory domain
to CaM. We additionally updated the interaction model of CaN activation by
CaM, inspired by experimental evidence showing that a secondary interaction
between CaN’s regulatory domain and CaM is needed to fully activate CaN.46

By using protein-protein docking and MD simulations, we identified on CaM’
surface a potential site for this interaction, which was affirmed by experimental
assays. This molecular level model extended our understanding of CaN
activation by CaM. More importantly, this model might apply to other CaM-
regulated systems, given the large number of CaM-regulated targets and the
similar binding patterns they share when binding CaM.

Ca2+ active transport through sarco/endoplasmic reticulum Ca2+-ATPase
(SERCA) pump. SERCA plays an important physiological role in maintaining
Ca2+ homeostasis in excitable cells, as it pumps cytoplasmic Ca2+ into the
sarcoplasmic/endoplasmic reticulum (SR/ER) with energy provided by adeno-
sine triphosphate (ATP) hydrolysis.47 SERCA has been widely studied for its
role in returning intracellular Ca2+ to basal levels following stimuli that elevates
Ca2+ content.48 SERCA selectively binds Ca2+ over Mg2+and K+, despite the
latters being in excess. We reported in this sub-project the molecular basis of
SERCA’s selectivity on Ca2+, with the emphasis on Ca2+’s favorable binding
thermodynamics over the competing Mg2+ and K+ cations. We performed
extensive all-atomic molecular dynamics simulations to probe molecular dete-
rminants of Ca2+ binding in the pump. In addition, we related the binding
thermodynamics to a state model to assess to what extent Mg2+ and K+

accelerates or hinder SERCA’s transport cycle. This study elucidates the impacts
of Mg2+ and K+ on SERCA’s activity, which provides theoretical bases for
developing Ca2+ handling models containing Ca2+-uptake through SERCA.

5



1.4 Methods Used in Present Work

Multi-Scale Computational Methods Serve as an Unique Toolkit to Explore
Ca2+ Signaling

Due to the significance as well as the complexity of Ca2+ signaling, abundant
experimental studies have been conducted to explore the signaling process.
These experiments generated valuable knowledge such as Ca2+-caused tissue
damage,49,50 Ca2+ handling in cytoplasm,51 identification of Ca2+-binding motif
shared in CBPs15 and discovery of Ca2+-mediated protein-protein interactions.52,53

However, molecular level descriptions of Ca2+ signaling are still poorly und-
erstand. These molecular descriptions include determinants of Ca2+ binding
thermo-dynamics, interaction model of Ca2+-mediated PPI and molecular events
orchestrated for pump-facilitated Ca2+ transport and so on. Computational
methods, in this regard, provide complementary tools to experimental studies
to achieve such molecular level descriptions. For example, molecular dynamic
(MD) simulations have helped to reveal CaM’s conformatonal and dynamic
properties54–58 as well as the coupling between the motions of SERCA’s cytosolic
domain to Ca2+ entering/leaving to the binding sites.59,60 Despite these achieve-
ments via molecular dynamics, multi-scale computational methods are still
needed as Ca2+ signaling consists of events that happen at time-scales beyond
MD’s capable scope. For example, in typical experiments, the time-scale of
Ca2+ reaching equilibria in nanodomain is ∼100 µs per µm.22 Large motions
of the cytosolic domain of SERCA were observed in 1 µs time-scale, however,
the exchange of Ca2+ with non-congtive cation in SERCA binding sites occur at
sub-millisecond time scales.59 Unfortunately, all-atomic molecular simulations
can only reveal events of proteins at most for sub-millisecond time-scale with
specifically-dedicated hardware/software combination.61,62 Therefore, multi-
scale computational methods besides MD are needed to gain insights into
processes that happen at longer time-scale than MD.

Partial differential equation (PDE)-Based Continuum Model to Explore Ca2+

Diffusion in Cellular Nanodomains

In cells, Ca2+ ions are heterogeneously distributed in nano-scale compartments,22

in which the continuum model is a perfect tool to study Ca2+ diffusion.
Partial differential equation (PDE) based continuum model coupled with finite
element method has been widely used to study the signaling transmission in
synapse63,64 as well as ion diffusion in lithium-batteries.65 One such widely used
continuum model is the Poisson-Nernst-Planck (PNP) theory which describes
the electrokinetic phenomena in nano domains. The Poisson-Nernst-Planck
(PNP) equation is a combination of two equations: the Nernst-Planck (NP)
equation that describes the ion diffusion flux caused by concentration gradient
and electrical force; the Poisson equation that updates the electric field due to
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the redistribution of ion species. These two equations are given as:

−∇ · Ji = 0, (1.1)

Ji = −Di

(
∇ci +

ziFci

RT
∇φ

)
, (1.2)

−εrε0∇2φ = F
N

∑
1=1

zici, (1.3)

where Ji, Di, ci, zi are flux density, diffusion coefficient, molar concentration,
and valence electron number of ith ionic species. F is the Faraday constant, φ
is electric potential, T is absolute temperature, and R is gas constant. ε0 and
εr are vacuum and relative permittivity of the electrolyte solution, respectively.
Another important factor that influences Ca2+ diffusion is the Ca2+ binding or
adsorption to proteins.66 We used the silanol group (SiOH) on silica materials
to mimic Ca2+ adsorption by proteins. Specifically, we consider the following
equation which contains the deprotonation of SiOH and binding of Ca2+ to SiO−

reactions:

Si OH + Ca2+ Si OCa+ + H+, (1.4)

The consequence of this reaction is to alter the surface charge density ( σs), which
is ultimately reflected in the Neumann condition that is applied when solving
the PNP equation:

−∇φ · n = σs/(εoεr), (1.5)

where n is the unit outer normal vector. This simplified Ca2+ adsorption model
coupled with PNP equation enables us to understand how Ca2+’s diffusion is
shaped by charged crowders in the nano-scale cellular compartments.

Molecular Dynamics Simulations to Study Conformational Dynamics and
Thermodynamics of Ca2+-Binding Proteins

The essential nature of MD simulation is to describe the time-dependent movem-
ent of atoms in molecules according to Newton’s second law.67 MD serves
as a unique tool in exploring microscopic interactions that can be elusive to
experiments. More importantly, by using statistical mechanics, macroscopic
thermodynamic properties can be accurately calculated from corresponding
microscopic components given by MD.68 Therefore, MD has been widely used
to study folding, binding and conformation dynamics of biological molecules
such as proteins, nucleic acids and lipids.
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Figure 1.3: Energy function forms of Amber force field potential.69

MD consists of solving the equation of motion:

mi r̈i = Fi (1.6)

Fi =
∂

∂ri
U (1.7)

The force Fi acting on atom i is derived from the potential of the system
U = u(r1, r2, ...rN) where N = 3i is the total coordinates of atoms. The
accuracy of MD is determined by the potential form of u(r1, r2, ...rN) which
reflects our understanding of microscopic interactions in the system. In modern
empirical MD implication, the energy potential of U consists of four core terms:
bond potential (Vbond), angle potential (Vangle), dihedral potential (Vdihedral) and
non-bonded interaction potential (Vnon−bond) which includes the electrostatic
potential (Velectro) and van der Waals potential (VvdW) (see Fig. 1.3 for the
potential terms in the commonly used Amber force field69).

Of the four energy terms, the bond and angle terms describe the potential
arise from the deviation of bonds and angles from their equilibrium states and
have the common expression simplified as an harmonic potential:

Vbond/angle = k(ai − ao)
2 (1.8)

where k is called force constant that reflects the ’rigidity’ of the bond/angle, ra
and ao are the instant and equilibrium bond-length/angle-value, respectively.
The force constant of bond and angle in modern force field are at the orders
of (sub)hundred kcal/mol which are larger than thermo fluctuation kbT,70
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suggesting that the degree of freedom associated with these two terms are
largely frozen during simulation. Unlike the bond and angle potentials that
have the quadratic harmonic potential form, the dihedral potential has the form
as:

Vdihedral =
1
2

k[1 + cos(nωi −ωo)] (1.9)

where k is the force constant, n is multiplicity and ωi/ωo are instant/equilibrium
dihedral values. Due to the smaller force constant k, the dihedral potential
has the potential comparable to thermo fluctuation (kbT) and thus contributes
most to the conformational thermodynamics of biological molecules. Besides
the bond, angle and dihedral potentials that belong to the category of bonded
interactions, the non-bonded potential (Vnon−bonded) including electrostatic part
and vdW is also considered:

Vnon−bonded = Velectro + VvdW (1.10)

Velectro =
qiqj

εrij
(1.11)

VvdW =
Aij

r12
ij
−

Bij

r6
ij

(1.12)

The charge-charge electrostatic interaction between a pair of atoms is described
by coulombic potential and the neutral interaction is described via the Lennard-
Jones potential (12-6 potential). rij is the separation between atom i and j.
qi, qj, Aij and Bij are fitted point charges and vdW constants of atom i and
j. Vnon−bonded plays an vital role in biomolecules’ thermodynamic as well as
structural properties.71 Besides the four terms, the solvation effect (Vsolv) can be
optionally added to the system via either incorporating explicit water molecules
characterized by water models such as TIP3P72 or an implicit continuum
solvation field described by the generalized Born (GB) approximation.73

The potential forms stated above, together with the corresponding parameters,
are called force field.71 The applicability and quality of the force field are largely
determined by the parameter optimization process. Structural properties of
model compounds such as amino acid analogy from the ab initio Quantum
Mechanics (QM) calculations are preferred target data for parameter optimization
because the least amount of guesswork is needed due to the rigorous theory
of QM.67,71 Bases on QM calculations, the equilibrium bond and angle values,
as well as the corresponding force constants of bonded potentials can be
readily achieved. However, relying solely on QM-calculated properties for
parameterization in certain cases leads to inconsistency with experimental data
measured in condensed phase, as QM calculations are mostly conducted in non-
condensed phase.74 In such cases where experimental data is available, taking
these data into account for parameterization can improve the accuracy of the
force field.
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One featured application of MD is to study the accompanied conformational
changes of proteins when exerting their functions.75,76 With the advances of
computational hardware77 and non-equilibrium algorithm such as accelerated
MD78 and native-structure based bias potential,79 large scale of molecular
dynamics (MD) sampling of proteins become feasible, with timesacle approachi-
ng sub-millisecond.61,62 The large amount of MD data needs to be physically
interpreted to compare with experimental measurements.79 One such inter-
pretation is to extract the ’slow’ transition between metastable states as these
transitions are associated with biologically important events.80 A Markov-based
conformat-ional space discretization method has been applied to analyze MD
sampling of various proteins..81–83 These successful applications with robust
analyzing methods have demonstrated the substantial potentials of MD in
exploring biomolecule functions.

Brownian Dynamics Simulation to Characterize Ca2+-mediated Protein-Protein
Association Kinetics

Protein-protein interaction is an indispensable part in Ca2+ signaling transduc-
tion. Besides the conventional affinity concept that reflects the favorable thermo-
dynamic gains upon binding, the process of binding also plays an important
role in characterizing the signaling efficiency.84 It is thus of great importance
to understand the rate constants of protein-protein association. Brownian
dynamics (BD) was developed to simulate the diffusional encounter of two large
biological molecules from which the corresponding association kinetics can be
estimated.85 The underlying equation governing the brownian motion is given
as:

r(t + δt) = r(t) + D
F(t)
kbT

+ R(t) (1.13)

where r is position of a molecule, D is translational diffusion coefficient, F is
force acting on the molecule and R is a random displacement at time t. In the
special case where F = 0, Eq. 1.13 is reduced to pure random brownian motion.
The acting force F consists of two parts: electrostatic interactions (long range
driving force) and van der Waal’s (short range repulsion force) interactions. In
implementation, the electrostatic part is first solved via APBS86 to evaluate the
electrostatic potential of binding partners. The APBS tool numerically solves the
linearized Poisson-Boltzmann equation under a given ionic strength (usually
physiological 0.15 M KCl):

− ε∇2ψ = ∑ ρiqi − κ2ψ (1.14)

where ψ is the electrostatic potential, ρiqi is the charge distribution of fixed
charge i, and κ is the inverse of Debye length. The Debye length reflects the
scale over which mobile charges could screen out electric potential fields. The
vdW uses the standard 12-6 Lennard–Jones as that in Eq. 1.10 or a modified

10



softer 8-6 potential:85

V(r) = 4ε[
3
4
(

rm

r
)8 − (

rm

r
)6] (1.15)

where r is the separation of two atoms in a pair, rm is the sum of vdW radii
of two atoms, and ε is the well depth. Both the radii, well depth and point
charge parameters can be adapted from commonly used force fields such as
AMBER99.87
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Figure 1.4: Illustration of escape and reaction events in Brownian dynamic (BD)
simulations. The larger Calmodulin (CaM) is treated as fixed receptor and the
smaller pCaN (a 24-residue peptide from the CaM binding region (CaMBR) of
Calcineurin (CaN)) is movable ligand. Enormous copies of pCaN are placed at
the b sphere. The association kinetics between pCaN and CaM is estimated from
the flux ratio of reaction to escape.

The association rate is estimated as the flux ratio of reaction to escape
(Fig. 1.4).85 Specifically, the ligand (the moving molecule) whose motion is
governed by Eq. 1.13 is initially placed far away from the receptor (the fixed
molecule) with the distance being rb such that the potential between these two
is radially symmetric. At this distance, the ligand can diffuse either further
away from or closer to the receptor, depending on the F. For the former,
if the ligand-receptor distance exceeds a pre-defined value rq, the trail was
counted as escape. For the latter, there is certain chance that the ligand can
proceed to an appropriate distance to form an encounter-complex with receptor
and successfully trigger the reaction. It should be noted that an important
assumption is made in Brownian dynamic (BD): proteins are treated as rigid
bodies. This assumption ignores the dynamic nature of proteins and assumes
that the binding site is always accessible. One possible direction to take the
conformational flexibility into account is to sample the gating of binding site via
MD a prior. Based on MD sampled opening/closing events of binding site, a
Markov state model can be constructed to achieve the gating kinetics. Lastly,
as reported in,88 the gating kinetics can be incorporated into BD-generated
rigid body diffusional encounter rate to give association rate constant with
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conformational flexibility taken into account.

Mean Spherical Approximation (MSA) to Estimate the Thermodynamic Pro-
perties of Ca2+ in Binding Sites

The Ca2+ signaling pathway consists of Ca2+ binding proteins (CBP)s with
various Ca2+-binding affinities.1 CBPs are capable of selectively binding Ca2+

even in the excess of Mg2+, and this selectivity originates from the unique
coordination oxygens of CBPs.89,90 This is afforded through their EF-hand (helix-
loop-helix) Ca2+ binding motif that highly conserved among more than 800
CBPs.90 Ca2+ ions are coordinated by oxygen atoms from the loop region
residues of these EF-hand CBPs. Understanding how the arrangement of
coordinating oxygen atoms in CBPs contributes to Ca2+ selective binding
is of fundamental importance to deciphering Ca2+ homeostasis. The mean
sphere approximation (MSA) is a proper model for estimating Ca2+ binding
thermodynamics in CBPs, given the Ca2+ binding sites are usually well defined
and conservative.

The mean sphere approximation (MSA) is a mean-field model which estimates
the chemical potentials of cation in electrolyte solution with finite-sized ions.
Specifically, it calculates the partition of ions between bulk electrolyte solution
and filters (a finitely sized volume) via minimizing the chemical potential of
each ion species.91 In the Nonner MSA implementation for describing cation
affinity in Ca2+ channels,92 for each ion species, an excess chemical potential
(µex

i ) which accounts for electrostatic and hard-sphere interactions between ions
inclusive of oxygens, was calculated:

µex
i = µES

i + µHS
i (1.16)

The µES
i is electrostatic potential due to interactions with other ion species

and coordination oxygens. Since in MSA model, each ion species including
oxygens comprising the filter are treated as hard sphere with specified radii,
a hard sphere potential µHS

i , was also calculated to account for repulsion among
finite sized ions. This model signifies the favorable environment for cation
binding in proteins such as CBPs and calcium channels92–94 in which the calcium
coordinating oxygens are confined in the binding site. In such environment
cations can easily have negative (favorable) chemical potentials. The specific
expressions of µES

i and µHS
i are given as:93

µES
i = −λb

β

[
Γz2

i
1 + Γσi

+ ησi

(
2zi − ησ2

i
1 + Γσi

+
ησ2

i
3

)]

µHS
i = kbT

[
3ξ2σi + 3ξσ2

i
∆

+
9ξ2

2σ2
i

2∆2 + ξ0σ3
i

(
1 + ∆

(
ξ3

∆
+

3ξ1ξ2

ξ0∆2 +
3ξ3

2
ξ0∆3

))
− ln∆

]
(1.17)

where zi, σi and β = 1
kbT are charge, radius of ion i and thermal energy,

respectively. λb = e2

4πε0εrkbT is Bejerrum length which refers to the separation
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of two elementary charges at which the electrostatic interaction potential is
comparable to thermal energy. ε0 and εr are vacuum and relative permittivities,
respectively. The terms Γ, η and ∆ refers to the contribution from electrostatic
shielding, unequal sizes of ions and free volume not occupied by hard spheres,
respectively (see Eq. S1 for specific expressions). We additionally include the
solvation contribution (Si) as estimated via generalized Born theory of ion
hydration energies in MSA:

∆Si =
z2

i
ri

(
e2Na

2 · 4πε0

)(
1− 1

εr

)
(1.18)

Where Na is the Avogadro constant. The excess potentials of each ion species
in bath solution and in filter were calculated and denoted as µex

o,i and µex
i

respectively. At equilibrium, ion concentration in the filter (ρi) is given as:

kbTlnρi = kbTlnρo,i + µex
o,i − µex

i − zieΨ− Si (1.19)

Where Ψ is relative Donnan potential of filter to bath and could be solved via
a iterative procedure as that described in.92 In CBPs, the features of filter (Ca2+

binding sites), such as oxygen number and filter volume, could be inferred from
MD.94 The ion charge (zi) and radius (σi) can be adapted from widely use force
field.95 Given the known bath concentrations of each ion species (ρo,i) and filter
features, the Ca2+ concentration in filter as well as excess chemical potential
could be achieved by solving Eq. 1.17 and Eq. 1.19 iteratively.92
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Figure 1.5: Partition of cations from bulk solution into protein binding sites
bearing coordinating oxygen atoms via mean sphere approximation (MSA).
Image is adapted from94

Protein-protein docking

Ca2+-signaling triggered cellular functions heavily rely on various protein-
protein interactions. Locating the protein-protein interaction (PPI) surface and
further identifying key residues that contributes to the interaction provides
substantial theoretical guidelines for designing drugs that can modulate disease-
related PPI.96 However, identifying the PPI interaction surface is challenging
because the interaction surface is usually flat and lack specific interaction
patterns.97 Studies aim to extract the features of PPI interaction surface generally
focus on the secondary structure characterization. For example, it has been
shown that there is greater chance for a helix to reside in the grooves formed
between α helices of its binding partner.98,99 Protein-protein docking methods,
in this regard, provides us a toolset to study more detailed residue-residue
interaction at PPI interaction surface. Various protein-protein docking engines
such as ZDOCK100 and RosettaDOCK101 have been used to reveal the structural
details of protein-protein interactions.102–104
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Figure 1.6: General two stages of protein-protein docking. In stage 1, the
receptor and ligand are treated as rigid bodies and a fast Fourier transform
(FFT)-based searching procedure is performed on grids constructed on receptor
and ligand to globally search poses that satisfy shape complementarity. To
demonstrate this process, we assume that in the given simple example, there is
only atom type interaction (I = 1 in Eq. 1.20) and the outlier points of receptor
has interaction value as Ri = −1, and interior has Ri = 1, for ligand Li = 1.
The rest points have interaction value equals 0. It was clearly seen that E in
Eq. 1.20 reaches minimium when ligand has largest contact with the outlier layer
of receptor. In stage 2, local refinement is performed on docked pose to optimize
the side chain interactions between receptor and ligand

Currently protein-protein docking methodology consists of two general
stages105 (Fig. 1.6). The first stage is a global search of rigid receptor (the larger
protein that is fixed) and ligand (the smaller protein that is movable) poses
subjected to a score function consisting of shape and chemical complementarity,105,106

with the former plays a major role. The goal of this global search is to generate
receptor-ligand poses that are nearly close to native binding complex. The
importance of shape complementarity is underlined by the idea that conformati-
onal change happened upon binding are small compared to the relative position
of binding partners105 and poses satisfy shape complementarity have more
energetic interactions due to large surface area excluded from solvent.107 The
chemical complementarity mainly refers to electrostatic interaction,108 van der
Waals interaction and (de)solvation energies109 at the PPI inter-surface. Including
the chemical complementarity is indispensable as the binding is eventually
driven by thermodynamic advantage (∆G) upon binding. In the global search
stage, receptor and ligand are represented by 3D-grids with user-defined spacing
such that a fast Fourier transform (FFT)-based search procedure can be applied
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on the grids. In the FFT implementation, the score function usually has the
following expression:110

E(α, β, γ, λ, µ, ν) =
I

∑
i=1

Ri(x, y, z)T̂(λ, µ, ν)D̂(α, β, γ)Li(x, y, z) (1.20)

Where T̂ and D̂ are translational and rotational operator, respectively. I is total
number of atom type interactions, Ri and Li are defined on the grid points of
receptor and ligand and have the meaning of interaction values of atom type
i. The fast Fourier transform (FFT) is commonly used to accelerate the search
in translational space T̂, for example, the translational operation of ligand in
Fourier space Li(n, m, l) is:

T̂(λ, µ, ν)Li(n, m, l) = e
−2πi

N(nλ+mµ+lν) Li(x, y, z) (1.21)

Similarly, after applying FFT on the translational space of receptor, the score
function can be expressed in terms of receptor and ligand in Fourier space as:110

E(α, β, γ, λ, µ, ν) =
I

∑
i=1

∑
nlm

Ri(n, l, m)D̂(α, β, γ)Li(n, l, m)e
−2πi

N(nλ+mµ+lν) (1.22)

The biggest advantage of converting score function in Cartesian space (Eq. 1.20)
to Fourier space (Eq. 1.22) is that the latter has significantly less operations
(O(N3logN3)) than that (O(N6)) in Cartesian space.110,111 This improved search
efficiency makes the exhaust search of ligand-receptor relative conformations
feasible. In the second stage, after the nearly native receptor-ligand complex is
achieved, the local refinement is performed at PPI interface to further optimize
residue-residue interactions. In this stage, two strategies are commonly used
to rearrange the sidechains of interacting resides: 1) Energy minimization after
parameterized by empirical force fields,112 and 2) assigning orientations based
on sidechain rotatmer library sampled from available structural database.113

Protein flexibility is to certain extent accounted by this local refinement process,
with the aim to achieve more native-like binding poses. It should be noticed
that, experimental data, when available, can be incorporated in these stages of
protein-protein docking to narrow down the search scope and improve docking
accuracy.114

Copyright© Bin Sun, 2019.
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Chapter 2 Characterizing Calcium Diffusion in Mesoporous Silica Thin
Films- A Model Resemble Cellular Calcium Diffusion

• This chapter is based on "Sun, B.; Blood, R.; Atalay, S.; Colli, D.; Rankin,
SE.; Knutson, BL.; Kekenes-Huskey,PM. book chapter of Computational
Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile,
Springer International Publishing. 2017"

2.1 Introduction

Ion transport in mesoporous films and the impact of defects

Mesoporous silica films have garnered considerable interest for applications to
separation chemistry, drug delivery, and biosensors115 owing to their tunable
control of ion mass transport processes within their highly-charged porous
networks. In part, this precise tuning is afforded through the high density of
silanol groups on silica surfaces,27 which can support pH-dependent charge
regulation and substrate adsorption in aqueous media.116,117 In turn, these
surface chemistry phenomena have been shown to modulate ion permeation
and conductance, beyond estimations based on restricted diffusion or tortuosity
alone. Here electrostatic interactions play a profound role in modulating ion
transport, for which the ionic-strength determined electric double layer length
scales are on the same order as pore diameters. As a result, there is a rich set
of physical phenomena that can emerge in these materials. For instance, two
extremes in background ionic strength give insight into the complex tug and pull
governing ion transport. At low ionic strengths, potentials arising from surface
charges can extend significantly into the bulk fluid phase, where they strongly
dictate rates of electrodiffusion. At high ionic strengths, surface potentials are
largely attenuated, in which case transport is largely controlled by concentration
gradients and differences in osmotic pressure.118–120 These phenomena have
been characterized in nanoporous ’slits’ and ’channels’, but have been less
explored in nanoporous films with uniform ordered mesopores generated by
liquid hexagonal close packed (HCP) (mesocrystalline) templating.116,121–124

Diffusion-limited transport of small molecules in nanoscale media is sensitive
to material morphology, surface charges, the solution ionic strength and physi-
ochemical properties of the diffuser such as size and charge. Therefore, a
prominent challenge in assessing transport in mesoporous silica films is how
these contributions collectively control ion diffusion rates in perfectly-formed
porous regions, and the extent to which structural defects perturb these rates.
Among these, framework defects are among the most poorly understood factors
and are known to perturb substrate diffusivity and permeation in nanoscopic
materials.125 Framework defects in HCP (mesocrystalline)line materials share
many similarities with mesoporous films, and are categorized by their size as
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micro (<20 Å), macro (>500 Å), and meso (intermediate),126 which include
cracks and holes representing the predominant macro-scale defects,126 while
imperfect mesoHCP (mesocrystalline) formation or intergrowth account for the
majority of meso- and micro-scale defects.127 Below 500 Å, the most common
structural defects include HCP (mesocrystalline) stacking faults resulting in
merged pores,128,129 inter-growth of different mesoHCP (mesocrystalline) forms130,131

and hydroxyl (OH)-terminated surfaces132 (silanol nests). Thus, critical for
evaluating and optimizing chemical processes in real materials is a fundamental
understanding of mass transport132–134 in both ordered (HCP (mesocrystalline))
and defect-containing mesophases.

Techniques for incorporating microscopy data into nanoscale simulations

Transmission and scanning electron microscopy have become the standard
imaging modalities for probing the structural integrity of nanoporous media.135,136

Though considerable effort has been invested in characterizing prominent
HCP (mesocrystalline) defects in electron micrographs, less has been done
to simulate the impact of representative defects on material transport and
performance properties. For instance, studies examining gas/liquid adsorption
in nanoporous silica with morphological defects have been reported based on
molecular simulations,137,138 but these were not explicitly linked macroscale
transport phenomena. It is our speculation that the abundance of defects
and difficulty in translating these structural features to forms amenable to
simulations have challenged probing via simulation nanoscale transport phenom-
ena in structurally-imperfect nanoporous media. Here, advances in automated
segmentation of electron microscopy data has the potential to ease the burden of
manual identification and characterization of material structural features, which
could serve as the basis for detailed substrate transport simulations. Recent
examples include utilizing image processing such as equalization, segmentation
and Shannon entropy to characterize porosity and other features in nanomaterials.139–142

Conversely, techniques for reconstructing 3D structures from 2D electron micro-
scopy (EM) slices are widely implemented for investigating nanoparticle and
nanocatal-yst structures in complex hieararchical arrangements.143,144

Modeling approaches for ionic transport in mesoporous media

Computational models for estimating the extent to which defects impact nanop-
orous material performance could improve material design, yet most approaches
assume perfectly ordered mesop-orous materials. For perfect (defect-free)
nanoporous silica materials, a variety of simulation approaches have been
developed to characterize substrate adsorption and transport, including contin-
uum, stochastic methods such as Monte Carlo and molecular dynamics simulations
(reviewed in145). While molecular simulations provide a powerful toolset
for probing atomic-level physical phenomena including local self-diffusion,
hydration and adsorption,146–148 continuum transport simulations constitute a
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multi scale complement to extrapolate nanoscale molecular-scale physiochemical
information to macroscopic phenomena occurring in nanoporous material.149–151

Among the most successful models of ion transport at the continuum level is
Poisson-Nernst-Planck (PNP) theory, which is a continuum model of electrostat-
ically driven ion diffusion coupled with ion-dependent electrostatic fields.
Recent developments have augmented PNP simulations to include pH-regulated
surface charge151 for modeling ion conductance in nanoporous materials. Despite
the wealth of simulation effort targeting nanoscale materials, how ionic transport
might vary in heterogeneous or defect-containing nanoporous materials is
under explored.

Paper Objectives

In this study, we have developed a workflow as a foundational step toward
imaging-informed, computational modeling of ion transport in mesoporous
silica films with structural defects. This workflow (Fig. 2.1) enlists a computer
vision technique, matched filtering, to 1) discriminate HCP from defect-containing
regions from electron microscopy (EM) 2) performs partial differential equation
simulations of electrokin-etic transport in 3D models of such regions, and 3)
estimates heterogoneous effective transport parameters in a given material.
Step 1 utilizes matched filtering to automatically detect mesocrystalline features
for EM . In this procedure, kernels representing such features are convolved
against the data; the kernel generating the maximal response above a user-
defined signal-to-noise ratio is used to annotate the region in the data. Step 2
the kernels developed for step 1 are converted into 3D meshes by projecting
the 2D signature perpendicular to plane to create a 3D pore. Step 3 A pH-
and surface charge-dependent model of electrolyte transport (PNP) partial
differential equation is solved in the 3D meshes using the finite element method,
from which effective transport parameters such as conductivity and diffusion
are calculated. Step 4 is to interpolate the effective parameters from Step 3 onto
the annotated regions determined in Step 1. We applied this to a mesoporous
silica film synthesized and characterized by Wooten et al152 (electron microscopy
data in Fig. 2.3) as well as simulated data to demonstrate the algorithm performa-
nce.

We demonstrate that our workflow for the first time automates electrokinetic
transport simulations in microscopy-derived, defect containing structural data
of mesoporous films. Our proposed computer vision method demonstrates
reasonable accuracy in discriminating mesocrystalline (bulk) from defect regions
in transmission electron microscopy data and simulated data, thereby providing
means to characterize the nature and prevalence of defects. Further, our
implementation of the pH-/surface-chemistry dependent PNP model is consistent
with experimental measurements of KCl and CaCl2 conductance in silica-based
nanochannels over a broad range of ionic strengths and pHs, delineating
regimes that permit simplified electrokinetic models. Without any additional
fitting, the model predicts permeation properties of an anionic dye 5(6)-Carboxy-
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fluorescein (CF) in a mesoporous film within experimental uncertainty. With
this model, we predict the degree to which defects in a mesoporous film
influence permeation properties, the optimal conditions under which to make
these variations apparent, and conditions for selectively tuning small molecule
permeability based on pore size, charge and buffering. Overall, we envision
that this model will provide rigorous means to characterize high resolution
microscopy data, from which heterogeneous transport parameters can be estima-
ted. Further, its basis as a finite element model should permit its extension
to wide-ranging material types, including hierarchically-structured composite
materials.

