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ABSTRACT OF DISSERTATION 

 
 
 

STUDIES OF OXIDATIVE DAMAGE, BRAIN PROTEOME, AND 
NEUROCHEMICAL METABOLITES IN COGNITIVE AND 

NEURODEGENERATIVE DISORDERS: (1) CHEMOTHERAPY-INDUCED 
COGNITIVE IMPAIRMENT; (2) PARKINSON DISEASE RAT MODEL 

 
The rate of cancer patients is increasing as the development of science and 

technology. Twenty million cancer survivors are estimated living in the United States by 
2025. However, many cancer survivors show cognitive dysfunction, negatively affecting 
the quality of life. These cognitive impairments are recognized as chemotherapy-induced 
cognitive impairment (CICI), also called "chemo brain" by cancer survivors, including the 
diminished ability of memory and learning, hard to concentrate and focus, as well as 
diminution of executive function and processing speed. The etiologies and pathologies of 
CICI are complicated, especially in most cases the anti-cancer drug cannot cross the blood-
brain barrier (BBB). 

 
One of the significant candidate mechanisms underlying CICI is chemotherapy-

induced, oxidative damage-mediated tumor necrosis factor-alpha (TNF-a) elevation. One 
of the prototypes of reactive oxygen species (ROS)-generating chemotherapeutic agents is 
Doxorubicin, normally used as part of multi-drug chemotherapeutic regimens to treat solid 
tumors and lymphomas. In this dissertation, TNF-a null (TNFKO) mice were used to 
investigate the role of TNF-a in Dox-induced, oxidative damage-mediated alterations in 
brain. Dox-induced oxidative damage in brain is ameliorated and brain mitochondrial 
function is preserved in brains of TNFKO mice. Both Dox-decreased levels of hippocampal 
choline-containing compounds and activities of brain phospholipases are partially 
protected in the TNFKO group. It is shown in this dissertation that Dox-targeted 
mitochondrial damage and the levels of brain choline-containing metabolites, as well as 
the activities of phosphatidylcholine-specific phospholipase C (PC-PLC) and 
phospholipase D (PLD), are decreased in the CNS and associated with oxidative damage 
mediated by TNF-a. The results are discussed with respect to identifying a potential 
therapeutic target to protect against cognitive problems after chemotherapy and thereby 
improve the quality of life of cancer survivors. 

 



     
 

We also tested the effect of a chemotherapy drug adjuvant, 2-mercaptoethane 
sulfonate sodium (MESNA), on CICI in this dissertation research. In this dissertation 
research, MESNA ameliorates Dox-induced oxidative protein damage in plasma and 
decreases subsequent oxidative damage in brain of Dox-treated mice. MESNA also is 
demonstrated to rescue the memory deficits caused by Dox in the novel object recognition 
test. The activity of PC-PLC is preserved when MESNA was co-administered with Dox. 
This study demonstrates the protective effects of MESNA on Dox-related protein oxidation, 
cognitive decline, phosphocholine levels, and PC-PLC activity in brain and suggests novel 
potential therapeutic targets and strategies to mitigate CICI.  

 
Parkinson Disease (PD) is considered as the second most neurodegenerative disease, 

associated with aging and gender. Although the detailed mechanisms remain unknown, 
inflammation and oxidative damage are two main etiological factors of PD. Certain genetic 
factors have been discovered related to this disease. Thus, using rodent models with relative 
gene mutations are the main strategies to investigate PD. However, an ideal rodent model 
of PD, showing same clinical and biochemical features of PD, has not been found. PTEN-
induced putative kinase -1 (PINK1) knockout (KO) rat is the rodent model investigated in 
this dissertation research. The oxidative damage in the brain of PINK1 KO rats, the 
ventricle sizes, and neurochemical metabolite profiles in these rats as a function of age and 
gender were measured. Distinct gender- and age-related alterations were found, many 
consistent with those in PD. The proteome of brain of PINK1 KO rat as a function of age 
also was studied. Based on the collected data, the suitability of this unique rat as a faithful 
model of known characteristics of PD is discussed. 

 
KEYWORDS: Oxidative Damage, MRS, Parkinson Disease, PINK1, Doxorubicin,  

Chemotherapy-induced Cognitive Impairment (CICI) 
 

 

 

 

 

 

 

 

Xiaojia Ren 
(Name of Student) 

 
12.18.2019 

            Date 



 
 

 
 
 
 
 
 
 
 
 

STUDIES OF OXIDATIVE DAMAGE, BRAIN PROTEOME, AND 
NEUROCHEMICAL METABOLITES IN COGNITIVE AND 

NEURODEGENERATIVE DISORDERS: (1) CHEMOTHERAPY-INDUCED 
COGNITIVE IMPAIRMENT; (2) PARKINSON DISEASE RAT MODEL 

 
 

By 
Xiaojia Ren 

 
 
 
 
 
 
 
 
 
 
 
 

Dr. D. Allan Butterfield 
Director of Dissertation 

 
Dr. Yinan Wei 

Director of Graduate Studies 
 

12.18.2019 
            Date



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To  

my parents, 
my husband Ning, my daughter Taole,  
and my Ph.D. professor Dr. Butterfield.



iii 
 

ACKNOWLEDGMENTS 
 

I would first like to extend my deepest gratitude to my Ph.D. professor, Dr. D. 

Allan Butterfield. Without his knowledge, guidance, support, and mentorship, I would not 

have become the scientist that I am today. No word can express how thankful I am to Dr. 

Butterfield. I wish to offer my sincerest thanks to my Ph.D. advisory committee (Dr. Yinan 

Wei, Dr. Bert Lynn, and Dr. Chuang-guo Zhan, and Dr. Elizabeth Head) for their time, 

patient guidance, and encouragement. The suggestion and comments from them made me 

more successful in Ph.D. studies. I would also like to thank my outside examiner of my 

defense, Dr. Tadahide Izumi, for his valuable comments for my dissertation and future 

studies.  

I am also very grateful to past group members, including Dr. Rukhsana Sultana, 

Dr. Jeriel Keeney, Dr. Judy Triplett, Dr. Aaron Swomely, Dr. Sarah Förster, and Dr. 

Antonella Tramutola, for their willingness to teach me new experimental techniques and 

to help me learn how to troubleshoot experiments. I want to thank Shekinah Alfaro, who 

is always ready with a helping hand. I also would like to thank other members of the 

Butterfield laboratory for their help in shaping my scientific development, for being there 

to discuss the science and for their offers of assistance.  

I am thankful to the research collaborators, Teresa, Dr. D. St Clair, Dr. D. Powell,  

Dr. K. Saatman, Dr. S. Barron, Dr. P. Nelson, Dr. J. Cai, Dr. J. Klein, Dr. H. Zhu, Dr. J. 

Chen and their lab members who have made contributions to the projects in this 

dissertation research. Specifically, I would like to thank Dr. Cai and Dr. Powell for their 

generous help and patience for teaching me the MS and MRS associated knowledge. I also 

wish to thank the University of Kentucky, Department of Chemistry chair, Dr. Meier, and 



iv 
 

the directors of graduate studies, Dr. Anthony, Dr. Yang, Dr. Lovell, and Dr. Wei, and to 

all of the faculty and staff who have helped me along the way to achieving my goals. 

Especially thank Art Sebesta for his help with the instruments. Thanks chemistry 

department offered me research challenge trust funds. 

Importantly, I want to extend my gratitude to friends and family who have 

believed in me and offered their unconditional support. Thanks for my mother Hongjun 

and my father Dr. Ren. They gave me endless supports on both life and study. Thanks to 

my husband, Ning. I cannot achieve success without his support and understanding. 

Thanks to my daughter, Taole. She brings light to my life. Thanks for the time I spent with 

Dr. Lei and Dr. Shuang. They made my Ph.D. life more enjoyable, and happy and always 

think of me. I miss the days I stayed with them. Thank Mr. Y.L. Zhu and Mr. Y. Liu. Their 

attitudes for work and life spirited me always to be kind, gentle, and responsible, and 

endeavor to do what should be done. 



v 
 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ................................................................................................. iii 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 1. INTRODUCTION ...................................................................................... 1 

CHAPTER 2. BACKGROUND ........................................................................................ 4 

2.1 Oxidative damages and neurodegeneration ............................................................ 4 
2.1.1 Protein carbonyls (PC) .................................................................................... 4 
2.1.2 Tyrosine nitration (3-NT) ............................................................................... 5 
2.1.3 Lipid peroxidation and 4-hydroxy-2-trans-nonenal (HNE) ............................ 5 

2.2 Chemotherapy-induced cognitive impairment (CICI) ............................................ 6 
2.2.1 Candidate mechanisms of CICI ...................................................................... 6 
2.2.2 Dox and MESNA .......................................................................................... 10 

2.2.2.1 Doxorubicin (Dox) ................................................................................ 10 
2.2.2.2 2-mercaptoethane sulfonate sodium salt (MESNA) ............................. 11 

2.3 Parkinson disease (PD) ......................................................................................... 17 

CHAPTER 3. PROTECTION BY MESNA FROM DOXOCUBICIN-INDUCED 
ELEVATED OXIDATIVE DAMAGE AND NEUROCHEMICAL CHANGES IN 
BRAIN WITH COGNITIVE DECLINE: INSIGHT INTO MECHANISMS OF 
CHEMOTHERAPY-INDUCED COGNITIVE IMPAIRMENT (CICI).......................... 20 

3.1 Overview ............................................................................................................... 20 

3.2 Introduction ........................................................................................................... 21 

3.3 Materials and Methods .......................................................................................... 23 
3.3.1 Chemicals ...................................................................................................... 23 
3.3.2 Animals ......................................................................................................... 23 
3.3.3 Hydrogen magnetic resonance spectroscopy (H1-MRS) .............................. 24 
3.3.4 Cognitive function testing: Novel object recognition and open field test .... 25 
3.3.5 Sample collection .......................................................................................... 26 
3.3.6 Sample preparation ....................................................................................... 26 
3.3.7 Slot blot assay ............................................................................................... 27 
3.3.8 Measuring the activity of Phospholipase C and phospholipase D ................ 28 

3.4 Results ................................................................................................................... 28 
3.4.1 Dox administration results in increases in oxidative damage markers in both 
brain and plasma ....................................................................................................... 28 



vi 
 

3.4.2 Dox administration results in cognitive impairment and decreased locomotor 
activity31 
3.4.3 Dox administration results in a decreased level of choline-containing 
compounds in the hippocampus ................................................................................ 33 
3.4.4 Dox administration results in decreased PC-PLC and PLD activity ............ 35 

3.5 Discussion ............................................................................................................. 37 

CHAPTER 4. THE TRIANGLE OF DEATH OF NEURONS: OXIDATIVE DAMAGE, 
MITOCHONDRIAL DYSFUNCTION, AND LOSS OF CHOLINE-CONTAINING 
BIOMOLECULES IN BRAINS OF MICE TREATED WITH DOXORUBICIN: 
ADVANCED INSIGHTS INTO MECHANISMS OF CHEMOTHERAPY-INDUCED 
COGNITIVE IMPAIRMENT (“CHEMOBRAIN”) INVOLVING TNF-Α .................... 47 

4.1 Overview ............................................................................................................... 47 

4.2 Introduction ........................................................................................................... 48 

4.3 Methods and Materials .......................................................................................... 50 
4.3.1 Chemicals ...................................................................................................... 50 
4.3.2 Animals ......................................................................................................... 50 
4.3.3 Hydrogen magnetic resonance spectroscopy (H1-MRS) .............................. 51 
4.3.4 Sample collection .......................................................................................... 52 
4.3.5 Sample preparation ....................................................................................... 52 
4.3.6 Slot blot assay ............................................................................................... 53 
4.3.7 Brain mitochondria isolation and bioenergetic analysis ............................... 53 
4.3.8 Phospholipase C and phospholipase D activity assays ................................. 55 

4.4 Results ................................................................................................................... 56 
4.4.1 Dox administration results in increased oxidative damage markers in brain 
and plasma of WT mice that is absent in brain of TNFKO mice ............................. 56 
4.4.2 Dox administration leads to altered oxygen consumption rate in WT mice 
brain mitochondria that is prevented in TNFKO mice ............................................. 59 
4.4.3 Changes to the neurochemical profile in hippocampus following Dox 
administration ........................................................................................................... 61 
4.4.4 Dox administration to TNFKO mice results in partial preservation of PLD 
activity63 

4.5 Discussion ............................................................................................................. 65 

CHAPTER 5. PROFILES OF BRAIN OXIDATIVE DAMAGE, VENTRICULAR 
ALTERATIONS, NEUROCHEMICAL METABOLITES IN THE STRIATUM, AND 
BRIAN PROTEOME OF PINK1 KNOCKOUT RATS AS FUNCTIONS OF AGE AND 
GENDER: RELEVANCE TO PARKINSON DISEASE ................................................. 71 

5.1 Overview ............................................................................................................... 71 

5.2 Introduction ........................................................................................................... 71 



vii 
 

5.3 Materials and methods .......................................................................................... 73 
5.3.1 Chemicals ...................................................................................................... 73 
5.3.2 Animals ......................................................................................................... 74 
5.3.3 Hydrogen magnetic resonance spectroscopy ................................................ 74 
5.3.4 Measuring Ventricle sizes of rat’s brain on the MRI imaging...................... 75 
5.3.5 Sample preparation ....................................................................................... 76 
5.3.6 Slot blot assay ............................................................................................... 76 
5.3.7 Isoelectric focusing (IEF) ............................................................................. 77 
5.3.8 Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) ............. 78 
5.3.9 Sypro Ruby staining ...................................................................................... 78 
5.3.10 PDQuest image analyses ............................................................................... 79 
5.3.11 In-gel trypsin digestion ................................................................................. 79 
5.3.12 Gel-peptide extraction and desalting ............................................................ 80 
5.3.13 LC-MS analysis, data interrogation and protein identification ..................... 81 

5.4 Results ................................................................................................................... 81 
5.4.1 Age and gender both affect the oxidative damage in the rat brains. ............. 81 
5.4.2 PINK1 KO male rats have larger ventricle size than female PINK1 KO rats 
at the same age, suggesting more edema occurs in male PINK1 KO rats. ............... 86 
5.4.3 Changes in neurochemical metabolites in striatum of rats were observed as 
age or gender varies. ................................................................................................. 88 
5.4.4 Changes in the brain proteome of PINK1 KO rats associated with age ....... 92 

5.5 Discussion ............................................................................................................. 95 

CHAPTER 6. CONCLUSIONS AND FUTURE STUDIES ......................................... 102 

6.1 Conclusions and future studies of project 1: CICI .............................................. 102 
6.1.1 Conclusions of CICI project ....................................................................... 102 
6.1.2 Future studies of CICI ................................................................................. 107 

6.2 Conclusions and future studies of project 2: PD ................................................. 107 
6.2.1 Conclusions of PD project .......................................................................... 107 
6.2.2 Future studies for PD .................................................................................. 108 

APPENDIX ..................................................................................................................... 110 

REFERENCES ............................................................................................................... 125 

VITA ............................................................................................................................... 147 
 

 
 

  



viii 
 

LIST OF TABLES 

Table 5.1 Proteins with altered expression in brain of PINK1 KO rats. ........................... 93 
Table 5.2 Fold changes of the seven identified proteins as age increases in the brain of 
PINK1 KO rats. ................................................................................................................. 94 

 

  



ix 
 

LIST OF FIGURES 

Figure 2.1 The candidate mechanisms of chemotherapy-induced cognitive impairment 
(CICI) ................................................................................................................................ 10 
Figure 2.2 Structure of Dox and how Dox generate superoxide ........................................11 
Figure 2.3 Structure of MESNA ....................................................................................... 12 
Figure 3.1 The effects of Dox and MESNA on the levels of PC and protein-bound HNE in 
brain and plasma. .............................................................................................................. 30 
Figure 3.2 The effects of Dox and MESNA in behavioral NOR and open field tests. ..... 32 
Figure 3.3 H1-MRS results of mouse hippocampus.......................................................... 34 
Figure 3.4 Phosphatidylcholine-specific phospholipase C (PC-PLC) and Phospholipase D 
(PLD) activity in brain 72 h post-treatment. ..................................................................... 36 
Figure 3.5 A pictorial summary of the effects of Dox and MESNA in plasma and brain of 
mice in the current chapter. ............................................................................................... 38 
Figure 3.6 A putative pathway to apoptosis following Dox-induced TNF-α elevation. ... 43 
Figure 3.7 A proposed model of the mechanism of CICI and protective effect of MESNA.
........................................................................................................................................... 45 
Figure 4.1 The levels of protein oxidation and lipid peroxidation were presented by the 
levels of PC and protein-bound HNE. .............................................................................. 58 
Figure 4.2 Mitochondrial function in brain of mice treated with Dox and Saline. ........... 60 
Figure 4.3 Dox-resulted Cho/Cr ratio decreases in hippocampus could be partially 
protected by the absence of TNF-α. .................................................................................. 62 
Figure 4.4 PC-PLC and PLD activities in brain of wild-type and TNFKO mice after Dox 
or saline treatment. ............................................................................................................ 64 
Figure 4.5 Schematic illustration of the sequelae of events in brain following Dox treatment 
of mice and their prevention or modulation in mice lacking the gene for TNF-α. ........... 66 
Figure 5.1 The levels of the biomarker of oxidative damage: protein carbonyl, protein-
bound HNE, and 3-NT in the brain of WT and PINK1 KO rats at different ages and genders.
........................................................................................................................................... 85 
Figure 5.2 The ventricle sizes were measured from MRI images. ................................... 87 
Figure 5.3 H1-MRS was used to quantify the changes in levels of neurochemical 
metabolites in the rat striatum. .......................................................................................... 89 
Figure 5.4 H1-MRS was used to quantify the neurochemical metabolites changes in the rat 
striatum. ............................................................................................................................ 90 
Figure 5.5 H1-MRS was used to quantify the neurochemical metabolites changes in the rat 
striatum. ............................................................................................................................ 91 
Figure 6.1 An expanded model of the mechanism of CICI. ........................................... 106 
  



1 
 

 
CHAPTER 1. INTRODUCTION 

The studies displayed in this dissertation mainly investigate the biochemical 

mechanisms of chemotherapy-induced cognitive impairment (CICI) and the second most 

neurodegenerative disease, Parkinson disease (PD), by exploring the oxidative damage, 

brain proteome, and potentially subsequent changes of neurochemical metabolites, 

mitochondria function, and activities of phospholipases in brain of rodent animal. Utilizing 

the results as evidence, we propose the conceivable factors and implicated proteins 

contributing to the etiologies, progression, and pathologies of these cognitive and 

neurodegenerative disorders, as a consequence, providing potential prevention and targets 

for mitigating the adverse effects from CICI and PD, thereby improving the quality of life 

of the patients and cancer survivors. 