2.2 Methods

Our workflow for segmentation and PDE-based simulations of ion transport
in EM-resolved nanoporous media is shown in Fig. 2.1. Key stages of this
workflow include 1) automated unit cell feature detection in EM-characterized
nanoporous media (Sect. 2.2), 2) three-dimensional meshes based on the detected
unit cells (Sect. 2.2), 3) effective transport parameter estimation based on
Poisson-Nernst-Planck (PNP) simulations of ion transport within porous regions
of each unit cell (Sect. 2.2) 4) extrapolation of unit cell transport parameter
estimates onto the imaged material surface (Sect. 2.2).
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Figure 2.1: Workflow based on structural data from Wooten et al.:152 1)Matched
filter unit cell detection from EM data. 2) 3D geometries construction with
meshing. 3)PNP solved in representative unit cell geometries. 4) Interpolate
effective transport parameters for entire film from unit cells

Matched filter unit cell determination from segmentation of bulk mesocrystal
and defect EM data

We utilize ’matched filtering’ for the first stage of our workflow, in order to
assess the likelihood of a kernel representing a feature of interest is present in
a given data set. Consider a measurement, ~m, that consists of of a signal, ~s,
embedded in additive noise,~n:

~m =~s +~n, (2.1)

The goal of matched filtering is to identify a matched filter, ~h, that maximizes
the signal-to-noise ratio (SNR) for a measurement, ~m,153

y =~hT~m =~hT~s +~hT~n, (2.2)

where ~hT denotes the filter’s transpose. It can be shown that the optimal
matched filter can be determined via

~h =
1√

~sTR−1
n ~s

R−1
n ~s, (2.3)

where Rn = E{nnT} represents the noise covariance matrix. In the event that
random variates are drawn from a mean-zero, Gaussian, white noise process

22



of variance, σ2, the noise covariance matrix reduces to Rv = σ2I, where I is
the identity matrix. Commonly, the signal or multiple instances thereof may
be embedded within a larger data set (r), such as an image. In which case,
determining the location of s within r is commonly performed by convolving
the kernel h with the image, r

Y = h ∗ r, (2.4)

Computationally, this is commonly done via the discrete Fourier transform,
given that

h ∗ r = F−1 [F [h] ·F [r]] , (2.5)

by the convolution theorem. Probable detections of the signal s within Y are
based on identifying positions, at which the SNR is above a user-specified
threshold criterion, λ,

SNR ≡ |~hT~s|
~hTσ2I~h

≥ λ, (2.6)

where σn represents the standard deviation of the noise.
In this study, we consider a 90nm thick mesoporous silica film with hexagona-

lly-packed, 5nm radius pores (see Fig. 2.2a) synthesized by Wooten et al,152 from
which the matched filters were determined. These data reveal a preponderance
of ordered hexagonally-packed pore regions with a small number of defects
evident as small linear features. It is speculated that the linear features
represent pores that became fused during the film preparation, thereby yielding
a ’channel-like’ fused pore shown in Fig. 2.2b. Since the primary goal of
the matched filtering is to discriminate bulk regions from defect features, the
underlying structure corresponding to the linear feature in the EM is of little
significance. Therefore, here we determine the matched filter kernels, or ’filters’,
based manually identifying representative bulk and ’fused pore’ regions in the
EM data. We first applied the PYTHON OPENCV ’Contrast Limited Adaptive
Histogram Equalization’ routine to equalize the pixel intensities across the
image. After which, the identified regions were subdivided into unit cells
representing an instance of the nanoporous feature. These subdivisions were
averaged to attenuate uncorrelated background noise and reveal the consensus
structures shown in Fig. 2.2, which served as matched filters for each data
feature. In our approach, we consider multiple filters that represent different
features in the EM data, as well as rotations thereof in order to detect alternate
orientations. Since the orientation of the bulk hexagonally-packed regions and
fused pore features vary across the EM field of view, we created a bank of
filter rotations for each matched filter that were spaced at 10 degree increments.
The correlation response for a given image pixel, yij, was determined by taking
the maximum response across all rotated variants of a given filter. Given that
the data considered in this study contains signal (nanopores), noise that is not
necessarily additive, and other features in the EM data that are not represented
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by a given filter, h, we modified our threshold criterion as follows

log
exp(~hi

T
~s)

σ2γ exp( ~hiC
T
~s)
≥ λi, (2.7)

where ~hiC represents the complement of matched filter i, ~hi, which we define
as ~hiC = 1 − ~hi. This complement penalizes signal that falls outside of the
signal signature defined in ~hi. We found this term was necessary to discriminate
the correlation outputs from the bulk and fused pore matched filters. We
tested both filters against two subsections of a ’fused pore-rich’ region and a
’bulk-like’ region (see bottom left panels of Fig. 2.3). Regions of the test EM
data that returned responses below the threshold parameters for either filter
are designated as ’uncharacterized.’ All aforementioned numerical procedures
were conducting using the PYTHON2.7 libraries NUMPY, SCIPY and OPENCV-
PYTHON.

Mesh generation from matched filter unit cells

Effective parameter estimation in the second stage of Fig. 2.1 is based on
numerical solution of the PNP equation via the finite element method in
Sect. 2.2, using 3D meshes informed from the segmented images. Unit cells
determined from our segmentation protocol provided a basis for generation
of tetrahedralized, finite element meshes via GMSH,154 for which the pore
radii and spacings were approximated from the segmented data. In principle,
however, the segmented data could be used directly for mesh generation.155

From these data, we created ’extruded’ unit cells of length 90nm, which assumed
the inner pores are perpendicular to the EM-resolved film surface (Fig. 2.2). The
MathEval and Box field in GMSH were used for mesh refinement. Specifically,
these functions allow one to increase the mesh resolution as a user-defined
function of distance from features of interest, such as near the nanopore walls
where higher concentration and electric potential gradients are expected. Mesh
generation scripts demonstrating these features are provided in the bitbucket
repository https://bitbucket.org/pkhlab/poissonnernstplanck. The extrud-
ed pores interfaced with two identical reservoirs to represent contact with bulk
solution. In principle, the reservoir size should be significantly larger than the
pore dimensions to minimize artifacts introduced by the reservoir boundaries
on the electrostatic potential adjacent to the silica surfaces.LinChen2016, 156 In
a recent study,157 it was demonstrated that more modestly sized reservoirs
on the order of 20 nm were sufficient to minimize these artifacts; here, we
set the reservoir depth(z direction) to be 40nm, while the width and length
of reservoir are shown as in Fig. 2.2. Meshes resembling ’nanochannel’ and
’nanoslit’ geometries were constructed in a similar fashion for the validations
described in this study (see Fig. S1). Moreover, we evaluate the conductivities
near the midpoint of the silica pores, which is expected to further reduce
boundary artifacts. In the Results section, we demonstrate good agreement
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with experimental conductivity measurements, which suggests our choices
of domain configuration and conductance measurements (see Methods) were
appropriate.
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Figure 2.2: Two unit cells detected by our "matched filter" method based on the
EM image of silica membrane fabricated by Wooten et al.152 The dimensions of
the unit cells were automatically determined by the segmentation procedure.
The corresponding 3D geometries (with meshing) generated by GMSH154 are
also shown. A) Hexagonal(bulk) unit cell. B) Fused pore unit cell

Effective transport parameter determination via finite element solutions of
the Poisson-Nernst-Plank transport model

The mass transport of ions in a silica nanopore was described by the Poisson-
Nernst-Planck (PNP) equation. The Nernst-Planck (NP) equation describes the
ionic mass flux density of each ion species subject to concentration and electric
potential gradient. Meanwhile, the electric potential distribution within the
domain is determined by Poisson equation. These two equations are given as:

−∇ · Ji = 0, (2.8)

Ji = −Di

(
∇ci +

ziFci

RT
∇φ

)
, (2.9)

−εrε0∇2φ = F
N

∑
1=1

zici, (2.10)

Here, Ji, Di, ci, zi are flux density, diffusion coefficient, molar concentration,
and valence electron number of ith ionic species. F is the Faraday constant, φ
is electric potential, T is absolute temperature, and R is gas constant. ε0 and εr
are vacuum permittivity and the relative permittivity of the electrolyte solution,
respectively. The boundary conditions are given as: 1) When evaluating
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ionic conductance: at the both ends of the reservoir, ionic concentrations are
maintained at the bulk values (i.e., ci = ci,bulk) while potentials of φ = 0 and φ =
0.2V are applied. 2) When evaluating effective diffusion constant/permeability:
at the both ends of the reservoir, electric potentials are set as 0 (i.e., φ = 0V)
while concentrations of ci = ci,bulk and ci = 0 are applied at either end. 3)Within
the nanopore, we apply a reflective boundary condition for the ions (n · Ji = 0).
4) A Neumann condition on the potential is also applied based on the silica
surface charge density:

−∇φ · n = σs/(εoεr), (2.11)

n is the unit outer normal vector.

Surface protonation and K+/Ca2+ surface adsorption

Recently, the Qian group and their collaborators have conducted a series of
numerical electrodiffusion simulations based on silica nanochannel geometries.116,123,158

These models assumed four ionic species, H+,OH–,Cl– and K+, as well as silanol
(SiOH) protonation:

Si OH Si O– + H+, (2.12)

Si OH + H+ Si OH
+
2 , (2.13)

The inclusion of the pH-dependent regulation of surface charge density in
the PNP model was found to give superior agreement with experimental
measurements of KCl conduction at non-neutral pH. More importantly, their
results indirectly demonstrate that metal adsorption between the monovalent
cations (e.g., K+) and the channel wall silanol groups is negligible,159,160 as
their PNP model was sufficient to recapitulate experimental results without
considering K+ adsorption. For divalent cations such as Ca2+, adsorption onto
the silica surface is believed to be significant.159,161,162 This motivated a site-
binding model for divalent cation adsorption that appeared most consistent
with experimental data among several reaction possibilities.159

Si OH + Ca2+ Si OCa+ + H+, (2.14)

The corresponding equilibrium constants of the (de)protonation and Ca2+

adsorption reactions are thus given by

Ka1 =
ηSiO− [H+]s

ηSiOH
, (2.15)

Ka2 =
ηSiOH+

2

ηSiOH[H+]s
, (2.16)

Km =
ηSiOCa+ [H+]s
ηSiOH[Ca2+]s

, (2.17)
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where ηi is the surface site density of the ith functional group. [H+]s and [Ca2+]s
are the surface molar concentrations of corresponding ions. To our knowledge,
however, pH regulation and Ca2+ adsorption have not been used for modeling
electrokinetic phenomena. Thus we combined models for protonation163 and
Ca2+ adsorption,159 for which the total density of sites on the silica surface that
can support chemical reactions is given by

ηTotal = ηSiOH + ηSiO− + ηSiOH+
2
+ ηSiOCa+ , (2.18)

From this equation, the effective surface charge density can be determined by

σs = −FηTotal
Ka1 − Ka2[H+]2 − Km[Ca2+]

Ka1 + [H+] + Ka2[H+]2 + Km[Ca2+]
, (2.19)

Eq. 2.19 serves is used in the Neumann condition definied in Eq. 2.11.

Finite element solution of PNP equations

The Poisson-Nernst-Planck (PNP) equations in the present study were numerically
solved via the finite element method (FEM) using the commercial finite-element
COMSOL (www.comsol.com) package and the free open-source FENICS164

library. For all two dimensional (2D) geometries we considered (see Fig. S1), the
PNP equations were solved by COMSOL with full pH-/adsorption regulated
surface charge density to ensure consistency with prior studies of ion conductance
in nanomaterials.116,165,166 For reasons of computational expense, we utilized
the finite element method (FEM) package FENICS to solve the PNP equations,
assuming first-order Lagrange bases and default solver parameters. To simplify
the boundary conditions, the Grahame equation was used to relate the surface
charge density to the electric potential at the silica wall, which for a monovalent
salt is given by

σs(φ0) =
√

8c0εoεrkBT sinh
(

eφ0

2kBT

)
, (2.20)

where φ0 is the electric potential at the pore surface (for divalent salt, e.g., CaCl2,
the corresponding Grahame equation is given as Eq. S2).163

Conductivities and permeabilities of unit cells and bulk material

For numerical estimation of the KCl ionic conductance in nanoporous media,
we evaluated the following conductance relationship proposed by Yeh et al:116

S =
I

δV
=

F〈J〉Γ
Va −Vb

, (2.21)

〈J〉Γ ≡
N

∑
i=1

∫
Γ

J(Γ)idΓ, (2.22)
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where Ji, the flux density for species i, is computed from steady-state solutions to
Eq. 2.8, Va and Vb are the average electric potentials at the two ends of nanopore
(Va − Vb value is close to applied potential bias δφ = 0.2V, see Table S1),
N is number of ion species, F is Faraday’s constant, Γ is the cross-sectional
surface within the nanopore center. The flux density was either provided
directly from COMSOL or estimated from FENICS steady-state solutions using
PARAVIEW.167 For the CaCl2 conductance in a nanochannel (length= 5mm,
width=30 µm and Height=18nm161), we utilized a 2D model represented, given
that width� height. We assumed G f inal = GslitW10−4, where Gslit is the
ionic conductance of the 2D nanoslit, W is the width of the 3D nanochannel.
The division by 1.0000× 104 reflects that our simulated domain was of length
5× 10−7 m versus the 5× 10−3 m channel used in Feust et al;161 despite this
approximation, we found reasonable agreement between our predictions and
experimental data.

Similarly, the membrane permeability, Peff, and effective diffusion constant,
Deff, were evaluated as:168,169

Pi =
KiDi,eff

Lm
(2.23)

Di,eff =
〈Ji〉Lx

[i]bulk
(2.24)

where Ki and Di,eff are the partition coefficient and effective diffusion constant
of each species in membrane, respectively. Lm is the thickness of membrane,
〈Ji〉 is the average flux density over the cross-section area at the middle of
membrane(calculated in the same way as Va and Vb evaluations mentioned
above), Lx is the length along diffusion direction(defined as the distance between
the external ends of two reservoirs) and [i]bulk is the bulk concentration. The
value of KCF in silica membrane is assumed to be 1× 10−3 , which lies in the
range of small organic molecules.168

Extrapolation of effective conductivity estimates on EM-imaging data

In the final step, partial differential equation predictions of effective transport
parameters are extrapolated onto the original EM-resolved structure. Given
that each filter ’hit’ represents a match for an entire unit cell, we the transport
parameter estimated for the corresponding filter to a region commensurate in
size to the unit cell. In regions that did not contain an obvious filter match, we
assigned a permeation value that was intermediate to the fused and bulk pore
unit cells, as the unclassified regions still presented porous features that could
permit substrate diffusion. In this case, the effective permeation, Peff, for the
entire material surface is determined by a surface area-weighted (Γ) average of
the parameters determined for the different unit cell types, e.g.

Peff =
1

Γtot
∑

i
Γisi (2.25)
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where i corresponds to the fused pore, bulk and unclassified regions. All
code written in support of this publication are publicly available at https:

//bitbucket.org/pkhlab/poissonnernstplanck. Simulation input files and
generate data are available upon request.

2.3 Results and Discussion

Automated feature detection and mesh generation for oriented porous films

A key contribution from our workflow presented in Fig. 2.1 is the automated
detection of prominent structural features in imaged nanoporous films. In
the Methods section, we outlined our procedure for generating matched filters
representative of bulk (hexagonal closed packed) regions and fused pore defects.
We note that the postulated fused pore is one of several types of defects evident
in the data and that additional matched filters would be required to detect those
features. However, given the lack of data for adequately training the matched
filters for each defect type, we limit our approach to fused pores, which are
somewhat prevalent in the EM image (Fig. 2.3B).
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Here we tested the performance of these data-derived filters on subsections
of the raw EM data that were not used for filter training. Namely, in Fig. 2.3
we present a roughly 100nm by 100nm region that contains diagonal striations
that we attribute to fused pore features. In the top two rows of Fig. 2.3, we
show the rotated filters (left column) as well as the corresponding matched filter
outputs (right column) for the fused pore filter. In the bottom row we denote the
raw data used for the feature detection, as well as the above-threshold regions
from all pore rotations indicated in red or green for the bulk and defect filters,
respectively. The marked results in Fig. 2.3 suggest that the matched filtering
protocol is able to detect and classify the bulk and fused pore features, though
exact quantification of the accuracy is difficult given the resolution of the EM
data. We note that there are several regions in the image that were not classified
by either filter. By visual inspection, those regions present surface features
that neither appear fused nor adhere to an HCP configuration. In principle,
these unclassified regions could be used to train additional filters to facilitate
complete characterization of the EM surface. We also found that tuning the
threshold parameters was necessary to optimize the matched filtering results.
Nevertheless, these data indicate 1) that filter rotation in ten degree increments
is sufficient to reliably identify data features independent of their orientation
and 2) that bulk and fused pore defect regions can be automatically detected in
the raw test data.
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Figure 2.3: Matched filtering results for simulated transmission electron
microscopy (TEM) images of a mesoporous silica film from Wooten et al.152 First
and second rows correspond to the filters and corresponding matched filtering
result at 0 and 30 degree rotations. Bottom row provides the raw data and an
image denoting match filter detected fused pore (green) and bulk unit cell(red)
features.
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Electrokinetic model of transport in oriented mesoporous films and other
porous media

KCl conductance in mesoporous silica.

The intermediate stages of the Fig. 2.1 workflow entails estimation of effective
transport parameters including conductivity (Seff) and effective diffusivities
(Deff) or permeabilities(Peff) for ionic species, given 3D representations of
the porous features identified in the EM film data. These features include a
perfectly cylindrical pore corresponding to the HCP bulk unit cell (Fig. 2.2A)
and a ’slit-like’ geometry representing fused pores that traverse the entire film
depth (Fig. 2.2B). The dimensions of the two unit cells were determined by the
segmentation procedure. The length and width of hexagonal unit cell were
determined to be 31nm and 16nm and four one-half nanopores centered on each
edge, for which each pore has a radius of 5nm. The length of fused pore unit cell
was set to 30nm, while the width consisting of a 15nm slit formed by the fusion
of two pores (represented by two red circles in Fig. 2.2B) centered between two
13.5nm wide impermeable regions. While the fused pore feature in principle
could reflect a cylindrical pore oriented parallel to the film surface, it would
not conduct ions traversing perpendicular to the film thus we do not explicitly
consider this morphology.

A focal point of this section is the validation of our implemented model
against several experimental assays of electrolyte conductance in nanochannels
or nanoslits,117,161 in order to establish confidence in its application to a distinctly
different morphology: mesoporous films. In this section, we describe the
computational modeling of KCl and CaCl2 diffusion in several nanoporous silica
morphologies, as well as nanochannels and nanoslits previously characterized
in the literature.117,161 We additionally consider mesoporous silica films synthes-
ized and characterized by Wooten et al.152 All systems are modeled subject
to voltage gradients or concentration gradients for measuring conductance or
diffusion properties, respectively, under a broad range of ionic strengths. In
concurrence with prior studies,116,118,165,166 we describe the electrokinetic mass
transport using the PNP model under steady-state conditions, whereby the
electrostatic field (φ) and electro-diffusion of electrolytes are coupled and solved
simultaneously (Eq. 2.8). We further include reaction terms reflecting proton
and metal equilibria with the silanol-terminated silica surface (Eq. 2.12 and
Eq. 2.14), which together determine the surface charge density governing the
PNP model (Eq. 2.19). While prior computational studies have characterized
aspects of conductance in nanochannels and nanoslits,116,166 in this study we
examine such transport phenomena in defect-containing mesoporous silica
films.
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Figure 2.4: KCl ionic conductance in a nanopore. A) Comparison between
experimental data and numerical results. For the 2D axisymmetric pore, the
full PNP pH/adsorption model was used while for the 3D nanopore, the PNP
was solved with fixed electric potential (values are from 2D results) applied
at nanopore wall. Black symbols designate experimental KCl conductance
data for a 34 nm silica nanopore of radius 5.1 nm (pH=7.5) from.117 B) Ionic
conductance of nanopore (2D axisymmetric, pH=7.5) at varying radiis and bulk
[KCl] (expressed as κD, D=10.2nm is the diameter of nanopore)

Using the validated pH-dependent PNP model, we predicted the conductance
of a KCl solution (H+, OH–, K+ and Cl–) through a single 34nm nanopore of
radius 5.1nm at pH=7.5 and pH=5, assuming a 2D axially-symmetric domain.
These conditions mirror those considered by Yeh et al,116 although their model
additionally included a modified Stokes component to capture electrosmotic
flow. Consistent with experimental measurements from Smeet et al117 and
Yeh el al,116 the model predicts that conductance scales with concentration at
higher ionic strengths, as the electric potential of the channel walls are largely
shielded by short Debye lengths. We note that while the Smeets et al117 study
reports findings based on a roughly neutral pH, we found that pH=5 was
necessary to recapitulate those findings, and further, the conductance data
resemble those from a related experiment conducted at pH=5.118 Regardless
of pH, the predicted conductance data show similar declines in conductance
from 1× 10−3 to 1M, which suggests that the contribution of surface charge is
negligible at higher ionic strengths. In other words, the channel flux is largely
dependent on the applied field parallel to the channel and that electrostatic
interactions within the channel are of little consequence under these conditions.
At lower ionic strengths, conductance is dictated by surface charge owing to the
overlapping of electric double layers, however the pH mitigates this effect by
attenuating the net negative charge of the boundary. We found analogous trends
for a 3D nanopore domain the HCP unit cell assuming a fixed (pH independent)
surface charge.

The change in conductance can be rationalized based on the fluxes of each
ionic species, which arise due to concentration gradients (first term in the right
hand side of Eq. 2.8) and electro-diffusion (second term of Eq. 2.8). For the latter
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of which, the amplitude decreases as a function of concentration (see Fig. S2),
which ultimately determines the overall conductance. It is worth noting that
the effect of the potential gradient along the pore wall on ion diffusion is akin to
widening or constricting the pore radius for counter- or co-ions, respectively.

Interestingly, when these conductance data are represented as a function of
the dimensionless parameter κD, the trends scales as log(S) versus log(κD), as
shown in Fig. 2.4B. This trend is observed both when ionic strength is varied
from 1× 10−2 to 80mM for fixed pore radii (4-12 nm), as well as when radii are
varied for a fixed ionic strength. The latter variation supports the notion that
the presence of surface charge on the pore boundary essentially modulates the
effective pore diameter. Note that this κD dependence breaks down for variable
(e.g. pH-dependent) surface charges at low ionic strength (κ → 0).

CaCl2 transport and adsorption

In the preceding section, we demonstrated agreement between numerical predict-
ions of KCl conductance in several nanoporous geometries, for which the
surface charge is dependent on pH but independent of K+. We now consider the
extent to which an adsorbable ion can compete with protonation and thereby
influence ion conduction. Specifically, we consider Ca2+ adsorption to the
surface, which has been shown to be significant118,161 and a necessary factor
in conductance models to recapitulate experimental data117,170 Accordingly, we
include in Eq. 2.19 Ca2+ surface adsorption, assuming equilibrium constants in
the micromolar range. For validating the CaCl2 model, we refer to CaCl2 ionic
conductance data collected from a ’nanoslit’ with a length of 5mm, width of
30µm and height of 18nm, respectively (Fuest et al161). Here we assume a 2D
domain in Cartesian space (length versus height), given that the width is much
greater than the height. Further, since at steady state the ionic conductance of
a nanochannel is inversely proportional to the length of the nanochannel,171 we
assumed a slit length of 500 nm instead of 5 mm for reasons of computational
expense(Fig. S1). The simulation domain in this example contains four ion
species: H+,OH–,Ca2+ and Cl–.

Simulated and experimentally-measured conductances are reported in Fig. 2.5
for PNP models with and without Ca2+ adsorption. Analogous to our simulations
for KCl, at low pH (pH = 5), we note that conductance (in log units) decreases
linearly with log [CaCl2] for calcium chloride concentrations of 1 mM and
higher, in agreement with experiment. Since the conductivities predicted among
the surface charge models were comparable, it is expected that the pH and Ca2+

do not significantly modulate the surface change density for CaCl2 above 1 mM.
As the concentration is decreased below 1 mM, however, the rate of decrease in
conductance slows and approaches a minimum at approximately 100 µM, below
which conductance accelerates with decreasing ionic strength. This is attributed
to the fact that at low ionic strength, protons are more effective in neutralizing
wall charge. Both the pH and pH+Ca-dependent surface charge models capture
this behavior to an appreciable degree, although they do not capture the
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magnitude of the conductance increases exhibited in the experimental data. We
attribute this discrepancy in part to the uncertainty in the parameters ηtotal, pKa,
pKb and pKm. We attribute the experimentally-observed trends at low ionic
strength to the increased involvement of pH in regulating the surface potential,
as discussed in.162,172 Namely, as the ionic strength of the solution is decreased,
protons have a higher tendency to be attracted to the negatively charged slit
walls, upon which they neutralize the negative wall charge.
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Figure 2.5: Comparison of CaCl2 ionic conductance between numerical and
experimental data. (A) Experimental and numerical conductance as a function
of [CaCl2]. PNP+pH: pH regulated surface charge density. PNP+pH+Ca: pH
regulated surface charge density plus Ca2+ adsorption. (B) Effective diffusion
constant of Ca2+ and Cl– versus [CaCl2] (expressed as κH, H = 18 nm is
the height of nanochannel/nanoslit) under different Ca2+ adsorption constants
and pHs. The inset denotes the effective diffusion constant at varying nanoslit
heights when no surface charge density present

Apparent from these data is that Ca2+ adsorption has an insignificant
contribution to the conductance, except at basic pHs. Accounting for Ca2+

adsorption decreases the conductance modestly relative to the basic PNP+pH
model. To rationalize this behavior, in Fig. 2.5B we present effective diffusion
constants for Ca2+ and Cl– as functions of ionic strength, pH and adsorption
equilibrium constants. At high ionic strength, Deffs for both ions approach
limits predicted for neutral pores, with Cl– presenting 20% of its bulk diffusion
rate compared to about 10% for Ca2+. As the ionic strength is reduced,
the Cl– Deff declines to nearly negligible values at [CaCl2]=1× 10−6 M, while
that of Ca2+ increases by nearly eight-fold, hence in this regime the current
predominantly arises due to cation flux. Further, these trends are modestly
attenuated as pKm is reduced at basic pH to reflect increased Ca2+ adsorption,
as the adsorbed Ca2+ ions partially neutralize the attractive, negative silica
wall surface charge that would otherwise facilitate Ca2+ diffusion. Under
acidic conditions, this distinction is lost as there are fewer sites available to
accommodate Ca2+ relative to protons. Hence, the drop in conductance shown
in Fig. 2.5 could be attributed to a reduction in the Ca2+ Deff as Ca2+ surface
binding increases. We emphasize here that our model of Ca2+ adsorption only
modulates surface charge and therefore neglects changes to the free Ca2+ in the
channel interior.
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Small charged molecule permeation properties of a mesoporous silica film

Validation of the PNP model for 5(6)-Carboxyfluorescein (CF) permeation in
a silica film

In the previous sections, implementations of the PNP equations were validated
against experiment and simulation studies for several nanoporous silicate geomet-
ries. Here we utilize PNP simulations to explore permeation properties of
small ligands in a oriented mesoporous film,152 for which transmission electron
microscopy (TEM) provides a distribution of bulk and defect features (Fig. 2.3b)
A key difference between these geometries and those considered in the prior
sections is that the porous silica membranes here present a multitude of densely
packed pores. We first validate our model by simulating permeation properties
of 5(6)-Carboxyfluorescein (CF) in the Wooten et al152 membranes. Based on
their experimental setup, the length (thickness of membrane) and radius of the
nanopore is set as 90nm and 5nm, respectively. The pH is set as 7.4 (all CF
numerical simulations were conducted at pH=7.4 unless otherwise stated) and
background [KCl] is set as 0.9M to mimic the ionic strength (0.9M, κD=31.8)
in experimental setup. At this basic pH, CF is expected to form the anion
CF– (pKa=6.5) and thus we do not anticipate adsorption of the small molecule.
Our model consists of five ionic species H+,OH–,Cl–,K+ and CF–, for which we
assume an absorbing boundary condition for CF on one reservoir edge (e.g.
[CF]=0).

As shown in Fig. 2.3B, although the nanopores are mainly in hexagonal
packing arrangement, structural defects such as fused nanopores are evident.
To resemble the real membrane composition, we thus consider two unit cell
structures appeared in the TEM image: a hexagonal unit cell and a fused pore
unit cell (dimensions are shown as in Fig. 2.2). The permeabilities of CF for these
two unit structures were predicted to be 1.12× 10−6 m/s and 1.185× 10−6 m/s,
respectively (see Fig. S3) and modestly less than the experimentally-determined
value of approximately 1.4× 10−6 m/s.152 Not unexpectedly, the difference in
the unit cell permeabilities can be explained by the relative porosities (see
Fig. S4), with the fused pore have a greater cross-sectional area than the HCP
cell (0.357 and 0.317, respectively). Unlike in Fig. S3, for which we used a
background ionic strength as 0.9M to mimic the experimental setup in Wooten
et al,152 here we used a range of dilute ionic strengths. The motivation for
dilute conditions is two-fold: 1) high ionic strength has a strong electrostatic
screening effect which undermines the influence of wall electric potential on CF
permeation and 2) it has been shown surface charge density/electric potential
begins to dominate ionic transport when bulk concentration is smaller that 1
mM.161 As shown in Fig. 2.6, for a fixed surface potential, both hexagonal
and fused pore unit cells present larger CF permeabilities as ionic strength
is increased. The increase with log(κD) plateaus when the Debye length
is much small smaller than D, under which case the permeability is nearly
completely determined by the pore diameter. These permeabilities indicate
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that the higher background ionic strength attenuates the repulsive interaction
between anionic CF and the negatively-charged nanopore wall, thus leading
a larger CF permeation. Analogously, for a given ionic strength, decreasing
the magnitude of the electric potential permits greater CF permeability. These
effects become more apparent as ionic strength is reduced, and moreover, the
differences in permeabilities for the respective unit cells magnify.
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Figure 2.6: Permeability of CF in hexagonal and fused pore unit cells vs. κD
(D=10nm is the diameter of pore) under different wall electric potentials when
pH=7.4 and [CF]=1mM. The two straight dashed lines denote predicted CF
permeabilities under 900mM background ionic strength (κD = 31.18, see Fig. S3
for details)

In support of the final step of the work flow in Fig. 2.1, we interpolate these
permeability predictions for the fused pore (6.2× 10−1 µm s−1) and the bulk
HCP pore (4.5× 10−1 µm s−1) unit cells onto the matched filtered data from
Fig. 2.3. Since the matched filtering provides a quantitative means of estimating
the propensity of detected defects relative to bulk, the effective permeability of
the entire EM film can be approximated by surface area-weighted conductivities
of the corresponding unit cells. While in principle the conductivities between
adjacent unit cells could be coupled and thus disfavor this simple extrapolation
approach, given the modest surface potentials we assumed that the conductivity
of a given unit cell was independent of its neighbors. In Table 2.1 we summarize
these data for the fused pore-rich and bulk-like regions. The fused pore-rich
region presents roughly 90% fractional surface area attributed to fused pore unit
cells, thus the Peffof 6× 10−1 µm s−1 approaches Peffpredicted for a single fused
pore. For the bulk-like region, the surface area was split between bulk-like,
fused pore, and uncharacterized unit cells, and thus yielded an intermediate
Peffof 5.5 µm s−1. Surprisingly, the bulk-like unit cells did not contribute the
majority of the surface, but instead, a significant percentage was unclassified
despite resembling the bulk HCP form by visual inspection. Upon investigating
the correlation outputs corresponding to the unclassified cells, we found that
relative spacing between pores were dilated, which arguably led to a reduced
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Table 2.1: Effective permeabilities, Peff, for the fused pore-rich and
bulk-like regions, as computed by Eq. 2.25. Predicted conductivities
for bulk and fused unit cells are from Fig. 2.6 and their surface
area weights are estimated from matched filter detections in Fig. 2.3

Case S.A. (%) Peff
Bulk Fused Uncharacterized

Fused pore-rich 0.05 88.9 0.06 6.0× 10−1 µm s−1

Bulk-like 0.28 0.44 0.28 5.5× 10−1 µm s−1

Exp 1.4 µm s−1

overlap of the HCP pore filter. We anticipate that augmenting the rotated filter
bank with dilations and contractions of the ’typical’ unit cell could potentially
improve detection for such cases.

Exploiting surface interactions to tune permeation rates

Factors controlling CF permeation In this section, we examine how CF perm-
eation can be controlled by ionic strength, nanopore wall surface charge density,
electric potential and selective CF binding. In Fig. 2.7 we demonstrate ion
permeabilities as a function of ion size and ion/wall electrostatic interaction
energy. Not surprisingly, the permeability decreases with effective pore radius,
which represents the difference between the actual pore radius and that radius
of a permeant ion (e.g. reff = rpore − rion). In other words, as the ion
size is increased, the effective pore radius decreases and smaller permeabilities
result. We note that as the ion size approaches that of the pore, additional
factors would likely have to be added to the model to accurately model
the ion/wall interactions, including hydrodynamic interactions and potential
changes in local diffusivity.173 Similarly, increasing the repulsive interaction
energy decreases permeability, while attractive energies increase permeation.
The effects of electrostatic interactions attenuate with increasing ionic strength,
as shown for CaCl2 effective diffusion rates in Fig. 2.5b.

As shown in Fig. 2.7B, at modest ionic strengths (100 mM), the capacity to
modulate ion transport by charge is diminished, as the predicted permeabilities
at 100 mM are constant across the range of electrostatic interaction energies
considered, compared to the 1 mM data. If instead one modified the surface
chemistry to selectively bind a substrate, the loss in electrostatically-driven
selectivity commonly observed at higher loadings (ionic strength)174 could
be circumvented. We illustrate this by assuming there exists a buffer that
selectively binds CF, which in principle could arise through adding appropriate
functional groups to the silica surface or tethering a binding agent to the
pore wall.175,176 For simplicity, we assume rapid equilibrium for this potential
reaction, that is, the binding/dissociation between CF and buffer occur more
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rapidly than the timescale of diffusion. Under this limit, the local diffusivity of
CF in the buffer region (Dbu f f er) can be described by:177

Dbu f f er = D f ree

(
1 +

Ks[B]
(Ks + [CF])2

)−1

(2.26)

where Ks is the dissociation constant, [B] is concentration of buffer and D f ree
is the diffusion constant without any buffer. We model the effects of this
rapid equilibrium by altering the local diffusion constant used in the PNP
equation (Eq. 2.8), which effectively reduces the net flux with increasing buffer
concentration and CF binding affinity. As shown in Fig. 2.7B, a buffer concentration
[B]= 1mM (comparable to [CF]), the permeability is reduced by 6.27% compared
to the absence of buffer. As [B] is increased to 10mM and 100mM, the
permeability is further reduced to 27.6% and 39.0%, respectively. Overall, these
data suggest that considerable flexibility in tuning permeation properties in
these mesoporous films may be realized, though exploiting combinations of
altered pore sizes,178,179 tuning ionic strength/loading rates,178 or introducing
ion-specific surface chemistry.176,180
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Figure 2.7: A) Numerically simulated CF permeability in hexagonal unit cell as
a function of electrostatic interaction energies and pore radiis. Background ionic
strength and bulk [CF] are both set as 1mM. B) CF permeability at fixed pore
radii (2.5nm) and fixed electrostatic interaction energy (1kT) under different
background ionic strength. Red lines denote CF permeability when a 1nm thick
buffer layer present along the inner wall of pore, the local diffusion constant of
CF is given as Eq. 2.26 where Ks is assumed to be 1. The dots, dashed and solid
red lines depict buffer concentration [B]=1mM, 10mM and 100mM, respectively.

2.4 Conclusions

In this study, we have developed and explored the utility of a workflow for
automatically characterizing EM microscopy data of mesoporous silica films
and performing detailed ion transport simulations of both bulk and defect
mesocrystalline features. A primary innovation in this method is the use
of a matched filter approach to robustly detect known features in electron
microscopy data. The procedure relies of a bank of filters for which the EM
signature of a given defect is known, as well as rotated versions of those filters.
Our results demonstrate that both bulk and fused features could be determined
with high selectivity. We emphasize that our matched filtering approach is
rather simple, but can be easily extended to incorporate sundry developments in
matched filter theory to improve the accuracy and reliability of detecting diverse
signals in EM data.

To simulate ion transport in these silica-based materials, we implemented a
PNP model that includes pH and Ca2+ adsorption regulation of pore charge
density. Our models confirm that electrolyte conductance in mesoporous
silica films is dependent on ionic strength, surface charge, pH, and adsorption
kinetics, as has been already demonstrated for single nanoporous channels and
slits. Under some conditions, the effects of ionic strength on transport can be
described as an effective pore radius that reflects the solution Debye length. We
extended these simulations to include a small molecule, 5(6)-Carboxyfluorescein
(CF), and identified parameters under which CF transport could be optimized
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through variation of porosity, surface charge and selective CF binding. In
our approach, we assumed a rapidly-equilibrating buffering zone, that notably
reduced the apparent diffusion coefficient of the selected-for ion, thus leading
to smaller transport properties. Lastly, we leveraged simulation results of
representative unit cells derived from the EM microscopy data to estimate
effective CF permeation rate for the mesoporous silica membrane surface.
Overall, the workflow in Fig. 2.1 that we establish in this study and validate,
where possible, has strong potential to benefit the characterization of effective
transport properties in increasingly complex composite materials, including
those with hierarchical degrees of structures, and especially materials significant
incidents of defects that perturb substrate diffusion.
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Chapter 3 Electrostatic control of calcineurin’s intrinsically-disordered
regulatory domain binding to calmodulin

• This chapter is based on "Sun, B.; Cook, EC.; Creamer, TP.; Kekenes-
Huskey, PM. Biochimica et Biophysica Acta - General Subjects 2018, 1862,
2651–2659"

3.1 Introduction

Calcineurin (CaN) is a ubiquitously expressed protein that regulates myriad
developmental and signaling processes.29,30 It is chiefly regulated by Calmodulin
(CaM), one of the most prolific proteins in terms of its role in shaping intracellular
signal transduction cascades. Despite the fundamental importance of CaM-
regulated CaN phosphatase activity in organism physiology, the molecular
mechanisms governing this process are incompletely understood. Given that
CaM/CaN is a prototypical example of a protein/protein complex involving a
globular protein (CaM) and an intrinsically disordered binding domain (CaN),181,182

structural details of the protein/protein complex are restricted to intact CaM
bound to a small fragment of the CaN regulatory peptide. In this regard, the
CaM/CaN complex is similar to the tens of CaM/protein target complexes183

that have resisted structure determination methods beyond the binding of short
peptides. Remarkably, despite the CaN regulatory domain presenting little
stabilized secondary structure, the CaM/CaN complex binds with picomolar
affinity,184 afforded in part by rapid, diffusion-limited binding.

CaN is heterodimeric protein consisting of two domains: chain A (57-61 kDa)
and chain B (19 kDa),30,185 while CaM (17 kDa) is comprised of two alpha-helix
rich domains capable of binding Ca2+. At Ca2+ concentrations typical of resting
cells (50 to 100 nM),186 CaN phosphatase activity is negligible, while CaM is
believed to be in Ca2+-free state.187 Under these conditions, the CaN catalytic
domain is autoinhibited by the protein’s auto-inhibitory domain (AID). At rising
Ca2+ concentrations, the CaN AID is removed from the catalytic domain. CaM
binding to the AID-containing CaN regulatory domain (RD) (Ser373 to Thr468)
is a critical determinant of this process.182,188 Interestingly, like many IDP-
containing complexes, well-defined secondary structure is observed only upon
binding a protein target.31,36–38

In absence of hydrophobic residues189 that would otherwise promote collapse
of protein into a molten apolar core, many IDPs such as the CaN regulatory
domain (RD) are polyampholytic.190 Metrics like the net charge per residue
(NCPR) have been proposed to relate charge density in IDPs to ensemble
properties including compactness and shape.42,43 Formally, NCPR= | f+ − f−|
where f+ and f− are fractions of positively and negatively charged residues,
respectively, and fraction of charged residues (FCR) is calculated as Nc

Nt
where

Nc is the number of charged residues and Nt is the total number of residues.
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Generally, IDPs with large NCPR values (> 0.25) tend to adopt more extended
conformations due to repulsive intra-molecular electrostatic interactions.42,191

However, the distribution of charged residues in the CaN RD is heterogeneous,
thus such sequence-dependent metrics have limited utility in determining
localized properties, such as the availability of binding motifs to target proteins.

We hypothesized therefore that RD sequence charge composition (as measured
by NCPR) and ionic strength influence the dynamic availability of conformations
amenable to CaM binding, while long-range electrostatic interactions drive
diffusion-limited association (see Fig. 3.1). To investigate this hypothesis, we
utilize long-timescale MD simulations to probe the highly dynamic conformational
ensembles comprising the RD constructs, toward delineating the extent to
which conformational gating kinetics and long-range electrostatic interactions
govern IDP/protein association. A chief outcome of this work is that charge-
sensitive ’local’ and long range factors, namely IDP conformational dynamics
and IDP/target electrostatic interactions, can jointly facilitate diffusion-limited
target association.
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Figure 3.1: Schematic of CaN peptide binding to CaM. The green and red
peptides represent CaM conformations which are capable and incapable of
binding to CaM (colored in cyan). The association rates between intrinsically-
disordered CaN peptides and CaM are controlled by open/closed state gating
kinetics (depicted by kb and kf) and the CaM/CaN diffusional encounter rate
(depicted by kon). Our study demonstrates that low (a) and high (b) ionic
strengths influence both contributions to afford diffusion limited encounters
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Figure 3.2: Amino acid sequences of three CaN peptide constructs examined
here, including their respective FCR and NCPR scores. pCaN: native CaM
binding region (CaMBR) of CaN (Ala391-Arg414). lpCaN: five predominantly
negatively charged residues affixed to the pCaN termini. lpcCaN: lpCaN
construct with three positively-charged substitutions at the C-terminus. In
present study, the residue numbers of lpCaN and lpcCaN are counted from 1
to 34 while pCaN has the residue numbers from 6 to 29

3.2 Methods

The initial structures of three CaN RD constructs predicted by Rosetta192 (see
Sect. 3.2) were followed by extensive microsecond scaled MD via Amber14193

(see Sect. 3.2). The 2D replica-exchange umbrella sampling (REUS) potential
of mean force (PMF) calculations of CaN RD constructs were performed by
NAMD2.11194 (see Sect. 3.2). The MD trajectories were used to characterize
the conformational dynamic of CaN RD constructs through Markov sate model
(MSM) via Aqualab195 (see Sect. 3.2). The diffusional encounter rates of CaN RD
constructs with CaM were simulated by BrownDye package85 (see Sect. 3.2) and
the effective association rates with conformational dynamics taken into account
were given in Sect. 3.2.

Structure preparation

The N-domain (residue numbers 3 to 75) and C-domain (residue numbers 76
to 147) of CaN were extracted from the crystal structure (PDB ID: 4Q5U196).
For CaN peptides, three different peptides with varying lengths and charge
distributions were considered: 1) pCaN: native binding region for CaM. 2)
lpCaN: elongated pCaN with five additional residues added to two ends of
pCaN, respectively. 3) lpcCaN: charge mutated lpCaN having EESE to KKSK
mutations at the C-terminal end. Since diffusion limited binding between
CaM and CaN are suggested for both intact CaN and its regulatory domain
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(arXiv:1611.04080v1), we postulated that these comparatively shorter constructs
could capture key factors governing diffusion limited association in a computa-
tionally tractable manner. Rosetta192 was used to model initial conformations for
the CaN peptides. The ab initio structural prediction was conducted by running
the "AbinitioRelax.linuxgccrelease" installed on our local computing resources.
The parameters used in present study are similar to that listed in.197 The
example flags set (parameters) of pCaN structural prediction are provided in
the supplement (see Sect. 6). The fragment libraries (e.g., frag3 and frag9) were
generated via the online server (http://robetta.bakerlab.org/fragmentsubmit.jsp).
The number of output conformations was set to ten. No pre-defined secondary
structure file was specified. According to the energy score, for each CaN
peptide, the conformation with lowest energy was picked out for further
extensive MD sampling. Although just one conformations was selected for
each CaN peptide, it was expected that the following microsecond MD ensure
adequate sampling.

Molecular dynamic simulation

We next performed MD simulations to extensively explore the conformational
space of the CaN peptides. The Amber ff99SB-ILDN198 force field was chosen,
given its improved recapitulation of experimentally-observed IDP ensembles,
in contrast to common forcefields that tend to predict overly collapsed states
for IDPs.199 The MD was performed by using Amber14.193 The implicit solvent
model (igb = 2 with salt concentration = 0.15 M) was used. The reason for
choosing implicit solvent model was as following: 1) According to a recent
study,200 a combination of ff99SB-ILDN with implicit solvent model could
achieve reasonably accurate sampling for IDPs; 2) Implicit solvent model would
enable more sufficient sampling with affordable time cost. The cutoff value
for non-bond interactions was set as 999 Å. The starting structure was first
subjected to 50000 steps of energy minimization. The minimized structure
was slowly heated from 1 to 298.15 K by using the Berendsen Thermostat
within 800 ps. During the MD process, the time interval was set to 2 fs and
the SHAKE201 constraints were applied on bonds involving hydrogen atoms.
By setting the initial temperature in the heating stage equal to 1 instead of
0 and ig = −1 would generate different initial velocity distributions for the
system, thus independent simulations can be achieved. For each peptide, three
independent MDs were performed to ensure the reliability of the sampling
(total 15 µs production run for each peptide). To study the effect of ionic
strength on sampling, we ran analogous simulation with salt concentration =
1.5 M, resulting in a total 30 µs production run for each peptide (15 µs at 0.15
M and 15 µs at 1.5 M ionic strength). Although 1.5 M ionic strength is non-
physiological, however, this high ionic strength would significantly increase the
electrostatic-screening effect and facilitates more pronounced changes in CaN
peptide conformational properties under a different electrostatic environment
as compared to the physiological 0.15 M ionic strength. In RMSF calculations,
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for each peptide, we first performed rms-fitting of trajectory frames to the
first frame of trajectory. The rms-fitting would eliminate the translational and
rotational effect and ensure the RMSF reflect the fluctuation of atoms. Contact
map data of heavy atoms was collected via CPPTRAJ in Amber with distance
cutoff as 7 Å and only residue pairs which are at least 5 residues apart (i and
i + 5) in sequence are considered.

Two-dimensional replica-exchange umbrella sampling (REUS) PMF calculation

Two-dimensional PMF calculations were performed to characterize the free
energy profile associated with conformational space of each peptide. Two
reaction coordinate (RC)s were defined: 1) α which describes the α-helical
content of the peptide (ranging from 0.1 to 0.9) and 2) radius of gyration (RG)
of the peptide (ranging from 5 to 32 Å). Each RC range was divided into nine
bins resulting in total 81 windows (with interval being 0.1 and 3Å for α and
RG, respectively). The two force constants of the harmonic potentials imposed
on these two RCs are 1.000× 103 kcal mol−1 U−2 for α and 2.5 kcal mol−1 Å

−2

for RG. For each peptide, the representative structure from the most populated
cluster was chosen as the starting structure. NAMD2.11194 was chosen to
perform the 2D REUS calculations due to it’s colvar module which supports
various user-defined collective variables. The CHARMM36202,203 force field was
used in the 2D REUS calculations. For each window, the simulation length was
set to 20 ns and only the last 15 ns data was used to calculate free energy by
WHAM.204

Markov sate model (MSM) analysis via Aqualab

For each peptide, a 1D kinetic trajectory was created from the 15 µs MD
trajectory describing the state change along simulation time. Open states were
defined based on examining Browndye-predicted association rates as a function
of root mean squared deviations (RMSD); the RMSD value below which the
association rate rapidly increased above negligible values was utilized as the
open/closed state cutoff criterion. We note the ’closed states’ are not necessarily
precluded from binding, but we assume that the timescale for assuming a
conformation compatible with the complex via induced fit is slow. These criteria
differed among the three peptides. For pCaN, the open state was defined as
RMSD < 7 Å while for lpCaN and lpcCaN the open state are defined as RMSD
< 5 Å. Using these cutoffs, Markovian networks were created based on the 1D
trajectory (rates of open to closed and vice versa ) via Aqualab,195 for which
conditions such as detailed balance205 were imposed to define P, the equilibrium
probability matrix and T , the transition probability matrix.
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Brownian dynamic (BD) simulations

The binding of CaN peptide and N/C terminal domains of CaM are treated
as two independent events and simulated separately by using the BrownDye
package.85 For each peptide, ten conformations for each RMSD cluster were
randomly selected to perform BD simulations with N/C-domain of CaM. The
PDB2PQR206 was first used to generate the pqr files for CaM N/C domains
and the selected conformations of CaN peptides from MD trajectory with radii
and point charge parameters adapted from the AMBER9987 force field. The
generated pqr files were then passed into APBS86 to evaluate the electrostatic
potential of these structures. APBS was used to numerically solve the linearized
Poisson-Boltzmann equation assuming an ionic strength of 0.15 M and 1.5 M
NaCl:

− ε∇2ψ = ∑ ρiqi − κ2ψ (3.1)

where ψ is the electrostatic potential, ρiqi is the charge distribution of fixed
charge i, and κ is the inverse of Debye length. The Debye length reflects the
scale over which mobile charges could screen out electric potential fields.

In present BD simulation, the reaction criterion was chosen to be six pairs
of contacts with distance of contact being less than 10 Å. The contact list was
created via the make_rxn_pairs routine in Browndye package based on the
pCaN-CaM complex crystal structure (PDB ID: 4Q5U196) with distance cutoff
being 5 Å. 10000 single trajectory simulations for each system were conducted
on 10 parallel processors using nam-simulation. Thus for each peptide, the total
number of BD trajectories was about 1 million. The reaction rate constants were
calculated using compute-rate-constant from the BrownDye package.

To estimate the association rate and its sensitivity to ionic strength, we
computed association rates for the terminal domains separately, assuming that
both components bind independently,

1
kon

=
1

kCterm
+

1
kNterm

(3.2)

where the rates in the right hand side correspond to the association rates for
the C and N terminal domains, respectively. We anticipate that this expression
under-approximates the rate of complex formation, given that tethered binding
partners generally exhibit higher efficiencies for forming intact complexes.207,208

Effective association rate combined with gating kinetics

The effective association rate constant after taking conformational dynamics into
account was given by Szabo et al:45

keff =
KDKeqkbZ[kf + kb]

kf(Keq + KDZ[kf + kb]) + kbZ[kf + kb](KD + Keq)
(3.3)

where

Z[kf + kb] = 1 + ((kf + kb)R2/D)0.5 (3.4)
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where KD is the association rate when the peptide is always in open state and
in present study, KD is the BD simulated association rate constant of the open
state CaN peptides with CaM (e.g., KD = kon,open). Keq is characteristic constant
indicating the extent to which the association is diffusion-controlled (see45 for
more details). In present study, we set Keq = 1× 1020 M−1 s−1. kf and kb are
the conversion rate between the open and closed state determined from MSM.
R is the contact distance at which the transient complex formed and in present
study we set R equal to the average b-radius values from BD simulations. D is
the relative translational diffusional constant and was calculated via.39,85

D =
KD

4πR f∞
(3.5)

where f∞ is the reaction probability which was at the order of 1× 10−4 given by
BD simulations.

3.3 Results and Discussion

Molecular simulations confirm the intrinsically-disordered structure of the
CaN regulatory domain

Several studies using circular dichroism spectroscopy, hydrogen-deuterium
exchange mass spectrometry, Fourier transform infrared spectroscopy and X-
ray crystallography indicate that the nearly one-hundred amino acids of the
CaN RD domain (Ser373 to Thr468181,182) form an intrinsically disordered
ensemble.32,34,182,209 Of these, approximately twenty amino acids (Ala391-Arg414)
comprising the CaMBR adopt an alpha-helix in the presence of CaM.196 Here
we examine three RD constructs (pCaN, lpCaN and lpcCaN, see Fig. 3.2) that
present diffusion-limited association with CaM (arXiv:1611.04080v1). pCaN
spans residues A391 to R414 and has been co-crystallized with CaM (PDB ID:
4Q5U196). lpCaN includes three additional polar residues (Ser3, Ser32 and
Ser34) and four additional charged residues (Asp1, Glu30, Glu31 and Glu33)
while lpcCaN is a peptide of the same length with substitutions of three
glutamic acids with lysines at the C-termini of lpCaN. The set of constructs
considered here span a range of charge densities that we later demonstrate
tune CaM/CaN association kinetics. pCaN and lpcCaN have similar NCPR
values of 0.291 and 0.264, which are considerably larger than the value for
lpCaN (0.088); previous works,42,191 suggest NCPR scores above 0.25 reflect
extended IDP conformations given the propensity for repulsive intramolecular
interactions, whereas those below this threshold are comparatively compact.
We expected therefore that 1) the CaN peptides lack well-resolved secondary
structure characteristic of a folded protein and 2) the ensemble of lpCaN should
be modestly more compact than that of lpcCaN, given that latter has higher
charge density.

To investigate the hypothesis, we performed 5 µs MD simulations in triplicate
(total 15 µs) at 0.15 M and 1.5 M ionic strength, respectively. The choice
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of physiological (0.15 M) and high ionic strength was intended to probe the
contribution of intra-peptide electrostatic interactions to ensemble properties, as
such interactions would be screened at high ionic strength. While simulations
of IDPs of up to 100 residues have been reported elsewhere,191 the breadth of
simulations used in this study restricted our construct sizes to 24 to 34 a.a. Our
MD simulations indicate that the heavy atom root mean squared fluctuations
(RMSF) for each residue in Fig. S5(e-f) are shown to be larger than 5 Å for
all three peptides at both ionic strengths, which is consistent with the high
mobility loop scores reported in Fig. S5(b). These data suggest that the peptides
do not form stable folded structures in solution regardless of ionic strength.
The MD-generated structures present a multitude of conformations, ranging
from loosely-formed, hairpin-like configurations to extended structures. lpCaN
presents perhaps the most hairpin character, as corroborated by intramolecular
contacts reported through contact map analyses in Fig. S6. Among these
contacts are prominent interactions between Arg12-Glu30, Arg23-Glu30 and
Arg13-Glu32, which we attribute to transient salt-bridge formation. For lpcCaN,
the mutation of negative residues (Glu30, Glu31 and Glu33) to the positively
charged residues (Lys30, Lys31 and Lys33) appears to disrupt these intramolecular
contacts, thereby yielding a more extended conformational ensemble relative to
lpCaN. Given the similar NCPR values of pCaN and lpcCaN, we expected pCaN
would similarly present fewer intramolecular contacts than lpCaN. Surprisingly,
pCaN has similar contact map features as lpCaN, that is, both peptides have
comparable intra-contacts. Later we will demonstrate that it is in fact the
interconversion kinetics, not the average structural properties, of lpCaN and
pCaN that dictate binding kinetics. Additionally, we found that increasing
ionic strength to 1.5 M screens the electrostatic interactions between residues
comprising the reported salt bridges. As a result, we observe for pCaN and
lpcCaN that the structures become modestly more extended on average. It is
important to acknowledge that while implicit solvent simulations permit greater
degrees of conformation sampling compared to their all-atom counterparts,210

the utilization of an implicit solvent comes with certain limitations. Among
these include the propensity to overestimate alpha-helical character and to
alter the interaction strengths of salt-bridging amino acid pairs.211 Similarly,
in the event that charged amino acids might chelate counterions in solution,
as exemplified by acidic EF-hands in diverse Ca2+ binding proteins,212 implicit
solvent may underestimate the strength of such interactions. It would therefore
be of interest in future studies to assess the significance of these limitations in
IDPs using explicit all-atom simulations of comparable length to implicit solvent
trajectories.

RD fragment charge density appears to control compactness independent of
ionic strength

To support the formation of the CaN/CaM PPI, the CaN CaMBR must be
revealed to the solvent-exposed CaM surface. The exposure of the CaMBR could
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occur spontaneously, which would promote binding by presenting mutually
compatible conformations independent of the complementary species, or via
an induced-fit mechanism when the binding partner, CaM, is present. In the
previous section, we indicated that the peptides have considerable structural
variability, therefore here we determine whether this variability confers greater
access to the CaMBR independent of CaM.

In Fig. 3.3(a-c), we report the RMSD of the CaMBR binding region for each
configuration from the MD simulations, relative to the extended, alpha-helical
pCaN conformation that is compatible with the CaM binding surface. From
these simulations, we identify conformations that are amenable for CaM binding
("open" state) and those unsuitable for CaM binding ("closed" state), using a
cutoff of pCaN: 7 Å, lpCaN and lpcCaN: 5 Å. We utilized a more restrictive
criterion for the longer constructs, as the 7 Å cutoff assumed for pCaN yielded
structures that were incompatible with CaM. RMSD values below the cutoff
more closely resemble the fully-extended reference structure, whereas values
above this cutoff are more compact. As shown in Fig. 3.3(a-c), all three peptides
adopt a small percentage of CaM-compatible configurations as measured by
RMSD and the percentages appear to be insensitive to ionic strength. These data
additionally indicate that lpCaN (NCPR = 0.088) has the smallest percentage
of CaM-campatible structures as assessed by RMSD compared with the bound
CaN complex, relative to lpcCaN (NCPR = 0.264) and pCaN (NCPR = 0.291).

In Fig. 3.3(d-f), we present the structures of the most probable conformations
based on RMSD clustering analysis. Significantly, each peptide was observed to
partially fold into an α-helix, indicating that bound-like ’residual’ structures can
spontaneously form in the absence of the binding partner, as has been reported
for other IDPs.213–216 The open state probabilities we determined represented a
small, but significant fraction (pCaN: ∼20%; lpCaN: ∼1%; lpcCaN: ∼45%) of
the conformations sampled. Importantly, these data indicate extended/CaM-
compatible conformations form spontaneously and in a charge density (NCPR)-
dependent manner (see Fig. 3.3(a-c)). We speculate that the tendency for
a percentage of the conformational ensemble to assume an extended pose
relative to a hairpin fold suggests that intra-molecular repulsion may partially
destabilize the formation of loose hairpins. This effect would be exacerbated
with charge densities of increasing magnitude, such as those reflected in the
NCPR values for pCaN and lpcCaN, and relatively diminished for low NCPR
peptides like lpCaN.
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Figure 3.3: Distribution of RMSD (with respect to bound-pCaN crystal structure
in PDB 4Q5U) in the MD of each CaN peptide at 0.15 M ionic strength and
1.5M ionic strength, respectively(a-c). The shaded area colored in violet denotes
the open state-like conformation. The representative structures (colored in
rainbow with N-termini as blue and C-termini as red) for each RMSD range
and percentage of conformations within this RMSD range were also shown(d-f)

CaM-compatible conformations are energetically unfavorable in absence of
CaM

To establish a thermodynamic basis for the trends of greater conformational
diversity for the high NCPR cases (pCaN and lpcCaN) relative to the low NCPR
case (lpCaN), we report potential of mean force (PMF) calculations for these
peptides as a function of α-helical character, a measure of secondary structure
formation, and RG, a measure of compactness (see Fig. 3.4). Such PMFs have
been used to characterize the propensity for IDPs to assume specific ensemble
characteristics, including IDP compactness.217,218 Each construct preferentially
adopted smaller α-helical character than the 84% reflected in pCaN when bound
to CaM. Lacking CaM, unfolded CaN RD states dominate the conformational
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distribution, thus CaM is apparently necessary to shift the IDP ensemble toward
the bound state via an induced-fit mechanism.

Interestingly, we observe that the range of RG and α-helical values within
a few kbT of the energy minima (0 kbT) are larger for the high NCPR cases
compared to lpCaN. These data mirror our findings for the histogram of
RMSD distributions in Fig. 3.3, with the low NCPR case presenting a narrower
distribution relative to the high NCPR cases. Further, the PMF data support
the observation for the lpCaN and lpcCaN peptides that the former structure
assumes a more compact, hairpin-like configuration relative to the latter, as
we observed in Fig. 3.3(d-f). This indicates that the high NCPR cases access a
larger range of conformations in their IDP ensembles that overlap with the CaM-
bound structures, albeit in contrast to the more narrowly peaked distributions
presented for the low NCPR (lpCaN) configuration. Our results are consistent
with the work done by Mao et al42 for protamine IDPs demonstrating that
globule-to-coil transitions were more favored with increasing of NCPR values.
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Figure 3.4: Two dimensional PMFs for pCaN (a), lpCaN (b) and lpcCaN (c)
at 0.15 M ionic strength. The x and y axis depict α-helical and RG reaction
coordinates, respectively. The x axis of (b) and (c) are hidden for clarity. For each
peptide, ten randomly selected structures (colored in rainbow with N-termini as
blue and C-termini as red) from lowest energy area are compared against bound
state pCaN conformation (colored in magenta) from PDB 4Q5U (α = 0.844, RG
= 11.54 Å). The unit of color bar is kbT where kb is Boltzmann constant and
T = 298 K is temperature

CaN regulatory domain ensemble conformational dynamics are rapid and
have modest ionic-strength dependence

Our unconstrained MD and PMF calculations both indicate that the CaN RD
peptides do not readily assume an open-state compatible with CaM, although
there exist some infrequent, CaM-compatible configurations. In this regard,
one can view the accessibility of the pre-folded CaMBR domain to CaM as a
’gating’ event, which in principle could control the apparent binding rate for this
process.219,220 Given that our previous work (arXiv:1611.04080v1) in which CaN
peptides are assumed to have fully CaM-compatible CaMBR conformations
demonstrated that all three peptides are capable of binding CaM, albeit at
substantially different rates.We hypothesized that the appearance of bound-like
structures before binding serves to nucleate loosely-associated CaM-compatible
transient encounter states with low alpha-helical character, which permits
’induced folding’ in the presence of CaM to access alpha-helix rich bound-states.