 Brain is the organ which consumes the most oxygen in the bodies of human beings. 

This feature contributes to the fact that brain has a high level of reactive oxygen species 

(ROS) and resultant oxidative stress. Thus, it is crucial to maintain the antioxidative ability 

of brain. Increased oxidation products or exposure, and/or decreased levels of antioxidant 

capacity in the brain could lead to many biochemical and signaling changes including 

mitochondrial dysfunction and neuronal death, and as the outcome, cognitive impairments. 

Over fifty percent of FDA-approved chemotherapeutic drugs generate reactive oxygen 

species. The antioxidant capacity decreases as age increases. It is not unexpected that many 

cancer survivors and patients with age-associated neurodegenerative disorders share 

similar symptoms associated with cognitive loss, including diminished abilities in memory, 

focusing, executive function, and multi-tasking. With the developments of sciences and 

technologies, longer life with good quality is one of the most expectation in the world. 
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In the first part of this dissertation research, the ROS-generating anti-cancer drug, 

Doxorubicin (Dox), was used as the prototype to study the underlying mechanisms of CICI, 

especially in the cases of the drugs that cannot cross the blood-brain barrier (BBB). The 

chemotherapy adjuvant drug 2-mercaptoethane sulfonate sodium (MESNA) was used to 

test the hypothesis that MESNA is an effective adjuvant to prevent CICI. TNF-α knockout 

(KO) mice were used to examine the consequences of Dox on the brain with the absence 

of TNF-α. 

In the second part, this dissertation research studied the functions of age and gender in 

the brain of a potential rodent model for PD, PTEN-induced putative kinase 1 (PINK1) 

knockout (KO) rats. PINK1 is a mitochondrial surveillance kinase that contributes to the 

processes involved in eliminating damaged mitochondria from cells. By measuring the 

oxidative damage and proteome in the global brain, the sizes of brain ventricles, and the 

neurochemical metabolite profiles of the striatum, the suitability of this unique rat as a 

faithful model that can recapitulate all of the known dominate characteristics of PD was 

investigated. 

The overall hypothesis of this dissertation research is that oxidative damage is one of 

the critical factors underlying cognitive and neurodegenerative disorders, including CICI 

and PD, while together with biochemical changes and mitochondrial dysfunctions in brain 

contribute to the pathological mechanisms of CICI and PD. To support the overall 

hypothesis, we investigated plausible answers to the following questions through this 

dissertation research: 

1. Will MESNA be a potential preventative intervention of CICI by scavenging the 

oxidative damage in the periphery? 
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2. Does the Dox-initiated, oxidative damage-mediated inflammatory factor TNF-α play an 

essential role in the formation of CICI? 

3. Is PINK1 KO rat an ideal animal model for studying the mechanisms of familial PD? 

a. Does the level of oxidative damage in the brain of PINK1 KO rat change as a 

function of age and gender? 

b. What biochemical and structural changes exist in PINK1 KO rats’ brain as a function 

of age and gender?  

c. Which proteins in the brain may be implicated in the progression of the PD model? 
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CHAPTER 2. BACKGROUND 

2.1 Oxidative damages and neurodegeneration 

Neurodegeneration is a pathological condition of neurons with progressive and 

selective loss of structures and functions that are essential for cognition (Przedborski et al., 

2003). Oxidative damages to DNA, protein, and lipids were shown not only in the normal 

aging process but also in cognitive and neurodegenerative diseases as central 

characteristics (Ischiropoulos and Beckman, 2003).  

Brain is an organ with high oxygen molecule consumption but with a low capacity of 

antioxidant defense, containing large numbers of polyunsaturated fatty acids (PUFA), 

which is easy to be attacked by free radicals. Thus, the balance between antioxidants and 

oxidative damage is crucial to the health of brain. Antioxidant enzymes are essential to 

protect brain and maintain the redox state from oxidative damage. Many heat shock 

proteins, superoxide dismutase (SOD), glutathione peroxidase, peroxiredoxins, bilivaerdin 

reductase, and catalase are common antioxidant enzymes. Meanwhile, some molecules 

also carry the ability of anti-oxidation, such as glutathione, lipoic acid, and Vitamins C, D 

and E (Gilgun-Sherki et al., 2001). When the levels of oxidative stress, such as toxic 

reactive oxygen species (ROS) and reactive nitrogen species (RNS), are greater than the 

capacity of the brain antioxidant protection, oxidative damage is formed. General ROS and 

RNS include hydroxyl radicals, hydrogen peroxide, superoxide (O2
−•), peroxynitrite, and 

nitric oxide. 

2.1.1 Protein carbonyls (PC) 

 The most frequently used biomarker for measuring the level of oxidative damage 
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is PC. As a result of the oxidative protein modification, carbonyl groups can be formed by 

direct oxidation on the amino acid side chain, glycoxidation, oxidative cleavage of the 

peptide backbone, or binding of aldehydes formed from lipid peroxidation (Aksenov et al., 

2001; Butterfield, 1997; Butterfield et al., 2002). 

2.1.2 Tyrosine nitration (3-NT) 

3-nitrotyrosine results from the addition of a nitro group at the 3- position of tyrosine. 

Nitrated tyrosine may trigger proteasomal degradation of proteins hence cause the death of 

neurons (Gow et al., 1996; Mattson et al., 1997). Furthermore, this extra nitration could 

affect the phosphorylation of tyrosine, catalyzed by tyrosine kinase, by sterical interference. 

As a consequence, 3-NT changes the activity of tyrosine kinase (Tangpong et al., 2007). 

2.1.3 Lipid peroxidation and 4-hydroxy-2-trans-nonenal (HNE)  

As stated above, brain is rich in PUFA. Allylic hydrogen is removed by free radicals 

from the lipid acyl chain of PUFA, initiating the lipid peroxidation. A carbon-centered 

radical is formed. This radical can react with oxygen molecules to produce a peroxyl radical. 

Radical-radical chain reaction propagates the lipid peroxidation via redox cycling, leading 

to further allylic hydrogens removed from the lipid acyl chain and reactive alkenals. As a 

result, lipid asymmetry is lost and neuronal apoptosis is triggered (Castegna et al., 2004). 

When the lipid peroxidation happens on arachidonic acid, HNE is formed. HNE can bind 

Cys, His, and Lys residues of proteins by Michael’s addition reaction, leading to structural 

and functional changes of proteins (Butterfield et al., 2010). 
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2.2 Chemotherapy-induced cognitive impairment (CICI) 

Increasing numbers of cancer patients survive and live longer than five years after 

therapy, but very often side effects of cancer treatment arise at the same time. One of the 

side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemo brain” 

or “chemofog” by patients, brings enormous challenges to cancer survivors following 

successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, 

executive function, and processing speed in cancer survivors with CICI are some of the 

challenges that greatly impair survivors’ quality of life. The molecular mechanisms of CICI 

involve very complicated processes, which have been the subject of investigation over the 

past decades. Many mechanistic candidates have been studied including disruption of the 

blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative damage and 

associated inflammatory response, gene polymorphism of neural repair, altered 

neurotransmission, and hormone changes. Oxidative damage is considered as a vital 

mechanism since over 50% of FDA-approved anti-cancer drugs can generate ROS or 

reactive nitrogen species RNS, which lead to neuronal death.  

2.2.1 Candidate mechanisms of CICI 

With advances in science and technology for the treatment of cancer, the number of 

cancer survivors continues to increase. There were more than 15.5 million cancer survivors 

at the end of 2015, and this number could rise to 20 million in the next 10 years (Miller et 

al., 2016). Cognitive dysfunction may happen acutely or after a period following 

chemotherapy. The phenomenon, called CICI, “chemobrain” or “chemofog” can be subtle 

or severe. CICI can retard recovery to normal life for cancer survivors, and this condition 

involves loss of memory and learning ability, less attention and concentration, decreased 
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executive function, and slower processing speed (Ahles and Saykin, 2007; Butterfield, 

2014; Hermelink, 2015; Moore, 2014). 

As many as 35%-70% of breast cancer survivors reported cognitive impairment after 

or even during the treatment (Runowicz et al., 2016). Cognitive impairment affects one-

third of childhood cancer survivors (Castellino et al., 2014). In a national cross-sectional 

study, participants who had a cancer history reported memory impairment 40% more than 

those without cancer (Jean-Pierre et al., 2012). In a recent study, 65% of breast cancer 

patients experienced acute cognitive impairment, and 61% of them had late cognitive 

decline, compared to 21% of patients who had cognitive dysfunction before chemotherapy 

(Wefel et al., 2010). CICI can even last 20 years post-chemotherapy for breast cancer 

(Koppelmans et al., 2012). Breast cancer survivors who were treated with 

cyclophosphamide, methotrexate, and fluorouracil about 21 years ago were recruited. 

Compared to a non-cancer group, the 196 cancer survivors self-reported more memory 

complaints and poorer performance in neuropsychological examinations including verbal 

memory, processing speed, executive function and psychomotor speed (Koppelmans et al., 

2012). However, although there is strong evidence for CIC, there also are studies showing 

no significant cognitive changes before and after chemotherapy (Debess et al., 2010; 

Moore et al., 2014; Vitali et al., 2017). 

The central nervous system (CNS) is affected by chemotherapeutic agents, many of 

which do not cross the blood-brain barrier (BBB) (Chen et al., 2007). Chemotherapy could 

lead to pathological changes such as reduced brain connectivity (Kesler, 2014; Kesler and 

Blayney, 2016; Kesler et al., 2015; Wefel et al., 2015). Consistent with this notion, brain 

structure and function both are altered in CICI. Volume and density changes of white matter 
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and grey matter of patients who had chemotherapy were determined by MRI (Deprez et al., 

2012; McDonald et al., 2010; Conroy et al., 2013; McDonald et al., 2013). Altered 

prefrontal cortex and hippocampus also are associated with CICI (Barry et al., 2018; Cheng 

et al., 2017; Groves et al., 2017; Lee et al., 2017; Raffa, 2010). Hippocampus is an area 

important for learning and memory in brain. Chemotherapy disrupted the structure and 

function of hippocampus and impaired its neurogenesis, leading to cognitive deficits 

(Dietrich et al., 2015). 

Functional and structural MRI is a strong tool to demonstrate brains in cancer survivors 

are different from brains of people not treated with chemotherapeutic agents or healthy 

people with no cancer, especially in the cases of patients who did not show big differences 

on neuropsychological tests compared to her healthy monozygotic twin, but had self-

reported cognitive impairment (Ferguson et al., 2007). Such changes indicate that cancer 

survivors who had chemotherapy have to activate more areas in the brain and make more 

efforts to maintain the ability of work, even if they show a normal aspect in 

neuropsychological tests (Reuter-Lorenz and Cimprich, 2013). PET scanning also revealed 

abnormal glucose metabolism in brain of cancer survivors who had undergone 

chemotherapy (Baudino et al., 2012; Ganz et al., 2013).  

A better understanding of the molecular mechanisms of CICI is important to reduce or 

even prevent cognitive dysfunction after cancer treatment, with the goal of improving the 

quality of life of survivors without changing chemotherapeutic efficacy. This is particularly 

the case for those childhood patients and adult patients who live longer. However, the 

mechanisms of CICI still are not fully understood. A complication of CICI is that it is likely 

multifactorial in origin, and it shares similar appearances and causes with depression, 
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anxiety, and fatigue, which are commonly associated with cancer treatment and cancer per 

se (Ahles and Saykin, 2007; Moore, 2014). Lack of education and aging could be other 

confounders (Ahles et al., 2008; Janelsins et al., 2017).  

Neuronal activity is often altered by chemotherapy (Manchon et al., 2016; Liu et al., 

2014). Neuronal apoptosis was observed in correlation with cognitive impairments 

associated with traumatic brain injury, aging, several neurodegenerative disease and 

chemotherapy (Avila et al., 2017; Butterfield, 2014; Walker and Tesco, 2013). NMDA 

receptor antagonists, such as memantine, could reverse the cognitive deficits and protect 

memory functions by blocking NMDA receptors during chemotherapy treatment (Cole et 

al., 2013; Vijayanathan et al., 2011). Co-administration of the anti-cancer drug, 

methotrexate, with the NMDA receptor antagonist dextromethorphan reduced the severity 

of seizures (Drachtman et al., 2002). However, these antagonists can cause significant side 

effects (Haddad and Dursun, 2008). 

As noted above, neuronal death, which underlies CICI symptoms, occurs even though 

many FDA-approved anti-cancer drugs cannot cross the BBB. Recent studies suggested 

that decreased integrity of the BBB, low availability of DNA and neural repair processes, 

decreased antioxidant levels and increased oxidative damage, hormone changes and 

immune system responses contribute to neurotoxicity, and eventual neuronal death with 

subsequent cognitive impairments following chemotherapy (Ahles and Saykin, 2007; 

Butterfield, 2014; Moore, 2014; Seigers et al., 2013). The candidate mechanisms are shown 

in Fig. 2.1 above. 
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Figure 2.1 The candidate mechanisms of chemotherapy-induced cognitive impairment 
(CICI) 
 

2.2.2 Dox and MESNA 

2.2.2.1 Doxorubicin (Dox) 

Dox is an FDA-approved ROS-generating chemotherapeutic drug, prototypically used 

to treat solid tumors and lymphoma. Dox contains a quinone moiety in its structure. This 

quinone moiety can be reduced to a semi-quinone (Aluise et al., 2011; Chen et al., 2007) 

with the presence of NADPH oxidase, Fe2+, Cu+ or cytochrome P450 (Butterfield, 2014). 

Undergoing O2 oxidation, this semi-quinone is converted back to the quinone structure and 

produce reactive superoxide, one of the ROS, at the same time (shown in Fig. 2.2). By 

utilizing the ROS productions, along with inhibiting topoisomerase II and intercalating into 

DNA, Dox kills cancer cells (Bachur et al., 1977; Chuang and Chuang, 1979; Cummings 

et al., 1991; Deres et al., 2005; Reich et al., 1979). 
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Figure 2.2 Structure of Dox and how Dox generate superoxide 

Although in most cases Dox does not cross the BBB, the Butterfield lab in 

collaborated with the St. Clair lab has provided evidence of that peripheral administration 

of Dox leads to oxidative damage, dysfunctional mitochondria and elevated TNF-α in brain, 

prompting brain injury and further cognitive impairments (Joshi et al., 2007; Tangpong et 

al., 2006, 2007, 2008). 

2.2.2.2 2-mercaptoethane sulfonate sodium salt (MESNA) 

MESNA is often prescribed for persons being treated with regimens of ifosfamide 

and/or cyclophosphamide chemotherapy to prevent hemorrhagic cystitis in the bladder by 

scavenging the metabolic by-product of these drugs, acrolein (Butterfield, 2014; Furlanut 

and Franceschi, 2003). The free sulfhydryl group of MESNA provides its antioxidant 

properties. MESNA also is used as an adjuvant shown to suppress lipid peroxidation such 

as acrolein or HNE in plasma without alleviating cancer drug functions (Zhang et al., 2014) 

as its negative charge makes MESNA unable to enter cancer cells (Butterfield, 2014). Co-

administration of MESNA with Dox can diminish Dox-induced oxidation on 
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apolipoprotein A-I (ApoA1) (Aluise et al., 2011). The structure of MESNA is shown in Fig. 

2.3. 

 

Figure 2.3 Structure of MESNA  
 

2.2.3 Oxidative damage, pro-inflammatory cytokines, and CICI  

Oxidative damage and correlated mitochondrial damage often occur in cancer patients 

or survivors after the treatment of chemotherapeutic agents and are considered as one of 

the main candidate mechanisms of CICI (Butterfield, 2014; Gaman et al., 2016). Although 

some cancer patients reportedly may have high levels of oxidative damage and cognitive 

impairment before chemotherapy, many chemotherapeutic agents are ROS-generating and 

are associated with DNA and protein damage in both the periphery and brain (Ahles and 

Saykin, 2007; Butterfield, 2014). Immune responses follow the increase in oxidative 

damage, increasing pro-inflammatory cytokines locally and activate immune cells in brain. 