CaN peptides present open and closed states with rapid gating kinetics

As a first step towards probing this hypothesis, we first estimated the transition
kinetics between open and closed states identified in Sect. 3.3 using Markov
sate model (MSM) analysis. Intuitively, we would expect that higher rates of
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accessing CaM-compatible open states would maximize the CaM/CaN associat-
ion rate. We note here that we defined the open state as consisting of conformations
below the 7 Å (for pCaN) and 5 Å (for lpCaN and lpcCaN) RMSD cutoff, while
all conformations with dissimilar RMSDs were lumped into a single closed
state. We verify that the states are essentially Markovian as the correlation times
become negligible beyond roughly tens of nanoseconds which is faster than the
diffusion encounter time.

Overall, based on this partition of MD data, the transition rates between
closed and open states are rapid (the slowest rate is at 1× 107 s−1 order, see
Table S2) and lead to the short-lived open states shown in Fig. S7 (average life
times of open state for all three peptides under both ionic strengths are around
0.2 ns).

Modulation of electrostatic interactions do not change overall compactness of
CaN peptides ensembles, but does influence the gating rates of lpCaN

Ionic strength was shown to have negligible impact on the RMSD of our
predicted peptide structures relative to CaM-bound conformation. However,
given the pronounced role of electrostatics in facilitating protein/protein associa-
tion rates and protein folding,44,221 we sought to determine whether transition
kinetics between conformations were influenced by ionic strength. Hence, we
compared MSM rate predictions for MD generated structures at low (0.15 M)
and high (1.5 M) ionic strength. Here we found that for pCaN and lpcCaN,
increasing ionic strength does not affect the gating rates between open and
closed states. However, for lpCaN, increasing ionic strength increased kf from
1× 107 s−1 to 1× 108 s−1 order. As a result the lifetime of its closed states
decreased from 12.83 to 4.42 ns, as shown in Fig. S7. Hence, the open and
closing kinetics of peptides with high NCPR are appear to be less sensitive to
ionic strength, compared to structures with low NCPR. These results concur
with findings from Liu et al,222 for which they demonstrated that the fast-phase
structural fluctuations as measured by Fluorescence correlation spectroscopy
(FCR) for the IDP Sic1 disappeared with decreasing ionic strength. At first
glance, it is surprising that the ionic strength did not appreciably alter the
average properties of the conformation ensemble. However, we anticipate
that the change in ionic strength, while significant, was insufficient to strongly
disfavor the desolvation of the charged groups in order to drive hydrophobic
collapse. In contrast, a less hydrophilic solvent, e.g. one with a low dielectric
constant, would strongly reduce the desolvation energy and thereby is expected
to lead to a hydrophobic collapse.

Long-range interactions promote rapid CaM/CaN association

Our results thus far indicate that the CaN RD peptides adopt CaM-compatible
conformations in the absence of CaM frequently, albeit transiently. Here
we determine the compatibility of these transient states with the CaM/CaN

58



binding interface using Brownian dynamic (BD) simulations. Specifically, we
sought to evaluate two hypotheses: 1) that frequent presentation of CaN open
states promote near diffusion-limited association rates and 2) that long-range
electrostatic interactions are exploited in PPIs involving IDPs. Motivating our
first hypothesis are recent indications that target-compatible residual structures
of the isolated p53 up-regulated modulator of apoptosis (PUMA) IDP form
spontaneously as a function of ionic strength and electrolyte composition.223

For the latter hypothesis, we adopt the paradigm of electrostatically-driven
association of globular proteins,39,224–226 which depends critically on the notion
of a transient encounter complex.227,228 The encounter complex serves as the rate
determining step in PPI formation, whereby a protein loosely binds to its protein
target, before adopting the fully-formed bound configuration. However, unlike
PPIs involving globular partners that typically feature regions of complementarily-
charged hydrophilic patches,229,230 such patches may only be transiently presented
in IDPs. Though these results offer specific insights into the ubiquitous Ca2+

signaling partners CaM and CaN, these trends may vary in importance depending
on the IDP sequence, particularly those with vastly different amino acid charge
densities and distributions.

CaN open state conformations compatible with CaM

We tested these hypotheses by assuming each peptide must achieve a minimal
number of ’native contacts’ with the CaM N-terminal and C-terminal domains
to constitute a transient encounter complex. The native contacts are obtained by
analyzing the crystal structure of CaM-pCaN complex, in which key interactions
between CaM and pCaN were extracted to guide the BD simulations. From this
standpoint, the lenient conditions for association are tantamount to the notion of
a transient encounter complex,231,232 which is formed upon association of two
binding partners prior to forming the fully-bound complex. Because we test
the first hypothesis using conformations generated from the MD simulations
without CaM, this test bears similarity to the conformational selection paradigm,233

though we emphasize CaM is likely required to completely form the bound
complex from the transient encounter state. However, the abundance of IDP-
target protein complexes that exhibit diffusion-limited association suggest that
the folding rate from the encounter state to the bound complex is rapid. The
MD-generated open states presented in each of the peptide configurations
are compatible with both the N- and C-terminal CaM domains to varying
degrees, as the open state of each peptide gives BD-simulated kons in the
diffusion-limited regime (> 1× 107 M−1 s−1). Notably, all peptides considered
here are capable of forming the transient encounter complex with CaM at
rates that decrease with increasing ionic strength. While not explored in
this study, binding affinities via methods including Molecular Mechanics-
Generalized Born Surface area (MM-GBSA) techniques234,235 could help rank
configurations most compatible with the bound complex.
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Rapid IDP conformational ensemble dynamics promote rapid association

Lastly, we investigated the role of conformational gating rates on the effective
association rates based on the stochastic gating model postulated by Szabo et
al.45 In this gating model, kon is the expected ’ideal’ association rate between
CaN peptide and CaM. By ’ideal’ it means that the CaN peptide is aways in
CaM-compatible open state and the concentration of CaN peptide and CaM are
sufficiently large, thus kon here reflect the diffusion timescale of CaN peptide
to CaM. By considering this, kon can be compared with kb/kf which reflect
the conversion time scale between open/closed states of CaN peptide. In the
gating model, there are two limits that bound the effective rates: 1) given gating
rates that are significantly faster than diffusional encounter rate (kf + kb� kon),
the effective association rate keff is equivalent to the rate associated with the
open state, that is, keff= kon. 2) given gating rates significantly smaller than the
diffusional encounter rate (kf + kb� kon), keff is given by the weighted average
of the association rates for all accessed states, that is keff= 〈kon〉.

Rates associated with intermediate regimes are obtained by evaluating
Eq. 3.3 using the MSM-estimated gating rates. Based on the data in Table S3
we show in Fig. 3.5 for pCaN and lpcCaN that keff and kon are comparable
(e.g. keff/kon→ 1), indicating a marginal effect of conformational gating
on the association rate. This arises because the conformational transition
rates are of the order 1× 109 s−1, roughly 100 times faster than diffusional
encounter rate, based on our BD simulated kons of 1× 107 M−1 s−1 order (see
Table S3). In contrast, the slower transition kinetics for lpCaN yield a keff that
is about 50% of the maximal kon, albeit it is still in a diffusion-limited regime.
Moreover, the rates are strongly attenuated at 1.5 M relative to low ionic strength
conditions of 0.15 M, which suggest the strong role of long-range electrostatic
interactions in promoting association. These data indicate that diffusion-limited
association kinetics are realized in the CaN IDP constructs, though the effective
rate depends both on ensemble gating kinetics and long-range electrostatic
interactions.

An important factor to consider in this model is that the inability of the closed
state to bind as rapid as the open state does not render the former ’unsuitable’
for binding. Rather, we anticipate its binding rate will be much slower relative
to the open states, as the latter of which requires lesser structural reorganization
to assume the correct binding pose. We support this speculation based on Gō
model predictions, for which we demonstrated a greater degree of frustration of
transition from closed-like conformations to open-like. Namely, for closed state
pCaN conformations, the BD-simulated complex presents an average fraction
of native contact as Qn = 0.24 and Qc = 0.22, for the percent native contacts
of the N and C terminal CaM domains, respectively while the open state pCaN
conformations yield, Qn = 0.56 and Qc = 0.59 (see Fig. S13 and Fig. S12). Since
lower native contact values will likely encounter greater frustration in folding
landscapes compared to near native states, and reduced frustration results in
increased rates of folding kinetics,236 we anticipate that induced-fit binding
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occurs more slowly than the binding of open-state conformations.
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Figure 3.5: Association rate constants between CaN peptide and CaM before
(a) and after (b) taking CaN peptide’s conformational dynamic (from MSM
modeling) into consideration using Eq. 3.3. The bars without grids and with
grids depict results in which CaN peptide conformations were sampled at
0.15 M and 1.5 M ionic strength, respectively. In (a), kon was calculated via
Eq. 3.2 where kCterm and KNterm are the average values of ten randomly selected
conformations from each peptide’s open state. In (b) the numbers above each
bar represent the ratios of keff to kon

3.4 Conclusions

Modulation of IDP charge density provides molecular basis for tuning IDP
ensemble kinetics and protein-protein association kinetics

Our studies of CaN conformational dynamics and CaM/CaN association reveal
several interesting features. While the role of charge distribution in IDPs
has been shown to be a strong predictor of ensemble structure including
compactness,42,191 our simulations reveal that measures such as NCPR may
offer predictive estimates for the ionic strength sensitivity of conformation
transition kinetics. Namely, higher NCPR structures are more likely to adopt
conformations that complement their binding target, and are less sensitive
to changes in ionic strength that may influence gating kinetics. However,
it is important to note that this trend may not generalize to necessarily all
IDPs, given the wide range of protein/protein association rates (< 1× 103 to
> 1× 109 M−1 s−139) reported in the literature, which hints at the possibility
of different assembly mechanisms. Second, we demonstrate that long-range
electrostatic interactions can play a paramount role in determining the kinetics
of forming PPIs involving intrinsically-disordered partners, while protein-solvent
and protein-protein electrostatic interactions govern the kinetics of presenting
target-compatible binding motifs. Together, these factors suggest that IDPs can
achieve diffusion-limited association by controlling conformational gating, so
long as a conformation amenable to association is rapidly sampled. Overall our
findings build upon the growing understanding of the roles of conformation
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selection and induced fit in dictating PPIs, both identifying how conformational
selection can accelerate association, despite potential requirements for induced
fitting in order to adopt the final binding pose.

Control of protein-protein association kinetics may support efficiency of CaM
regulation despite diverse targets

Our study focused on CaN’s binding interaction with CaM, of which the latter
regulates a staggering array of eukaryotic signaling cascades through forming
PPIs with target protein.183 What sets CaM apart from other such hubs is the
surprisingly diverse variety of targets it regulates, despite presenting a single
isoform across all mammalian species28 . In part, its ability to regulate this
diversity is attributed to the conformational heterogeneity of the CaM binding
interface237 it is capable of forming. These findings provide intriguing insight
into the interplay between conformational diversity and electrostatically-driven
protein-protein association involving CaN, which are likely to extend to wide-
ranging processes regulated by intrinsically-disordered proteins. As such,
exploiting IDP composition to tune PPI kinetics could offer new tools to probe
and modulate important biochemical signal transduction pathways.
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Chapter 4 Molecular basis of Calmodulin-dependent Calcineurin Activation:
The importance of distal helix/Calmodulin Interaction

• This chapter is based on "Sun, B.; Vaughan, D.; Tikunova, S.; Creamer, TP.;
Davis, JP.; Kekenes-Huskey, PM. Biochemistry 2019, 58, 4070–4085"

4.1 Introduction

Calcineurin (CaN) is a phosphatase that contributes to gene expression in
response to changes in Ca2+ homeostasis, it plays integral roles in physiological
processes including neurological development and maintenance, immune respon-
ses and tissue remodeling.185,238 CaN is heterodimeric protein consisting of
two domains: chain A (57-61 kDa) contains the protein’s catalytic site, while
chain B (19 kDa) contributes to enzyme regulation.185 CaN is activated by
rising intracellular Ca2+ levels. While it presents modest catalytic activity
in response to Ca2+ alone, optimal phosphatase activity occurs upon binding
Ca2+-saturated CaM. At depressed Ca2+ levels, the enzyme is inhibited by its
auto-inhibitory domain (AID) that directly binds to the phosphatase catalytic
site. Maximal relief from auto-inhibition occurs upon the binding of CaM to
CaN’s regulatory domain.

Our current understanding of the protein’s activation and enzymatic activity
has been shaped by a number of atomic resolution structures of CaN determined
by X-ray crystallography32,239–243 and nuclear magnetic resonance spectroscopy.244

Of the many CaN structures that have been deposited to the Protein Data Bank
are examples that have revealed the protein’s auto-inhibited state (PDB ID:
1aui32), a potentially non-physiological 2:2 CaM/CaN stoichiometric configura-
tion,241,245,246 complexes of the enzyme with immunosuppressants239,242 and
transcription factors.240,243 However, much less is known about the structural
basis of CaM-dependent regulation of CaN, as atomic resolution CaM/CaN
complexes are limited to intact CaM bound to small peptides comprising the
CaM binding region (CaMBR) of the CaN regulatory domain.33 From those
structures, it is clear that the CaMBR assumes α helical secondary structure
when bound to CaM. Nevertheless, the paucity of structural information inclusive
of complete CaM and CaN proteins leaves critical details of CaM-dependent
CaN regulation unresolved.

It is increasingly understood that CaM-dependent CaN activation depends
on structural properties of the 95-residue (≈10 kDa) CaN regulatory domain.35

This segment is intrinsically disordered,32–35 which signifies that it does not
assume a well-defined fold in solution and indirect probes of its conformational
properties in the absence and presence of Ca2+-activated CaM have revealed
important clues about the mechanism of CaN regulation. It was first observed
via circular dichroism (CD) by Rumi-Masante et al that upon CaM binding,
nearly fifty residues of the RDs folded into α helices of which only half could
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be accounted for by the CaMBR region. By using hydrogen exchange mass
spectrometry (HXMS), they further identified a region C-terminal to the CaMBR
that formed an α-helix upon CaM binding.35 Dunlap et al46 confirmed the
observation in a mutagenesis study of that region. Namely, they revealed
that single point mutations of three alanines within the distal helix region into
glutamic acids disrupted helix formation. Importantly, these mutations reduced
CaN’s apparent affinity for a substrate, pNPP, that competes with the AID
for the CaN active site.46 This region was coined the ’distal helix’ region (DH,
residue K441 - I458).

Simulations of CaN have helped bridge experimental probes of its phosphata-
se activity185,247,248 with static, atomistic-resolution structural data. Li et al
reported conformational changes of the CaN B domain following Ca2+ binding
via molecular dynamics (MD) simulation and proposed that similarity between
the apo- and holo-CaN B-domain conformations enables the former to regulate
CaN activity independent of Ca2+.249 Harish et al utilized virtual screening
and MD simulations to design inhibitory peptides of CaN using the native
AID peptide as template.250 Simulations have also been used to study the
involvement of CaN residues outside of its catalytic domain in the binding and
anchoring of inhibitory immunosuppressant drugs and analogs thereof.140,251–253

Similarly, computational studies examining structural mechanisms of CaM-
dependent regulation of targets including CaN have emerged recently, including
myelin basic protein (MBP)254 and myosin light chain kinase (MLCK).255,256

In complem-ent to these studies, we have additionally shown via molecular
dynamics and Brownian dynamics simulations that the CaMBR is highly dynamic
in solution in the absence of CaM, that CaM binding to the CaMBR is diffusion-
limited, and that the corresponding association rates are tuned by the charge
density of the CaN peptide.257 Despite these contributions, the sequence of
molecular events that follow CaMBR binding and culminate in relief of CaN
auto-inhibition remain unresolved.

Observations in35,46,258 formed the basis of a working model of CaN activation
whereby the folding of the intrinsically-disordered distal helix into an α helix-
rich structure is coupled to relieving CaN autoinhibition. However, it was
still unclear whether the distal helix directly bound to CaM, and if so, where
they might share PPI interfaces or how those putative PPIs are stabilized.
In large part, the challenge in identifying potential PPI sites arises because
such interaction sites generally assume large, flat surfaces lacking specific
interaction patterns,97 such as grooves formed between α helical bundles.98,99

Computational protein-protein docking engines have begun to address this
challenge, including ZDOCK100 and RosettaDOCK,101 which have been used
to successfully elucidate structural details of intrinsically disordered peptide-
involved regulation. For example, Hu et al utilized ZDOCK to successfully
predict the binding modes between disordered Yersinia effector protein and
its chaperone partner.102 Schiffer et al explored the molecular mechanism of
ubiquitin transfer starting from top-ranked ZDOCK predicted binding pose
between ankyrin repeat and SOCS box protein 9 (ASB9) and creatine kinase
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(CK).103 Bui et al reported that phosphorylation of the IDP fragment of transcript-
ion factor Ets1 leads to more binding-competent structures to its coactivator as
evident by MD and RosettaDOCK.104 Our studies have therefore used vetted
protein-protein docking techniques and extensive MD to uncover and validate
plausible sites for the secondary interaction between CaN’s distal helix motif
and CaM.

In this study, we harmonized a physical model of CaM-dependent CaN
activation with the latter’s activity. This entailed using computational methods
including protein-protein docking, enhanced sampling and classical MD simulati-
ons to identify potential interaction sites between the distal helix and CaM.
The protein-protein docking yielded several candidate interaction sites that we
defined as sites A through D (Fig. 4.2(a)). Of these, site D on the CaM solvent-
accessible surface appears to stabilize the distal helix by moderate-affinity
intermolecular interactions. Among the intermolecular interactions stabilizing
this putative PPI are two residues, lysine (K30) and glycine (G40) found on the
‘back-side’ of CaM distal to where CaMBR is known to bind. Their mutation to
K30E and G40D were found to abolish enzyme activity259 in another globular
CaM target, Myosin Light Chain Kinase (MLCK), that apparently relies on
still unresolved secondary interactions to initiate catalysis.260,261 Analogously,
our simulations of CaM K30E and G40D variants indicate that the mutations
substantially impair distal helix binding at site D. In complement to these
simulations, we demonstrate that the distal helix A454E variant also destabilizes
the distal helix/site D interaction in agreement with reduced phosphatase
activity shown by Dunlap et al.46 Our data strongly suggest that the site D and
CaN distal helix region are important to CaN activation, as site directed variants
at site D residues K30 and G40 reduces CaN-dependent dephosphorylation
of pNPP. Based on these results, we provide an updated structural model of
CaN activation by CaM that reflects specific CaM/distal helix interaction sites
(see Fig. 4.1) beyond the classical CaM-peptide binding motif. We qualitatively
rationalize that this mechanism controls the effective concentration of the AID
near CaN’s catalytic site, and by extension, CaN’s catalytic activity.
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Figure 4.1: Refined model of Calcineurin (CaN) activation by Calmodulin (CaM)
through direct binding of the ‘distal helix’ to CaM, based on the mechanism
initially proposed in.46 The two chains of CaN (CaNA and CaNB) are colored
in limegreen and lime, respectively. AID is colored in red. CaM is colored in
cyan, CaMBR is colored in magenta. The amino acid sequence of CaN RD is
shown at the bottom of the panel with CaMBR and the distal helix region colored
in magenta and black, respectively. In the absence of CaM, CaN is inhibited
by its auto-inhibitory domain (AID). After CaM binds the CaM binding region
(CaMBR) on the CaN regulatory domain, a secondary interaction between CaM
and a ‘distal helix’ ultimately remove the AID from the CaN catalytic domain.
The activated CaN enzyme catalyzes the dephosphorylation of target proteins
essential to myriad physiological functions.

4.2 Methods

Our simulation protocol consisted of four primary steps. 1) replica exchange
molecular dynamics (REMD) simulations to generate trial conformations of the
isolated CaN distal helix region, 2) ZDOCK protein/protein docking engine
to yield initial poses for putative CaM/CaN interaction sites, 3) refinement
of poses using extensive, microsecond-length molecular dynamics simulations
and 4) Molecular Mechanics-Generalized Born and Surface Area continuum
solvation (MM-GBSA) were used to rank-order distal helix/CaM pose interaction
scores. We further challenged the predicted structural models by introducing
mutations in the distal helix and putative interaction site D that have been
experimental probed in prior works and in this study via pNPP phosphatase
assay.
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Replica exchange molecular dynamics (REMD) sampling of the isolated distal
helix

In accordance with our approach in,257 we performed replica exchange molecular
dynamics (REMD) simulations of the distal helix region (K441-I458) in the
absence of CaM to exhaustively sample likely conformational that are in equilib-
rium. The distal helix peptide was constructed by the auxiliary TLEAP program
in Amber16262 in an extended configuration and parameterized using the
Amber ff99SBildn198 force field. The peptide was then minimized via SANDER263

in vacuo until convergence of the energy gradient (drms ≤ 0.05) or the number
of steps 1× 105 (with first 50 steps of steepest decent and rest steps of conjugate
gradients algorithm) was satisfied. The minimized structure was then used
as the starting structure for REMD simulations coupled with the Hawkins,
Cramer, Truhlar pairwise generalized born implicit solvent model264 via the
igb = 1 option in Amber. The monovalent 1:1 salt concentration was set
to 0.15 M and a non-bound cutoff of 99 Å was chosen. Ten replicas were
created with temperature ranges spanning 270-453 K. The temperature of each
replica was calculated via the Patriksson et al webserver265 to ensure the
exchange probability between neighbouring replicas was approximately 0.4,
as recommended in.266,267 Each replica was first subjected to 1× 105 steps of
energy minimization via PMEMD with the first 50 steps via steepest decent and
remaining via conjugate gradients. The minimized systems were subsequently
heated from 0 to their respective target temperatures over an 800 ps interval
using a timestep of 2 fs with a Langevin thermostat. The equilibrated replicas
were then subjected to 100 ns of production REMD simulations under target
temperature with Langevin thermostat. The SHAKE201 algorithms were used
for REMD simulations. Clustering analysis with a hierarchical agglomerative
(bottom-up) approach using CPPTRAJ were conducted on the 300 K REMD
trajectory to divide the trajectory into ten clusters; the average root mean
squared deviations (RMSD) between each cluster was around 6 Å.

Docking of distal helix to CaM/CaMBR complex via ZDOCK

The protein-protein docking webserver ZDOCK3.0.2100 was used to determine
probable binding poses for the REMD-generated distal helix conformations on
the CaMBR-bound CaM complex. The CaM/CaMBR complex configuration
was obtained from the Protein Databank (PDB ID: 4q5u258). It has been
reported that 62% percent of experimentally-resolved PPIs are characterized by
the binding of an α-helical peptide within grooves formed between adjacent α-
helical on the target protein surface;99 therefore we narrowed the ZDOCK search
to four α-helical-containing regions on the CaM solvent-exposed surface. These
sites are shown in Fig. 4.2(a), from which we determined a list of probable
amino acid contacts as input to ZDOCK (see Table S4). During the ZDOCK
calculations, the receptor (CaM/CaMBR complex) was kept fixed while grids
were constructed around receptor with dimensions as 80X80X80 and spacing
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as 1.2 Å. The ligand (distal helix) was then docked via the fast fourier transform
(FFT) algorithm on the 3D grids. The scoring function consists of interface
atomic contact energies (IFACE),268 shape complementarity and electrostatics
with charge adopted from CHARMM19 force field.269 The initially generated
2× 103 poses were subjected to a culling process to eliminate those having no
contacts with residues we specified in Table S4. After culling, there were zero,
two, eighty-eight and three poses left at sites A-D, respectively. The pose with
highest score at each site was chosen for further refinement using molecular
dynamics.
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Figure 4.2: (a) Four tentative binding sites (orange) on the surface of CaM-
CaMBR complex. CaM is colored in cyan, CaMBR is colored in magenta and
Ca2+ ions are colored in yellow. (b) ZDOCK predicted conformations of distal
helix interacting with CaM/CaMBR complex at each site. Predicted distal helix
conformations from site A to D are colored as red, salmon, warmpink and
firebrick, respectively.

Conventional molecular dynamics (MD) simulations of ZDOCK-generated
distal helix/CaM poses

Explicit-solvent MD simulations were performed on the ZDOCK-predicted
distal helix/CaM complexes to further refine the distal helix binding poses.
The amino acid sequence from CaMBR to distal helix is shown at the bottom of
Fig. 4.1 and the sequence definition of CaMBR and distal helix are the same as.46

We first inserted peptide linkers for each pose between the CaMBR C-terminus
(R414) and the N-terminus (K441) of the distal helix via TLEAP. The initial
linker was generated via TLEAP and energy-minimized as done in Sect. 4.2.
The minimized structures were subsequently simulated in vacuo to heat the
systems from 0 to 300 K. The last frame of the short equilibration run was
subject to additional energy minimization in vacuo to facilitate its compliance
with the distal helix and CaMBR termini. The top poses from ZDOCK presented
distal helix orientations that were all compatible with the CaMBR and linker
configurations. The optimized linker was placed adjacent to the CaMBR and
distal helix; TLEAP was then used to link the peptide components. The resulting
structures were then subjected to energy minimization, followed by a 100 ps
heating process to raise the system temperature to 300 K for which all atoms
except the linker were fixed via the ibelly function in SANDER MD engine of
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Amber. This minimization and heating was performed in vacuo to further relax
the linker in the presence of distal helix and CaM/CaMBR complex. The last
frame of the heating stage was used as input configurations for explicit-solvent
molecular dynamics simulations.

Each in vacuo starting configuration was solvated in a TIP3P72 waterbox with
12 Å boundary margin. K+ and Cl− ions were added to neutralize the protein
and establish a 0.15 M salt concentrations. After parameterizing the system
using the ff14SB force field270 via TLEAP, the system was subjected to energy
minimization, for which all atoms except hydrogens, water and KCl ions were
constrained by the ibelly function. The cutoff value for non-bond interactions
was set to 10 Å. A 2 fs timestep was chosen, as SHAKE201 constraints were
applied on bonds involving hydrogen atoms. Two heating procedures were
performed to heat the system from 0 to 300 K using the Amber16 SANDER.MPI
engine.263 In the first heating stage, the ibelly function was used to keep the
protein fixed and the surrounding solvent unrestrained. The water box was
heated to 300 K over a 100 ps interval under the NVT ensemble. For the second
heating stage, the entire system was heated from 0 to 300 K over 500 ps under the
NPT ensemble, for which the backbone atoms of CaM, CaMBR and distal helix
were constrained by harmonic potential (force constants of 3 kcal mol−1 Å

−2
).

Thereafter, an additional 1 ns equilibrium stage was conducted at 300 K under
the same constraints, but with a reduced force constant of 1 kcal mol−1 Å

−2
.

These equilibrium simulations were followed by 100 ns production-level MD
simulations. The weak-coupling thermostat271 was used during the simulation.
Clustering analysis was performed on the production trajectory using the same
strategy in Sect. 4.2. The average RMSD between each cluster was around 6 Å.
Based on the rationale that extending simulations using less-frequently sampled
structures provides greater overall sampling of the conformational space,272 we
identified 5-6 low-probability states as inputs for subsequent MD simulations.
Approximately 1 µs of trajectory data were simulated in total for each site.

MD simulations of CaM (K30E and G40D) and CaN distal helix variants
(A454E)

Clustering analyses were performed on the production-level MD trajectories of
the distal helix/CaM configurations that yielded the most favorable binding
scores by MM/GBSA. The binding free energy between distal helix and CaM
was estimated via Molecular Mechanics-Generalized Born and Surface Area
continuum solvation (MM-GBSA).273

∆G = 〈GDH−CaM〉 − 〈GCaM〉 − 〈GDH〉 (4.1)

Where 〈GDH−CaM〉, 〈GCaM〉 and 〈GDH〉 are ensemble-averaged free energies of
distal helix-CaM complex, CaM and distal helix, respectively. A representative
structure of the most populated cluster was selected as an input for in silico
mutagenesis in order to validate the model against experiment. Namely, the
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CaM K30E and G40D variants, as well as the CaN A454E variant, were built
by replacing and regenerating the amino acid side chains using TLEAP. The
resulting structures were energy minimized with a stop criterion of (drms <=
0.05) for the energy, during which all atoms except the mutated residues were
fixed via the ibelly function in Amber. The energy-minimized structure was then
solvated and simulated according to the same procedure in Sect. 4.2. In the
MM-GBSA calculations, the trajectories of these three components in Eq. 4.2
were extracted from MD trajectories via CPPTRAJ at a 2 ns frequency. The
generated sub-trajectories were used as input of MMPBSA.py script in Amber16
to calculate the free energies of each part. The salt concentration was set as 0.15
M with generalized Born model option setting as igb = 5. No quasi-harmonic
entropy approximation was made during the calculation.

Structural Analyses

Clustering analysis, root mean squared deviations (RMSD)/RMSF calculations,
hydrogen bonds and secondary structure analysis were performed via CPPTRAJ274

in Amber16. The reference structure used for these analyses was the CaM/CaMBR
crystal structure (PDB ID: 4q5u258). Secondary structure for each residue was
calculated using CPPTRAJ with define secondary structure of proteins (DSSP)
algorithm.275 The COLVAR module276 within VMD was used to assess the total α-
helix content of REMD-generated distal helix and DHA454E conformation. The
hbond command within CPPTRAJ was used to analyze hydrogen bonds between
distal helix and CaM/CaMBR. During the hbond analysis, the angle cutoff for
hydrogen bonds was disabled while the default 3 Å cutoff between acceptor
and donor heavy atoms was used. Scripts and CPPTRAJ input files used for
above analyses will be publicly available at https://bitbucket.org/pkhlab/pkh-
lab-analyses/src/default/2018-CaMDH.

Calcineurin phosphatase assay using para-nitrophenyl phosphate (pNPP)
substrate

Materials. pNPP was obtained as the bis(tris) salt (Sigma), dithiothreitol reducing
agent (Sigma), assay buffer (80 mM Tris pH 8, 200 mM KCl, 2 mM CaCl2),
and 50 mM MnCl2 used as a CaNactivating cofactor. Preparation of Enzymes
and Proteins. The CaM wild-type, K30E and G40D variants were generated,
expressed and purified as previously described.259 CaN was expressed from the
pETagHisCN plasmid (from Addgene, Cambridge MA) in E. coli BL21 (DE3)
CodonPlus RIL cells (Agilent, La Jolla CA). The enzyme was unified via a Ni-
NTA column followed by a CaM-sepharose column (GE Healthcare, Piscataway
NJ) as described in.35 Enzyme Assay. Phosphatase assays were performed
using 30 nM CaN, and 90 nM CaM in 96-well Corning Costar microtiter plates
with a reaction volume of 120 µL. Assays proceeded in the manner of46 with
each CaM assayed in triplicate and over three plates to account for technical
variation. Control reactions absent CaN were added to the end of each lane
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with 200 mM pNPP to determine the rate of enzyme-independent substrate
hydrolysis. Kinetic Analysis. The pNPP substrate reactions were varied over
11 concentrations, increasing from 0 mM to 200 mM for each column. 60 minute
UV-Vis recordings were obtained on a Molecular Devices FlexStation 3 plate
reader using Softmax Pro 7 software at 405 nm with 10 minute read intervals.
The resulting data were inspected for appropriate Michaelis-Menten kinetics by
plotting absorbance against substrate concentration. Readings were linearized
to produce the double reciprocal Lineweaver-Burk plot for estimation of Vmax
and KM based on the following equation:

1
V

=
KM

Vmax
[pNPP] +

1
Vmax

(4.2)

4.3 Results

Prior studies35,277 have indicated that CaM binding to the CaN’s canonical
CaM-binding region requires secondary interactions beyond this region to
fully activate the phosphatase. Rather, CaN activity is likely dependent on a
secondary interaction between the CaN regulatory domain and CaM. A study
by Dunlap et al46 suggested that a distal helix region spanning residues K441
to I458 was likely involved in CaM binding. However, it was unclear which
region(s) of the CaM solvent-exposed surface would contribute to a potential
PPI. We therefore used molecular dynamics and protein-protein docking simulat-
ions to identify plausible wild-type CaN interaction sites on CaM, and challenge
these predictions with mutagenesis. Our predicted site was validated using a
CaN pNPP phosphatase assay.

Regulatory domain (RD)-construct propensity for secondary structure formation
in absence of CaM

Circular dichroism (CD) and HXMS analysis in35 suggest that there exists α-
helical structure beyond the canonical CaMBR region after CaM’s binding.
We therefore sought to assess α helicity in the REMD-simulated distal helix
peptides. Previously,257 we found that extensive MD simulations of the isolated
CaMBR yielded a small population of α-helical structures suitable for binding
CaM in its canonical binding pose.183

We therefore applied a similar REMD procedure (see Sect. 4.2) to the proposed
distal helix segment of the CaN regulatory domain to assess the propensity
for the spontaneous formation of secondary structure in the absence of CaM.
Here, we performed 100 ns of REMD simulations on the wild-type (WT) distal
helix as well as a A454E variant. The latter was considered as it has been
reported to exhibit reduced α-helical content in the presence of CaM,46 which is
suggestive of abolishing the distal helix/CaM interaction. Following the REMD
simulations, we performed clustering analysis to identify the predominant
conformations of the two peptide configurations. Interestingly, we observed
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that both the WT distal helix and its A454E mutant partially fold into an α helix
in the absence of CaM. As shown in Fig. 4.3(a), the representative structure
of most populated clusters of the distal helix and A454E mutant (83.8% and
85.3% of the total trajectory, respectively) both contain helical fragments. While
the overall α-helix contents (≈ 45%) of these two fragments were statistically
indistinguishable, a contiguous helix was formed in the WT distal helix, whereas
it was fragmented in the mutant. These helicity features are further quantified
as residue’s α-helix structural probability shown in Fig. 4.3(b): the distal helix
region has the maximum probability present at middle region while the A454E
has maximums present near the two terminis. Both the simulated distal helix
and its variant therefore could adopt α-helix content in the absence of CaM,
but it remains to be determined whether the dominant structures are capable of
binding the CaM surface. We note that experimental assays of the complete RD
do not detect significant secondary structure; this discrepancy may be a result
of using substantially different RD lengths (S374 to Q522 residues in Rumi-
Masante et al35 and K441-I458 in this study). We discuss this difference in further
detail in Limitations (Sect. 4.4).
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Figure 4.3: (a) Sequence of distal helix/DHA454E and representative structures
of four most populated clusters from 100 ns REMD simulations. The
structures are colored in rainbow with N-termini as blue and C-termini as
red. (b) Secondary structure probability of each residue calculated from REMD
trajectory via CPPTRAJ with DSSP algorithm. The lower panel shows the total
α-helix contents of two fragments calculated via the COLVAR module of VMD.

Protein-protein interactions between RD-construct and peptide-bound CaM

The overwhelming majority of CaM-containing complex structures resolved
to date include only limited fragments of the bound target protein.183 CaM-
bound CaN is no exception, as the mostly likely physiological conformation258

consists of monomeric CaM in a canonical ’wrapped’ conformation about
a target region in CaN(A391-R414);33 however, it is evident that secondary
interactions beyond this domain play a role in CaN activity, yet atomistic-level
structural details of these interactions have not yet been resolved. Therefore,
in order to resolve potential binding regions for the distal helix region, we
seeded a protein-protein docking engine, ZDOCK,100 with candidate α-helical
structures identified through REMD simulations. The docking simulations
were performed in regions that included grooves formed between α helices we
identified at the CaM solvent-accessible surface. We selected these regions, since
such secondary structures are believed to nucleate protein-protein interactions.278

Furthermore, a thorough examination of protein-protein complex structures in
the Protein Data Bank in 2011 suggested that α helices contribute to 62% of
all PPI interaction surfaces99 between binding partners. Narrowing the search
region on CaM to those containing α-helical regions yielded four candidate
sites (A-D) that spanned nearly the entire CaM solvent-exposed surface (see
Fig. 4.2(a)).

The most energetically-favorable distal helix/CaM poses predicted via ZDOCK
at sites A-D are summarized in Fig. S14. The docked poses reflect significant
interactions of at least the distal helix C-terminal loop with loops bridging
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adjacent α-helices on the CaM surface. At site A, polar residues near N97,
Y99 and D133 from two of the C-terminal CaM domain’s loops interact with
the distal helix, compared with just one EF-hand motif loop at site B (D129,
D133 and D135). The site C poses were primarily stabilized by hydrophobic
interactions formed from CaN residues L444/I458 and F16/L4 on CaM, in
addition to a loop-loop interaction via CaM D64. The site D poses reflected
distal helix C-terminal loop interactions with CaM EF-hand loop residues near
N42 and K94. Most poses were unsurprisingly parallel to α-helical/α-helical
‘grooves’ on the CaM solvent-exposed surface and were evidently anchored
through interactions between the proteins’ loop regions.

In contrast, we found that the A454E variant docked poorly at sites A-D
(see Fig. S15), as assessed by the proximity of docked poses to the designated
CaM sites in fact, most predicted poses tended to localize toward site A, albeit
with weak interactions. Moreover, we speculate that the impaired binding of
DHA454E may arise from its fragmented α helical structure, in contrast to the
contiguous regions for the WT variant (see Fig. S14/Fig. S15 for docking poses).
Although docking scores were provided by the ZDOCK algorithm to rank order
potential poses, we did not analyze these scores in detail as we later refined
these structures using more detailed simulations and energy expressions. This
refinement corrects for artifacts from the ZDOCK algorithm, which assumes
rigid conformations for both proteins that would ordinarily be expected to relax
in the bound complex. Hence, in the following section we pursue extensive
microsecond-scale all-atom MD simulations to refine and assess the predicted
poses.

Molecular dynamics (MD) simulations of docked distal helix/CaM poses

The docked CaN/CaM configurations from the previous section were intended
as inputs for MD-based refinement of nearly intact CaN regulatory domain
complexes with CaM. Subsequent refinement using microsecond-length MD
simulations relax the rigid protein conformations assumed in ZDOCK. To refine
these poses, we linked the docked distal helix fragments with the CaMBR
fragment resolved in the CaM/CaN complex (PDB ID: 4q5u) from.258 Each
of the four candidate binding sites yielded distal helix orientations that were
compatible with the 26 residue-length linker. Following initial optimizations
of the linker described in Sect. 4.2, we performed µs-length, explicit solvent
simulations with the regulatory domain bound to CaM. Since the predicted
A454E distal helix poses appeared to be inferior to those of the WT variant, we
refined only the WT poses and thereafter introduced A454E mutations to the
refined conformations.

Binding free energy between distal helix and CaM/CaMBR We first assess
the integrity of the predicted binding modes based on Molecular Mechanics-
Generalized Born and Surface Area continuum solvation (MM-GBSA). MM/GBSA
scoring of the MD-generated configurations provides a coarse estimate of
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binding affinity without significantly more expensive free energy methods.
We reported the binding free energy of distal helix between CaM/CaMBR as
well as between CaMBR and CaM in Fig. 4.4. Significantly, we found that
binding of WT distal helix at the CaM site D yielded a more pronounced
favorable average binding free energy (∆G ≈ −27.7 kcal mol−1) than sites A,
B and C (−2.5 kcal mol−1, −17 kcal mol−1, −22.5 kcal mol−1) with P-values
(1× 10−4, 2.8× 10−3 and 1.144× 10−1, respectively) confirming that the means
are significant compared to the null hypothesis. Notably, these thermodynamically
favorable scores are suggestive of the potential for the distal helix to bind
multiple regions on the CaM surface, although site D is the most favorable
site. Similarly, the binding free energies of distal helix interactions were
generally substantially weaker (−2.5 to −27.5 kcal mol−1) than those between
the CaMBR and CaM (∆G <−1.20× 102 kcal mol−1) Although MM-GBSA is
a very approximate scoring method for molecular complexes, the consistent
trends in numbers of hydrogen bond contacts, RMSF amplitudes and binding
scores suggests that the site D is the most likely region for forming stable
CaM/distal helix interactions.
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Figure 4.4: Approximate binding free energies between CaM and the distal helix
(left) or CaMBR regions (right) via Molecular Mechanics-Generalized Born and
Surface Area continuum solvation (MM-GBSA). Black bars correspond to wild-
type CaN, whereas colored bars utilize the A454E CaN and CaM variants. The
calculation was conducted on frames extracted every 2 ns from MD trajectories.
The error bar represents standard error of mean. The values above bars in the
left panel are P values of each case with null hypothesis that their mean values
are equal to site D.

We supplement the energy scores with structural indicators of stability,
namely contacts and RMSF. We report in Fig. 4.5 the corresponding root mean
squared deviations (RMSD) and root mean squared fluctuations (RMSF) of the
peptide backbone atoms from CaM and CaMBR. We additionally include two
CaM variants with mutations at site D, which we rationalize later in Sect. 4.3.
We found that the average RMSD values of the MD-predicted conformations
relative to the experimentally-determined CaM/CaMBR structure were at or
below 2 Å; we attribute these small fluctuations to stable CaM/CaMBR interacti-
ons that were insensitive to the distal helix docking pose. Similar to the RMSD
data, the CaM and CaMBR RMSF values are comparable in amplitude and
nearly indistinguishable between distal helix/CaN docking poses, with most
residues presenting values below 1.5 Å. The prominent peaks in excess of
5.0 Å correspond to the CaM termini and the N-terminus of the CaMBR. We
additionally observe a variable region midway along the CaM sequence, which
corresponds to the labile linker between its globular N- and C- domains that is
implicated in allosteric signaling.279
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Figure 4.5: (a) Root mean squared deviations (RMSD) of peptide backbone
atoms of CaM and CaMBR from µs-length MD simulations. The reference
structure for the RMSD calculation was based on the CaM/CaMBR crystal
structure (PDB ID: 4q5u). (b) Root mean squared fluctuations (RMSF) of non-
hydrogen atoms in CaM and CaMBR.

Distal helix poses The small and statistically indistinguishable RMSF values
for the CaM/CaMBR in Fig. 4.5 suggest that distal helix binding had negligible
impact on binding the CaM recognition motif. This is an important observation,
as viable binding poses for the distal helix are expected to preserve the binding
between the CaMBR and CaM. We base this assumption on CD data collected
in280 that indicated substantial alpha helical character in the CaM/CaN complex
following dissociation of the distal helix domain. Therefore, we then assessed
the integrity of the distal helix poses using RMSF analyses and measurements
of inter-protein contacts. In Fig. 4.7 we report representative configurations
of the distal helix region (red) in complex with CaM (cyan), as well as their
corresponding per-residue RMSF values in Fig. 4.6. To guide interpretation, we
hypothesized that RMSF values above 5 Å were indicative of poorly stabilized
residues. We later rationalize this value by comparing approximate binding
energies as computed by MM-GBSA. At site A, both the distal helix/CaMBR
linker and the distal helix reflect RMSF values in excess of ∼10 and ∼15
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Å, respectively. These large fluctuations arise from the breadth of binding
orientations evident in Fig. 4.7(a), which we interpreted as a poorly-stabilized
configuration. Similarly, the site B configurations also appear to be loosely
bound, based on linker and distal helix RMSF values beyond 10 Å. In contrast,
the distal helix RMSF values at sites C and D were below 5 Å, with the latter site
reporting the smallest values among the sites we considered, which is evidence
of a stable binding configuration.
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Figure 4.6: (a-d) Representative structures of from the microsecond length
MD simulations initialized from ZDOCK-predicted distal helix poses. CaM is
colored in cyan, CaMBR is colored in magenta and Ca2+ ions are depicted as
yellow spheres. The linker and distal helix regions in site A-D are colored as red,
salmon, warmpink and firebrick, respectively. (e-h) Non-hydrogen atom RMSFs
of linker and distal helix residue calculated from MD simulations of each site, as
an indicator of binding stability. The red dash line depicts RMSF value as 5 Å.
* During the MD simulations, distal helix structures initiated at site B migrated
toward site D (see Fig. S16).
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Figure 4.7: Interaction between linker/distal helix of CaN and CaM at site
A-D. Key residues at the interaction surface are shown in sticks with black
labels for CaM residues and red labels for distal helix residues. See supporting
information of281 for specific values.

As has been shown in other proteins regulated by disordered protein domains,282–284

there are often multiple poses the contribute to regulation. We therefore
assessed the most significant inter-protein contacts contributing to the ensemble
of distal helix binding poses at sites A-D. Among these poses, the distal helix
configurations at site D presented the lowest distal helix RMSF values among
the considered sites. Significantly, the site D distal helix configuration presented
several hydrogen bond-facilitated interactions with CaM, including two long-
duration (37% and 55% of sampled configurations) interactions between Q445
and CaM residues R37/K94, pairing of CaM K21 with glutamic acids E453
and E450, as well as E456 with CaM residues K30 and R37. Contacts between
CaM and CaN, as well as their longevities (as assessed by the percentage of
MD frames satisfying a hydrogen bond contact cutoff of 3 Å between oxygen
and nitrogen atoms) are additionally quantified in Fig. 4.8. The latter data
indicate a modestly greater degree of hydrogen bonding of the distal helix at
site D (10 h-bonds were above 10%) versus site B (9), and a significantly greater
degree relative to sites A (1) and C (3). Furthermore, the site D pose appears
to be stabilized by both the N- and C-domains of CaM (residues D20-S38 and
R90-N111, respectively). We speculate that this bi-dentate interaction could
improve CaMBR binding by locking CaM into its collapsed configuration and
thereby prevent disassembly. Although during the simulations, the distal helix
at site D maintained significant α-helix (see Fig. S16), we note that a significant
percentage of the predicted structures exhibited beta sheet character in the
linker region (see Fig. S17) that was not observed in the CD cpectra collected
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by Rumi-Mansante et al.35 This persistent secondary structure was limited to a
few residues (see Fig. S17) thus may be beyond the limits of detection in earlier
CD experiments. We comment on this further in the Limitations (see Sect. 4.4).
Meanwhile, site B reflected interactions with both CaM terminal domains that
were attenuated, while sites A and C were mostly bound by interactions of
their linker regions with the CaM N-domain. Interestingly, we observed that
the distal helix poses originating at site B migrated toward site D (see Fig. S16),
which likely explains the higher hydrogen bonding in site B versus sites A and
C.
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Figure 4.8: Percentage of simulated frames which have hydrogen bonds formed
between CaN peptide (linker and distal helix) and CaM. The linker and distal
helix are indicated by grey and black bar, respectively.

As a result of HXMS conducted by Rumi-Masante et al35 of the RD construct
CaN in solution with CaM, it is apparent that residues R414 through E456 are
within a stretch of residues that are somewhat protected from solvent, which
suggest that relief of CaN autoinhibition entails binding at least the distal helix
region. We note that the HXMS data could not precisely distinguish which
residues were protected, as proteolysis and mass spec was conducted on short
peptides. Further, HXMS data detects only bonds involving backbone amide
protons, thus we speculate that the CaN site chain interactions with CaM
may stabilize the distal helix alpha helical structure. Hence, we suggest that
CaM/CaN configurations that stabilize the distal helix region likely contribute
to CaN activation. Based on this rationale, the small RMSF values and extensive
hydrogen bonding of the CaN distal helix with the CaM site D relative to other
ZDOCK identified regions suggest that CaN is most stabilized at site D.

Effects of putative CaN/CaM site D mutagenesis

MD simulations of the WT CaN CaMBR-distal helix sequence suggest that
CaM site D is a probable binding region for the CaN regulatory domain.
To challenge this hypothesis, we performed MD simulations of CaN distal
helix and CaM site D variants that could reduce CaN activity to test whether
the distal helix/CaM interaction was impaired. Namely, we introduced the
CaN A454E and CaM K30E and G40D mutations into the MD-optimized WT
structures. We elected to mutate the WT CaMBR/distal helix complexes
with CaM, as the WT complex appeared to have favorable stability, whereas
repeating the REMD/zdock steps with the mutants may not have yielded
viable configurations. The proposed A454E CaN variant was based on CD
data collected by Dunlap et al46 that demonstrated reduced α-helical content
upon binding CaM relative to the WT with impaired CaN activation. The CaM
variants we examined in this study were based on experimental mutagenesis
studies259 of CaM-dependent Myosin Light Chain Kinase (MLCK) activation,
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for which secondary interactions beyond the canonical CaM binding motif were
required for enzyme activation260,261 (Fig. 4.9(a)). Although these secondary
CaM interactions are involved in directly binding the MLCK catalytic domain in
contrast to CaN,260 two residues (K30 and G40) implicated in binding259 reside
within the site D identified in our simulations.

We also reported the MM-GBSA-calculated binding free energies between
distal helix and CaM of the mutants in Fig. 4.4. While the WT distal helix at
the CaM site D has most stable binding with ∆G ≈ −27.7 kcal mol−1, the three
mutations K30E, G40D and A454E have less favorable ∆Gs as −21.8 kcal mol−1,
−17.9 kcal mol−1 and−24.4 kcal mol−1 with P-values being 8.12× 10−2, 5.1× 10−3

and 2× 10−4, respectively. The MM-GBSA-energies clearly shown that mutations
would impair the binding affinity between distal helix and CaM. Accordingly,
we presented linker and distal helix RMSF data for the WT and mutants in
Fig. 4.9(b). The distal helix RMSF values among the two CaM variants were
moderately increased compared to the WT case. Specifically, for the WT system,
the distal helix residues were entirely within 10 Å and as low as ∼2.5 Å. In
contrast, the K30E variant yielded RMSF values no smaller than approximately
5 Å, while the C-terminal half approaches values nearing 15 Å. This trend
manifested in fewer long-lived hydrogen bond contacts between the distal
helix and both CaM domains (see Fig. 4.9). Similarly, the G40D mutation
appeared to significantly disrupt interactions with CaN, as the entire distal helix
region was characterized with RMSF values over ∼10 Å in amplitude, with
corresponding decreases in hydrogen bond contacts. We reported the MMGBSA
calculated binding free energy between the distal helix and the CaM/CaMBR in
Fig. 4.4. Among the mutations we considered, the A454E mutant had the most
severe impact on RMSF values, as all residues comprising the linker and distal
helix regions resulted in fluctuations above 8 Å. We also reported the α-helix
probability of distal helix residue for variants in Fig. S18. It was found that all
variants preserved a significant degree of overall helicity despite evidence of
impaired interactions with CaM. However, the specific residues which formed
α-helix were different among the variants: the mutation of A454 to E454 shifted
the helicity to the first half of distal helix while the two CaM variants had the
second half region being α helical. Altogether, these simulation data suggest that
1) the WT distal helix is stabilized at the site D CaM region, 2) site D residues
R37 and K30 are implicated in distal helix binding and 3) disruption of site D
binding by CaN A454E is consistent with reduced helicity and enzyme activity
measured experimentally.
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Figure 4.9: (a) Comparison of CaM-petide complex structure from CaN and
MLCK (PDB ID: 2lv6285). K30 and G40 are labeled (shown as sticks) based
on their implication in the activation of the CaM target Myosin Light Chain
Kinase (MLCK)259 and proximity to site D determined by our simulations. (b)
Non-hydrogen RMSF of linker and distal helix in WT and mutants. The dash
line depicts RMSF value as 5 Å. (c) Percentage of simulated frames which have
hydrogen bonds formed between linker/distal helix and CaM

Phosphatase assays of site-directed CaM mutants

To support the simulation results, namely that the distal helix region binding
predominantly to site D would impact CaN activity, we analyzed the kinetics
of CaN mediated hydrolysis of pNPP. Our hypothesis was that disruption
of site D/distal helix binding would reduce the accessibility of the catalytic
site for pNPP binding which would reduce the apparent substrate affinity.
This reduction would arise from the AID competing for the catalytic site,
as a result of compromised site D/distal helix interactions. We therefore
conducted pNPP assays using two site D variants, K30E and G40D. We analyzed
substrate turnover in a Michaelis-Menten model, as described in the Methods.
Phosphatase assays performed on CaM variants strongly suggest a statistically
significant reduction (p-values in Table 4.1) in catalytic activity by a substantial
increase in KM for K30E and G40D over the WT (27.6±1.3 mM, 46.0±2.8 mM,
and 35.5±2.2 mM, respectively) indirectly indicating weaker binding of the
distal helix peptide to the mutated CaM construct.
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Table 4.1: Kinetic parameters of pNPP dephosphorylation with WT CaM and
two site D variants. P-values given by Welch’s t-test for difference of means
with unequal variance.

CaM KM (mM) SD p-value

WT 27.6 1.3 -
K30E 46.0 2.8 0.002
G40D 35.5 2.2 0.008

4.4 Discussion

Summary of Key Findings

We have used computational modeling to elucidate a potential mechanism for
CaM-dependent regulation of CaN activity, whereby the binding of a ’distal
helix’ region of the regulatory domain relieves CaN auto-inhibition. Our
microsecond-duration MD simulations indicate that the distal helix region
maintains bound to the solvent accessible CaM surface, which could decreases
the ability of the AID to bind CaN’s catalytic site (see Fig. 4.1). In contrast,
we predict that an engineered variant (A454E) disrupts the domain’s secondary
structure and ability to competently bind CaM. Both predictions are in agreement
with experimental probes of CaN regulatory domain structure and phosphatase
activity.46 Namely, among the four potential regions on CaM’s surface that were
solvent-accessible after binding the CaMBR, our data suggest that an RD region
spanning the CaMBR through the distal helix was best stabilized at a site nestled
between the CaM N- and C-terminal domains. In silico mutagenesis of two N-
terminal CaM residues (K30E and G40D), prevented distal helix binding in our
model, which we suggest hinders CaN activation, similar to identical mutations
in CaM that were found to inactivate another CaM target, Myosin Light Chain
Kinase (MLCK). We confirmed the potential CaM site D binding site for the
distal helix through site-directed K30E and G40D variants, which we found to
weaken CaN binding as reflected by reduced (weaken) MM-GBSA scores and
an increase in KM (from 27.6 mM to 46.0 and 35.5 mM, respectively) in a pNPP
phosphatase assay. Although our REMD simulations suggest that the isolated
distal helix region spontaneously assumes significant α-helical in absence of
CaM; in contrast to trends observed in the complete RD domain observed
experimentally,35 we do not believe this significantly impacts our suggestions of
site D in functional contributions to CaN activation. We discuss this limitation
and its implications in Sect. 4.4.
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Plausible binding modes for putative CaN distal helix with CaM

Comparison w Creamer assays

Previous studies suggest that binding of regulatory domain residues beyond the
CaMBR region are involved in CaM-dependent relief of CaN autoinhibition.35,46

Increases in regulatory α-helical content were reported upon binding CaMthat
could not be accounted for by the CaMBR alone. Alanine to glutamic acid
mutations at RD positions (A451E, A454E and A457E) C-terminal to the CaMBR
decreased α-helical content and CaN activity. Further, HXMS studies indicate
that in a complex of CaM with a regulatory domain/AID/C-terminal domain
CaN construct that the CaMBR through distal helix regions had reduced solvent
accessibility, suggestive of secondary interactions beyond the CaMBR. We
calcula-ted the backbone hydrogen bonds formed within the linker and distal
helix region as an indicator of solvent-protection and compared this against
experimen-tal HXMS data. As shown in Fig. 4.10, WT site D has 16 hydrogen
bonds with 2 dominant hydrogen bonds (red arrow) formed within the β-sheet
region (Fig. S17). Also in the distal helix region, two long-lived hydrogen
bonds (>40% simulation time) were found. Compared with other sites/mutants,
backbone hydrogens at site D would be most protected from HXMS due to the
larger number of hydrogen bonds and relatively longer duration. Although
A454E has the largest number of hydrogen bonds, most are short-lived and
the residue pairs which form hydrogen bonds are well seperated in sequence,
indicating these hydrogen bonds do not contribute to α-helix secondary structure.
Our computational modeling suggests that the putative distal helix region
contains significant α helical character when bound to CaM site D, which
qualitatively resemble those of experiment and suggests reduced susceptibility
to hydrogen/d-euterium exchange. Nevertheless, compared to experimental
HXMS data showing solvent-protected hydrogens are present across the whole
linker and distal helix region, our computational backbone hydrogen bonds
data indicates a lesser degree of solvent-protection as the majority of hydrogen
bonds are present in the N terminus of linker region and C-terminus of distal
helix region in site D. This discrepancy could be explained by the different
lengths of CaN constructs used in HXMS experiment and our simulations. The
construct in HXMS experiment contains the entire RD domain including AID
and the C-terminus, while our simulations contain residues of A391 to I458 of
RD domain. Additionally, several long-lived hydrogen bonds between the distal
helix and CaM site D were found to stabilize the bound configuration, which
dampened the fluctuations of peptide position found at other identified sites
(A-C) as reported by RMSF and energetic analyses (Fig. 4.8).
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Figure 4.10: Backbone hydrogen bond analysis in the linker and distal helix
region (E415 to I458). Each arrow represents one hydrogen bond with color
indicating percentage of simulated frames with this hbond existed. Only
hydrogen bonds exist >10% of simulation time are shown (we also show
hdrogen bonds with >5% in Fig. S19). The whole region was divided into three
subregions as indicated by the dashed magenta arrows below each subpanel.
The subregion definition is consistent as the experimental HXMS data in Figure
8 in.35 The number under the magenta arrow depicts the number of hydrogen
bond in this subregion (one trans-subregion hydrogen bond contributes 0.5 to
each subregion).

While we believe site D is the most probable site for distal helix binding,
interactions with other potentially less-favorable sites could occur and contribute
to the bound RD conformational ensemble. Such a diverse ensemble of strongly
and weakly bound conformations is increasingly evident in complexes involving
IDPs and globular targets257,286 and may be adopted by CaN as well. It is also
interesting that CD experiments in46 suggested that the distal helix contact is
abolished at temperatures above 38 degrees Celsius. It is tempting to speculate
that the comparatively larger RMSFs of the bound distal helix configurations
relative to the CaMBR, in addition to the weaker interaction energies, may
render the distal helix interaction susceptible to melting.

Comparison of WT CaM with CaM variants

Strengthening the case for the involvement of the CaM site D in binding the CaN
distal helix are our comparisons against two CaM variants with substantially
impaired ability to relieve enzyme auto-inhibition in another CaM target,
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Myosin Light Chain Kinase (MLCK).259 CaM appears to relieve MLCK auto-
inhibition287 through binding the kinase’s regulatory domain288 and adopts a
similar conformation as the CaN/CaM complex with CaM ‘wrapping’ around
an α helical CaMBR motif (see also Fig. 4.9(a)).46,285 Importantly, both appear
to utilize secondary interactions beyond the CaMBR motif and it was shown
by Van Lierop et al for MLCK that K30E and G40D mutations far from its
CaMBR-binding domain prevented CaM-dependent kinase activity. These sites
are localized to the site D region we identified for the distal helix in our
study. Although the secondary interactions in MLCK likely involve CaM
binding directly adjacent to the enzyme’s catalytic domain,289 we speculated
that mutagenesis of these CaM residues could also impact CaN activation.
Namely, we hypothesized that mutations of these residues would destabilize
distal helix binding. We confirmed this in our computational model by demonstr-
ating less favorable distal helix binding scores, and validated these predictions
via pNPP assay.