Superoxide (O2
−•) can increase the level of oxidative damage markers in mice plasma and 

activate macrophages with a large production of TNF-α after incubating plasma or 

macrophage culture with potassium superoxide (Keeney et al., 2015). ROS also is an 

initiator of BBB disruption, triggering BBB oxidative damage, tight junction modification 

and matrix metalloproteinase activation (Pun et al., 2009). Dexrazoxane, an iron chelator 

that can interfere with and decrease free radical formation by its putative antioxidant ability 

is reportedly cardioprotective when it is administrated with Dox (Bansal et al., 2018; 

Junjing et al., 2010). This study supports the notion that free oxidative damage is integral 
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to CICI. Protein oxidation, lipid peroxidation, and dysfunctional BBB make drugs and 

cytokines easier to enter the brain, the organ which, as noted above, is more vulnerable to 

oxidative damage due to its high oxygen consumption rate and large presence of 

unsaturated fatty acid with associated labile allylic hydrogen atoms. Impaired mitochondria 

in brain secondary to chemotherapy-induced oxidative and nitrosative damage result in 

elevation of oxidative damage and eventually neuronal death, along with the decreased 

antioxidant level and glucose dysmetabolism by inactivation of complex I (Tangpong et al., 

2006, 2007). Although not relevant to CICI directly since Dox does not cross the BBB, 

mitochondrial damage was found in Dox-treated neurons (Moruno-Manchon et al., 2016) 

and is associated with cognitive impairment in aging, traumatic brain injury, or 

neurodegenerative disorders such as PD or AD (Chaturvedi and Flint Beal, 2013; Liu et al., 

2002; Sauerbeck et al., 2011). Accumulation of lipofuscin was also found in brain of Dox-

treated mice brain along with altered autophagosomes (Moruno-Manchon et al., 2016). 

Superoxide formed via redox cycling produced by Dox led to cardio- and neuro- 

toxicity. A recent study reported results of rats treated with Dox chronically at a low dose 

(2mg/kg/week) (El-Agamy et al., 2018). In a step-through passive avoidance test, Dox led 

to a significantly low memory performance compared to control rats. The number of 

degenerative hippocampal neurons following Dox correlated with elevated apoptosis, 

decreased antioxidant glutathione (GSH) levels, diminished activity of catalase, and 

increased level of the lipid peroxidation product, malondialdehyde (MDA) in hippocampus 

of treated rats in the same study (El-Agamy et al., 2018). The cognitive impairment and 

associated neuronal apoptosis were ameliorated by food supplemented with astaxanthin, a 

carotenoid with antioxidant, anti-apoptotic and anti-inflammatory functions (El-Agamy et 
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al., 2018). In another study, acute and high dose administration (25mg/kg) of Dox increased 

oxidative damage indexed by protein-bound HNE and protein carbonyls (PC) in both 

plasma and brain of mice (Keeney et al., 2018). Novel object cognition (NOR) testing 

revealed a cognitive impairment of mice 72h after Dox injection. (Keeney et al., 2018). 

Altered neurochemical profiles in hippocampus and decreased activity of phospholipases 

in brain also correlated with cognitive impairment (Keeney et al., 2018). All of these 

deleterious changes were either completely or partially prevented by co-administration of 

MESNA, an antioxidant drug that scavenges free radicals (Hayslip et al., 2015; Keeney et 

al., 2018). γ-glutamyl cysteine ethyl ester (GCEkE), a precursor of the antioxidant GSH, 

restored GSH level and GSH transferase activity in Dox-treated mice brain equivalent to 

the saline-treated control group, reduced levels of all three oxidative damage markers of 

protein oxidation and lipid peroxidation in mice brain induced by Dox (Joshi et al., 2007). 

BCNU, another name of carmustine [1,3-bis (2-chloroethyl)-1-nitrosourea], is an 

alkylating chemotherapeutic agent. BCNU-triggered ROS-dependent JNK, and ERK 

signaling, and apoptosis in neurons could be inhibited by N-acetyl cysteine (NAC) (An et 

al., 2011). Also, decreased GSH level and glutathione reductase activity were caused by 

BCNU (An et al., 2011). NAC also protected neurons in vitro and rats in vivo from 

cisplatin-induced oxidative damage, mitochondrial dysfunction, and/or cognitive 

impairment (Lomeli et al., 2017). Dox generated ROS with subsequently elevated 

peroxisomes in neurons and mice brains (Moruno-Manchon et al., 2018). Maintaining the 

level of peroxisomes is important to regulate cellular redox homeostasis (Trompier et al., 

2014). β-cyclodextrin decreased this Dox-induced ROS production by up-regulating 

peroxisome-related autophagy (pexophagy) (Moruno-Manchon et al., 2018). Taken 
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together, all evidence here strongly supports the notion that redox homeostasis is disrupted 

after many chemotherapeutic agents and that oxidative damage associated with organelle 

dysfunction plays an important role in CICI.  

Antioxidant effectiveness in preventing oxidative damage to brain and other cellular 

abnormalities following chemotherapy is consistent with the notion of the role of oxidative 

damage associated with CICI, but this approach normally cannot be pursued in cancer 

therapy due, in part, to activation of glutathione-S-transferase-mediated coupling of 

chemotherapeutic agents to reduced GSH and subsequent removal of this complex from 

the cancer cell by MRP1, thereby decreasing therapeutic efficacy (Jungsuwadee et al., 

2009). In contrast, antioxidants that remain and act outside the cancer cells do not interfere 

with chemotherapy but do scavenge lipid peroxidation products in plasma, preventing 

inflammatory cytokines from entering the brain parenchyma (Aluise et al., 2011; 

Butterfield, 2014; Keeney et al., 2018). Moreover, highly redox-active agents that are 

mitochondrial manganese superoxide dismutase (MnSOD) mimetics, brain-permeable, and 

selective for mitochondria show great promise of cancer cell death by exacerbating the 

high oxidative redox state of cancer cells to cause them to undergo apoptosis (Chaiswing 

et al., 2018). 

Oxidative damage mediated CICI is often accompanied by immune response and pro-

inflammatory cytokine increase, including IL-1β, IL-6, and TNF-α (Groven et al., 2018; 

Shi et al., 2018). IL-1β and TNF-α are important to synapse function and neural plasticity 

(Rizzo et al., 2018). Elevated IL-6 is associated with worsening executive function and 

poor self-perceived cognitive disturbance in cancer patients (Cheung et al., 2015; Trask et 

al., 2000). CNS excitability and CICI are associated with peripheral pro-inflammatory 
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cytokines, modulating functions of neurons and glial cells and neurotransmitter 

metabolism in brain (Ahles and Saykin, 2007). DNA, synapses and neurites in neurons 

were also damaged after Dox treatment (Manchon et al., 2016). Chemotherapeutic agents 

elevate peripheral cytokine levels, which could cross the BBB, leading to immune response, 

and increase oxidative damage and mitochondria damage in CNS (Butterfield, 2014). 

Inflammatory reactions in the CNS are related to activation of the immune cells and 

originate mainly from microglia (Ransohoff and Perry, 2009). Deficits in hippocampus-

based memory ability and highly decreased neurogenesis in brain were found in 

cyclophosphamide-, cisplatin- or Dox-treated rats, with activated microglia after 

cyclophosphamide treatment (Christie et al., 2012; Lomeli et al., 2017). The pro-

inflammatory enzyme COX-2 also was upregulated with microglia activation and 

significant cognitive impairment in hippocampus of tumor-bearing mice treated with 

methotrexate (Yang et al., 2012). Similar results of elevation of COX-2 and prostaglandin 

E2 were shown in Dox-treated rat hippocampus with increased immunoactivity and glia 

activation, mediated by the elevated TNF-α (El-Agamy et al., 2018). Activation, death or 

any status changes of microglia conceivably could lead to more neurological inflammation 

and neurotoxicity (Santos and Pyter, 2018).  

Chemotherapy-induced oxidative damage-mediated TNF-α triggers iNOS production 

(Tangpong et al., 2007), thereby leading to more oxidative damage and damaged 

mitochondria. Activated pro-apoptotic proteins p53 and Bax were observed in Dox-treated 

mice brain associated with TNF-α elevation in both the periphery and the CNS (Tangpong 

et al., 2006). Apoptotic makers such as released cytochrome c (cyt c) and increased 

caspase-3 activity have been found in rodent brain after chemotherapy (El-Agamy et al., 
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2018; An et al., 2011; Tangpong et al., 2006). The release of cyt c and initiation of apoptotic 

cascades lead to neuronal death in brain and also to cognitive impairment as consequences 

(Butterfield, 2014; Keeney et al., 2018; Tangpong et al., 2006).  

ApoA1 is possibly one of the key factors in oxidative damage and pro-inflammatory 

cytokine-mediated CICI. ApoA1 is part of the high-density lipoprotein complex for 

transporting cholesterol and phospholipids to the liver for degradation. Oxidation and 

down-regulated expression of ApoA1 were found in a number of neurodegenerative 

diseases with cognitive deficits, such as AD and PD (Keeney et al., 2013). ApoA1 prevents 

over-production of IL-1β and TNF-α by interacting with cholesterol transport protein 

ABCA1 via the JAK2/STAT3 pathway or inhibiting the interaction of monocytes and T-

cells (Ren et al., 2017). However, ApoA1 is oxidized by Dox with a concomitant increased 

TNF-α level and oxidative damage in plasma of cancer patients (Aluise et al., 2011). This 

result of oxidized ApoA1 correlating with Dox-induced TNF-α elevation also was shown 

with mice in the same study, and oxidized ApoA1 lost the ability to inhibit TNF-α 

production in LPS-treated macrophage culture (Aluise et al., 2011).  

2.3 Parkinson disease (PD) 

Parkinson disease (PD) is the second most common neurodegenerative disease after 

Alzheimer disease and the most common neurodegenerative movement disorder associated 

with aging in developed societies. The prevalence of PD is 41 out of 100,000 in people 

over 40 years old and increases to 1900 out of 100,000 in the eighth decade of life 

(Cacabelos, 2017). It is estimated that 1,238,000 people over 45 years old in the United 

State will have PD in 2030 (Marras et al., 2018). Resting tremors, rigidity, postural 

instability, and bradykinesia constitute important motor symptoms of PD (Cacabelos, 2017; 
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Jankovic, 2008). Hallucination, anosmia, fatigue, depression, and REM sleep behavior 

disorder, categorized in non-motor symptoms of PD, may show up years before the onset 

of motor symptoms (Chaudhuri et al., 2006; Tibar et al., 2018). Gender also affects this 

disorder of which being male is a risk factor. It was reported that more men than women 

are diagnosed with PD (Miller and Cronin-Golomb, 2010). 

The selective and progressive degeneration of dopaminergic neurons in the substantia 

nigra pars compacta and aggregation of phosphorylated α-synuclein in Lewy bodies are 

presented in the PD brain. The exact mechanisms still remain unknown. Brain 

inflammation and oxidative damage, along with certain environmental factors, and gene 

mutations, are contemplated as a substantial contribution to the pathologies of PD (Triplett 

et al., 2015). 

2.3.1 Animal Models of PD 

 Utilizing the animal models with the genetic risk factors of PD is helpful for 

investigating the roles of these genetic factors in the etiology and pathology of PD. An 

ideal animal model of PD should display age-associated aspects of defective motor 

availability, progressive degeneration of dopaminergic neurons, and aberrant pathology of 

α-synuclein. After studying many-decades in pathogenesis and strategies of therapy of PD 

with rodent models, an agreement is that a good mouse model to mimic all human PD 

characteristics does not exist (Dawson et al., 2010). None of the studied models can present 

all of the dominant clinical and pathological characteristics of PD (Jiang and Dickson, 

2017). 
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2.3.2 PINK1 and PINK1 knockout rats 

PTEN-induced putative kinase -1 (PINK1) is a mitochondrial serine/ threonine-protein 

kinase, important to monitor the health status of mitochondria. Mutations in the gene for 

PINK1 have been shown related to the early onset of autosomal recessive-inherited PD 

(Kawajiri et al., 2011). With healthy mitochondria, PINK1 is imported to the inner 

mitochondrial membrane. The N-terminal mitochondrial targeting sequence of PINK1 is 

cleaved by PARL, a mitochondrial protease. After the cleavage, PINK1 is retro-

translocated to the cytosol (Deas et al., 2011). In the case of dysfunctional mitochondria, 

PINK1 is accumulated on the outer mitochondrial membrane. Parkin, a component of E3 

ubiquitin ligase complex, is phosphorylated by PINK1 there. As a result, the ubiquitin-

proteasome system is activated to mediate the targeting of proteins for degradation, 

initiating mitophagy (Matsuda et al., 2010).  

The manifestation of the four cardinal motor symptoms, developed α-synuclein in 

Lewy bodies, and nigrostriatal neurodegeneration, were not observed in PINK1 KO mice 

(Glasl et al., 2012). A genetic rat model could have some advantages as a rodent model of 

PD, including a bigger brain size compared to a knockout mouse model. In this dissertation 

research, PINK1 knockout (KO) rats were used, since mutations in PINK-1 lead to familial 

PD.  
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CHAPTER 3. PROTECTION BY MESNA FROM DOXOCUBICIN-INDUCED 
ELEVATED OXIDATIVE DAMAGE AND NEUROCHEMICAL CHANGES IN BRAIN 
WITH COGNITIVE DECLINE: INSIGHT INTO MECHANISMS OF 
CHEMOTHERAPY-INDUCED COGNITIVE IMPAIRMENT (CICI) 

3.1 Overview 

With the growing number of cancer survivors, chemotherapy-induced cognitive 

impairment (CICI) is recognized as a real complication after chemotherapy rather than 

cognitive impairment only from cancer alone. In past studies, doxorubicin (Dox) was used 

as a prototype of reactive oxygen species (ROS)-generating chemotherapeutic drugs. 

Administration of Dox caused oxidation of apolipoprotein A-1 (ApoA1) in plasma, leading 

to tumor necrosis factor-alpha (TNF-α) elevation and oxidative damage in both plasma and 

brain. The antioxidant drug, 2-mercaptoethane sulfonate sodium (MESNA), was co-

administrated with Dox and showed prevention from Dox-induced protein oxidation and 

increased TNF-α in plasma. In the current chapter, oxidative damage in plasma and brain, 

respectively, of Dox-treated mice, with or without co-administration of MESNA was 

measured. The antioxidant ability of MESNA led to ameliorated Dox-induced oxidative 

protein damage in plasma, which is consistent with our previous works. In addition, the 

decreased level of Dox-induced oxidative damage in brain also was observed by co-

administration of MESNA, along with rescued Dox-caused memory and cognitive deficits 

examined by novel object recognition (NOR) test. Furthermore, Dox treatment was shown 

to lead to a significant decline in the level of choline-containing compounds (Cho) in 

hippocampus of mice by hydrogen magnetic resonance imaging spectroscopy (H1-MRS) 

techniques. To better understand results from this MRS observation, the activities of the 

phospholipases, the enzymes phosphatidylcholine specific phospholipase C (PC-PLC) and 

phospholipase D (PLD) that catalyze phosphatidylcholine (PtdCho), producing choline and 
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phosphocholine (PCho), respectively, were measured. We noticed that activities of both 

PC-PLC and PLD were dramatically diminished in mice brain following Dox injection. 

Co-administration of MESNA with Dox can preserve the activity of PC-PLC; however, 

MESNA did not protect the activity of PLD. The studies in this chapter demonstrate the 

protective effects of MESNA on anti-oxidant defense in both plasma and brain, cognitive 

function, levels of choline-containing compounds in hippocampus, and PC-PLC activity in 

brain from Dox administration. The results provide biochemical and functional evidence 

for the better elucidation of plausible mechanisms of CICI, suggesting novel potential 

therapeutic targets and strategies to protect against cognitive impairment from 

chemotherapy. 

3.2 Introduction 

CICI, called "chemo brain" by cancer survivors, usually is considered an 

increasingly significant side effect of chemotherapy with impairments in many cognitive 

and executive functions (McDonald and Saykin, 2013; Simo et al., 2013). The mechanisms 

of CICI remain unknown. The complexity of cancer and cancer treatments brings out the 

difficulties of the investigation into mechanisms of CICI, especially because in many cases, 

the chemotherapeutic drugs cannot get into brain due to the inability to cross the blood-

brain barrier (BBB). Perceiving the underlying mechanisms by which CICI occurs is 

important to bring a good quality of life to cancer survivors by protecting non-targeted 

tissues against undesired toxicities of anticancer drugs. Peripheral toxic effects induced by 

the chemotherapeutic drugs, subsequently leading to structural and functional alterations 

in the brain, are thought to be major pathological factors of CICI. Neuroinflammatory 

consequences and even changes in levels of neurotransmitters and function are latter 
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aspects leading to cognitive impairment (Aluise et al., 2011; Joshi et al., 2010; Raffa, 2011; 

Saykin et al., 2003).  

Dox is known as an anthracycline ROS-generating chemotherapeutic drug in many 

multidrug chemotherapy regimens, commonly used to treat solid tumors and leukemia 

(Cummings et al., 1991; Gutteridge, 1984; Handa and Sato, 1975). Our lab has shown that 

administration of Dox led to damaged mitochondria associated with elevated oxidative 

damage and production of TNF-α in brain, although Dox cannot cross the blood-brain 

barrier (BBB) (Joshi et al., 2007; Tangpong et al., 2007; Tangpong et al., 2006; Tangpong 

et al., 2008). The quinone moiety structure of Dox can be converted to a semi-quinone, 

undergoing one-electron reduction. (Aluise et al., 2011; Chen et al., 2007). Through the 

redox cycling of this structure back to the quinone in vivo, reactive superoxide free radical 

(O2
-•) is formed from oxygen molecule during the process of converting the semi-quinone 

moiety back to the quinone, producing oxidative damage as a consequence. Previous 

studies showed that Dox elevated oxidative damage and dysfunctional proteins including 

ApoA1 in plasma, resulting in disturbances to the central nervous system (Aluise et al., 

2011). After being oxidized, ApoA1 lost its ability to restrain TNF-α release in plasma 

(Aluise et al., 2011).  