Assessment of phosphatase activity

To challenge our hypothesis that impaired distal helix binding to CaM reduce
CaN activity, we used kinetic phosphatase assays with the substrate pNPP
on WT and the aforementioned CaM mutants. The Michaelis constant, KM,
obtained from these experiments informs on the ability of the catalytic site to
bind and dephosphorylate pNPP. This substrate is specific to the catalytic site
due to its low molecular weight, which allows for a probe of the extent to which
CaM binding removes the AID. We reported significantly higher KM for both
K30E and G40D, thus these mutants evidence weaker distal helix binding that
impedes removal of the AID from the CaN catalytic site. As a result, the CaM
variants reduce the CaN catalysis of the dephosphorylation reaction, which can
be interpreted as the AID competing with pNPP at the catalytic site and yielding
a reduced apparent substrate affinity. This loss in affinity coincides with 40%
increases in KM reported for CaN A454E relative to WT CaN,46 which were
attributed to impaired distal helix formation. It should be noted that the small
pNPP molecular is a preferable candidate for assessing distal helix binding,
as opposed to common peptide-based dephosphorylation targets like RII.258

Namely, the phospho-peptide binds to a site outside the active site (the LxVP
site), therefore its binding, and hence KM, would be unaffected by mutations in
the distal helix region. pNPP, on the other hand, binds directly to the active site.
Mutations in the distal helix region that disrupt its folding and allow the AID to
bind to the active site would result in reduced pNPP binding (higher KM). This
explanation has been used by earlier authors studying the inhibitory properties
of the AID as a peptide.258
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Tether-model of CaM-dependent CaN activation

We recognize that a shortcoming of our modeling approach is that it is limited to
simulations of CaM complexes with fragments of the CaN regulatory domain,
whereas distal helix binding’s effects on CaN activity are coupled to the entire
regulatory domain and specifically, the AID. We therefore discuss a qualitative
description of ‘linker’ dynamics of the regulatory domain appropriate for the
AID-dependent inactivation of CaN. Specifically, we speculate that we can
describe extents of CaN inactivation based on the AID’s effective concentration
at the CaN catalytic site as determined by the formation of distal helix/CaM
interactions. This effective concentration is controlled by the tethering of the
AID to CaN, which effectively confines the AID to a smaller volume (than free
diffusion) that results in a higher interaction probability with the active site.290

We use this effective concentration perspective to qualitatively assess how distal
helix interactions with CaM impact CaN activity, as explicit all-atom simulations
of the complete RD are prohibitively expensive. Here we leveraged previous
theoretical models of protein activation207,208 by describing AID binding to the
CaN catalytic domain as an intra- PPI. This PPI leverages a molecular tether (the
regulatory domain) to enhance the local effective AID (p) concentration near the
catalytic domain.
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To illustrate this principle in CaN, we provide a basic extension of a linker-
dependent modulation model we recently applied to the calcium-dependent
troponin I (TnI) switch domain binding to troponin C (TnC).290 For this reaction,
Ca2+ binding to TnC generates a conformation that can facilitate TnI binding:

TnC Ca2+
Ca·TnC TnI Ca·TnC·TnI; (4.3)

hence, increasing the TnI concentration would promote the generation of TnC·TnI
with fewer equivalents of Ca2+. In the tethered state, we estimated that the
effective switch peptide concentration was an order of magnitude greater near its
TnC target than would be expected for a 1:1 stoichiometric ratio of untethered
(free) switch peptide to TnC. Accordingly, we experimentally confirmed that
formation of the TnC/TnI switch peptide occurred at lower Ca2+ concentrations
for the TnC-tethered TnI compared to a cleaved system in which both TnC and
TnI were untethered.290

In a similar vein, we created a hypothetical linker-based model of CaN
activation, based on a polymer-theory based model for the probability distribution
of the linker spanning the CaMBR and AID domains (see Fig. 4.11). We
introduce this model with several assumptions. Firstly, we postulate the
CaN inhibition is dependent on the free AID concentration, of which the
latter is determined by the RD ’tether’ length. This tether length can assume
three distributions associated with the CaM-free, CaMBR-bound CaM and
CaMBR+distal helix-bound CaM, respectively. Lastly, for simplicity we assume
that the distal helix binds CaM independent of the AID’s bound state, though in
reality we recognize there will be a competition between these two events.

Under these assumptions, we describe the effective [AID] at the CaN catalytic
domain, based on the RD linker length in its CaM-free, CaMBR-bound CaM
and CaMBR+distal helix-bound CaM states. We based this on an effective
concentration model for tethered ligands suggested by Van Valen et al,207

[AID]e f f =

(
3

4πξL

)3/2

exp
(
−3D2

4ξL

)
(4.4)

, where D is the distance between CaMBR and catalytic site, L is linker
length, and ξ is the persistence length. The units of [AID]e f f in Eq. 4.4
was achieved via fitting to existing experimental data. Namely, experimental
assays were reported to investigate the competitive inhibitory effect of isolated
AID peptide on CaN phosphate activity on substrate peptide.291,292 In the
assays, the reduction of phosphate activity was recorded as isolated AID
peptide was added to intact CaN pre-incubated with CaM and substrate RII
peptide. According to the experimental setup, there existed three competitive
components that could bind the catalytic site of CaN: substrate RII peptide,
isolated AID peptide and tethered AID from the intact CaN itself. Similar to
Pon definition which represents the probability of switch peptide being on under
the competitive binding of free ligand and tethered ligand to receptor in,207 we
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also defined a Pon that represents the percentage of CaN phosphate activity on
substrate RII peptide under competitive binding from isolated AID peptide and
tethered AID:

Pon =
1 + [RII]

Kd1

1 + [RII]
Kd1

+ [AID]
Kd2

+ [tAID]
Kd2

(4.5)

, where [RII], [AID] and [tAID] are concentrations of substrate, isolated and
tethered AID peptide, respectively. [RII] is set as 5 µM according to exprimental
setup and the dissociation constant of substrate Kd1 is assumed to be 10 µM.
Tethered AID peptide is assumed to have same dissociation constant as isolated
peptide with an experimentally estimated Kd2 of 40 µM.291,292 The fitting of
Eq. 4.5 to experimental data in291 with [tAID] as free pameter is shown in
Fig. 4.11(b). [tAID] was fitted as 2.07 µM and this value is corresponding to
[AID]e f f of ’CaMBR+distal helix-bound CaM’ case in our tether model. In
following tether model analysis, the [AID]e f f from Eq. 4.4 were scaled by [tAID]
to give meaningful unit of effective AID concentration.

We first provide a rough estimate for the linker length through simulations
of residues E415-M490 C-terminal to the CaMBR (see Fig. 4.11(a)). Starting from
WT/A454E site D simulations, an optimized fragment (residues K459 to M490)
containing AID built by TLEAP was fused to the C-termini of distal helix in
the representative structure of first two most populated clusters. The complete
structures were resolvated and simulated for≈ 0.7µs as that described in Sect. 6.
These simulations indicate that the WT AID to CaM distance is approximately
23 Å, versus approximately 40 Å for the A454E variant that precludes distal helix
binding.
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Figure 4.11: (a) Distribution of AID center of mass (COM) relative to the
CaM/CaMBR complex. The black and red spheres represent the COMs of
AID in WT and A454E cases, respectively. The lower panel depict distance
between COMs of AID and CaM. The number above black bar are P values
of WT case with null hypothesis that its values are equal to A454E case. (b)
Fitting of the competitive-inhibitor model (Eq. 4.5) to experimental data from.291

(c) Effective AID concentrations calculated via Eq. 4.4. The shaded green area
represents effective [AID] that leads to CaN’s activation. Right panel illustrates
the assumed distance between CaMBR and catalytic site. The value is set as 66
Å in this study.

Based on these data, in Fig. 4.11(c) we demonstrate the effective AID
concentration over a range of ligand lengths (L), predicted from Eq. 4.4 assuming
D = 66 Å for the distance between CaM and the CaN AID binding site and ξ = 3
Å.293 The black dot represents the CaMBR/distal helix (DH)-bound case, which
has a tethered ligand length estimated from our simulation of approximately 23
Å or roughly 8 free amino acids. The blue dot represents free RD, which has
ligand length of 95 residues (M387 to E481). The red dot represents the CaMBR-
bound (no distal helix interaction as for the A454E case, in this case, the tethered
ligand length estimated from our simulation as 40 Å). Based on these linker
lengths, the corresponding effective [AID] concentrations for CaMBR-bound
(A454E) states were 6.76 µM versus 2.07 µM for the CaMBR/distal helix-bound
case. For the free RD case, the effective [AID] is 3.20 µM. This approximate
model qualitatively captures the experimental trends in activity data reported in
the literature,46,294 namely that maximal CaN activation requires CaM binding.

There are several considerations that could improve the accuracy of this
model. These include assumptions that the linker follows a random-walk chain
distribution, that the catalytic domain does not attract and thereby bias the AID
distribution and that the CaN molecule does not sterically clash with the linker
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chain. Further, precise knowledge of the CaM distribution relative to the CaN
B-chain would be needed to refine the effective linker lengths. Despite these
assumptions, the model provides a qualitative basis for how RD mutations or
variations in RD length could influence the efficiency of CaN (in)activation,
similar to the model systems with synthetic linkers, as in.295

Limitations

We observed appreciable degrees of alpha helical and beta sheet character in
the regulatory domain that were not evident in the CD data from.35 A primary
distinction between the modeling and experimental studies is that we used a
much smaller regulatory domain fragment (residue A391 to I458) than the full
length domain in Rumi-Masante et al,35 owing to the computational expense. It
is possible that there are different tendencies to form secondary structure, based
on the regulatory domain length. Since we simulated only a small fragment of
the RD domain, this might have increased the peptide’s preference for alpha
helical structure than would otherwise be observed in measurements of the
entire RD. For instance, it has been shown that IDPs have length-dependent
preference of residue compositions as longer IDP has more enriched K, E and
P than short IDP,296 implying the conformational properties of IDPs which are
determined by sequence charge distribution297 are also length-dependent. As a
concrete example, Lin et al298 reported that the 40-residue disordered amyloid
beta monomer has reduced β-hairpin propensity when compared to the longer
42-residue monomer.

We additionally recognize that differences in ionic strength or solvent composi-
tion might influence the percentage of alpha helical character, although this
seemed to be a modest effect in our simulations of the CaMBR alone.257

Importantly, in that study, we reported negligible alpha helical character for that
isolated CaMBR peptide, which suggests that our force field was not artificially
stabilizing alpha helices, as had been an issue in earlier modeling studies of
IDPs.199,299 Nevertheless, the potential overestimate of alpha helical content
for the isolated peptide is probably of little consequence, since the predicted
bound distal helix was shown to confirm exhibit significant alpha helical content
consistent with experiment.

We utilized REMD to sample the distal helix sequence in the absence of
CaM; although REMD has been shown to perform well in terms of qualitatively
describing conformational landscape, chemical shifts, α-helix stability for peptid-
es of lengths comparable to the distal helix,300–302 we did not have the means
to experimentally validate the predicted apo ensembles. Nevertheless, the
simulations provide testable hypotheses in terms of the α helical content. We
additionally limited ourselves to subsets of the CaM surface for the docking
search, which represented approximately 38% of the solvent-exposed surface
area. However, given that the microsecond-length simulations were sufficient
to reorient the site B configurations into the site D site, we anticipate the docked
distal helix candidates reasonably sampled the thermodynamically-accessible
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regions of the CaM surfaces. Although it has been demonstrated that RD
binding to CaM is diffusion-limited, it is also possible that the intermediate
complexes could be further optimized to form a final bound state, which
would perhaps lead to more accurate assessments of critical intermolecular
contacts and energy estimates. For the latter, alchemical methods such as
thermodynamic integration may provide more accurate affinity estimates, albeit
at a substantially greater computational expense compared to ’end point’ methods
like MM/GBSA. Lastly, more detailed simulations of the RD ensemble in the
presence of the complete CaM and CaN structures are needed to more accurately
characterize the effective AID distribution controlling CaN (in)activation.

There are several compelling directions to pursue that would provide essential
clues governing CaM-dependent CaN activation. For one, we have predicted
several contacts that appear to be involved in stabilizing the distal helix region;
mutagenesis of these potential ‘hotspots’ on the CaM and measurements of
subsequent CaN phosphatase could help validate this site. In addition, more
detailed characterization of the RD intrinsically-disordered conformation ensem-
ble would benefit future modeling. Given the difficulty in probing ensemble
properties of IDPs, it is likely that modeling and experiment, such as fluorescence
resonance energy transfer (FRET) labeling, should work in tandem toward this
goal. Furthermore, relating these RD ensemble properties to the propensity for
AID and CaN catalytic domain interactions would comprise an essential step
toward a complete model of CaM-dependent CaN activation.

4.5 Conclusions

We have developed a computational strategy to elucidate potential binding
poses for a secondary interaction (the ‘distal helix’) between the CaN regulatory
domain and CaM that is apparently essential for competent CaN activation.
We combined REMD simulations of isolated distal helix peptides, protein-
protein docking of the distal helix peptides to the CaMBR-bound CaM surface,
and microsecond-scale MD simulations of candidate poses to implicate a so-
called CaM site D in binding the CaN distal helix. The predicted site D
region is in part stabilized through direct interactions with K30 and indirectly
through G40, which is consistent with experimental probes of a CaM-activated
enzyme, MLCK. We confirmed the predictions via pNPP phosphatase assay
in which mutations of K30E and G40D in CaM caused reduced CaN activity
compared with WT CaM. With these data, we provide a qualitative model of
AID-dependent CaN activation, which can be used to further refine potential
molecular mechanisms governing the activation process and susceptibility to
missense mutations. Importantly, our data suggest a potentially novel mechanism
of CaM-dependent target regulation whereby interactions distal from the canonic-
al CaM-peptide binding motif control target auto-inhibition. Given the broad
range of physiological processes mediated by CaM binding to intrinsically
disordered target proteins,183 the mechanistic details of CaN activation in
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this study may extend to diverse systems, including channel and cytoskeletal
regulations.183,303

97



Chapter 5 Thermodynamic of Cation binding in SERCA and Its impact on
Enzyme Functions

• This chapter is based on "Sun, B.; Stewart, BD.; Kucharski, AN.; Kekenes-
Huskey, PM. Journal of Chemical Theory and Computation 2019, 15, 2692–2705"

5.1 Introduction

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a 110-kDa transmembr-
ane cation pump which actively transports Ca2+ ions into the SR/ER by
utilizing energy released from adenosine triphosphate (ATP) hydrolysis.47 SERCA
has been widely studied for its role in returning intracellular Ca2+ to basal
levels following stimuli that elevates Ca2+ content.48 The pump’s catalytic
cycle is roughly characterized by four states comprising a sequential cycle
E1 → E1P.2Ca → E2P.2Ca → E2. In E1, the Ca2+ binding sites are exposed
to the cytosolic space, whereas the E2 conformations expose the low-affinity
Ca2+ sites toward the SR/ER lumen. The transition between E1 and E2 is
driven by ATP hydrolysis at residue Asp 35147 following Ca2+ binding, for
which E1P and E2P are the respective phosphorylated states of the enzyme.
Accompanying transitions between catalytic states are prominent changes in its
ten transmembrane (TM) helices as well as the cytosolic actuator (A) domain,
nucleotide-binding domain (N) and phosphorylation domain (P). Many of these
changes have been resolved through x-ray crystallography.304–307

Based on available structural models of the protein and a wealth of biochemical
studies,308–315 reaction schemes linking the E1 and E2 states are beginning to
emerge. Utilizing SERCA vesicles coupled with spin label molecules, Inesi
et al observed changed electron spin resonance spectrum upon Ca2+ binding
that revealed conformational changes in the enzyme.312 Dupont and co-workers
similarly measured changes in intrinsic fluorescence upon Ca2+ binding and
further proposed a two-step Ca2+ binding process to high affinity sites evidenced
by the pumps slow rate of fluorescence changes.310,311 Additionally, conformatio-
nal changes linking the E1 and E2 states were explored by kinetic studies
of intrinsic fluorescence changes upon Ca2+ binding and release.308,309 To
probe molecular determinants of Ca2+ binding in the pump, an E309Q mutant
bound with two Ca2+ in its phosphorylated state was determined via x-ray
crystallography,316 which revealed that the altered TM arrangements caused
by the mutation leads to impaired pump functionality. With respect to cation
binding affinities, Inesi et al measured Ca2+ binding and stoichiometry to
SERCA vesicles in via chromatography,317 while others have probed the binding
of the non-cognate Mg2+ and K+ ions via intrinsic fluorescence changes in
SERCA.318,319
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Figure 5.1: Comparison of Ca2+-bound (PDB ID: 1su4) and Mg2+-bound (PDB
ID: 3w5b) SERCA crystal structures. (a) Superimpose of two crystal structures
with 1su4/3w5b cytosolic domains (A, P and N) colored in red/salmon,
blue/slate and green/palegreen. The TM helices are colored in cyan and grey
for 1su4 and 3w5b, respectively. (b-c) Mg2+ and Ca2+ binding site comparison.
In this orientation, sites I and II are right and left, respectively. Mg2+ and Ca2+

are represented as magenta and yellow balls. The distance between coordination
oxygen atoms and cation are also shown. The oxygen atoms of crystal water
molecules are shown as red balls.

In complement to experiment, extensive molecular dynamics simulations
have uncovered many aspects of cation binding and SERCA function that are
difficult to probe via experimental approaches. Huang et al first explored the
Ca2+ binding pathways to SERCA TM sites via MD simulation and observed
the cooperative binding of two Ca2+ ions.320 Kekenes-Huskey et al performed
MD simulations on SERCA with and in the absence of Ca2+ to examine
gating of Ca2+ binding by E309,321 in addition to estimating ion binding free
energies and kinetics. Espinoza-Fonseca et al evaluated the interaction energy
between Ca2+/Mg2+/K+ and SERCA binding sites based on MD trajectories
and reported that Ca2+ has the most negative interaction energy while K+ has
the least negative value.59 In addition to these initial studies on cation binding
to the SERCA pump, more recent studies have probed mechanisms of SERCA
function and its modulation by regulatory proteins and drugs.60,322–328

Although studies have been reported on the roles of Mg2+, K+ on SERCA
binding, less has been done to provide a thermodynamic basis for their effects on
SERCA function. This is of particular importance, as intracellular K+ and Mg2+
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concentrations are orders of magnitude larger than the roughly sub micromolar
Ca2+ concentrations found in typical cells. Here, simulation studies of cation
binding to molecular sites that resemble high affinity, amino acid-based motifs
have been informative. Dudev et al for instance constructed cation binding sites
using model compounds and calculated cation binding energies via quantum
mechanics.329 Ye et al designed a theoretical framework in combination with MD
simulations to calculate cation binding free energies and isolate the energetic
contribution from geometric and confinement effect.330 Implicit models that
describe Ca2+ binding thermodynamics as via ion density-based formalisms
have also been reported, including reference interaction site modeling331 and
density functional theory.92 Besides these methods relied on explicit binding site
configurations, Nonner et al developed the MSA model in which the binding site
is treated as confined filter filled with coordination oxygens. A variant of density
functional theory called the mean sphere approximation (MSA) approach has
proven effective in rank-ordering the binding of cationic species to oxygen-
rich binding domains such as EF-hands in β parvalbumin (β-PV)94 and Ca2+

channel selectivity filters,93,332 through describing the electrostatics and hard-
sphere contributions to the chemical potential of partitioning ions into oxygen-
rich ‘filters’.

Our study has therefore focused on utilizing MD derived data with thermod-
ynamic and MSMs to assess contributions of Mg2+ and K+ binding on the
SERCA turnover rate. Here we performed MD simulations of Ca2+, Mg2+ and
K+-bound WT SERCA as well as the E309Q and N796A variants. These MD
data provided structural information to assess cation binding thermodynamics
via MSA to elucidate the molecular basis of SERCA’s preference of Ca2+ over
Mg2+ and K+. Further, we relate these studies of E1 state ion binding to a state-
based kinetic model of SERCA pump rate to determine the extents to which
Mg2+ and K+ facilitate or inhibit catalysis. With this approach, we provide a
multiscale and molecular basis for cation binding to SERCA and impacts on
pump function.

5.2 Results

We performed triplicate simulations of wild-type SERCA and its variants E309Q
and N768A to probe the binding site coordination of the cations Ca2+, Mg2+

and K+, each replica was at least 100 ns in length. Ca2+- and Mg2+-bound
configurations of the protein have been determined through x-ray crystallography,
but to our knowledge, the binding of K+ to the Ca2+ binding domain has only
been resolved via simulation.59 In this study, we critically examine the protein
atoms and waters that directly coordinate bound cations. However, to ensure
that our simulations of the intact protein are consistent with prior studies of
the enzyme, we briefly summarize standard analyses of the transmembrane
bundles and cytosolic domains in the Supplement (see Sect. S1.4).
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Cation coordination in the Ca2+ binding region

In this study, we highlight structural and dynamic contributions of the Ca2+ and
Mg2+ binding domains to the thermodynamics of ion binding. This is analogous
to our approach for probing Ca2+/Mg2+-binding to the β parvalbumin (β-PV)
protein,94 for which we used MD simulation-derived structural data from the
cation-bound configurations to parameterize a statistical mechanical model of
fluid thermodynamics called mean sphere approximation (MSA). Specifically,
we used the radius of the ions’ inner coordination sphere and amino acid
oxygens comprising the sphere to estimate the binding site volume and coordina-
ting oxygen density for MSA. We use a similar strategy for SERCA in that we
assess the coordination of a given ion based on the number of oxygens within
six Å of the bound ion. In contrast to our previous study, we additionally
include coordinated waters in the MSA calculation that are directly involved
in stabilizing the ion.
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Figure 5.2: Radial distribution function (RDF) of amino acid and water oxygen
atoms about bound Ca2+, Mg2+, or K+. The distribution around Ca2+ for each
individual case is shown in Fig. S9 for clarity. The inset bar graphs show
the maximum number of coordinating amino acid oxygen and water density
around the cation in each case (the bars with black dots represent site II Ca2+).
The coordinating waters with site I Ca2+ of WT SERCA is also shown. Ca2+ ions
bound to WT SERCA tend to reflect the highest degree of coordination among
the modeled systems.
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Figure 5.3: Heavy atom RMSF of key coordinating residues at the cation
binding sites. The error bars were calculated from the triplicate trajectories
for each case. The upper row represents site I residues while lower row were
site II residues (E58 was not involved into coordination with cations in the
crystal structure, although interactions with bound ions were predicted in our
simulations, see Fig. S11). Ca2+-bound configurations generally exhibit lesser
mobility compared to the configurations with non-cognate ions Mg2+ and K+.

In Fig. 5.2 we report radial distribution function (RDF)s of cation-coordinating
oxygens from the simulations. These RDFs demonstrate that Ca2+, Mg2+, and
K+ have varying degrees of coordination with amino acid oxygens within the
binding site. We summarize the identity of the coordinating amino acids in
Sect. S1.4, although from the perspective of MSA theory, only the number
of contributed amino acid oxygens is important. The Ca2+ within site I was
optimally coordinated with 8.5 oxygens on average (including three water
oxygens). Ca2+ within site II maintained six amino acid oxygens pairings,
similar to the x-ray crystal structure, but did not directly coordinate waters. By
virtue of having more coordinating oxygens, we speculate that the Ca2+ ion
in site I is bound more tightly than that found within site II. In contrast, for the
N796A mutant, the site I Ca2+ had a reduced coordination number of six relative
to over eight in the WT structure. Interestingly, for the site II Ca2+ in the N796A
variant, the loss of coordination to site 796 was compensated by interactions
formed with E58 and a bound water molecule (see Fig. S11(b)) to yield a greater
coordination number than observed in the WT. For the E309Q mutant, two
possible side chain rotamers of Q309 were investigated, as both rotamers were
viable starting positions (see Fig. S11(c-d) for illustration of rotatmer directions).
We found that these rotamers yielded identical Ca2+ coordination patterns for
the two binding sites: site I had six coordinating oxygens versus seven for site
II, while neither included bound waters (see Fig. S11(c-d)). Similar to the
N796A site II Ca2+ case, E58 in TM1 also participated into the coordination
with Ca2+ at site II in both rotamers of E309Q. Overall, these simulations reveal
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that ion/oxygen pairing is remarkably labile between the sites I and II, and can
incorporate bound waters to maximize Ca2+ coordination.

In contrast to Ca2+, Mg2+ binds in a ’hybrid’ site between sites I and
II with an average six coordinating oxygens (including one water molecule,
see Fig. S13(a)). K+, on the other hand, binds site I with five coordinating
oxygens (including one water molecule, see Fig. S13(c)), while K+ at site II
is highly dynamic and interchanges with water immobilized in the SERCA
interior. Given that these ions are both positively charged and not remarkably
different in size relative to Ca2+, we had anticipated that the non-cognate ions
might adopt higher coordination numbers in the native Ca2+ sites. Clearly the
molecular simulations did not reflect this expectation; in Sect. 5.2 we provide
a thermodynamic rationale via MSA theory for why these non-cognate ions
present impaired coordination numbers.

The differences in cation-oxygen coordination patterns for the cases conside-
red are accompanied by variations in the coordinating residues’ mobilities
relative to WT. These mobilities are measured as RMSF values in Fig. 5.3, for
which the upper row represents site I and the lower row, site II. Generally, Ca2+-
bound systems have RMSF values for most residues around 0.5 Å, which are the
smallest among the ions considered. To a certain extent, the reduced mobility
could be interpreted as an indication of tighter and more favorable binding,
although this would come at an entropic cost that is not explicitly estimated
here. We were, however, surprised to see little change in RMSF for the Ca2+-
free (apo) state versus the Ca2+-bound cases. One possible reason is that in
apo state, waters fill the binding sites and stabilize residues via a hydrogen
bonding network (see Fig. S7) - in this capacity, bound waters might ‘prop’
open the Ca2+-binding domains to promote rapid incorporation of solvated
Ca2+ ions from the bulk medium. Additionally, we found that WT SERCA
and its variants presented negligible differences in RMSF upon Ca2+ binding,
whereas the non-cognate Mg2+ and K+ manifest significant RMSF increases
across all residues (Mg2+ generally above 0.8 Å and K+ above 1 Å). It is
possible that the greater mobility of coordinating residues for the non-cognate
ions are indicative of impaired coordination. We had anticipated that waters
could be incorporated into the ions’ binding domain to suppress fluctuations
in amino acids contributing to coordination, much as was observed for the apo
state. However, it is apparent the the strong electrostatic affinity for these ions
with the coordination residues limited the volume within which waters could
be incorporated. At a minimum, these data suggest that ion coordination is
dynamic, with fluctuations on a nanosecond timescale (see Fig. S6), which
ultimately may play a role in selecting Ca2+ over non-cognate ions.

Thermodynamics of ion binding at sites I and II

Molecular dynamics simulations provide qualitative insight to the binding of
various ions in the binding sites of SERCA, but alone do not directly predict
affinities. Therefore we explored MSA to semi-quantitatively estimate free
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energies and selectivity of ion binding. MSA predicts chemical potentials of
partitioning solvated ions into the SERCA binding domains, assuming a similar
approach that was performed for the β-PV94 protein. Namely, MSA theory
estimates the chemical potential of ion binding, based on the assumption of
finite sized ions and chelating oxygens confined to a spherical binding site
volume. To utilize this method, we first compute oxygen RDFs about bound
ions. These data provide oxygen filter densities and volumes, from which
chemical potentials of ion partitioning into the binding site ‘filter’ from the
surrounding bulk solution can be estimated. As shown in Fig. 5.4, Ca2+ at
site I of WT case presents the most negative and therefore thermodynamically-
favorable MSA- predicted chemical potentials across all cases, corresponding to
the largest number of coordination oxygens. For the SERCA variants, site I and
site II Ca2+ ions have modestly less favourable chemical potentials compared
with site I Ca2+ from WT cases, as the relative values were approximately 0.3
kcal/mol higher. These are consistent with the comparable Ca2+ coordination
numbers present among variants. Compared with Ca2+-binding, Mg2+ binding
at WT and mutant SERCA yielded more significantly disfavored chemical
potentials at approximately 2 kcal/mol relative to WT site I Ca2+. Among all
cases, the K+ relative potential was the most positive at 4.2 kcal/mol, indicating
that K+ is the least thermodynamically favored at TM sites. For Mg2+ and
K+, the MSA predicted potentials also correlated with the cation-coordination
patterns as these two ions had reduced coordination number when compared
with Ca2+ (5.2/4.7 for Mg2+/K+ versus 8.5 for site I Ca2+). These data show
that MSA could capture the key factors governing cation affinities such as
coordination number and binding site volume. In addition, with inclusion
of coordinating waters in MSA, the predicted potential for WT site I Ca2+ is
most favourable among all cases, which agrees with experimentally measured
affinities. Our MSA results indicate that site I confers greater Ca2+ affinity due
to extensive inclusion of water coordination. In Sect. S1.4, we utilized Grid
Inhomogeneous Solvation Method (GIST) to assess the relative thermodynamics
of water binding to the Ca2+ binding domain. In general, we found that when
bound waters are present in the ions’ coordination shells, the predicted free
energies are on the order of -12 kcal/mol and thus very thermodynamically
favorable.
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Figure 5.4: Mean sphere approximation (MSA)-predicted chemical potentials
for each cation based on oxygen-coordination pattern (waters included) and
optimal filter volumes derived from MD simulations. Potentials are given
relative to Ca2+ bound to wild-type SERCA at site I. Ca2+ bound cases exhibit
more favorable binding interactions compared to the binding of non-cognate
ions, with the WT cases reflecting the most favorable potentials relative to the
N796A and E309Q variants.

The membrane into which SERCA is embedded presents a negative surface
charge owing to solvent-exposed phosphate head groups.333 The corresponding
negative electrical potential can attract positively charged ions and thereby
increase their concentration near the transmembrane-bound SERCA, as we
previously observed in.321 Since the partitioning of cations into the SERCA
binding sites depends on the composition of the surrounding electrolyte, we
speculated that the local elevation of cations near the membrane surface would
subsequently increase the concentration of bound cations. Additionally, the
higher ionic strength could also reduce the desolvation energy and thereby
further favor cation binding to SERCA, though this effect would likely be offset
by screening electrostatic interactions between cations and the oxygens in the
SERCA Ca2+ binding domains. To investigate this hypothesis, we determined
the effective ion concentration near the membrane using a 1D solution of the
linearized Poisson-Boltzmann equation,163 [i]e f f = e−βZiζ [i]bath where Zi is the
charge of ion and β = 1

kbT , [i]bath is ion concentration in the bath and ζ is the
membrane potential.

Assuming ζ = −25 mV,24 we predicted that monovalent cation concentrations
would be increased by 2.7 fold, anions would decrease by 0.37 fold, and the
divalent Ca2+/Mg2+ ions would increase by 7.4 fold. As shown in Fig. 5.5, at
low bath [Ca], both Mg2+ and K+ were present in the SERCA Ca2+ binding
domain with concentrations of 7.7 M and 1.7 M, respectively. As bath [Ca]
was increased, Ca2+ partitioned into the binding domain in favor of Mg2+; at
roughly 2× 10−5 M, the ratio of Mg2+ to Ca2+ was 1:1. The Ca2+ concentration
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at which Mg2+/Ca2+ was 1:1 varied by roughly 0.6 fold under the assumption of
charged versus neutral membrane. In other words, according to our model, the
local electrostatic environment about the membrane did not significantly impact
the Ca2+ binding affinity. In contrast, in321 we demonstrated that the negative
surface charge densities of SERCA and the lipid enhanced the association rate of
Ca2+ to the protein, thus the local electrostatic environment may have a greater
contribution to ion binding kinetics than steady-state binding.
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Figure 5.5: Cation concentration in the SERCA binding domains (assuming a
filter volume = 0.33 nm3 from our MD simulations), Noxy = 7 (coordination
number of Ca2+,329 this value lies between the coordination number of site
I, Noxy = 8.5, and site II, Noxy = 6.7, for Ca2+ determined in our simulation
of WT SERCA) and with the cation solvation energy from.92 [KCl] = 150 mM
and [MgCl2] = 2 mM. As cytosolic Ca2+ is increased, Ca2+ displaces Mg2+

bound to SERCA and reaches saturation at millimolar Ca2+ concentrations.
Data are also presented assuming a membrane potential of ζ = −25 mV, which
locally increases bath cation concentrations by several fold according to Poisson-
Boltzmann theory estimates.