MESNA is an FDA-approved adjuvant of chemotherapy to prevent bladder cystitis 

and bleeding caused by neurotoxicity metabolism of cyclophosphamide and ifosfamide to 

acrolein. The free sulfhydryl group in the structure of MESNA can react with free radicals 

and lipid peroxidation aldehyde products. With its negative charge, MESNA will not get 

into cells, thus can decrease the unwanted oxidative toxicities from chemotherapy without 

interfering with the efficacy of the oxidative effects of anti-cancer drugs in cancer cells 
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(Bernacki et al., 1987) (Fang et al., 2009). Our lab discovered that co-administration of 

MESNA can restore ApoA1 and repress subsequent TNF-α elevation in plasma of mice 

(Aluise et al., 2011). 

Hence in this chapter, we tested the hypothesis that MESNA would show protective 

effects from Dox-induced CICI by measuring the levels of oxidative damage, 

neurochemical metabolites, and cognitive performance.  

3.3 Materials and Methods 

3.3.1 Chemicals 

General chemicals, protease inhibitors, and antibodies were purchased from Sigma-

Aldrich (St. Louis, MO, USA). PierceTM BCA Protein Assay Kit was purchased from 

ThermoFisher Scientific (Rockford, IL). The nitrocellulose membrane was purchased from 

Bio-Rad (Hercules, CA). EnzChek® Direct Phospholipase C Assay Kit and Amplex® Red 

Phospholipase D Assay Kit were purchased from Invitrogen/Life Technologies (Carlsbad, 

CA). Doxorubicin HCl was purchased from Bedford Laboratories™, and MESNA was 

purchased from Baxter Healthcare Corporation. 

3.3.2 Animals 

All mice were purchased from Jackson Laboratory. The F1 progeny of C57BL/6 x 

C3H hybrids (B6C3) were used in the current chapter. Each of the mice was 2-3 months 

old, male, and weighing approximately 30 grams. All mice were housed in the University 

of Kentucky Animal Facility with standard conditions. The Institutional Animal Care and 

Use Committee of the University of Kentucky had approved all experimental procedures. 

Mice were injected using a single intraperitoneal (i.p.) dose of 25 mg/kg Dox or the same 
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volume of saline control (Desai et al., 2013; Yen et al., 1996). MESNA was administered 

at 160 mg/kg i.p. 15 min before, 3 h after, and 6 h after DOX treatment. Post-treatment 72 

h, mice were processed into MRS study or NOR test, immediately followed with mice 

sacrifice. The mice were euthanized with CO2, right followed with blood and tissues 

collecting for molecular or biochemical experiments.  

3.3.3 Hydrogen magnetic resonance spectroscopy (H1-MRS) 

H1-MRS was employed to identify the amount of the neurochemical metabolites in 

the mouse hippocampus in this current chapter. 7T Bruker Clinscan horizontal bore system 

(7.0T, 30cm, 300Hz) was equipped with a triple-axis gradient system (630 mT/m and 6300 

T/m/s), provided the MRS data. A closed cycle, 14K quadrature cryocoil allowed for a 2.8 

signal to noise increase relative to standard coils. The mice were anesthetized with 1.3 % 

percent isoflurane using MRI compatible CWE Inc. equipment. Anesthetized mice were 

placed on a Bruker scanning bed with tape. Tooth bar and ear bars were used to hold the 

mice. The body temperature and respiration rate of mice were monitored by the equipment 

from SA Instruments Inc. The mice were maintained at 37 °C with a water heating system 

built into the scanning bed. T2 weighted turbo spin echo sequences (TE 40ms, TR 2890ms, 

Turbo 7, FOV 20mm, 0.156 x 0.156 x 5.0 mm3) were acquired and used for the placement 

of the spectroscopy voxel. The scanning procedure took 40 min. A 2x5.5x3mm3 PRESS 

spectroscopic voxels (TE 135ms, TR 1500ms, 400avg, CHESS water suppression) was 

placed to cover both hippocampi. Spectrum analysis was performed using jMRUI (Naressi 

et al., 2001) to quantify the area under each peak in the spectrum. The area of the creatine 

(Cr) peak was used to normalize the peak areas of other metabolites. 
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3.3.4 Cognitive function testing: novel object recognition and open field test 

Cognitive performance was evaluated using a NOR paradigm (Ennaceur and 

Delacour, 1988; Schoch et al., 2012). One day before treatment, each mouse was 

acclimated for 1 h to an empty, Plexiglas@ cage, which was dedicated to this mouse for all 

trials. Several hours after acclimation, the mouse was returned to the cage containing two 

identical objects (object A) placed at opposite corners, and the time spent exploring each 

object was recorded. A mouse was considered to be exploring when it pointed its nose 

toward the object at a distance of 2 cm or less. Throughout the protocol, the trial duration 

was 5 min unless the total exploration time was less than 10 s. In this case, the trial was 

extended to ensure a minimum of 10 s of exploration. On the day of treatment, mice were 

re-introduced to the two “familiar” objects (object A) in the morning. Four hours later, 

baseline memory function was evaluated by replacing one of the familiar objects with a 

novel object (object B). Immediately following the baseline memory trial, mice received 

an injection. One day after injection, the mice were exposed to the original two (familiar) 

objects (object A) and, after a 4 h interval, one of the familiar objects was replaced with a 

novel object (object C). At 3 days after treatment, memory was tested again (novel object 

D paired with familiar object A). Data are reported as a recognition index, which was 

calculated time spent exploring the novel object as the percentage of total exploration time. 

All trials were performed by an investigator blinded to treatment conditions. NOR test was 

performed by the K. E. Saatman laboratory, Spinal Cord and Brain Injury Research Center, 

University of Kentucky. 

At 1 and 3 days after treatment, motor activity was tested using an Open Field test 

(Leibrock et al., 2013). Mice were placed in a 48 x 33cm empty Plexiglas@ box and 

videotaped from above for a 5-minute trial (EZVideoDV version 5.51). Trials were 
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performed by an investigator blinded to treatment conditions. Open field test was 

performed by the K. E. Saatman laboratory, Spinal Cord and Brain Injury Research Center, 

University of Kentucky. 

3.3.5 Sample collection 

Blood of mice was extracted cardiac puncture by cardiac puncture right after mice 

were being sacrificed. Blood was transferred into EDTA tube immediately. Inverted the 

tube approximately ten times to completely mix the blood with the anticoagulant in the 

tube. The tube containing blood was then centrifuged at 3000 rpm at 4 °C, 10 min. After 

centrifuging, plasma was separated from other blood components and then transferred into 

a microcentrifuge tube, instantly put into liquid nitrogen. Immediately after blood 

extraction, the mouse brain was extracted, placed in a microcentrifuge tube, and 

immediately frozen in liquid nitrogen. All plasma and brain samples were stored at -80 °C 

and ready for future experimental use. 

3.3.6 Sample preparation 

The individual frozen mouse brain was thawed slightly on ice and put in a Wheaton 

glass homogenizer. Use the glass rod to homogenize the brain tissues for approximately 

40-45 passes in the cold isolation buffer [0.32 M sucrose, 20mM HEPES, 2 mM EDTA, 

2mM EGTA, 10 µg/ml phosphatase inhibitor cocktail 2, and protease inhibitor 5 μg/ml 

aprotinin, 4 μg/ml leupeptin, 4 μg/ml pepstatin A, and 0.2 mM PMSF]. All brain 

homogenate was transferred to a microcentrifuge tube and vortexed. Next, Fisher 550 

Sonic Dismembrator (Pittsburgh, PA, USA) was used to sonicate brain homogenate on ice 

for 10s at 20% power, two times with an interval of 20s rest. After estimation of protein 
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concentration with BCA assay, brain samples were ready for use. 

Plasma samples were thawed on ice, diluted with cold isolation buffer, and estimated 

protein concentration by BCA assay.  

3.3.7 Slot blot assay 

Biomarkers of oxidative damage, including protein carbonyls (PC) and protein-bound 

4-hydroxynonenal (HNE), were measured by slot blot assay. Brain or plasma samples were 

derivatized with 2,4-dinitrophenylhydrazine (DNPH) for measuring the level of PC or 

solubilized in Laemmli buffer for measuring the level of HNE. 250 ng of proteins from 

each sample were loaded onto a nitrocellulose membrane in respective wells of the slot-

blot apparatus (Bio-Rad) under vacuum. Membranes were blocked in 3% bovine serum 

albumin (BSA) in TBS with 0.2% (v/v) Tween-20 (TBS-T) for 1.5 h, then incubated TBS-

T with primary antibody (1:500 anti-dinitrophenylhydrazone or 1:5000 anti-protein-bound 

HNE, respectively) for 2 h, followed with three times of washing in TBS-T, 5 minutes for 

each washing. Next, the membrane was incubated for 1 h with secondary antibody 

(secondary linked to alkaline phosphatase, 1:10000), washed in TBS-T three times, 5, 10, 

and 10 minutes, respectively for each washing. Then, the membrane was develope in 

alkaline phosphatase activity (ALP) buffer containing 1:300 5-bromo-4-chloro-3-indolyl 

phosphate (BCIP), and 1:150 Nitro blue tetrazolium (NBT). The developed membrane was 

dried overnight and then scanned for analysis on the second day. Imaging analysis was 

performed using Scion Image (Scion Corporation, Frederick, MD).  
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3.3.8 Measuring the activity of Phospholipase C and phospholipase D 

EnzChek® Direct Phospholipase C Assay Kit was used to measure the activity of 

phosphatidylcholine-specific phospholipase C (PC-PLC), while Amplex® Red 

Phospholipase D Assay Kit was used to measure the activity of phospholipase D, followed 

the manufactural instructions. The intensity of fluorescence was measured in the 

SPECTRAFluor Plus instrument and quantified using associated MagellanTM software by 

TECAN throughout 24 h incubation at 37 ℃, avoided light. The fluorescence is collected 

at the time of maximal fluorescence peak showed during the 24 h incubation corresponding 

to the positive control. 

PC-PLC activity data was collected after 22.5h of incubation of assay reagents and 

samples. The PtdCho in the substrate is cleaved by PC-PLC, generates dye-labeled 

diacylglycerol (DAG), and phosphocholine. The excitation wavelength is 509 nm, and the 

emission wavelength is 516 nm for PC-PLC. PLD activity data was collected at 1h of 

incubation of assay reagents and samples. The PtdCho in the substrate is cleaved by PLD, 

generates the alcohol component of the head group of PtdCho, releasing choline. The 

excitation wavelength is 571 nm, and the emission wavelength is 585 nm for PLD. 

3.4 Results 

3.4.1 Dox administration results in increases in oxidative damage markers in both brain 

and plasma 

Increased levels of TNF-α and oxidative damage in brain were found after Dox 

administration in the periphery despite that Dox is not able to cross the BBB (Aluise et al., 

2011; Joshi et al., 2010; Joshi et al., 2007; Joshi et al., 2005; Tangpong et al., 2006). In the 
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current chapter, wild-type mice were separated into four groups, treated with saline, 

MESNA, Dox, and Dox plus MESNA, respectively. Brain and blood samples were 

collected 72 h post-Dox treatment. Protein carbonyl and protein-bound HNE levels were 

measured as indications of oxidative damage to proteins and lipids, respectively. In Fig. 

3.1a and 3.1c, Dox led to significantly higher levels of protein carbonyls and protein-bound 

HNE in brain compared to saline-treated controls and MESNA protected brain from these 

oxidative damages. In Fig. 3.1b and Fig. 3.1d, increased protein carbonyl and protein-

bound HNE levels in plasma were presented in Dox-treated group compared to saline-

treated group  and both of the elevated protein carbonyl and protein-bound HNE in plasma 

were ameliorated in co-administration of MESNA to Dox group. These results in both brain 

and plasma are consistent with our previous findings in plasma (Aluise et al., 2011) and 

brain (Joshi et al., 2010; Joshi et al., 2007) and consistent with the notion that co-treatment 

MESNA with ROS-generating anti-cancer drugs may reduce or prevent these 

consequences in brain.  
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Figure 3.1 The effects of Dox and MESNA on the levels of PC and protein-bound HNE in 
brain and plasma.  
Fig.3.1a-d showed the levels of protein carbonyl and protein-bound HNE in the brain and 
plasma of 2-3 month-old, male wild-type mice. The mice were treated with saline, MESNA, 
Dox, or Dox plus MESNA. Brian and plasma samples were collected 72 h post-treatment. 
Dox caused dramatical increases in the level of PC in both brain (a) (**p<0.01) and plasma 
(b) (****p<0.0001) of mice. Co-administration of MESNA with Dox mitigated these Dox-
induced increases of protein carbonyl in both brain and plasma (**p<0.01, respectively). 
In (c) and (d), protein-bound HNE levels were significantly increased in brain (**p<0.01) 
and plasma (***p<0.001) of mice treated with Dox. Co-administration of MESNA with 
Dox significantly ameliorated Dox-induced elevation in protein-bound HNE in both brain 
(**p<0.01) and plasma (*p<0.05). (N=10-13 per treatment group). Slot blot assays were 
performed by Dr. Jeriel Keeney, Butterfield Lab, University of Kentucky. (Keeney et al., 
2018) 
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3.4.2 Dox administration results in cognitive impairment and decreased locomotor 
activity 

NOR was performed to measure the cognitive function of mice in all four treatment 

groups (Fig. 3.2a). This test involved brain regions of hippocampus and frontal cortex, 

which both are important to CICI.  

Before Dox treatment, mice from each of the groups spent an average of 65-70% 

of total exploration time to explore the novel object.  

At 24 h post-treatment, the mice were exposed to two familiar objects, followed 

with exposure to one novel, and one familiar object. The recognition index values were not 

significantly different in any group comparison.  

At 72 h post-treatment, the RI value presented by Dox-treated mice decreased to an 

average of 40 and was significantly lower than all three other groups, whereas the saline 

and MESNA treatment groups still performed similarly as it before Dox treatment. The 

result indicated that Dox caused delayed memory decline, which could be rescued by co-

administration with MESNA. 

Open field testing was employed as a measurement of locomotor activity among 

treatment groups (Fig. 3.2b). At 24 h post-treatment, Dox led to decreased locomotor 

activity compared to MESNA control group. A progressive decline in locomotor activity 

was showed in Dox treatment group, which reached statistical significance by 72 h post-

treatment in Fig. 3.2b. The similar decrease of the locomotor activity in Dox+MESNA 

groups at 72 h post-treatment (Fig. 3.2b), indicating MESNA selectively attenuates Dox-

induced memory impairment. 
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Figure 3.2 The effects of Dox and MESNA in behavioral NOR and open field tests.  
(a) Through recognition memory, cognitive function was measured in Novel Object 
Recognition (NOR) testing. At 72 h post-treatment, the RI value of Dox group was 
significantly lower RI than Saline, MESNA and Dox plus MESNA (*p<0.05, respectively). 
Co-administration of MESNA rescued the deficits in memory function caused by Dox. (b) 
Locomotor activity was measured in open field test by acquiring the average of total 
movement time. At 24 h post-treatment, a significantly decreased locomotor activity was 
shown in Dox group compared to MESNA control group (*p<0.05). At 72 h post-treatment, 
the locomotor activity presented in either Dox treatment group or Dox+MESNA treatment 
group was both dramatically decreased compared to saline treatment group and MESNA 
treatment group, respectively (*p<0.05, comparisons to MESNA group were not labeled in 
this figure). The result showed that MESNA cannot relieve the decreased motor activity in 
an open field caused by Dox. NOR and open field tests were performed by the collaborator, 
Dr. Kathy Saatman, Physiology, University of Kentucky. (Keeney et al., 2018) 
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3.4.3 Dox administration results in a decreased level of choline-containing compounds 

in the hippocampus  

Hippocampus involves learning and memory (Antunes and Biala, 2012; Clarke et 

al., 2010; Goulart et al., 2010; Meck et al., 2013; Sarkisyan and Hedlund, 2009). H1-MRS 

can measure neurochemical metabolites of the living brain non-invasively. The peaks 

shown in this spectrum (Fig. 3.3a) allow quantification of these peaks in the living brain, 

including of N-acetylaspartate (NAA), Choline-containing compounds (Cho), creatine (Cr), 

myo-inositol, glutamate and glutamine, lipids, and lactate among others (Jansen et al., 

2006). The area of the Cr peak was normally used to normalize other metabolites. The Cho 

peak is contributed principally by PCho and glycerophosphorylcholine. 

NAA/Cr ratio was slightly but significantly decreased in the Dox-treated 

hippocampus compared to the saline group, indicating decreased neuronal integrity. Dox 

caused a much larger six standard-deviation decrease in Cho/Cr compared to the saline 

group. A slight increase in Cho/Cr can be observed from Dox-treated group to Dox plus 

MESNA treated group, although this elevation is not statistically significant (Fig. 3.3d). 

The result indicated that the protection of MESNA from Dox may involve in other 

mechanisms in addition to partial restoration of the Cho/Cr ratio.  
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Figure 3.3 H1-MRS results of mouse hippocampus.  
(a) After 72 h post-treatment, H1-MRS was employed to measure the hippocampus of living 
mice. H1-MRS uses proton signatures from hydrogen to create two-dimensional images of 
the tissue on the right of Fig. 3.3a, and a neurochemical profile indexed by a spectrum of 
peaks including NAA, Cho, Cr, and others (on the left of Fig. 3.3a). (b) The NAA/Cr ratio 
in hippocampus of mice was slightly but statistically decreased in Dox group compared to 
Saline group (*p<0.05). (c) Dox led to a dramatic decrease (with six standard deviations) 
in the Cho/Cr ratio in the Dox-treated group compared to saline group (***p<0.001). (d) A 
trend toward rebound in Cho/Cr in the group of Dox plus MESNA compared to Dox alone 
was observed. MRS study was performed by the collaborator, Dr. David Powell, Magnetic 
Resonance Imaging and Spectroscopy Center, University of Kentucky. Data was collected 
by Dr. Keeney and Xiaojia. Figure was made by Dr. Keeney and amended by Xiaojia. 
(Keeney et al., 2018) 
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3.4.4 Dox administration results in decreased PC-PLC and PLD activity 

PtdCho is a major source of Cho and phosphocholine (PCho). To further investigate the 

results of MRS studies, the activities of phospholipase enzymes were measured. PC-PLC 

cleaves the glycerol-phosphate bond of PtdCho, producing PCho, and diacylglycerol 

(DAG), which is a second messenger. Plasma protein phospholipase D (PLD) cleaves the 

headgroup from phospholipids of PtdCho, releasing soluble choline into cytosol. At 72 

post-treatment, both activities of PC-PLC and PLD in brain were dramatically decreased 

in Fig 3.4a and Fig 3.4b. This result is consistent with our results in MRS studies in this 

chapter, explaining the reason for Dox-caused Cho/Cr ratio decreases. The decreased PC-

PLC activity in Dox-treated group was fully restored compared to the saline-treated group 

by co-administration of MESNA. However, MESNA did not show any protection of PLC 

activity from Dox.  
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Figure 3.4 Phosphatidylcholine-specific phospholipase C (PC-PLC) and Phospholipase D 
(PLD) activity in brain 72 h post-treatment.  
Each group is presented as percent saline control. (a) Dox treatment resulted in a significant 
loss in PC-PLC activity compared to saline-treated mice (**p<0.01), which can be rescued 
by co-administration of MESNA (**p<0.01). (b) Dox administration caused a significant 
decrease in PLD activity compared to saline-treated controls (**p<0.01). MESNA did not 
show protective effects on PLC activity from Dox treatment. Assays were performed by 
Dr. Keeney and Xiaojia. Figure was made by Dr. Keeney. (Keeney et al., 2018) 
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3.5 Discussion 

Nearly half of FDA approved anti-cancer drugs can produce excessive ROS and 

induce oxidative damage (Chen et al., 2007), which is considered as one of the major 

candidates of mechanisms of CICI. The studies in this chapter provided more evidence to 

gain insights into mechanisms, and potential prevention of CICI, eventually to achieve 

successful management of CIC, improving the quality of life of cancer survivors. Fig. 3.5 

summarizes major changes in brain following treatments of mice with non-BBB permeable 

Dox and modulation or amelioration of these changes by MESNA.  
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Figure 3.5 A pictorial summary of the effects of Dox and MESNA in plasma and brain of 
mice in the current chapter.  
Dox-induced elevated oxidative damage and neurochemical alterations in the periphery 
and brain as well as cognitive decline (left) and MESNA-mediated protection against these 
Dox-facilitated effects in both plasma and brain (right). (Keeney et al., 2018) 
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ROS-generating chemotherapeutic drugs lead to oxidative damage of proteins, 

lipids, lipoproteins, and genetic molecules (Aluise et al., 2011; Bagchi et al., 1995; Chen 

et al., 2007; Joshi et al., 2010; Nithipongvanitch et al., 2007; Sterrenberg et al., 1984) by 

the non-targeted detrimental effects on both cancer cells and normal cells, leading to tissue 

damage (Butterfield, 2014; Chen et al., 2007). Brain is particularly vulnerable to oxidative 

damage because it has relatively high oxygen consumption and low antioxidant defenses, 

with enrichment of polyunsaturated fatty acids. 

Dox is a prototype of ROS-generating anti-cancer drugs. Dox-induced cardiac 

dysfunction, in part, is due to mitochondrial damage, is well established and used as dose-

limiting criteria in treatment protocols (Chen et al., 2006; DeAtley et al., 1999; 

Jungsuwadee et al., 2006; Jungsuwadee et al., 2012). The Dox-induced, oxidative damage-

mediated elevation of TNF-α in the plasma leads to the elevation of local TNF-α in the 

brain, subsequently leading to neuronal death (Aluise et al., 2011; Tangpong et al., 2006), 

as a result, cognition is impaired by losing neurons. TNF-α is a pro-inflammatory cytokine, 

produced by activation of macrophages. TNF-α plays several roles in inflammation, 

catabolism in fat and muscle, triggering the synthesis of acute-phase proteins, neutrophil 

activation, and apoptosis. Acute responses of TNF-α are beneficial but are quite harmful if 

the responses of TNF-α are chronic or sustained.  

Oxidative damage, in particular, protein-bound HNE, can alter the structure and 

function of proteins by covalently binding proteins via Michael addition (Butterfield and 

Lauderback, 2002; Di Domenico et al., 2017; Halliwell and Gutteridge, 1984; Sultana et 

al., 2013). The oxidative status of ApoA1 is crucial to its role in TNF-α suppression (Hyka 

et al., 2001; Yin et al., 2011). Dox-induced Protein-bound HNE-oxidized ApoA1 lost its 
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ability to suppress TNF-α release in plasma (Aluise et al., 2011; Keeney et al., 2013b). 

However, the co-administration of MESNA with Dox treatment can protect ApoA1 from 

oxidative damage, and suppress the Dox-induced oxidative damage-mediated TNF-α 

elevation. (Aluise et al., 2011). MESNA is rapidly oxidized, scavenging reactive species in 

circulation with a short time, thereby reducing the chance for potential unwanted side 

effects from oxidative stress (Mashiach et al., 2001).  

In this chapter, the data of oxidative damage supported the results of our previous 

studies (Fig. 3.1). Dox can induce the increased level of both PC and protein-bound HNE 

in plasma and subsequently in the brain; the co-administration of MESNA with Dox 

prevented the elevated oxidative damage in both plasma and brain. The treatment groups 

receiving Dox displayed less total movement than those groups without Dox treatment. 

This finding is consistent with previous studies of others (Lira et al., 2016; Wu et al., 2016).  

Memory and cognitive performance were measured by NOR (Fig. 3.2a). MESNA 

showed its ability for the prevention of the memory decline resulted from Dox at 72 h post-

treatment. MESNA rescued much of this Dox-induced cognitive deficit, which we 

speculate is due to the prevention of oxidative damage in brain following Dox treatment. 

Dox-induced motor dysfunction is not ameliorated by MESNA treatment (Fig. 3.2b). The 

result of locomotor activity is consistent with other studies that Dox can cause the 

impairment of locomotor activity in non-tumor bearing mice (Lira et al., 2016; Wu et al., 

2016), which conceivably could be due to protein oxidation of muscles and/or the effects 

of elevated levels of the pro-inflammatory cytokine TNF-α (Merzoug et al., 2014; 

Mohamed et al., 2011). However, the aspect of similar total movements displayed in Dox 

and Dox+MESNA group decreased potential confounds for the NOR test. The total object 
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exploration time decreased with repeated exposure to the environment. Dox-treated group 

had been already exhibiting the decreased trend of the preference for the novel object 

compared to the other treatment groups at 24h post-treatment. By day three (72h post-

treatment), mice in Dox group had no preference for the novel object over the familiar one. 

The behavioral studies in this chapter are compelling evidence that the application of 

MESNA could potentially ameliorate CICI from the ROS-generating anti-cancer drugs. 

The NAA/Cr ratio shown in the hippocampus of Dox-treated group is slightly but 

significantly decreased compared to the saline group, suggesting Dox led to neuronal 

damage (Fig. 3.3b). Along with the decreased NAA/Cr ratio in Dox group, the Cho/Cr ratio 

in hippocampus showed a significant decline of six standard deviations of the Dox-treated 

group compared to the saline-treated group. The decreased level of choline-containing 

compounds in the MRS studies potentially is associated with membrane turnover involving 

phospholipid synthesis and degradation (Bertholdo et al., 2013; Soares and Law, 2009). 

Decreased choline uptake was found in older adults, as well as decreased Cho peak in the 

aging brain (Cohen et al., 1995; Dezortova and Hajek, 2008; Soares and Law, 2009), which 

also could be considered as a potential indication of decreased cell density and necrosis 

(Gupta et al., 2000; Soares and Law, 2009).  

The results presented in this chapter are consistent with another study that a time-

related decrease in the Cho/Cr ratio followed chemotherapy treatment and was attributed 

to potential myelin damage (Ciszkowska-Lyson et al., 2003). Years after systemic 

chemotherapy treatment, defective alterations of gray matter, and lipid-rich myelin covered 

white matter still were found in some cases, associated with functional deficits (Briones 

and Woods, 2014; de Ruiter et al., 2012; Simo et al., 2013). Decreased myelination and 
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cognitive impairment were shown correlated to the chemotherapy-induced elevation of 

TNF-α (Briones and Woods, 2014). Supporting the hypothesis of this dissertation research, 

TNF-α is considered playing a central role in the mechanisms of CICI.  

Elevated TNF-α may lead to PtdCho being less synthesized (Church et al., 2005; 

Mallampalli et al., 2000). PtdCho is one of the most common components forming 

membranes, normally located in the outer bilayer leaflet. The choline head group of PtdCho 

is on the cytosol side, mediating membrane-associated cell signaling. PtdCho also is the 

main component of high-density lipoprotein (HDL), collaborating with ApoA1 in 

cholesterol transport. PtdCho can be catalyzed by PC-PLC and PLD, generating 

phosphocholine plus second messenger DAG and choline, respectively. Choline is 

involved in the synthesis of ACh, a neurotransmitter with widespread functions, including 

motor and somatic divisions of the autonomic nervous system. ACh also is associated with 

memory, intelligence, and mood, partially mediated by ACh metabolism and the levels of 

choline in brain (Poly et al., 2011). In this chapter, activities of both PC-PLC and PLC in 

brain of Dox-treated mice were impaired (Fig. 3.4), supporting our observation that Dox 

led to the decreased level of Cho/ratio in hippocampus of mice (Fig . 3.3). The result that 

co-administration with MESNA protected the activity of PC-PLC from Dox, whereas 

MESNA did not show protection on PLC from Dox, may explain why MESNA showed a 

trend to recover the Dox-decreased level of Cho, but not significantly. Here, a Dox-induced, 

TNF-α mediated pathway of apoptosis is shown in Fig. 3.6. 
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Figure 3.6 A putative pathway to apoptosis following Dox-induced TNF-α elevation.  
Dox results in the elevation of TNF-α. TNF-α triggers ceramide increase and subsequent 
extrinsic apoptosis via TNF receptor. Meanwhile, TNF-α inhibits the biosynthesis of 
PtdCho, coupled to decreased activity of PC-PLC caused by Dox, leading to a decreased 
level of PCho. As a result of decreased PCho, ceramide relatively increases due to the 
decreased conversion to sphingomyelin from ceramide plus PCho, leads to apoptosis. 
Figure was designed by Dr. Aaron Swomley, Butterfield Lab, University of Kentucky. 
(Keeney et al., 2018) 
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Decreased level of PCho could be due to inhibiting synthesis of PtdCho by Dox-

induced elevation of TNF-α, or decreased activity of PC-PLC. Sphingomyelin can be 

synthesized by coupling of ceramide with PCho (Siegel, 2006). Thus, a decreased level of 

Pcho would possibly result in elevated ceramide, inducing apoptosis (Car et al., 2012; 

Geilen et al., 1997; Qin et al., 1998; Wang et al., 2012), and elevated apoptosis has been 

found after Dox treatment in brain of mice (Tangpong et al., 2007). Dox-induced decreased 

PC-PLC and PLD activities presented in this chapter may result in dysregulation of cell 

survival and apoptosis pathways that involve PC-PLC. More studies are required to 

elucidate the involvement of choline, PC-PLC, and PLD in mechanisms of CICI. 

Based on previous work by our group (Aluise et al., 2011; Aluise et al., 2010; 

Butterfield, 2014; Joshi et al., 2005; Ren et al., 2017; Tangpong et al., 2006; Tangpong et 

al., 2008) and the results of the current and next chapters in this dissertation research, we 

propose the following model for the mechanisms of CICI and the protective effects of 

MESNA from Dox in Fig. 3.7. 
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Figure 3.7 A proposed model of the mechanism of CICI and protective effect of MESNA. 
ROS-associated chemotherapeutic agent Dox causes elevation of oxidative stress, 
including protein-bound HNE. ApoA1 is oxidized by protein-bound HNE with 
conformational and further functional changes. ApoA1 thus loses its ability to interact with 
ABCA1, increasing TNF-α in the periphery as a consequence. TNF-α can then cross the 
blood-brain barrier by endocytosis of TNFR1, activate microglia in brain to make more 
local TNF-α, leading to neuronal mitochondrial dysfunction, apoptosis, and subsequent 
cognitive decline. MESNA can block the ROS in the periphery (plasma) and ameliorate 
oxidative stress and cognitive impairment in brain (labeled with green arrows in Fig. 3.7). 
(Keeney et al., 2018) 
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Peripheral Dox administration generates ROS, leading to oxidative damage to plasma 

proteins (Aluise et al., 2011; Tangpong et al., 2006). One plasma protein, ApoA1, has 

altered interaction involved in cholesterol transport with the ATP-binding membrane 

cassette transporter A1 (ABCA1) (Weber and Noels, 2011; Yin et al., 2011) due to its 

structure and function changed by oxidative damage (Subramaniam et al., 1997). The 

normal interaction of ApoA1 and ABCA1 could inhibit the production of TNF-α. Hence, 

oxidized ApoA1 would elevate the TNF-α in plasma, which can cross the BBB, leading to 

microglial activation, increased ROS and further TNF-α production in brain. Consequently, 

mitochondria are dysfunctional, along with subsequent cognitive decline (Aluise et al., 

2010; Joshi et al., 2010). MESNA can protect both plasma and brain from oxidative damage 

including protein carbonyl and protein-bound HNE. MESNA also can save memory 

function and PC-PLC activity in brain following Dox administration.  

The current chapter in this dissertation research presents strong evidence that MESNA 

potentially could protect both plasma and brain from oxidative damage, and subsequent 

cognitive impairment caused by the chemotherapeutic drug, Dox. The study provides a 

potential treatment method to CICI and strengthens the basis of investigations to gain 

insights into CICI.  
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CHAPTER 4. THE TRIANGLE OF DEATH OF NEURONS: OXIDATIVE DAMAGE, 
MITOCHONDRIAL DYSFUNCTION, AND LOSS OF CHOLINE-CONTAINING 
BIOMOLECULES IN BRAINS OF MICE TREATED WITH DOXORUBICIN: 
ADVANCED INSIGHTS INTO MECHANISMS OF CHEMOTHERAPY-INDUCED 
COGNITIVE IMPAIRMENT (“CHEMOBRAIN”) INVOLVING TNF-Α 

4.1 Overview 

Cancer treatments are developing fast and the number of cancer survivors could arise 

to 20 million in the United State by 2025. However, a large fraction of cancer survivors 

demonstrate cognitive dysfunction and associated decreased quality of life both acutely, 

and often long-term, after chemotherapy treatment. The etiologies of chemotherapy-

induced cognitive impairment (CICI) are complicated, made more so by the fact that many 

anti-cancer drugs cannot cross the blood-brain barrier (BBB). Multiple related factors and 

confounders lead to difficulties in determining the underlying mechanisms. Chemotherapy-

induced, oxidative damage-mediated tumor necrosis factor-alpha (TNF-α) elevation was 

considered as one of the main candidate mechanisms underlying CICI. As described early 

in this dissertation, the chemotherapeutic drug, doxorubicin (Dox), can generate reactive 

oxygen species (ROS). Peripheral Dox-administration results in oxidative damage of 

plasma protein elevation of TNF-α in both plasma and brain of mice (Tangpong et al., 

2006). In the current chapter, TNF-α null (TNFKO) mice were employed to investigate the 

role of TNF-α in Dox-induced, oxidative damage-mediated alterations in brain. Both Dox-

induced oxidative damage and mitochondrial dysfunction in brain were ameliorated in 

TNFKO brain. The slot blot technique was used to measure the oxidative damage, while 

the mitochondrial function was assessed by the oxygen consumption rate (OCR) acquired 

in Seahorse. Further, Dox-decreased levels of hippocampal choline-containing compounds 

and brain phospholipases activity are partially protected in the TNFKO group using MRS 
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study. The results provide strong evidence that Dox-targeted mitochondrial damage and 

levels of brain choline-containing metabolites, as well as phospholipases changes 

decreased in the CNS are associated with oxidative damage mediated by TNF-α. These 

results are consistent with the notion that oxidative damage and elevated TNF-α in brain 

underlie the damage to mitochondria and other pathological changes that lead to CICI. The 

results are discussed with reference to identifying a potential therapeutic target to protect 

against cognitive problems after chemotherapy. 

4.2 Introduction 

Cancer survivors often lose, at least in part, cognitive abilities of concentration, 

attention, learning and memory, and executive functions. Such patients often describe 

feelings of “chemofog” and feel it difficult to remember details, as well as slowness in 

problem-solving and multitasking. These symptoms are characteristic of chemotherapy-

induced cognitive impairment (CICI). CICI could acutely or chronically happen to cancer 

survivors who had chemotherapy history and negatively affect their quality of life. 

However, many chemotherapeutic drugs are not able to cross the blood-brain barrier (BBB), 

but still can result in the injury to the CNS and lead to cognitive deficits. The mechanisms 

of CICI remain unclear. Although it is challenging to clarify the precise mechanisms of 

CICI, many candidates have been put forward, one of which is oxidative damage mediated 

elevation of pro-inflammatory cytokines (Butterfield, 2014; Ren et al., 2017).  