Steady-state catalytic activity

Lastly, we relate our predictions of Ca2+ and non-cognate ion binding to the
SERCA pumping rate. For the complete pumping cycle, two Ca2+ ions in
the cytoplasm are transported into the SR/ER by first binding SERCA to its
E1 state. This binding process was proposed by Inesi et al9 to consist of two
Ca2+ successive binding events via a cooperative mechanism. Subsequent steps
include binding of MgATP, a slow conformational transition to the E2 state,
release of Ca2+ ions into the SR/ER lumen, and a return to the E1 apo state. In
practice, by accounting for the transition rates between SERCA conformational
states, the time-evolution of each state can be described, which in turn can be
related to the pump’s cycling rate. However, generally the transitions between
‘micro state’ conformations within the E1 or E2 ‘macro’ states, such as the Ca2+

binding steps in E1, are rapid relative to the slow E1 to E2 transitions. Hence, the
micro states comprising the E1 and E2 stages are approximately in steady-state.
This allowed us to describe the SERCA pump cycle rate as a two-state model for
the E1 and E2 macro states (Eq. 5.8), which we used to relate experimentally and
computation-determined binding constants to SERCA function.
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In this state-based model, with exception to the undetermined transition
rates between E1 and E2 (k+5 , k−5 , k+6 and k−6 ), the resting rate constants and
substrate concentrations were taken from.9,334 The above unknown rates were
left as free parameters that were fitted to reproduce experimentally-determined
turnover rates from9 (see black data points in Fig. 5.6a)). This fitting accuracy
was assessed as the difference between model predicted rates and experimental
values reached minimum, as defined by

Diff ≡

√√√√(∑N
i=1(Mr,i − Exptr,i)2

N

)
(5.1)

where Mr,i is state model predicted pump rate at experimental [Ca], Exptr,i is
the experimentally measured rate and N is the total number of data points. As
shown in Fig. 5.6(a), the fitted Caonly model (blue) reproduces the experimentally-
determined SERCA turnover rates as a function of cytosolic Ca2+ concentration,
which validates our state-based model.
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Figure 5.6: (a) Comparison of pump turnover rate between WT and SERCA
variants using the Caonly model with MSA predicted Ca2+ affinity for N796A
and E309Q variants. The experimental data is from Inesi et al.9 (b-c) Comparison
of SERCA pump turnover rate of different state models against experimental
data at [Mg] = 2 mM and [K] = 150 mM. In panel (b) the experimentally
measured Kd,K and Kd,Mg in Table S4 were used. In panel (c) the MSA predicted
Kd,K and Kd,Mg were used. (d) Normalized difference between each state model
and experimental data for panels (a-c), as evaluated by Eq. 5.1. Our state-based
models reproduce steady-state WT SERCA pumping rates and predict impaired
rates for the N796A and E309Q variants.

Effects on non-cognate ions on steady-state behavior of SERCA

Since a primary focus of this study was to elucidate to which extent the
non-cognate ions Mg2+ and K+ influenced the SERCA transport cycle, we
introduced additional microstates representing the Mg2+- and K+-bound config-
urations. The resulting representations are summarized in Fig. S4 and differ
in terms of whether the ions serve as inhibitors or intermediates. Using the
fitted model from Fig. 5.6a, we introduced dissociation constants for the Mg2+
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and K+ species. We considered two strategies for defining those constants:
1) using experimentally-determined values from Table S4 and 2) constants
determined from rescaling of the MSA-predicted values. For 2), the MSA
predicted Mg2+/K+ chemical potentials were first converted to dissociation
constants via Kd = e

µMSA
RT . Second, the Kds were multiplied by a scaling factor, λ,

that minimizes the difference between the MSA-predicted and experimentally-
measured Ca2+ dissociation constants,

(Caire f − λ · CaiMSA)
2 − (Caiire f − λ · CaiiMSA)

2 = 0 (5.2)

where Caire f /Caiire f and CaiMSA/CaiiMSA are site I/II Ca2+ dissociation constants
from9 (4× 10−8 M and 4× 10−6 M) and from MSA calculations (9.55× 10−6 M
and 1.38× 10−5 M), respectively. Eq. 5.2 was minimized by λ = 0.17, thus
yielding 4.93× 10−5 M and 3.3× 10−3 M for the MSA-predicted values of Kd,Mg
and Kd,K for Mg2+ and K+ (see also Table S3). Predictions of the SERCA
cycling rate using experimentally-determined dissociation constants are shown
in Fig. 5.6(b) and the rescaled MSA constants in panel (c). Both approaches
indicate that the Mg+K− (green) and Mg−K+ (yellow) provide the best agreement
with the experimentally-measured turnover rates, as these two models have
relative smaller normalized difference values than other models, with the MSA-
determined dissociation constants yielding the strongest agreement overall.
Hence, the cycling rate data reported by Cantilina et al9 was sufficient to
eliminate two of the four proposed models. To discriminate between the
remaining Mg+K− and Mg−K+ models, we next assessed the abilities of the
respective models to reproduce steady-state Ca2+ binding data measured at
various Mg2+ concentrations by Guillain et al.318 In these experiments, both the
E1.Mg and E1.2Ca states contributed a fluorescence signal indicative of Ca2+

saturation, therefore we report in Fig. 5.7 the combined probabilities of those
states,

PCabinding = PE1.Mg + PE1.2Ca (5.3)

where PE1.Mg and PE1.2Ca are the probabilities of the E1.Mg and E1.2Ca states
(see Sect. S1.3). The experimental data (black) shown in Fig. 5.7 demonstrate
that Ca2+ saturation naturally increases with increasing cytosolic Ca2+, but
importantly, saturation increases as Mg2+ is raised from 0 mM (circles) to 20
mM (solid triangles). These data indicate that Mg2+ locks SERCA into an E1
state in absence of Ca2+. We plot in Fig. 5.7(a-b) the predicted PCabinding data
for the Mg−K+ and Mg+K−, respectively, as well as the fit in Fig. 5.7(c). We
find that the Mg−K+ model provides the optimal fit with difference of 0.75
normalized to Mg+K−model. The Mg−K+ model correctly captures the plateau
in Ca2+ saturation at Ca2+ concentrations below 1× 10−7, in contrast to the
competing model. We note that as Mg2+ is increased to unphysiologically high
concentrations (≥5 mM), the slope of the experimentally-determined saturation
curves decreases, which is indicative of a loss in Ca2+-binding cooperativity.
Our model does not directly consider ion-dependent modulation of Ca2+
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binding cooperativity, therefore this behavior is not reproduced in our predicted
data and accounts for some of the error relative to experiment. Additionally,
we predict a greater population of the Ca2+-bound state at increasing Mg2+

levels than is experimentally observed, which accounts for the remainder of the
error. Nevertheless, we find that Mg−K+ model provides the best agreement
with experimental data, especially within physiological Mg2+ concent-rations.
Therefore, Mg2+ most likely acts as inhibitor and K+ as an intermediate in the
SERCA pumping cycle.
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Figure 5.7: (a-b) Comparison of [Ca] dependence of Ca2+-SERCA binding of
Mg−K+ and Mg+K− models at varying Mg2+ concentrations ([K]= 150 mM)
against experimental data from.318 Experimentally measured Kd,K and Kd,Mg
were used. (c) Normalized difference between state models and experimental
data as evaluated by Eq. 5.1. The Mg−K+ model, which assumes Mg2+ and K+

act as inhibitors and agonists, respectively, provide the best fit to experimental
data.

Lastly, as a demonstration of how MSA-predicted Ca2+ affinities could
be applied to infer changes in SERCA pumping function, we compared the
turnover rates between WT and two variants using relative affinity estimates
from Sect. 5.2. To be consistent with the procedure of obtaining Mg2+/K+

affinity from the MSA potentials, the same scaling factor λ = 0.17 was
applied to the MSA-predicted affinities for the E309Q and N796A variants
(Ca2+affinities at site I/II are 2.98× 10−6 M/2.81× 10−6 M for N796A and
4.06× 10−6 M/2.25× 10−6 M for E309Q). Relative to WT SERCA for which the
half-maximal pump rate (approximately 2.5 per second) occurs at 6× 10−7 M
[Ca], the weaker affinities exhibited by the E309Q and N796A variants right-
shift the half-maximal rate to ∼ 1× 10−5 M [Ca]. In other words, the SERCA
variants are essentially non-functional within physiological Ca2+ concentrations
(1× 10−7 to 1× 10−6 M335), which is consistent with experimentally-observed
decreases in SERCA activity for the E309Q and N796A variants.336 Although we
recognize that the experimentally-measured activities arise from a culmination
of factors beyond just the Ca2+ binding affinity in the binding domains, these
data qualitatively indicate that MSA predicted affinities can then be used to
rationalize steady-state pump turnover rates estimated from molecular-level
simulations.

5.3 Discussion

Ion coordination and contributions to cation binding affinity

A key contribution from this study was our use of MSA theory to evaluate trends
in Ca2+ and non-cognate binding in the SERCA E1 states. By using molecular
dynamics simulations of the wild type and two site-directed mutations, we
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could probe shifts in the binding site configurations - relative to the available
crystal structures of the pump - that contribute to chelating cations. Overall,
the MSA theory, when informed using molecular simulation data including
water distributions, appears to be effective in rank-ordering ions by affinity
(approximately −7 to −10 kcal/mol, see Fig. 5.8). Further, our state-based
model of SERCA pumping function correctly captures cycling rates across
physiological Ca2+ concentrations and predicts functional effects of site-directed
mutations (N796A and E309Q).
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Figure 5.8: Correlation between MSA predicted chemical potential and
experimentally measured binding free energy. The circles and triangles
represent MSA results with waters and without waters taken into account,
respectively. RT = 0.593 kcal/mol at room temperature and Kdexp is
experimentally measured dissociation constants in Table S4. The MSA chemical
potentials correctly rank-order Ca2+ versus non-cognate ion binding.

We first applied this combined MSA/MD technique to an EF-hand containing
protein called β parvalbumin to investigate factors contributing to its Ca2+

affinity and selectivity.94 In both systems, the MSA/MD approach indicated
that high affinity Ca2+ binding is afforded through the tight clustering of
chelating oxygens with partial negative charges. Importantly, by predicting
chemical potentials of ion binding, the MSA theory provided thermodynamic
information about the relative competition between ions for the Ca2+ binding
domains, which is generally unfeasible by MD alone. For instance, we determined
that Mg2+, and not K+, is thermodynamically more probable to occupy the
pump at low Ca2+ levels, but is disfavored as Ca2+ rises toward micromolar
concentrations typical in eukaryotic cells. In principle, this approach could
additionally account for variations in electrolye composition expected near
charged lipid bilayers, but we found scant differences in binding assuming a
surface charge of 25 mV (see Fig. 5.5).

Consistent with our earlier findings for Ca2+-binding to β parvalbumin,94

MSA predicts increasing stability of the Ca2+ ion as the number of coordinating
oxygens is increased. This trend reversed as the oxygen density increased
beyond roughly six per 2.2× 10−1 nm3, which is presumably when the volume
is insufficient to accommodate all coordinating oxygens. For the E309Q and
N796A variants, we potentially reduced the number of oxygens that could
directly coordinate Ca2+. Based on the MD simulations for E309Q, however,
it appeared that the loss of one carboxylic acid oxygen was compensated by
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a new interaction with E58 that maintained the same coordination number as
the wild-type structure. This suggests that there is some degree of flexibility in
coordination partners for the ion, which may facilitate the E309 residue’s role in
kinetically gating the binding site.321 In contrast, the N796A mutation was not
offset by a nearby available oxygen, thus the predicted chemical potential was
less favorable. Therefore, our data suggest that the MSA could reasonably
rank-order Ca2+ binding stabilities based on structures of the immediate
coordination shell based on Fig. 5.4, but is less sensitive to broad ranges of
binding affinities reported in the literature (see Fig. 5.8).

We note that our predictions of favorable binding stabilities for Ca2+ at
site II for the N796A and E309Q variants are at odds with Inesi et al,337,338

who suggested based on SERCA ATPase activity that the site was incapable
of binding Ca2+. Surprisingly, a structure of the E309Q variant (PDB ID:
4nab316) deposited in the protein databank contains Ca2+ at both binding sites.
Ostensibly, the E309Q variant has a much lower, but nonzero affinity for Ca2+.
Thus, it is likely that the MSA model does not sufficiently penalize nonoptimal
Ca2+ coordination, or reflect changes in internal strain that might disfavor
coordination.94

We also found that including water distributions made a modest improvement
in chemical potentials, as per Fig. 5.8. Based on Fig. S5, the narrow binding
site volumes presented in sites I and II favor Ca2+ and Mg2+ over K+, while
both divalent ions are increasingly stabilized by greater densities of coordinating
oxygens and waters. It is interesting that the water-free MSA calculations
indicate Ca2+ could be more stable in a binding site volume of 2.2× 10−1 nm3,
which is smaller than the volume presented in the MD simulations, albeit with a
fewer number of oxygens (approximately five versus six). However, when water
is considered, the stabilities at the smaller binding volumes are disfavored. It
is possible that there is a kinetic advantage to having mobile waters involved
in coordination, which could favor more rapid exchange of bound ions with
the surrounding solvent. It is also possible that the trend can be explained on
a thermodynamic basis, namely that by preserving waters that coordinate in
the ion in bulk solvent, the desolvation cost upon binding SERCA are reduced,
which should increase the apparent binding affinity. An intriguing possibility
is that the Ca2+ affinity could be indirectly tuned by controlling the density of
binding site waters.

The primary function of the SERCA pump is to transport cytosolic Ca2+

into the sarcoplasmic or endoplasmic reticulum, therefore we verified that MSA
would indeed predict an unfavorable change in chemical potential based on
conformational changes induced in sites I and II upon forming the E2 state.
Since the focus of this study was on the E1 Ca2+ binding thermodynamics,
we did not perform MD simulations of the E2 state. Nevertheless, based on
the crystal structure of SERCA/beryllium fluoride complex(PDB ID: 3b9b307),
which represents the pump’s E2P state, we illustrate in Fig. 5.9 that drastic
changes in the Ca2+ binding site configuration culminate in a significant reduction
in oxygens that could potentially coordinate Ca2+. We further evaluate the
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binding stability for a hypothetical Ca2+ bound between the labeled coordination
groups and find that the MSA values are not only more positive than those of
the E1 state, but are additionally greater than 0 kcal/mol. The positive values
of approximately 1 kcal/mol indicate that Ca2+ binding at these position is
less thermodynamically favorable than partitioning into the surrounding bulk
electrolyte. In other words, when SERCA transitions into the E2 state, it is
thermodynamically preferred for Ca2+ to vacate the binding site in favor of
the reticulum lumen. Along these lines, mutations that alter the free energy
difference for the Ca2+ sites in the E1 and E2 configurations could affect the
efficiency of the ATPase.
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Figure 5.9: Comparison of Ca2+ binding sites in E1 state (a-b) and E2 state (c-d)
from crystal structures of PDB 1su4 and 3b9b,307 respectively. Ca2+ and water
molecules are shown as yellow and red spheres, respectively. The blue dashed
lines in (a-b) outline the overall shape of Ca2+ coordinating spheres in E1 state
while in (c-d) they depict assumed Ca2+ binding sites in E2 state. Panel (e)
depicts MSA predicted Ca2+ chemical potential for these two sites. In E1 state
the number of coordinating oxygens are seven and six for site I and II while
these values are assumed as four for both sites in E2 state.

It has been suggested that the number of cations (Ca2+, Mg2+, and K+)
bound to SERCA is approximately constant across its many conformational
states.339 In other words, Ca2+ binding is offset by Mg2+ and K+ dissociation.
ATP is bound to SERCA in complex with Mg2+,340 but there also exists structural341

and activity342 data that confirm Mg2+ binds in the pump’s transmembrane
region. Toyoshima et al,341 for example, obtained the x-ray crystal structure of
the pump with a single Mg2+ bound at a ’hybrid’ transmembrane site, for which
the ion is coordinated by ∼5 oxygens with distances of approximately 2.0 Å.
Since Mg2+ bears the same charge as Ca2+, but with a modestly smaller radius,
it is somewhat surprising that Mg2+ preferrentially binds at an intermediate site
between the canonical Ca2+ binding sites I and II. We attribute the thermodynamic
preference for Ca2+ at those sites based on two factors: the higher desolvation
energy for Mg2+ relative to Ca2+ (779.94 kT versus 648.65 kT92) and the smaller
binding site volume for the intermediate site versus sites I and II. With respect
to the latter factor, in principle, Mg2+ could reduce the site I and II volumes by
pulling the chelating oxygens toward the smaller ion, as we previously observed
in.94 For the EF-hand (helix-loop-helix) containing protein, we found that
constricting the binding loop region introduced greater strain for Mg2+ relative
to Ca2+, which we suggested would reduce the overall binding affinity for
Mg2+. Although we did not explicitly evaluate strain that could be introduced
upon Mg2+-binding for SERCA, we anticipate an even greater cost for reducing
the binding site volume, since the chelating amino acid are firmly tethered
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to relatively immobile transmembrane helices. It is important to emphasize,
though, that the non-optimal volumes for Mg2+ binding at sites I and II does not
preclude the ion from binding, as we demonstrate high binding probabilities at
very low Ca2+ levels (see Fig. 5.7).

Consistent with our earlier findings in β-PV, K+ is disfavored from binding
the native Ca2+ binding volume based on its significantly larger radius and
smaller charge.343 However, K+ and other monovalent cations have been
demons-trated to stimulate SERCA function, with K+ being the most efficient
agonist.319,339,342 Moreover, based on molecular simulations performed in the
presence of transm-embrane bound K+, Espinosa-Fonseca et al suggest that
K+ facilitates the pump’s E2 to E1 transition through its stabilization of the
E1 state59 In our simulations, we found that of the two K+ ions placed in the
Ca2+ binding domains, the site I K+ remained bound with approximately four
coordinating oxygens with ion/oxygen distances exceeding 4 Å. Based on the
MSA predictions, although K+ has a favorable (µ < 0) binding potential that is
consistent with its sub-millimolar binding affinity at site I,319 Mg2+ and Ca2+ are
considerably more likely to be bound (see Fig. 5.5). Meanwhile, water frequently
exchanged with K+ in site II, which is suggestive of a low affinity for the cation.

Based on our comparison with proteins that selectively bind K+, such as
the KcsA K+ channel, selective binding of K+ over competing Ca2+ might
best be afforded through placement of carbonyl oxygens at sufficiently large
distances to accommodate the K+ ion’s larger volume. Namely, in K+ chan-
nels, oxygens from the backbone or side chains of amino acid forming the
selectivity filter are exquisitely arranged to achieve precise pore size control
and K+-oxygen interaction strength.344 In contrast, it is likely that K+ exerts
its agonistic effects on SERCA through binding the cytoplasmic domain, as
was evidenced in a crystal structure determined by Sorenson et al, based on
a bound K+ ion in the P-domain.306 According to the K+-oxygen coordination
pattern shown in Fig. S10, the MSA predicted potential for the P domain K+ is
−2.38 kcal/mol, which is comparable to the values predicted for K+ bound to
site I (−2.35 kcal/mol). Consistent with this structural evidence, the E2P.2Ca
dephosphorylation data indicate that K+ stimulates the Ca2+-release step in
this state, whereby the lumenal Ca2+ affinity is reduced, rates of exchanging
lumenal Ca2+ with lumenal solvated Ca2+ are accelerated,345 and Ca2+ release
is enhanced.346 Similarly, dephosphorylation of the E2P state is blunted in the
absence of K+.339

Although the thermodynamics of K+ binding are unfavorable relative to
Mg2+ and Ca2+, there remains the possible role of K+ in shaping the kinetics of
SERCA function. It has been speculated, for instance, that K+ accelerates Ca2+

binding by first transiently occupying site I, after which it exchanges quickly
with a Ca2+ at site II.346 K+-facilitated exchange could therefore permit faster
incorporation of Ca2+ into site I, as opposed to the direct migration of Ca2+ into
a site that is potentially only partially-formed.346 This interpretation is consistent
with our observations from molecular dynamics simulations, and was initially
reported in simulations of Ca2+-free SERCA by Musgaard et al.347
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Relating cation affinity to ATPase activity

In our opinion, the bridging of molecular-level simulation and MSA thermod-
ynamic data with state-based models represents a significant contribution toward
multi-scale modeling of steady-state SERCA activity. Numerical and computati-
onal modeling of SERCA activity has spanned phenomenological frameworks,
such as Hill-type models348–350 to those representing distinct stages of the
catalytic process as states.9,334,351–353 Our implementation is based on the stepwise
binding of Ca2+ originally proposed by Inesi et al,9 but additionally considers
Mg2+- and K+-bound states, followed by a reduction scheme to lump the E1
states separately from those comprising the E2 configurations. Significantly,
the states defined in our model coincide with SERCA structures determined
by x-ray crystallography and are ordered in a manner consistent with assays
of SERCA function354 In contrast, the state model proposed by Tran et al334

assumed that ATP binding precedes the binding of two Ca2+ ions, which has
not been experimentally verified.

Existing models of SERCA function have faithfully recapitulated the pump’s
activity. However, an advantage of our state-based model is that its alignment
with experimentally-determined structures permits us to directly investigate
how structural modifications might impact activity. For example, we performed
MSA/MD simulations of two mutated SERCA variants that yielded modified
Ca2+ binding constants that we used to predict SERCA activity (see Fig. 5.6).
While we acknowledge that there are likely myriad changes to the pump’s
energetics following mutation that could be accounted for in the state-based
model, our implementation here is a significant step toward structure-based
modeling of SERCA activity. At a minimum, our fitted state model is consistent
with steady-state pump rates data collected as a function of Ca2+ by Cantilina
et al,9 Ca2+-saturated versus Mg2+,318 as well as molecular simulations that
predict Mg2+ inhibition of the pump.59 Furthermore, by considering different
linkages of K+- and Mg2+-bound states to the reaction scheme, we were able
to determine that assumptions of Mg2+ inhibition and K+ agonist were most
consistent with experimental data collected by Guillain et al.318 In principle,
multiscale models of SERCA activity that include structure-derived thermody-
namic information could permit in silico investigations of how disease-associated
SERCA mutations,355,356 post-translational modifications,357 and binding of
regulatory proteins such as phospholamban351 affect pump function.

Limitations

There are several limitations of our approach that could be addressed in
future studies. Our study largely focused on conformational changes and
energetics of the cations’ immediate coordination sphere. Mg2+ and Ca2+-
bound structures (PDB ID: 1su4 and 3w5b, respectively) deposited in the
Protein Data Bank indicate substantial differences in the conformations of the
transmembrane bundle helices and cytosolic domains that will necessarily
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contribute to the free energies of binding. For this reason, the free energy
differences implied in experimental measurements of cation binding affinities
reflect contributions from both ion coordination and the pump’s different
conformations. It is also important to emphasize that the MSA assumptions of
a spherical binding volume within which amino acid oxygens are immobilized
crudely approximates the actual binding site. Thus, the predicted thermodynamic
quantities are most appropriate for rank-ordering different ion/binding site
configurations. Additionally, there is evidence317,354 that Ca2+ binding is
cooperative, although here we treat the binding events independently. It
may be possible to partially recover some of the cooperative behavior by
modeling SERCA with only one bound Ca2+ and using end-point methods
such as Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)358

to estimate energy changes upon binding a second Ca2+. To our knowledge,
however, a half-saturated Ca2+-bound SERCA structure has not been determined,
which would challenge efforts to validate predictions. Additionally, in the
sequential binding model used by Inesi and others9,307 (E1 → E1.Ca →
E1′Ca → E1′2Ca), the apparent kinetics governing the transition between the
E1.Ca to E1’Ca states can vary depending on a variety of factors, including
the presence the regulatory protein phospholamban.351,359 Thus, extending this
model to broader conditions and regulatory proteins would require careful
consideration of conformational changes that might accompany the E1.Ca to
E1’Ca transition. Lastly, the Ca2+-binding steps in our model are assumed to be
in steady state relative to the substantially slower transitions between the E1 and
E2 states. In the event that the pump is subject to rapid Ca2+ oscillations, such
as spontaneous Ca2+ spiking in glia,360 the steady-state approximation may be
unreliable.

5.4 Conclusion

We utilized molecular dynamics simulations, mean sphere approximation theory
and state-based modeling to probe effects of Ca2+, Mg2+ and K+ binding on
the SERCA pump cycle. The MD and MSA approaches indicate that favorable
binding of Ca2+ in the wild-type SERCA configuration is facilitated through a
high degree of coordination by amino acids comprising the binding sites, as well
as significant contributions from water coordination. This coordination pattern
appears to be impaired in the E309Q and N796A variants; using MSA theory,
we found that the chemical potential of Ca2+ binding is less favourable relative
to wild-type as a result. Hence, mutations near the Ca2+ binding domains
that alter the coordination number, hydration and binding site volume can
be expected to modulate Ca2+ affinity in a manner qualitatively described by
the MSA theory. Similarly, the coordination patterns exhibited in the Mg2+

and K+-bound structures led to less favorable binding estimates from MSA-
theory. These findings were qualitatively consistent with measured affinity data
reported in the literature.316–319,337,346 Additionally, we developed a state-based
model of SERCA activity that we used to: 1) relate Ca2+ binding affinities to the
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SERCA pump rate; and 2) determine whether Mg2+ and K+ are pump agonists
or inhibitors. We found that the state model treating Mg2+ as an inhibitor and
K+ as an agonist (Mg−K+) was most consistent with experimental data. Despite
the limitations of the assumptions used for the various models, we believe
that the approach provides an attractive framework for evaluating allosteric
functional effects of ion binding on SERCA, which may be extendable to other
Ca2+ transporters, such as P2X4.361

5.5 Methods

Construction of the SERCA systems

Molecular dynamics (MD) simulations on wild-type (WT) SERCA and two
variants of SERCA: E309Q and N796A were performed; the latter variants were
chosen given dimished site II Ca2+-binding.336 For the WT SERCA system,
we considered apo (free of bound ions) Ca2+-bound, Mg2+-bound and K+-
bound states. Ca2+-bound (PDB ID: 1su4304) and Mg2+-bound (E1.Mg, PDB ID:
3w5b341) SERCA X-ray crystal structures were used as the starting structures.
The apo SERCA system was constructed based on 1su4 with two Ca2+ ions
removed as done in.362 The structure of the site I or II bound K+ SERCA
has not been determined, thus we created the structure based on the Mg2+-
bound variant. For the N796A mutant, Ca2+-bound and Mg2+-bound cases
were considered, based on mutating N796 to alanine. Similarly, for the E309Q
mutant, we obtained two rotamers compatible with the binding site as evaluated
through UCSF Chimera.363 These E309Q rotamers were designated as "E309Q_-
r1" and "E309Q_r2". All SERCA cases considered in present study are summarized
in Table S1.

The cation coordinating acidic residues E309, E771 and D800 were assumed
to be deprotonated, while E908 was protonated, consistent with;59 further a
disulfide bond was introduced between residues C876 and C888. The system
was inserted into a homogeneous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) lipid bilayer of POPC via the Membrane Builder364 within the CHARMM-
GUI software.365 This system was solvated via TIP3P waters72 using a 20 Å
margin perpendicular to the membrane. Counterions K+ and Cl– were added
into the system via Monte-Carlo method to neutralize the system and maintain
an ionic strength of 0.15 M. Both the solvation and ion-adding were performed
via the Solvator module within CHARMM-GUI online-server. The final system
contained ∼255,000 atoms including lipid bilayer with 461 lipids, and ∼59,000
TIP3P water molecules and was parameterized by the CHARMM36 force
field.202,203

Molecular dynamics simulations

MD simulations were performed using NAMD.366 The system was first subjected
to an energy minimization process consisting of 2000 steps’ steepest descent
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(SD) and 2000 steps’ adopted basis Newton rRphson (ABNR) algorithm. For
each case, the minimized system was heated from 0 K to 303.14 K over 25 ps with
1 fs timestep via the Langevin thermostat, using randomized velocities for three
triplicate preparations. For each replica, harmonic constraints were introduced
during minimization and heating on protein side chains, protein backbone
atoms, lipid heavy atoms and ions. The force constants of constraints were set to
5, 10, 10 and 1.0× 101 kcal mol−1 Å

−2
, respectively, and were gradually reduced

to zero over five equilibration steps of 20 ps in duration. 100 ns production
simulations was then performed on the equilibrated system with the Shake
algorithm,201 using 2 fs timesteps.

Simulation trajectory analysis

Standard trajectory analyses including RMSF and coordination oxygen/Ca2+

distances were computed using Lightweight Object-Oriented Structure Library
(LOOS).367 Coordination pattern analysis on each cation with oxygen atoms
from nearby amino acids were performed in each binding site. This consisted of
extracting residues within 20 Å from D800 (the shared residue of the conventional
two Ca2+-binding sites in SERCA) based on the Ca2+-bound SERCA crystal
structure (PDB ID: 1su4). The water density around cation was computed
via the radial command implemented in CPPTRAJ274 and analyzed via Grid
Inhomogeneous Solvation Method (GIST) (as described in Sect. S1.4).

Mean sphere approximation (MSA)

The MSA is a mean-field model which estimates cation chemical potentials
in electrolyte solution with finite-sized ions. In this study, the SERCA cation
binding sites were treated as confined filters filled with oxygens from coordinating
residues and water molecules. The MSA model calculates cation distributions
between bulk electrolyte solution that minimize the chemical potential for
partitioning ions into a finite size volume occupied by coordinating oxygens;
these volume and number of oxygens were determined by MD as in Kucharski
et al.94 The free energy expression in this model was assuming negative-
charged spherical domains was based on a chemical potential accounting for
electrostatic and hard-sphere interactions between ions inclusive of oxygens,
as described in.93,368,369 In this representation, which is analogous to the Ca2+

binding domain in β-PV and calcium channels,92–94 ionic species that have a
negative chemical potential in the binding filter are thermodynamically favored
to bind. We include in this approach a solvation contribution as estimated via
generalized Born theory of ion hydration energies:

∆GGB =
z2

r

(
e2Na

2 · 4πε0

)(
1− 1

εr

)
(5.4)

where z is charge number, r is radii, e is electron charge, Na is the Avogadro
constant, ε0 and εr are vacuum dielectric and the relative dielectric constant of
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the solvent. Additional details are elaborated in the supplementary material
of.94

In the SERCA system, the cation/SERCA configurations can present differing
numbers of coordination oxygen atoms (see Fig. 5.2 and Table S2) and volumes,
as shown previously for β-PV in:94

Vf =
4
3

πR3 (5.5)

R = rrd f + roxy (5.6)

where rrd f is the radii of optimal coordination sphere which can be obtained
from the cation-oxygen coordination pattern analysis based on MD simulations
(see Fig. 5.2) while roxy is the radii of oxygen atom. Charges and radii values of
all ions are taken from the Li-Merz work.370 The specific parameters used in the
MSA calculations are listed in Table S2.