Over half of FDA-approved chemotherapeutic drugs can generate reactive oxygen 

species which result in oxidative damage. (Chen et al., 2007). As noted above, Doxorubicin 

(Dox), an anthracycline antineoplastic drug, normally used as part of multi-drug 

chemotherapy regimens to treat solid tumors and lymphomas. In the presence of oxygen, 
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the conversion between the quinone and semi-quinone moiety of the structure of Dox 

undergo the redox cycling, producing superoxide radical anion (O2-•) (Bachur et al., 1977; 

Cummings et al., 1991; Handa and Sato, 1975). Dox-induced oxidation of plasma-resident 

ApoA1 and resulting elevation of plasma levels of TNF-α that is transported to the brain 

are considered independently with the anti-tumor ability of Dox (Aluise et al., 2011; 

Bernacki et al., 1987; Hayslip et al., 2015). Oxidative and nitrosative damage in the brain 

occurs despite the fact that Dox cannot cross the BBB (Joshi et al., 2010; Joshi et al., 2007; 

Tangpong et al., 2007; Tangpong et al., 2006; Tangpong et al., 2008).  

Toxic side effects of Dox-induced mitochondrial dysfunction are well known, 

especially in the cardiotoxicity of Dox (Chen et al., 2006; DeAtley et al., 1999; 

Jungsuwadee et al., 2006), which is an important factor for dose-limiting Dox treatment 

(Tangpong et al., 2007). Previous studies by the Butterfield and St. Clair lab presented the 

existence of Dox-induced brain mitochondrial dysfunction result from the nitration of 

manganese superoxide dismutase (MnSOD), a mitochondrial O2-• scavenger (Tangpong et 

al., 2007). Mitochondrial ROS involves activation of the nuclear factor κ-light-chain 

enhancer of activated B-cells (NF-κB) pathway (Chandel et al., 2000). Both inducible nitric 

oxide synthase (iNOS) and TNF-α are at the downstream of the NF-κB pathway 

(Griscavage et al., 1996; Keeney et al., 2013a). 

Meanwhile, the volume of the hippocampus, essential to learning and memory, and 

neurogenesis are affected by TNF-α (Kesler et al., 2013; Kitamura et al., 2015), leading to 

behavioral deficits (Kwatra et al., 2016) such as anxiety and depressive-like behaviors, 

considered as chemotherapy-induced symptoms as well. The elevation of TNF-α in the 

periphery can cross the BBB by receptor-mediated endocytosis, after which elicit 
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microglial activation resulting in further local TNF-α release in brain (Ren et al., 2017). 

Hence, Dox-induced mitochondrial dysfunction likely is associated with TNF-α resulting 

in apoptosis (Chen et al., 2007) and, ultimately, in the cognitive decline of cancer survivors. 

In the current chapter, the hypothesis was tested that TNF-α underlies alterations in 

brain measures of oxidative damage, hippocampal neurochemical profiles, phospholipase 

C and D activities, and loss of mitochondrial function in wild type (WT), but not TNF-α 

null (TNFKO) mice following in vivo Dox administration.  

4.3 Methods and Materials 

4.3.1 Chemicals 

General chemicals, antibodies, and protease inhibitors were purchased from Sigma-

Aldrich (St. Louis, MO). PierceTM BCA Protein Assay Kit was purchased from 

ThermoFisher Scientific (Rockford, IL). The nitrocellulose membrane was purchased from 

Bio-Rad (Hercules, CA). EnzChek® Direct Phospholipase C Assay Kit and Amplex® Red 

Phospholipase D Assay Kit were purchased from Invitrogen/Life Technologies (Carlsbad, 

CA). Doxorubicin HCl was purchased from Bedford Laboratories™. 

4.3.2 Animals 

According to the U.S. National Institutes of Health Guide for the Care and Use of 

Laboratory Animals, all procedures were approved by the Institutional Animal Care and 

Use Committee of the University of Kentucky. The mice were housed in the University of 

Kentucky Animal Care Facility, following the standard conditions in an air-conditioned 

environment (22.1°C, 50.5% relative humidity, 12 h light-dark cycle), with free access to 

food and water. Male wild-type mice, B6C3F1/J (B6C3) mice, and TNF-α knockout 
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(TNFKO) B6.129S6-Tnf tm1Gkl/J were purchased from the Jackson Laboratory. Each mouse 

was 2-3 months old and weighing approximately 25-30 grams. Dox was administrated to 

mice by a single intraperitoneal (i.p.) dose of 25mg/kg Dox or the same volume of saline 

as a control. MRS was performed on both wild-type and TNFKO mice 72 h post-treatment 

using methods described below. Following MRS studies, all mice were euthanized, 

immediately followed with plasma and brain tissue collection for molecular or biochemical 

experiments.  

4.3.3 Hydrogen magnetic resonance spectroscopy (H1-MRS) 

H1-MRS was used to measure the relative quantities of neurochemical changes in the 

mouse hippocampus in this chapter. MRS data was collected on a 7T BrukerClinscan 

horizontal bore system (7.0T, 30cm, 300Hz) equipped with a triple-axis gradient system 

(630 mT/m and 6300 T/m/s). A closed cycle, 14K quadrature cryocoil allowed for a 2.8 

signal to noise increase relative to standard coils. Isoflurane (1.3%) was used to anesthetize 

mice before scanning in MRI compatible CWE Inc. equipment. Mice were placed on a 

Bruker scanning bed with tape. Tooth bar and ear bars were used to hold the mice on the 

bed. The equipment from SA Instruments Inc monitored the body temperature and 

respiration rate of the scanning mouse. The water heating system for the scanning bed 

maintained body temperature at 37°C. T2 weighted turbo spin echo sequences (TE 40ms, 

TR 2890ms, Turbo 7, FOV 20mm, 0.156 x 0.156 x 5.0 mm3) were acquired and used for 

the placement of the spectroscopy voxel. The scanning procedure took 40 min. A 

2x5.5x3mm3 PRESS spectroscopic voxels (TE 135ms, TR 1500ms, 400avg, CHESS water 

suppression) was placed to cover both hippocampi. Spectrum analysis was performed using 

jMRUI (Naressi et al., 2001) to quantify the areas under each peak in the spectrum. The 



52 
 

area of the creatine (Cr) peak was used to normalize the peak areas of peaks of other 

metabolites.  

4.3.4 Sample collection 

Blood of mice was extracted cardiac puncture by cardiac puncture right after mice 

being sacrificed. Blood was transferred into EDTA tube immediately. Inverted the tube 

approximately ten times to completely mix the blood with the anticoagulant in the tube. 

The tube containing blood was then centrifuged at 3000 rpm at 4 °C, 10 min. After 

centrifuging, plasma was separated from other blood components and then transferred into 

a microcentrifuge tube, instantly put into liquid nitrogen. Mouse brain was extracted 

immediately following blood extraction, placed in a microcentrifuge tube, and immediately 

frozen in liquid nitrogen. All plasma and brain samples were stored at -80 °C and ready for 

future experimental use. 

4.3.5 Sample preparation 

The individual frozen mouse brain was thawed slightly on ice and put in a Wheaton 

glass homogenizer. Use the glass rod to homogenize the brain tissues for approximately 

40-45 passes in the cold isolation buffer [0.32 M sucrose, 20mM HEPES, 2 mM EDTA, 

2mM EGTA, 10 µg/ml phosphatase inhibitor cocktail 2, and protease inhibitor 5 μg/ml 

aprotinin, 4 μg/ml leupeptin, 4 μg/ml pepstatin A, and 0.2 mM PMSF]. All brain 

homogenate was transferred to a microcentrifuge tube and vortexed. Next, Fisher 550 

Sonic Dismembrator (Pittsburgh, PA, USA) was used to sonicate brain homogenate on ice 

for 10s at 20% power, two times with an interval of 20s rest. After estimation of protein 

concentration with BCA assay, brain samples were ready for use. 



53 
 

Plasma samples were thawed on ice, diluted with cold isolation buffer described above, 

and estimated protein concentration by BCA assay. 

4.3.6 Slot blot assay 

Biomarkers of oxidative damage, including protein carbonyls (PC) and protein-bound 

4-hydroxynonenal (HNE), were measured by slot blot assay. Brain or plasma samples were 

derivatized with 2,4-dinitrophenylhydrazine (DNPH) for measuring level of PC or 

solubilized in Laemmli buffer for measuring the level of HNE. 250 ng of proteins from 

each sample were loaded onto a nitrocellulose membrane in respective wells of the slot-

blot apparatus (Bio-Rad) under vacuum. Membranes were blocked in 3% bovine serum 

albumin (BSA) in TBS with 0.2% (v/v) Tween-20 (TBS-T) for 1.5 h, then incubated TBS-

T with primary antibody (1:500 anti-dinitrophenylhydrazone or 1:5000 anti-protein-bound 

HNE, respectively) for 2 h, followed with three times of washing in TBS-T, 5 minutes for 

each washing. Next, the membrane was incubated for 1 h with secondary antibody 

(secondary linked to alkaline phosphatase, 1:10000), washed in TBS-T three times, 5, 10, 

and 10 minutes, respectively for each washing. Then, the membrane was develope in 

alkaline phosphatase activity (ALP) buffer containing 1:300 5-bromo-4-chloro-3-indolyl 

phosphate (BCIP), and 1:150 Nitro blue tetrazolium (NBT). The developed membrane was 

dried overnight and then scanned for analysis on the second day. Imaging analysis was 

performed using Scion Image (Scion Corporation, Frederick, MD).  

4.3.7 Brain mitochondria isolation and bioenergetic analysis 

Cardiac puncture with cold mitochondrial isolation buffer [0.07 M sucrose, 0.22 M 

mannitol, 20 mM HEPES, 1 mM EGTA, and 1% bovine serum albumin, pH 7.2] was used 
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to perform brain perfusion of mice. Instantly, the brain was extracted. The method of 

mitochondrial isolation used in this chapter followed a published procedure (Mattiazzi et 

al., 2002) with modifications. Brain tissue was homogenized in cold mitochondrial 

isolation buffer with a Dounce homogenizer and centrifuged at 1500 × g at 4°C for 5 min. 

The supernatants were transferred to a clean microcentrifuge, while the pellets were 

resuspended with cold mitochondrial isolation buffer and centrifuged at 1500 × g at 4°C 

for 5 min. The supernatants collected after the second centrifugation was combined with 

the supernatants from the first centrifugation. The combined supernatants were 

recentrifuged at 1500 × g at 4°C for 5 min. The supernatants collected after the third 

centrifugation were centrifuged at 13,500 × g at 4°C for 10 min. The 4% Ficoll solution 

was used to purify the mitochondrial pellets collected after the fourth centrifugation, which 

were then resuspended in 50 μL cold mitochondrial isolation buffer. The Bradford Assay 

(Bradford, 1976) was then used to determine the protein concentration of the isolated brain 

mitochondria. The mitochondria isolation process was performed by Dr. Jeriel Keeney, 

Butterfield Lab, University of Kentucky. 

The bioenergetics function of the freshly isolated mice brain mitochondria followed 

the procedure above was measured in the XF96 Analyzer (Agilent, Santa Clara, CA), which 

can measure the oxygen consumption rate (OCR) of mitochondria in real-time. 5µg 

mitochondria from each sample was added into one well of a XF96 culture plate. The 

respiration in each well was sequentially measured with substrate present (basal respiration) 

following the conversion of ADP to ATP, induced with the addition of oligomycin by the 

equipment. Next, the uncoupling agent FCCO was administrated by the analyzer to acquire 

the maximal uncoupler-stimulated respiration. At the end of the experiment, the 
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mitochondria respiration in each well was completely inhibited by the applied antimycin 

A, which is a complex III inhibitor. ORC was measured at four time-points with three 

replicates and plotted as a function of cells, showing the relative contribution of oxygen 

consumption, ATP-linked oxygen consumption, the maximal OCR after the addition of 

FCCP, and the reserve capacity of the cells. Seahorse analysis was performed by the D.K. 

St. Clair laboratory, Graduate Center for Toxicology, Department of Radiation Medicine, 

Markey Cancer Center, University of Kentucky. 

4.3.8 Phospholipase C and phospholipase D activity assays 

EnzChek® Direct Phospholipase C Assay Kit was used to measure the activity of 

phosphatidylcholine-specific phospholipase C (PC-PLC), while Amplex® Red 

Phospholipase D Assay Kit was used to measure the activity of phospholipase D, followed 

the manufactural instructions. The intensity of fluorescence was measured in 

SPECTRAFluor Plus instrument and quantified using associated MagellanTM software by 

TECAN throughout 24 h incubation at 37 ℃, avoided light. The fluorescence is collected 

at the time of maximal fluorescence peak showed during the 24 h incubation corresponding 

to the positive control. 

PC-PLC activity data was collected after 22.5h of incubation of assay reagents and 

samples. The PtdCho in the substrate is cleaved by PC-PLC, generates dye-labeled 

diacylglycerol (DAG), and phosphocholine. The excitation wavelength is 509 nm, and the 

emission wavelength is 516 nm for PC-PLC. PLD activity data was collected at 1h of 

incubation of assay reagents and samples. The PtdCho in the substrate is cleaved by PLD, 

generates the alcohol component of the head group of PtdCho, releasing choline. The 
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excitation wavelength is 571 nm, and the emission wavelength is 585 nm for PLD. 

4.4 Results 

4.4.1 Dox administration results in increased oxidative damage markers in brain and 

plasma of WT mice that is absent in brain of TNFKO mice  

Dox administration causes increased global oxidative damage in plasma and brain 

(Aluise et al., 2011; Joshi et al., 2007; Keeney et al., 2018). As one of the results, the plasma 

protein ApoA1 was oxidized that leads to elevation of TNF-α in plasma (Aluise et al., 2011; 

Joshi et al., 2010; Joshi et al., 2007; Joshi et al., 2005; Tangpong et al., 2006). Afterward, 

the peripheral TNF-α crosses the blood-brain barrier leading to oxidative damage in brain 

and apoptotic brain cell death (Aluise et al., 2011; Joshi et al., 2010; Joshi et al., 2007; 

Joshi et al., 2005; Tangpong et al., 2006). Consequently, to test the hypothesis that TNF-α 

is the principal cytokine elevated in plasma following Dox treatment that leads to brain 

oxidative and mitochondrial damage and resulting apoptotic cell death, the effects of Dox 

administration on oxidative damage in plasma and brain in TNF-α knockout (TNFKO) 

mice were investigated. Dox or saline was administrated to wild-type or TNFKO mice. 

Brain and plasma samples were collected 72 h post-Dox treatment, immediately following 

MRS studies. PC levels were used as a gauge of protein oxidation, while the lipid 

peroxidation product, protein-bound HNE, was used as an index of lipid damage.  

Dox administration resulted in the elevation of oxidative damage markers, including 

both PC and protein-bound HNE, in both plasma and brain of WT mice (Fig. 4.1a-d). Due 

to its redox cycling properties associated with the quinone moiety in this anthracycline 

drug, TNFKO mice still had elevated PC levels and protein-bound HNE in plasma in Dox 
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group compared to saline-treated TNFKO mice; meantime, PC and protein-bound HNE 

levels following Dox treatment in brain of TNFKO mice both were found not to be 

significantly different from levels observed in saline-treated TNFKO mice (Fig. 4.1b and 

Fig. 4.1d). This result strongly supports our hypothesis that TNF-α plays a central role in 

Dox-induced oxidative damage in brain. 
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Figure 4.1 The levels of protein oxidation and lipid peroxidation were presented by 
the levels of PC and protein-bound HNE. 
The levels of protein oxidation and lipid peroxidation were presented by the levels of 
PC and protein-bound HNE, respectively, in Fig. 4.1. Plasma and brain samples were 
collected 72 h post-treatment. (a) Dox administration resulted in significantly elevated 
PC levels in plasma of both wild-type and TNFKO mice compared to saline-treated 
wild-type and TNFKO mice, respectively. (b) The PC levels were significantly 
elevated following Dox treatment in brain of wild-type mice compared to saline-
treated wild-type; however, the PC levels did not show significant differences in the 
brains between saline-treated and Dox-treated TNFKO mice. (c) Dox administration 
resulted in significantly elevated protein-bound HNE levels in plasma of both wild-
type and TNFKO mice compared to saline-treated wild-type and TNFKO mice, 
respectively. (d) The protein-bound HNE levels were significantly elevated following 
Dox treatment in brain of wild-type mice compared to saline-treated wild-type; 
however, the protein-bound HNE levels did not show significant differences in the 
brains between saline-treated and Dox-treated TNFKO mice. (*p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001, NS = not significant). Assays and figure were performed 
by Dr. Jeriel Keeney, Butterfield lab, University of Kentucky. (Ren et al., 2018) 
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4.4.2 Dox administration leads to altered oxygen consumption rate in WT mice brain 

mitochondria that is prevented in TNFKO mice 

Prior studies using a Clarke-type electrode demonstrated TNF-α-mediated 

mitochondrial dysfunction as assessed by oxygen utilization in brain as a consequence of 

peripheral Dox administration (Tangpong et al., 2007; Tangpong et al., 2006; Tangpong et 

al., 2008). In the current chapter shown in Fig. 4.2, the OCR of isolated brain mitochondria 

of mice was collected by the Seahorse analyzer. The OCR changes in mice brain 

mitochondria of saline-treated wild-type group, Dox-treated wild-type group, saline-

treated TNFKO group, and Dox-treated TNFKO group were presented in blue circles, red 

squares, purple x, and green triangles, respectively in Fig. 4.2a. Basal, ATP-linked, 

maximal capacity, and reserve capacity OCR (related to ATP production) were ascertained 

in fresh brain mitochondria of each treatment group (Fig. 4.2b). 