State-based model of the SERCA pump cycle

SERCA pumping is characterized by two prominent states, E1 and E2, comprised
of microstates corresponding to various conformations or bound states of the
pump (Fig. S4). In the E1 state, two Ca2+ ions bind to SERCA through
cooperative mechanism followed by the binding of MgATP.9 We represent each
state as by an ordinary differential equation of the form

dsi/dt = ∑ k jisj −∑ kijsi (5.7)

where si is state i, and kij describe rates for transitioning between states i and j.
The models tested in this paper are summarized in Fig. S4.While the cooperative
Ca2+ binding mechanism in the E1 state is well-accepted, the Ca2+ release
mechanism of the E2 state is not clearly resolved, therefore we use the state
representations proposed in Tran et al.334

Based on the technique proposed by Smith et al,371 we can applied rapid
equilibrium assumption to fast processes (those within E1 or E2) relative to the
slow rates of transitions between the E1 and E2 states to simplify the model.
As shown in Fig. S4, states in dashed boxes were assumed to be in quasi-
steady-state and thus were lumped together. Hence, the original multi-state
models were simplified into a two-state model (see bottom Fig. S4) in which
new apparent rate constants were derived based on original rate constants. The
resulting equations are summarized in the supporting information in.372 For the
lumped 2-state model, the turn over rate is derived as in Tran’s paper:334

V =
α+1 α+2 − α−1 α−2

α+1 + α−1 + α+2 + α−2
(5.8)

where α±i are apparent rate constants between lumped two states (the expressions
are given in the supporting information in372). The final parameters used are
listed in Table S3.
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Chapter 6 Conclusion

Ca2+ is an important secondary messenger in cellular life. Perturbation of
Ca2+ signaling can result in dysfunction of heart, brain and immune system.
In this thesis, we utilized various computational technologies including partial
differential equation (PDE)-based continuum modeling, molecular dynamics
(MD), Brownian dynamic (BD), mean sphere approximation (MSA) and protein-
protein docking to gain understanding of three prototypical aspects of Ca2+

signaling: cellular Ca2+ diffusion, Ca2+-mediated protein-protein interaction
(PPI) and pump-facilitated Ca2+ transport.

Signal transduction requires messenger to diffuse from the place where they
are released to target proteins at which they are bound. At the cellular scale,
the diffusion rate of Ca2+ is affected by charged crowders such as proteins and
nucleic acids. In addition, buffer proteins that bind Ca2+ ions can hinder or
facilitate Ca2+ diffusion. To understand how Ca2+ diffusion is affected by these
factors, we simulated Ca2+ diffusion in mesoporous silica channels using partial
differential equation (PDE)-based continuum model. These silica channels have
comparable dimensionalities as cellular compartments, and more importantly,
the silanol function groups (Si-OH) at silica materials surface enable us to
imitate the effects of charged crowders and Ca2+ adsorption. We found that the
presence of negative surface charge facilitates Ca2+ diffusion. This effect was
attenuated by increasing ionic strength that shields the favorable interactions
between negative charges and Ca2+. The Ca2+ adsorption hindered Ca2+

diffusion at basic pH environment, with an extent less than expected, as a
pKm increased by 2 unit caused ∼10% reduction of Ca2+ effective diffusion
constant. We also characterized the amount of Ca2+ ions adsorbed by silica
surface. These modelings provided quantitative descriptions of Ca2+ diffusion
in a cell-like environment, which sheds insights into the spatial distribution
of cytoplasmic Ca2+. Moreover, our model shows the potential of probing
Ca2+ diffusion in real cell in which the membranes have non-neutral surfaces.
This is important because certain Ca2+ release is Ca2+-diffusion dependent.
Accurate Ca2+ diffusion characterization in a realistic cell-environment help to
understand the dyssynchrony of Ca2+ waves in excitable cell (such as cardiac
myocytes) that are commonly present in heart failure.

We studied the molecular bases of Ca2+-mediated calmodulin (CaM)/calcine-
urin (CaN) interaction. This pair of PPI is important as they are key nodes of the
Ca2+ signaling network. The intrinsically disordered nature of CaN’s regulatory
domain, at which CaM binds, also makes this PPI pair an appropriate model to
study intrinsically disordered peptide (IDP)-involved PPI. IDP-involved PPI has
attracted great attention due to the capability of IDP in recognizing wide range
of protein targets. In this subproject, we studied the association process between
CaN’s intrinsically disordered regulatory domain and CaM under varying ionic
strengths, with the aim to understand how electrostatic interactions affect the
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association rate constants. The motivation comes from the fact that electrostatic
interactions play a dual role in determining IDP’s ensemble properties and
driving protein-protein association. Extensive all-atomic molecular dynamics
(MD) simulations were performed on CaN’ regulatory domain constructs bearing
different charge densities. For each representative structure of CaN constructs,
the Brownian dynamic (BD) simulations were performed to estimate its diffusional
encounter rates with CaM. During MD and BD simulations, by changing
the ionic strengths, we were able to tune the intramolecular electrostatic in
CaN’s regulatory domain and intermolecular electrostatic interactions that drive
CaN/CaM association. We found that CaN construct’s ensemble compactness
were not significantly affected by intramolecular electrostatic interactions. Howe-
ver, the conversion rates between CaM-capable and incapable conformations
are affected by electrostatic interactions, with slower conversion rates for the
CaN construct having lower net charge per residue (NCPR). The diffusion
encounter rate between CaN’s regulatory domain and CaM were significantly
enhanced by the intermolecular electrostatic interactions, as evidenced by at
least ∼30% faster rate constants after intermolecular electrostatic interactions
are considered in BD simulations. In addition, we obtained the effective rate
constants after taking CaN regulatory domain’s conformation dynamics into
consideration. This effective rate constant reflects the reality that IDPs assume
continuously changing conformations when bind to protein partners. The extent
to which conformational dynamics affect association rate constants depends on
the relative value between conversion rate and diffusional encounter rate. For
CaN constructs with a much slower conversion rate than diffusional encounter
rate, their effective rate constants were significantly reduced as CaM-incapable
structures occupied considerable percentage of the time course. These studies
revealed the dual role of electrostatic interactions that resulted in the diffusion-
limited association rate of CaN’s intrinsically disordered regulatory to CaM.
More generally, protein-protein associations are fundamental events occurring
in various biological processes such as enzyme activation/inhibition and immune
system response. Understanding the mechanism of disease-related protein-
protein association is of great therapeutic importance as binding rates characte-
rization can be used to develop new drug candidates.

We additionally investigated the secondary interaction between a motif in
CaN’s regulotary domain and CaM, as experimental evidence indicated that
this secondary interaction is indispensable for CaN’s full activation by CaM.
By using protein-protein docking and extensive MD simulations, we were able
to identify on CaM’s surface a potential site for this secondary interaction. This
prediction was affirmed by phosphatase assays as CaM variants with mutation
at the site leaded reduced CaN phosphoratase activity. The identification of site
D provides a hot spot area on CaM that could be used to design CaM variants
with controllable CaN activation abilities. Given the numerous biological
processes regulated by CaN, in which some are disease-related, such engineered
CaM variants are of great therapeutic importance. Moreover, besides CaN,
there are other CaM-regulated enzymes with autoinhibition domains such as
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CaM dependent kinases (CaMKI and CaMKII) and myosin light-chain kinase
(MLCK). These enzymes may share a similar activation mechanism as CaN in
which a secondary interaction with CaM is needed for full activation.

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a calcium pump that
actively transports Ca2+ from cytosol into sarcoplasmic/endoplasmic reticulum
(SR/ER)) which prepares the excitable cells for the next cycle of Ca2+ oscillating.
We studied the active transport of Ca2+ by SERCA, with the aim to understand
SERCA’s selectivity of Ca2+ over Mg2+ and K+ given the latter two are in
much larger excess in cytoplasm. We performed all atomic MD simulations
on SERCA with Ca2+, Mg2+ and K+ bound, respectively. It was found
that the binding site was optimized for Ca2+ binding, as evidenced by the
smallest root mean squared fluctuations (RMSF) values of coordinating residues
and the largest number of coordinating oxygens. The coordination pattern
was less optimal for Mg2+ and not favorable for K+, as the events of K+

leaving were observed during MD simulation. Using MD-derived binding site
information such as number of coordinating oxygen and volume of coordination
spheres, we quantified the cation binding thermodynamics via the mean sphere
approximation (MSA) method. Our MSA-generated thermodynamics correctly
ranked cation binding affinities as validated by experimental values. We further
evaluated the impacts of Mg2+ and K+ binding on SERCA’s function cycle via
state models. We found that Mg2+ most likely acts as a inhibitor while K+

as a intermediate during SERCA’s transport of Ca2+. This study deciphered
the molecular determinants of SERCA’s selectivity of Ca2+ and evaluated the
impacts of Mg2+ and K+ on SERCA’s enzymatic activities. Our results deepen
the understanding of SERCA functions in a real cell-like environment in which
Mg2+/K+ ions are inevitably present. In addition, the MD/MSA combination
strategy can be applied to other Ca2+-permeable channels such as Na+/Ca2+

exchanger (NCX) and polycystin-2 (PC2) to gain molecular bases of their
functions.

The future work will focus on refining the simulation models with more
realistic conditions taken into consideration. For example, considering the
steric effect exerted by protein crowders on cellular Ca2+ diffusion is needed
to obtain Ca2+ flux profiles that can be directly compared with experimental
measurements. Our current studies regarding the CaM/CaN PPI were simulated
with only the regulatory domain of CaN presented. Building complex structure
of CaM with the intact CaN is the prerequisite to simulate the complete
activation process, which allows the identification of critical residue-residue
interactions. This helps to design CaM variants with controllable abilities of
activating CaN. In addition, simulations of SERCA with membrane having
different lipid compositions are important because membrane lipids play regulat-
ory role in SERCA function. The goal of these refinements is to push the limit of
our understanding of Ca2+-signaling mechanism with quantitative descriptions
that can be experimentally validated.
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Appendix: Supplementary Material

Terms Γ, η and ∆ refers to the contribution from electrostatic shielding, unequal
sizes of ions and free volume not occupied by hard spheres in mean sphere
approximation (MSA), respectively. Their expressions are as:

Γ2 = πλb ∑
i

ρi

[
zi − ησ2

i
1 + Γσi

]2

η =
π

2Ω∆ ∑
k

ρkσkzk
1 + Γσk

Ω = 1 +
π

2∆ ∑
k

ρkσ3
k

1 + Γσk

∆ = 1− π

6 ∑
k

ρkσ3
k

(S1)

where zi, ρi and σi are charge, concentration and radius of ion i, respectively.
λb = e2

4πε0εrkbT is Bejerrum length which refers to the separation of two
elementary charges at which the electrostatic interaction potential is comparable
to thermal energy. ε0, εr are vacuum and relative permittivities, respectively.

Table S1: Average electric potentials calculated at the two ends of nanopore (see
Eq. 2.21) in KCl conductance validation(2D-axisymmetric)

[KCl] Va(V) Vb(V) Va −Vb(V) Va−Vb
δφ

1× 10−6 M 0.192929 -0.002049 0.194978 97.489%
1× 10−5 M 0.194460 0.000472 0.193988 96.994%
1× 10−4 M 0.196105 0.002011 0.194094 97.047%
1× 10−3 M 0.197282 0.001943 0.195339 97.670%
1× 10−2 M 0.198244 0.001437 0.196807 98.404%
1× 10−1 M 0.198898 0.001008 0.19789 98.945%
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Figure S1: Illustration of all geometries used in simulations.
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Figure S2: Concentration profile of K+ and Cl– along the center line of nanopore
under different wall electric potentials and κD (D=10.2 nm is the diameter of
nanopore). The height at x axis refers to the z direction: 0 < height < 200nm
is bottom reservoir, 200 < height < 234 nm is nanopore and 234 < height <
434nm is top reservoir.

Grahame equation for CaCl2 salt solution

When the solution is composed of divalent cation (e.g., CaCl2 solution), the
Grahame equation used to relate wall electric potential (φ0) and surface charge
density (σs) is given as:

σs(φ0) =
√

8εoεrkBT sinh
(

eφ0

2kBT

)(
[CaCl2](2 + exp(

−eφ0

kBT
))

)0.5

(S2)

Effects of porosity on permeability

Besides the electrostatic interaction, we also explored the packing compactness
of nanopores on CF permeation. For clarity, we defined porosity as shown
in Fig. S4 to characterize the packing compactness of nanopores on the silica
membrane.
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Figure S3: Numerically simulated permeability of CF passing through unit cell
structures(dimensions are shown in Fig. 2.2). Total ionic strength is maintained
as 0.9 M which results κD=31.18 (κ is inverse of Debye length and R=10 nm
is diameter of nanopore). An fixed electric potential φ = −69.5mV(value is
from a PNP+pH regulated surface charge model at pH = 7.4) was applied on the
nanopore wall
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Figure S4: =

1 mM.] Permeability of CF vs. hexagonal unit cell porosity. Background ionic
strength is set as 1 mM and [CF] = 1 mM.

While keeping nanopore radius r = 5nm fixed, by changing the value of h
and w, we can achieve hexagonal unit cells with different porosities. We then
calculated CF permeability in these hexagonal cells at pH=7.4, bulk [CF]=1mM
and background ionic strength = 1mM. It can be shown clearly in Fig. S4 that, CF
permeability linearly increases with porosity, indicating that a more compacted
packing of nanopore will has higher CF permeability. Also at fixed porosity, a
less negative electric potential permits a larger permeability, which is consistent
with trends observed in Fig. 2.6.
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Figure S5: (a) Sequences of the three CaN peptides studied in the present work.
The positively charged residues and negatively charged residues are colored
in blue and red, respectively, along with FCR and NCPR scores. (b) Disorder
probabilities predicted by DisEMBL.373 The shown curves are scores based on
"hot-loops" which is reported to be a good criterion to define disorder.373,374 The
blue dash line denotes random expectation values. (c) Mean hydropathy score
and mean net charges of the three peptides and their locations in the Uversky
diagram375 (d) Locations of the three CaN peptides and CaN RD in the Das-
Pappu diagram.297 Figures (c) and (d) are generated by localCIDER.376 (e-f)
RMSF of each residue during the 15 µs MD at 0.15M and 1.5M ionic strength,
respectively
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Figure S6: Contact map analysis of 15 µs MD trajectory of three CaN peptide
under 0.15 M and 1.5 M ionic strength, respectively. Contact data was collected
via CPPTRAJ in Amber with distance cutoff as 7 Å and only residue pairs which
are at least 5 residues apart (i and i + 5) in sequence are considered. The unit
of numbers on color bar is number of average contacts for each pair over the
simulation time
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Figure S7: Average life time of open and closed states of CaN peptides
determined by MSM at 0.15 M (faded color) and 1.5 M (dark color), respectively.
The specific life time and corresponding gating rates are listed in Table S2
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Figure S8: Average RG of CaN peptides at 0.15 M (faded color) and 1.5 M (dark
color), respectively

Flags set of Rosetta modeling

The following flags set was used for pCaN structural prediction via Rosetta:
"-in:file:fasta pCaN_fasta
-in:file:frag3 aapCaN03_05.200_v1_3
-in:file:frag9 aapCaN09_05.200_v1_3
-abinitio:relax
-nstruct 10
-out:pdb
-use_filters true
-abinitio::increase_cycles 10
-abinitio::rg_reweight 0.5
-abinitio::rsd_wt_helix 0.5
-abinitio::rsd_wt_loop 0.5
-relax::fast"
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Table S2: Average life times and gating rates between CaN peptides’ open and
closed conformations sampled at 0.15 M and 1.5 M ionic strength.

Ionic Strength(M) Average Lifetime (ns) Gating rate (s−1)

Γopen Γclosed kb kf
pCaN 0.15 0.19 0.65 5.27× 109 1.55× 109

1.5 0.21 0.62 4.70× 109 1.62× 109

lpCaN 0.15 0.11 12.83 8.97× 109 7.79× 107

1.5 0.13 4.42 7.48× 109 2.26× 108

lpcCaN 0.15 0.15 0.19 6.64× 109 5.35× 109

1.5 0.14 0.21 7.31× 109 4.85× 109

Table S3: BD-simulated encounter rates (kon) under 0.15 M and 1.5 M ionic
strength for the open state CaN peptides sampled the same two ionic strengths.
The effective association rates (keff) calculated via Eq. 3.3 are also shown.

kon/keff (1× 107 M−1 s−1) Gating rate (1× 107 s−1)

0.15_BD 1.5_BD kb kf
pCaN 0.15_confs 2.00 /1.61 0.11/0.102 527 155

1.5_confs 1.56/1.31 0.07/0.065 470 162

lpCaN 0.15_confs 0.64/0.14 0.06/0.03 897 7.79
1.5_confs 0.53/0.26 0.08/0.06 748 22.6

lpcCaN 0.15_confs 0.97/0.93 0.04/0.04 664 535
1.5_confs 0.34/0.33 0.005/0.005 731 485
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Figure S9: BD calculated association kinetics between rigid CaN peptides and
CaM. The electrostatic interaction was turned off by setting CaN peptides
charges to be zero. Specifically, after turning of electrostatic interaction, lpCaN
retains 50% above association rates while lpCaN and lpcCaN reduce to much
smaller kons, implying that electrostatic interaction has larger impacts on lpCaN
and lpcCaN than pCaN

Figure S10: Sensitivity of keff to Keq for three CaN peptides sampled at 0.15 M
and 1.5 M ionic strength, respectively.
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Figure S11: BD-simulated separate association rate constants with CaM C
domain vs. RMSD under 0.15 M and 1.5 M ionic strength with CaN peptides
conformations sampled at the same two ionic strengths, respectively. The red
dash line designates the border of open and closed states based on RMSD

Figure S12: Fraction of native contact (Q) and free energy profile in coarse-
grained (CG) simulation with Gō model. A: Fractions of native contact between
N/C-domain of CaM and pCaN (denoted as Qn and Qc, respectively) along
CG simulation time (only the first 300 ns of 1 µs is shown for clarity). B: 2D
free energy profile projected along Qn and Qc in CG simulation. The shaded
areas colored in light red and blue depict the ranges of Qn and Qc values in
BD simulations, respectively. The last frame of each BD trajectory of the 10
pCaN open conformations (RMSD < 3 Å) with CaM N/C domain were used
to calculate average and standard deviation of Qn and Qc
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Figure S13: Fractions of native contact between N/C-domain of CaM and closed
state pCaN in the BD-simulated pCaN-CaM complex
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Methods

Simulation with AID added to site D predicted CaM/DH interaction configuration

The initial structure corresponding to CaN distal helix to AID region (residues
459 to 490) was built from sequence via tleap. The initial structure was
subjected to minimization and MD simulation in vacuum according to the
procedure described Sect. 4.2. The optimized structure was then appended to
the C-terminus of distal helix region from the representative structure of site
D simulations via tleap. The representative structures of the first two most
populated clusters from site D simulations were selected, making the simulation
duplicate. The sytem was then solvated in TIP3P waterbox with 0.15 M KCl ions
added. The simulation details are same as previous section in which the tleap
built structure was first relaxed while rest part being fixed during the heating
and equilibrium stage. After reaching equilibrium, about 0.7 µs production
simulation was performed from each replica of the duplicate. The simulations
were repeated for the CaN A454E mutant.

Table S4: Residues at each tentative binding site on collapsed CaM used in
ZDOCK to predict distal helix interaction at each site

Tentative Site Residues

Site A R86, F89, V142, Y138
Site B R106, I125, D118, D122
Site C I9, F12, L69, F65
Site D K30 ,T34, R37, Q49
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Figure S14: Highest-ranking CaM/distal helix interaction poses predicted by
ZDOCK3.0.2100 webserver at each site. The color scheme is same as Fig. 4.2.
Key residues at the interaction surface are shown in sticks with black labels for
CaM residues and red labels for distal helix residues. Comparisons of the WT
distal helix poses versus predictions for DHA454E are shown in Fig. S15.
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Figure S15: Comparison of Zdock predicted poses of DH and DHA454E mutant
at each site. The DHA454E mutant is colored in gray. At site A and C, the poses
of DH and mutant are close, while at site B and D, the DHA454E mutant are
predicted to be located near site A.
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Figure S16: Overlap of MD simulated distal helix conformation starting at site
B (colored in salmon) and site D (colored in red). During the simulations, distal
helix starting at site B migrated to site D.

144



Figure S17: Illustration of β-sheet formed in T427-G439 region from site D
simulations. The shown structures are representative structures of first four
most populated clusters.

145



Figure S18: α-helix structural probability of each residue in distal helix region of
WT, CaM K30E and G40D mutants and CaN A454E mutant calculated from MD
simulations initiated at site D.
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Figure S19: Backbone hydrogen bond analysis in the linker and distal helix
region. Each arrow represents one Hbond with color indicating percentage of
simulated frames with this hbond existed. hbonds exist >5% of simulation time
are shown.

Table S5: MD simulation cases

Cases Cation occupancy PDBID of ini. struc Simulation length (ns)
WT 2 Ca2+s 1su4 300
WT 1 Mg2+ 3w5b 300
WT 2 K+s 3w5b 300

N796A 2 Ca2+s 1su4 400
N796A 1 Mg2+s 3w5b 355

E309Q_r1a 2 Ca2+s 1su4 240
E309Q_r2b 2 Ca2+s 1su4 170

a,bDifferent rotamers of Q309 side chain
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Table S6: Parameters used in SERCA MSA model. The diameter and charge of
ions were adapted from Li-Merz370 and the absolute solvation energy for ions
were taken from table 1 in Nonner et al.92 The Nonner et al results were adapted
from values relative to solvated H+ in.377

Parameter Definition Values

Noxy at Ca2+ site I no. of amino acid oxygen 5.5
Noxy at Ca2+ site II no. of amino acid oxygen 6.7

Noxy at K+ site I no. of amino acid oxygen 3.9
Noxy at Mg2+ site no. of amino acid oxygen 4.2

rrd f at Ca2+ site I, II optimal coordination radii 2.5 Å
rrd f at Mg2+ site optimal coordination radii 2.0 Å
rrd f at K+ site I optimal coordination radii 2.9 Å

ρi bath [KCl] 150 mM
bath [MgCl2] 1 mM
bath [CaCl2] 0.1 nM to 0.1 M

ε f filter dielectric 25.0
εb bath dielectric 78.4
σO O diameter 0.354 nm
σCa Ca2+ diameter 0.272 nm
σMg Mg2+ diameter 0.236 nm
σK K+ diameter 0.352 nm
σCl Cl– diameter 0.454 nm
zO O charge -0.7469 e
zCa Ca2+ charge 1.77 e
zMg Mg2+ charge 1.69 e
zK K+ charge 1 e
zCl Cl– charge -1 e
wCa solvation energy -648.7 kT92,377

wMg solvation energy -779.9 kT92,377

wK solvation energy -141.6 kT92,377

wCl solvation energy -122.6 kT92,377

kT/zF 25.6 mV
V f of Ca2+ sites filter volume 0.326 nm3

V f of Mg2+ site filter volume 0.224 nm3

V f of K+ site I filter volume 0.426 nm3
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Table S7: Parameters used SERCA MSM models in present work.

Parameter Value reference
Kd,Mg 4.93× 10−5 M/5× 10−4 M MSA/Expt.
Kd,K 3.3× 10−3 M/9× 10−3 M MSA/Expt.
Kd,2 2.24× 10−3 M 334

Ca(SR) 1× 10−6 M 9

[MgATP] 3× 10−4 M 9

[MgADP] 1× 10−6 M 9

[Pi] 1× 10−6 M 9

k+1 1× 108 s−1 9

k−1 4× 102 s−1 9

k+2 3.0× 101 s−1 9

k−2 4.0× 101 s−1 9

k+3 4× 108 s−1 9

k−3 1.6× 101 s−1 9

k+4 2× 107 s−1 9

k−4 4.0× 101 s−1 9

k+5 1.5× 101 s−1 fitted
k−5 7.5 s−1 fitted
k+6 7.5 s−1 fitted
k−6 7× 109 s−1 fitted

Table S8: Experimental dissociation constant of cations with SERCA

Cation Dissociation constant (Kd) reference
Ca2+ site I 0.018 - 0.023 µM 317

Ca2+ site II 6.67 - 11.1 µM 317

Mg2+ 5 mM / 0.5 mMa 318 and346

K+ site I 0.625 mM 319

K+ site II 16.67 mM 319

K+ binds to P-domainb na 306

N796A and E309Q Ca2+ site I 0.5 µM 337

N796A and E309Q Ca2+ site II no binding 337

E309Q with 2 Ca2+ binding 0.46 - 4.38 µMc 316

a in346 it was postulated that Mg2+ binds to site II with Kd = 0.5 mM and this
bound-Mg2+ would exchange quickly with Ca2+ and the consequence is Mg2+

accelerates Ca2+ bindings to SERCA; b a K+ binding site located in P-domain
was identified via X-ray crystallography; c This data is apparent affinity for

both site I and II obtained by fitting to experimental data using Hill equation.
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Figure S20: Back-bone atom RMSD of TM helices vs. simulations time. The error
bars are calculated from the triplicate trajectories for each case.
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Figure S21: Back-bone atom RMSD of cytosolic domains vs. simulations time.
Alignments were conducted using backbone atoms of cytosolic domains. The
error bars are calculated from the triplicate trajectories for each case.
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Figure S22: Schema of the five MSM models of SERCA pump considered in
present study. In Model 1 (Caonly), only the native Ca2+ cation is involved in
the pump cycle. In Model 2 (Mg−K−), both Mg2+ and K+ are assumed to act as
inhibitors of SERCA. In Model 3 (Mg−K+), Mg2+ is assumed to act as inhibitors
of SERCA while K+ acts as intermediate. In Model 4 (Mg+K−), the roles of Mg2+

and K+ are opposite as Model 3, namely, Mg2+ is assumed to act as intermediate
of SERCA while K+ acts as inhibitor. In Model 5 (Mg+K+), both Mg2+ and
K+ are assumed to act as intermediates of SERCA. For all models, the states in
dashed-box are lumped together based on the lumping strategy proposed by
Smith et al371 to form a two-state model. The apparent rates between the two-
state model are given in supplementary material.
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Figure S23: Coordination pattern of K+ at SERCA site I with residue oxygen
atoms in the 1st 100 ns WT simulations. In the 1st 100 ns simulation, the original
K+ at site I flee away after about 40 ns, however, another K+ will bind at site I
afterwards. The radial distribution is calculated based on the second K+ after
40 ns.
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Figure S24: Free energy of water sites around site II Ca2+ calculated by GIST.
For N796A and E309Q, the blue isosurface corresponds to water sites with ∆G =
−12 kcal/mol. For WT the shown red isosurface depicts a water oxygen density
as 0.075 while the ∆G is 0 everywhere over the grids. The distance between Ca
and isosurface is also shown.
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Figure S25: Radial distribution of oxygen around Ca2+ for each case.
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Figure S26: K+ binding site at P domain from crystal structure PDB 1t5s.
Number of coordinating oxygens is five and filter volume is assumed to be 0.43
nm3.
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Figure S27: Representative coordination patterns of Ca2+ (yellow spheres) in the
two binding sites from MD simulation in WT SERCA and mutants. Key residues
are shown in sticks and balls. In WT site I, there are 3 waters coordinating with
Ca2+, while in N796A/E309Q mutants, site I Ca2+ has one/zero coordinating
water molecules.
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Figure S28: Water density around Ca2+ (yellow spheres) calculated from MD
simulations via the VolMap module of VMD. The shown red isosurface depicts
water density as 0.2.
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Figure S29: Representative coordination patterns of Mg2+ (magenta spheres)
and K+ (orange spheres) in the binding sites from MD simulation in WT SERCA
and mutants. In both WT and N796A, Mg2+ resides in a ’hybrid’ binding site
rather than the conventional two Ca2+ binding site. K+ at site I is stable and not
stable K+ binds at site II.

Supplementary Methods

Grid Inhomogeneous Solvation Method (GIST)

The Grid Inhomogeneous Solvation Method (GIST) model378,379 was used
to characterize the theromodynamic properties of coordinating water. GIST
calculations were performed via the SSTmap program.380 Before GIST calculations,
the MD trajectory was first subjected to rms fitting on key cation coordinating
residues to align cation binding sites. The Cα atoms of residues V304, I307, N768,
E771, N796 and D800 were used for this rms fitting. The grid center required
in GIST was defined by the cation coordinates obtained from the last frame in
the rms-fitted trajectory. Grid dimensions were set to 16, 20 and 20 with grid
spacing being 0.5 Å. The free energy of water at each grid point was calculated as
∆G = Esw + Eww − dTSorient − dTStrans where Esw and Eww are solute-water and
water-water interaction energies while dTSorient and dTStrans are orientational
and translational entropic energies.

Model reduction strategy

Here we summarize our lumping strategy used to consolidate the SERCA model
into fewer (macro) states, by assuming rapidly-exchanging ‘micro’ states are
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in pseudo-equilibrium. The basic approach follows that of Smith et al371 as
illustrated by the generalized example:

k1+ k2+ k3+

...S1<---->S2<--->S3<--->S4....

k1- k2- k3-

S1 to S4 are four states with forward and reverse rate constants connecting
neighboring states. Suppose S2 and S3 are in rapid equilibrium with each other,
namely k+2 ,k−2 ≥ k+1 ,k−1 ,k+3 ,k−2 . At any time:

S3(t) = K2 ∗ S2(t) (S3)

K2 =
k+2
k−2

(S4)

Now we lump S2 and S3 together to form a new pseudo state S23. For the
lumped model, we will use new apparent rate constants α+1 , α−1 , α+2 , α−2 to
represent the transition between states.

_________

a1+ | k2+ | a2+

...S1<---->|S2<--->S3|<--->S4....

a1- |__ k2-___| a2-

S23

For the lumped model, we have:

S23(t) = S2(t) + S3(t) (S5)
= (1 + K2)S2(t) (S6)

= (1 +
1

K2
)S3(t) (S7)

S2(t) =
1

1 + K2
S23(t) (S8)

S3(t) = (1 +
1

K2
)S23(t) (S9)

Now we consider relationship between original rate constants and the new
apparent rate constants. In both models, for S4, we have:

S4(t) = S3(t)k+3 = S23(t)α+2 (S10)

Now we put Eq(7) into Eq(8), we see clearly that:

k+3
1 + 1

K2

S23(t) = S23(t)α+2 (S11)
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so we have the expression of α+2 as:

α+2 =
k+3

1 + 1
K2

(S12)

similarly, we can derive the expression of α+1 , α−1 , α−2 :

α+1 = k+1 (S13)

α−1 =
k−1

1 + K2
(S14)

α−2 = k−3 (S15)

dP1−5

dt
= −(α−2 + α+1 )P1−5 + (α+2 + α−1 )P6−8 (S16)

Vmax =
α+1 α+2 − α−1 α−2

α+1 + α−1 + α+2 + α−2
(S17)

ICa2+ ∝ NSERCAVmax (S18)
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