A significant decline in mitochondrial respiration in brain of Dox-treated WT mice as 

indexed by mitochondrial OCR was observed. Dox-treated WT mice significantly 

exhibited decreased mitochondrial OCR at every phase measured compared to wild-type 

mice (Fig. 4.2b). Compellingly, the mitochondrial OCR in brain of Dox-treated TNFKO 

mice was similar to that observed in saline-treated wild-type and saline-treated TNFKO 

group at every phase of mitochondrial OCR measured (Fig. 4.2b). This result supports our 

hypothesis that TNF-α is a key player in the observed mitochondrial dysfunction in brain 

from WT mice following Dox administration. 
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Figure 4.2 Mitochondrial function in brain of mice treated with Dox and Saline.  
Mitochondrial protein (5 μg) were plated into wells of Seahorse Bioscience tissue culture plates 
and centrifuged before the measurement of total ORC. ORC of brain mitochondria indicates the 
mitochondrial function in brain, exhibited in blue for saline-treated wild-type mice; red for Dox-
treated wild-type mice; purple for saline-treated TNFKO mice; and green for Dox-treated TNFKO 
mic. (a) For each sample, OCR was measured at four time-points in real-time and plotted as a 
function of cells under the basal condition followed by the sequential addition in different wells of 
Oligomycin (1μg/ml), FCCP (3μM) and Antimycin (2µM). (b) Quantification showing the relative 
contribution of oxygen consumption, ATP-linked oxygen consumption, the maximal OCR after 
the addition of FCCP, and the reserve capacity of the mitochondria.All data are shown as the 
Mean±SEM of triplicate samples and are representative of 3 independent experiments. Seahorse 
analysis was performed by D.K. St. Clair laboratory, Graduate Center for Toxicology, Department 
of Radiation Medicine, Markey Cancer Center, University of Kentucky. (Ren et al., 2018) 
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4.4.3 Changes to the neurochemical profile in hippocampus following Dox 

administration 

Bilateral H1-MRS scans of hippocampus revealed a dramatic decrease in the ratio of 

peak area of Choline-containing compounds (Cho) to that of Cr in Dox-treated WT mice 

compared to that in saline-treated control WT mice (Figure 3) confirming our earlier 

studies with WT mice (Keeney et al., 2018). The Cho/Cr ratio in Dox-treated TNFKO mice 

brain was still lower than that observed in saline-treated TNFKO mice, but profoundly 

higher than that (the Cho/Cr in brain) of Dox-treated WT mice, showing significant 

protection in the Cho/Cr ratio in mice hippocampus if TNF-α were absent. This result also 

provides strong evidence of TNF-α involvement in the Dox-induced decreased Cho/Cr 

ratio in brain.  
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Figure 4.3 Dox-resulted Cho/Cr ratio decreases in hippocampus could be partially 
protected by the absence of TNF-α.  
Bilateral H1-MRS scans of hippocampus revealed a large decrease in the Cho/Cr ratio in 
the Dox-treated WT group compared to saline control mice (****p<0.0001). Dox 
administration to TNFKO mice resulted in a rebound of the hippocampal Cho/Cr ratio over 
that of Dox-treated WT mice (***p=0.0002), although there also was a significant 
difference in the Cho/Cr ratio in mice hippocampus of TNFKO mice between saline and 
Dox treatment groups (****p<0.0001). MRS was performed by Dr. David Powell, 
Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky.  
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4.4.4 Dox administration to TNFKO mice results in partial preservation of PLD activity 

Dox administration to WT mice resulted in significantly decreased activities of both 

PC-PLC and PLD in mouse hippocampus that likely contribute to the loss of Cho/Cr as 

determined by MRS (Keeney et al., 2018). The protection of the Cho/Cr ratio in the 

hippocampus of TNFKO mice observed by MRS (Fig. 4.3) led to the examination of the 

effect of TNF-α on activities on phospholipases responsible for the cleavage of choline and 

phosphocholine from PtdCho. Dox administration resulted in decreased activity of PC-

PLC (Fig. 4.4a) in brain of WT mice compared to saline-treated WT mice. Dox also led to 

a decreased activity of PC-PLC in TNFKO mice compared to saline-treated TNFKO mice, 

the results did not show any protection on PC-PLC activity in TNFKO mice following Dox 

treatment. As shown in Fig. 4.4b, Dox administration resulted in significantly decreased 

activity of PLD in brain of mice in both WT and TNFKO groups, compared to saline-

treated WT and TNFKO mice, respectively. However, a significant difference in PLD 

activity in mice brain also existed between the Dox-treated WT group and the Dox-treated 

TNFKO group, which indicated that brain PLD activity in TNFKO mice was protected 

from loss following Dox administration, but not completely. The results are consistent with 

the notion that TNF-α plays an important role in diminution of PLD activity following Dox 

treatment.  
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Figure 4.4 PC-PLC and PLD activities in brain of wild-type and TNFKO mice after Dox 
or saline treatment.  
PC-PLC and PLD activity assays were performed at room temperature in the dark 
according to the manufacturers’ instructions. The data are presented as percent saline 
control. (a) PC-PLC activity was measured after 22.5h of incubation of assay reagents and 
samples, the time at which the fluorescence of the corresponding positive control was 
maximum. Dox administration to WT mice caused a significant decrease in PC-PLC 
activity compared to saline-treated WT mice (****p<0.0001). Dox treatment of TNFKO 
mice resulted in a similar decrease in PC-PLC activity compared to saline-treated TNFKO 
mice (****p<0.0001). (b) Brain PLD activity at 1h of incubation of assay reagents and 
samples, the time of maximal fluorescence of the corresponding positive control in these 
trials, was performed according to manufacturer’s instructions at 37oC protected from light. 
Dox treatment resulted in significantly decreased PLD activity in WT mice brain compared 
to that of saline-treated WT mice (****p<0.0001). Dox treatment also resulted in 
significantly decreased PLD activity in TNFKO mice brain compared to that of saline-
treated TNFKO mice (***P=0.0005). However, PLD activity was preserved in Dox-treated 
TNFKO mice, significantly higher than PLD activity in brain of Dox-treated WT mice 
(***p=0.0008). The assays were performed by Dr. Keeney and Xiaojia. 
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4.5 Discussion 

Many chemotherapy patients experience cognitive deficits following chemotherapy 

(Raffa and Tallarida, 2010), and as the number of cancer survivors increases with improved 

treatment, CICI should be taken into account so the quality of life after cancer treatment is 

not materially affected. Understanding the mechanisms of etiology and pathogenesis of 

CICI is necessary for prevention strategies for this condition. We propose that TNF-α, one 

of the chemotherapy-induced, oxidative damage associated, pro-inflammatory cytokines, 

plays a crucial role in CICI. Accordingly, the TNF-α knock-out animal model is an 

important and useful tool to investigate the hypothesized central role of TNF-α in CICI.  

Dox is used in our laboratory as a prototypical ROS-generating chemotherapeutic 

agent that does not cross the BBB to investigate CICI. Dox administration led to damage 

with significantly increased oxidative damage and TNF-α elevation in both plasma and 

brain (Aluise et al., 2011; Keeney et al., 2018; Tangpong et al., 2007; Tangpong et al., 2006; 

Tangpong et al., 2008). The subsequent CNS injury included dysfunction of antioxidant 

enzymes, damaged brain mitochondria, neuronal death, and resultant cognitive dysfunction 

(Joshi et al., 2010; Keeney et al., 2018; Tangpong et al., 2007; Tangpong et al., 2006). Poor 

performance on the novel objective recognition tests of mice presented in chapter 3 of this 

dissertation research, and passive avoidance tests of rats (Konat et al., 2008) following Dox 

administration demonstrated that this ROS-generating chemotherapeutic agent leads to 

learning and memory deficits in rodents that mimics cognitive changes in CICI. 

In Fig. 4.5, the results investigated in the current study provide compelling evidence 

for the central role TNF-α in chemotherapy-induced mitochondrial and neuronal damage 

and likely in the mechanisms of CICI. Every result will be discussed below, respectively.  
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Figure 4.5 Schematic illustration of the sequelae of events in brain following Dox treatment 
of mice and their prevention or modulation in mice lacking the gene for TNF-α.  
The red arrows represent the changes following Dox administration in mice observed in 
the present study and the green lines represent that most of these changes are completely 
or partially prevented in TNFKO mice. 
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Protein oxidation and lipid peroxidation in plasma and brain of Dox-treated WT mice 

were also shown in plasma of Dox-treated TNFKO mice (Fig. 1a, 1c), but no different than 

control in brain of the latter was observed (Fig. 4.1b, 4.1d). That oxidative damage still can 

occur in the periphery with absence of TNF-α is consistent with the characteristics of Dox, 

generating superoxide free radicals via redox cycling of its quinone moiety in the presence 

of oxygen. The absence of oxidative damage in TNFKO mice brain following Dox 

treatment provides stronger evidence that TNF-α is a critical player in elevation of Dox-

induced oxidative damage in brain of WT mice. 

One of the most detrimental consequences in brain following chemotherapy is 

mitochondria dysfunction (Joshi et al., 2010; Tangpong et al., 2007; Tangpong et al., 2006; 

Tangpong et al., 2008). Mitochondrial dysfunction is considered as a potential causal factor 

in a variety of neurodegenerative disorders, including Alzheimer disease, Parkinson disease, 

amyotrophic lateral sclerosis, and Huntington disease among others (Butterfield, 2014; 

Butterfield et al., 2012; Chaturvedi and Flint Beal, 2013). The brain has a high and constant 

energy requirement coupled with low energy stores. Mitochondria are responsible for 

meeting much of this energy demand (Siegel, 2006). Impairment of mitochondrial function 

in brain indexed by a decrease in Complex I activity of the electron transport chain 

following systemic Dox administration has been observed (Tangpong et al., 2006). Here, 

using Seahorse technology, the effect of Dox administration on mitochondrial respiration 

indexed by OCR was presented (Fig. 4.2). Peripheral Dox-treatment resulted in decreased 

mitochondrial basal, ATP-linked OCR as well as reduced OCR maximal and reserve 

capacities in brain of WT mice (red, Fig. 4.2b). Strikingly, mitochondrial OCR in brain of 

Dox treated TNFKO mice (purple, Fig. 4.2) was preserved, equivalent to the level of that 
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observed in saline-treated WT and TNFKO mice (blue and green, Fig. 4.2), indicating a 

central role of TNF-α in the decreased mitochondrial function in brain present following 

Dox administration. Once Dox-induced, TNF-mediated dysfunction of brain mitochondria 

happens, opening of the mitochondrial permeability transition pore associated with the 

observed loss of cytochrome c and elevated apoptotic brain cell death (Tangpong et al., 

2006) likely underlies the loss of cognitive ability in mice following Dox administration 

(Keeney et al., 2018). 

H1-MRS allows non-invasive measurement of neurochemical changes in living brain 

(Jansen et al., 2006). As shown in chapter 3, changes in the neurochemical profile indexed 

by MRS in brain of WT mice following Dox administration was observed (Keeney et al., 

2018). Dox-treatment resulted in dramatic decreased ratio of Cho/Cr in the hippocampus, 

a brain region critically involved in learning and memory (Clarke et al., 2010; Goulart et 

al., 2010; Meck et al., 2013; Sarkisyan and Hedlund, 2009), and whose volume could be 

affected by Dox-induced TNF-α (Kwatra et al., 2016). In H1-MRS, choline, 

phosphocholine (PCho), and glycerophosphorylcholine (GPC) contribute to a cluster of 

peaks representing Cho (Keeney et al., 2018). Elevated TNF-α reportedly inhibits the 

synthesis of PtdCho, a major source of Cho, PCho, and GPC in the brain (Church et al., 

2005; Mallampalli et al., 2000). In the current study, bilateral hippocampal H1-MRS 

showed a profound decreased Cho/Cr ratio at 72 h following Dox treatment of WT mice 

(Fig. 4.3), while similar MRS measurements in brain of TNFKO mice showed a significant 

rebound of the Cho/Cr ratio from levels observed in Dox-treated WT mice (Fig. 4.3). 

Changes in choline-containing compounds on MRS are thought to be associated with 

membrane turnover (phospholipid synthesis and degradation) (Bertholdo et al., 2013; 
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Soares and Law, 2009) and have been attributed to myelin damage following chemotherapy 

(Ciszkowska-Lyson et al., 2003). The absence of TNF-α afforded significant protection of 

the Cho/Cr ratio in brain suggesting involvement of TNF-α in neuronal membrane damage.  

In order to gain further insight into the involvement of TNF-α in the decreased Dox-

mediated Cho/Cr ratio indexed in brain by MRS and a potential contributor to mechanisms 

of CICI, in the current study the activities of phospholipases responsible for the cleavage 

of choline and phosphocholine from PtdCho in the brain in TNFKO mice were investigated. 

Activities of both PC-PLC and PLD were found to be significantly diminished in brain of 

Dox-treated WT mice at 72 h post-treatment (Fig. 4.4), confirming prior studies (Keeney 

et al., 2018). PC-PLC activity remained lowered in brain of Dox-treated TNFKO mice, 

while PLD activity was significantly higher in brain of TNFKO mice following Dox 

treatment, providing evidence of TNF-α involvement in Dox-induced inhibition of PLD 

activity. Although Dox does not cross the BBB, Dox-induced ROS in the periphery 

possibly leads to the oxidative impairment of the BBB, allowing a small amount of Dox 

go into brain with local TNF-α elevation (Banks, 2016; Tabaczar et al., 2017), as well as 

brain oxidative damage (Fig. 4.1).  

Reportedly, PLCδ1 is a target gene for TNF receptor-mediated protection against 

cardiac injury by Dox (Lien et al., 2006). Expression of PLCδ1 was decreased in TNF 

receptor knockout mice with Dox treatment (Jang et al., 2008a) result that conceivably 

could contribute to the observation of the current study that PC-PLC still shows a lower 

level in brain of the Dox-treated TNFKO group. In recent research, leptin-induced TNF-α 

elevation reportedly occurs through activation of PLD (Lee et al., 2014), suggesting that 

PLD is possibly affected more than PLC by TNF-α deficiency, consistent with our present 
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findings using TNFKO mice. Moreover, phosphatidic acid, an intermediate of the PLD 

pathway, stimulated Ca2+-mobilization and displayed growth factor-like activity (De Valck 

et al., 1993), which could help decrease Dox-induced mitochondrial dysfunction in 

TNFKO mice brain. This observation conceivably might contribute to the partial rescue of 

PLD in TNFKO mice. On the other hand, as noted, PLD also affects the level of TNF-α, 

consistent with the notion that PLD inhibition could lead to less cytokine production, 

including that of TNF-α (Friday and Fox, 2016; Urbahn et al., 2018; Zhang et al., 2001). 

Consonant with this idea, PLD was recently shown to be involved in TNF-α regulation by 

improving survival and decreasing TNF-α following LPS treatment in PLD knockout mice 

(Urbahn et al., 2018). Further supporting this concept, LPS induced TNF-α elevation in 

mouse macrophage-like cells could be partially decreased by inhibition of PC-PLC or PC-

PLD and completely blocked by inhibition of both phospholipases (Zhang et al., 2001).  

In addition to TNF-α-related inhibition of PtdCho biosynthesis (Mallampalli et al., 

2000), TNF-α has been linked to a decline in phosphatidic acid levels (Oprins et al., 2002). 

PLD activity as well as the mRNA message for PLD have been shown to be increased 

during cellular differentiation and decreased during apoptosis (Jang et al., 2008a; 

Nakashima and Nozawa, 1999). Enzymatic activity of PLD was seen as essential to cell 

survival, and structural damage to PLD and decreased PLD activity is thought to promote 

apoptotic events (Jang et al., 2008b; Nozawa, 2002). There could be a cross-talk between 

the phospholipases and TNF-α expression due to their mutual dependence. Consequently, 

our results are consistent with the notion that ROS-generating chemotherapy agents’ 

involvement in PLD inhibition potentially makes a significant contribution to CICI. 
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CHAPTER 5. PROFILES OF BRAIN OXIDATIVE DAMAGE, VENTRICULAR 
ALTERATIONS, NEUROCHEMICAL METABOLITES IN THE STRIATUM, AND 
BRIAN PROTEOME OF PINK1 KNOCKOUT RATS AS FUNCTIONS OF AGE AND 
GENDER: RELEVANCE TO PARKINSON DISEASE 

5.1 Overview 

Parkinson disease (PD) is the second most common neurodegenerative disease 

associated with aging. Dopaminergic neuronal degeneration and α-synuclein aggregation 

are commonly found in the PD brain. Oxidative damage and inflammation often are 

considered as etiological factors of PD, although the detailed mechanisms still remain 

unknown. Gender and aging are two important risk factors to PD, and gene mutations and 

certain environmental factors have been implicated in this disease. The current study 

employed PTEN-induced putative kinase -1 (PINK1) knockout (KO) rats, since mutations 

in PINK-1 lead to familial PD. We evaluated the oxidative damage in the brain of PINK1 

KO rats, and MRI and MRS were used to measure the ventricle sizes and neurochemical 

metabolite profiles in these rats as a function of age and gender. We also investigated the 

brain proteome of PINK1 KO rats with age and different genders. Distinct gender- and age-

related alterations were found in PINK1 KO brain. The results are discussed with respect 

to the suitability of this unique rat as a faithful model of known characteristics of PD. 

5.2 Introduction 

The second most common age-related neurodegenerative disease is Parkinson disease 

(PD), with about 10 million people in the world diagnosed with this disorder (Pinares-

Garcia et al., 2018). Clinically, PD is characterized by motor dysfunction, including 

unstable postures, rigidity, bradykinesia, and resting tremors, and non-motor symptoms, 

including hallucination and anosmia, among others, and, in late-stage of PD, cognitive 
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deficits are observed (Poewe et al., 2017). Anosmia often happens many years prior to the 

appearance of motor symptoms appear. Pathologically, degeneration of dopaminergic 

neurons (DA) in the substantia nigra pars compacta and aggregation of phosphorylated α-

synuclein in Lewy bodies are observed in PD brain that eventually lead to less dopamine 

in the striatum. The mechanisms of the pathology of PD still are not fully defined. However, 

gene mutation, exposure to halocarbons and/or some metal ions and metalloids in the 

environment are suspected to play a role in the development of PD. Oxidative damage, 

inflammation, dysfunction of brain mitochondria, and altered proteostasis also are thought 

to be associated with the pathophysiology and progression of PD (Triplett et al., 2015). 

Mitochondrial dysfunction and DNA abnormalities have been complicatedly 

associated with PD (Greenamyre, 2018; Grünewald et al., 2018). Mutations of PTEN-

induced putative kinase-1 (PINK1) has been identified as a common genetic cause of 

familial PD. The protein PINK1 is a kinase maintaining the dynamics and integrity of 

mitochondria and providing neuroprotection to the brain. In addition, PINK1 is important 

for long term survival of human dopaminergic neurons (Wood-Kaczmar et al., 2008). 

Abnormal and dysfunctional mitochondria accumulate when PINK1 is absent, although in 

the mouse model of PD with knock-out of the PINK1 gene, deposition of α-synuclein and 

degeneration of DA neurons were not found (Akundi et al., 2011; Jiang and Dickson, 2018; 

Pickrell and Youle, 2015). 

Aside from aging, men have a higher risk, earlier onset, and faster progression of PD 

than women (Pinares-Garcia et al., 2018). The PINK1 and α-synuclein genes were reported 

to be upregulated in males compared to females (Cantuti-Castelvetri et al., 2007). 

Dopaminergic neurons may have different metabolic properties in the substantia nigra of 
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human males and females, leading the male gender to be a high risk to develop PD (Cantuti-

Castelvetri et al., 2007).  

 Up to now, the consensus is that a good mouse model to mimic all human PD 

characteristics does not exist (Dawson et al., 2010). A genetic rat model could have some 

advantages as a rodent model of PD, a bigger brain size compared to a knockout mouse 

model. In this current study, brain oxidative damage was measured by the slot-blot 

technique and the levels of metabolites in the striatum by MRS, and the ventricular size in 

brain of rats were measured by MRI, all to characterize whether the PINK1 KO rat model 

we used is a suitable animal model that fulfills the criteria and manifests the characteristics 

of PD. We used wild-type (WT) 2 months-old rats as the control group and studied the 

PINK1 knockout rat groups (hereafter, PINK1 knockout is represented by KO in Chapter 

5 of this dissertation) at 2, 4, 6, and 8 months of age separated into male and female groups. 

To our knowledge, the current research is the first study to show combined oxidative 

damage and striatum neurochemical profiles, as well as ventricular size, with the PINK1 

KO rats as a function of age and gender variables that provide insights into mechanisms of 

the pathobiology of familial PD. 

5.3 Materials and methods 

5.3.1 Chemicals  

All chemicals used in this study were purchased from Sigma-Aldrich (St. Louis, MO, 

USA) unless otherwise noted. Pierce BCA protein assay was purchased from Thermo 

Scientific (Waltham, MA, USA). Criterion precast polyacrylamide gels, TGS 

electrophoresis running buffers, Precision Plus Protein All Blue and unstained Standards, 
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and nitrocellulose membranes were purchased from Bio-Rad (Hercules, CA, USA). 

Amersham ECL IgG horseradish peroxidase-linked secondary antibodies and ECL Plus 

Western blotting detection reagents were procured from GE Healthcare (Pittsburgh, PA, 

USA). Protein carbonyl detection kits were purchased from Millipore (Billerica, MA, 

USA). Anti-HNE and anti-nitrotyrosine primary antibodies were purchased from Alpha 

Diagnostic International Inc (San Antonio, TX, USA) and Sigma-Aldrich, respectively. 

5.3.2 Animals 

All animal studies were approved by the University of Kentucky Institutional Animal 

Care and Use Committee and followed NIH Guidelines for the Care and Use of Laboratory 

Animals. Both male and female, WT and KO rats were purchased from the Sage Research 

Labs (Horizon, Inc.) at 2 months old. All rats were kept under standard conditions housed 

in the University of Kentucky Animal Facility. Rats were sacrificed at 2 months, 4 months, 

6 months and 8 months, respectively, after MRS was performed following methods 

described below. Rats were anesthetized using CO2 before sacrificing. All methods provide 

a surgical plan of anesthesia prior to tissue harvest or exsanguination. The whole brain was 

excised immediately and frozen in liquid nitrogen for molecular and biochemical studies. 

5.3.3 Hydrogen magnetic resonance spectroscopy 

H1-MRS (hydrogen magnetic resonance spectroscopy) was used to quantify 

neurochemical changes in the rat striatum. MRS data were acquired on a 7T 

BrukerClinscan horizontal bore system (7.0T, 30cm, 300Hz) equipped with a triple-axis 

gradient system (630 mT/m and 6300 T/m/s). A standard 2x2 array surface coil was used. 

Isoflurane (1.3%) was used to anesthetize rats before scanning in MRI compatible 
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equipment (CWE Inc.). Rats were placed on a Bruker scanning bed with a tooth bar, ear 

bars, and tape. Body temperature and respiration rate were monitored using equipment 

from SA Instruments Inc. The water heating system for the scanning bed maintained rat 

body temperature at 37°C. T2 weighted turbo spin echo sequences (TE 40ms, TR 2890ms, 

Turbo 7, FOV 20mm, 0.156 x 0.156 x 5.0 mm3) were acquired and used for the placement 

of the spectroscopy voxel. The scanning procedure took 40 min. A 2x5.5x3mm3 PRESS 

spectroscopic voxels (TE 135ms, TR 1500ms, 400avg, CHESS water suppression) was 

placed to cover both striatum. 1H-MRS spectra were processed and the concentrations of 

the metabolites were derived using LCModel on a Linux operating system. LCModel uses 

a linear combination of model spectra of metabolite solutions in vitro to analyze the major 

resonances of in vivo spectra (Provencher, 1993). The area of the creatine peaks (Cr+PCr) 

was used to normalize the area of peaks of all other metabolites. MRI and H1-MRS scans 

were performed by Dr. David Powell, Magnetic Resonance Imaging and Spectroscopy 

Center, University of Kentucky Medical Center. 

5.3.4 Measuring Ventricle sizes of rat’s brain on the MRI imaging 

The ventricle size of these rats were analyzed using the FSL software, including two 

lateral ventricles, 3rd ventricle and 4th ventricle. Ventricle size was accessed using a T2 MRI 

scan, which resulted in the CSF within the ventricles showing up as a light gray to white 

color in the images. Imaging dimensions of voxels was increased by a factor of ten to 

compensate for the difference between human and rat brain size because of FSL is designed 

for human brains. BET was run to remove everything including skull and neck on the MRS 

images except for the brain (Smith, 2002). After running BET, the program FAST was run 

(Zhang et al., 2001). The restore output gave a bias field corrected brain to view. Waxholm 
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Rat was then used to scalable brain atlas and determine the ventricular system and entire 

brain by measuring the areas in voxels on each slice of the MRI imaging and then add the 

values of each slice together, for the ventricular system and entire brain, respectively. 

Normalization of the dimension of the ventricular system was acquired by the ratio of the 

voxels of all ventricles divided by the voxels of the entire brain consisting of the 

parenchyma and the ventricular system. MRI was performed by Dr. David Powell, 

Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Medical 

Center. 

5.3.5 Sample preparation 

Wheaton glass homogenizer with ice-cold isolation buffer [0.32 M sucrose, 2 mM 

EDTA, 2 mM EGTA, 20 mM HEPES, 0.2 μg/mL PMSF, 5 μg/mL aprotinin, 4 μg/mL 

leupeptin, 4 μg/mL pepstatin, and 10 μg/mL phosphatase inhibitor cocktail 2] were used to 

homogenize the brains of rats. The homogenates were then sonicated on ice for 10 seconds, 

two times with 10 seconds rest in between. Protein concentrations of homogenates were 

determined by the Pierce BCA method (Rockford, IL, USA) after sonication. 

5.3.6 Slot blot assay 

Protein carbonyls (PC) and protein-bound 4-hydroxy-2-trans-nonenal (HNE) were 

detected by slot blot assay (Castegna et al., 2003; Sultana and Butterfield, 2008). For 

determination of PC, samples were derivatized with 2,4-dinitrophenylhydrazine (DNPH) 

in advance. For determination of HNE and 3-NT, brain homogenates were prepared with 

Laemmli buffer. Protein (250 ng) from each sample were loaded onto a nitrocellulose 

membrane in separate wells in a slot-blot apparatus (Bio-Rad, Hercules, CA, USA) under 



77 
 

vacuum formed by a water suction system. Membranes were blocked in 5% bovine serum 

albumin (BSA) in TBS-Tween20 (0.2% v/v) for 1.5 h and followed with incubation in 

primary antibody (anti-dinitrophenylhydrazone primary, anti-protein-bound HNE or anti 

3-NT, respectively, each produced in rabbit, Sigma-Aldrich) for 2 h, washed three times in 

TBS-T and then incubated for 1 h with secondary antibody (goat anti-rabbit secondary 

linked to alkaline phosphatase). Membranes were developed for alkaline phosphatase 

activity (ALP) buffer containing 5-bromo-4-chloro-3-indolyl-phosphate (BCIP, 1:300) 

dipotassium and nitro blue tetrazolium (NBT, 1:150) chloride, and then dried overnight, 

followed with image scanning for analysis performed using Scion Image (Scion 

Corporation, Frederick, MD).  

5.3.7 Isoelectric focusing (IEF)  

To separate the proteins at the 1st dimension by their isoelectric point, 150 µg brain 

samples were added with freshly prepared IEF rehydration buffer [8 M urea, 2 M thiourea, 

2.0% (w/v) CHAPS, 50 mM dithiothreitol (DTT), 0.2% Biolytes, 0.01% Bromophenol 

Blue] to reach the total volume to 200 µl, then shaken on a vortex at 22 °C for 2 h. After 

the 2h shaking, samples were sonicated for 10 s on ice at 20% power and then transferred 

to the focusing tray. Each sample in the focusing tray was covered with one 11 cm 

ReadyStrip IPG strips, pH 3-10 (Bio-Rad, Hercules, CA, USA), immediately followed with 

the rehydration process on the Protean IEF cell (Bio-rad, Hercules, CA)). The IPG strips 

were actively rehydrated at 20 °C for 18 h at 50 V. Each strip was covered with 2 ml mineral 

oil after the rehydration started 45 minutes. Then, the strips were isoelectrically focused at 

a constant temperature of 20 °C beginning at 300 V for 2 h linearly, 500 V for 2 h linearly, 

1000 V for 2 h linearly, 8000 V for 8 h linearly, and finishing at 8000 V for 10 h rapidly. 



78 
 

The IPG strips were then instantly transferred into a i12 Rehydration/Equilibration tray 

(Bio-Rad, Hercules, CA, USA) and stored at the -80 °C freezer. 

5.3.8 Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE)  

After the IEF separation, 2D-PAGE was used to separate proteins at the 2nd dimension 

based on their migration rate, which depends on molecular weight and protein shape. The 

i12 Rehydration/Equilibration tray containing the IPG strips was thawed at room 

temperature for 5 min. The 4 ml equilibration buffer A [6 M urea, 1% (w/v) SDS, 30% (v/v) 

glycerol, 50 mM Tris– HCl (pH 8.8), 0.5% DTT] was added to each strip in the tray for 10 

min and then the equilibration buffer A was poured out of the tray, immediately followed 

adding the equilibration buffer B [6 M urea, 1% (w/v) SDS, 30% (v/v) glycerol, 50 mM 

Tris–HCl, pH 8.8, 4.5% iodoacetamide (IA)] for 10 min. IPG strips were next placed into 

Linear Gradient (8-16%) Precast Criterion Tris–HCl polyacrylamide gels, 11 cm. Precision 

Plus Protein All Blue molecular weight standards were run with samples at a constant 

voltage of 200 V for approximately 45 min in Tris-Glycine SDS running buffer. 

5.3.9 Sypro Ruby staining  

Sypro Ruby gel protein stain allows for the detection and quantification of total protein 

content. After scanning the 2D gels, the gels were fixed in 50 mL fixing solution [7% (v/v) 

acetic acid, 10% (v/v) methanol] for 45 min. After removing the fixing solution, 50 mL of 

Sypro Ruby stain was added for overnight staining (16-18hr) at 22˚C with gentle rocking. 

Gels were rinsed off the background by putting the gel in another round of 50 ml fixing 

solution, gently rocking for 45-60min. The gels are then rinsed and transferred to 50 mL 

DI water and scanned at 450 nm using the afore-mentioned scanners. Gels were stored in 
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DI water at 4 °C until protein spot excision. 

5.3.10 PDQuest image analyses  

Spot intensities from Sypro Ruby-stained 2D-gel images were quantified 

densitometrically according to the total spot density using PDQuest 2D analysis software 

(Bio-Rad). Differential protein expression Spot intensities from Sypro Ruby-stained 2D-

gel images were quantified by densitometry. The intensities of gel spots were normalized 

to the total gel density. Protein spots of gels from a particular study were first manually 

matched together and then matched by the PDQuest program using powerful auto-

matching algorithms for accurate spot-matching. Resultant data of normalized intensity of 

each protein spot were compared between groups using the appropriate statistical analysis. 

5.3.11 In-gel trypsin digestion 

Significant protein spots were excised from 2D-gels with a clean, sterilized razor blade 

or pipette tip and individually transferred to Eppendorf microcentrifuge tubes. Gel plugs 

were incubated with 20 µL of 0.1 M ammonium bicarbonate (NH4HCO3) for 15 min, and 

with 30 µL of ACN for 15 min. Gel plugs were dried under a flow hood at RT for 30 min. 

Next, 30 µL of 20 mM DTT in 0.1 M NH4HCO3 was added at 56°C for 45 min. The 

DTT/NH4HCO3 solution was then removed and replaced with 30 µL of 0.05 M IA in 0.1 

M NH4HCO3 and 28 incubated at 22˚C for 15 min. Next, the IA solution was removed 

and plugs incubated for 15 min with 150 µL of 0.05 M NH4HCO3. Then, 200 µL ACN 

was added to this solution and incubated for 15 min. The solvent was removed and gel 

plugs were allowed to dry for 30 min under a flow hood. Plugs were rehydrated with 10 

µL modified trypsin solution (Promega, Madison, WI, USA) in 0.05 M NH4HCO3 (enough 
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to completely cover the gel plugs) and incubated with shaking overnight at 37 °C. 

5.3.12 Gel-peptide extraction and desalting 

The next day, the digest solution was transferred into a new Eppendorf microcentrifuge 

tube. Next, approximately 20 µL of a 5% ACN, 0.1% formic acid (FA) solution was added 

to the old tube containing the gel plug (twice the volume necessary to submerge the gel) 

and sonicated in a bath for 15 min. To this, 30 µL of a solution containing 95% ACN, 0.1% 

FA and 0.001 M NH4CO3 was added and sonicated for 15 min. This resulting solution was 

combined with the supernatant digest solution in the new Eppendorf tube. Using a Speed 

Vac, the samples were concentrated to a volume of 10 µl. Using C18 ZipTips 

(SigmaAldrich, St. Louis, MO, USA), salts and contaminants were removed from the 

tryptic peptide solutions. To prepare the column in the ZipTip, 10 µL of 100% ACN was 

aspirated into the tip and then expelled 5 times. Next, 10 µL of a 50% ACN solution 

containing 0.1% FA was aspirated and expelled 5 times for column equilibration. The 

trypsin digested solution was then slowly drawn up and pushed gently out of the column 

10 times for peptide adherence. Unwanted contaminants 29 were removed from the 

peptides in the ZipTip by washing with 10 µL of a 5% ACN and 0.1% FA solution 3 times. 

To elute the peptides from the column, 10 µL of a 50% ACN and 0.1% FA solution was 

drawn up and then expelled into a new Eppendorf tube. The eluant was drawn up and 

expelled 5 times to ensure complete peptide removal from the column. Samples were stored 

at -80˚C until MS/MS analysis. 
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5.3.13 LC-MS analysis, data interrogation and protein identification 

In-gel digested samples were desalted with C18 ZipTips, dried by speedvac, 

reconstituted in 10 µL 5% ACN/0.1% FA, and analyzed by an Easy nLC 1000-Orbitrap 

Elite system (Thermo Scientific, San Jose, CA) in data dependent scan mode. An in-house 

packed capillary column (0.1 x 130 mm column packed with 3.6 µm, 200Å XB-C18) and 

a gradient with 2% ACN/0.1% FA and 80% ACN/0.1% FA at 200 nL/min was used for 

separation. The MS spectra were acquired by the Orbitrap at 60,000 mass resolution and 

MS/MS spectra of the five most intense peaks in MS scan were obtained by the Orbitrap 

at 30,000 mass resolution.  

Data files from all samples in this dissertation research were searched against the most 

current version of the Swiss-Prot database by SEQUEST and Mascot (Proteome Discoverer 

v1.4, Thermo Scientific). At least two high-confidence peptide matches were required for 

protein identification with false discovery rate (FDR) at 1% and proteins matched with the 

same peptides are reported as one protein group.  

5.4 Results 

5.4.1 Age and gender both affect the oxidative damage in the rat brains. 

The rats were sacrificed at different ages (2 months, 4 months, 6 months and 8 months). 

Homogenates of rats brains were analyzed by the slot blot assay to measure the level of 

oxidative damage, including PC, HNE and 3-NT in the whole brain of WT and PINK1 KO 

rats, male and female, by reading the intensity of bands for each sample. All intensities 

were normalized to the average of all samples of 2-mos WT group for each oxidative 

damage biomarker, respectively. The data were shown in the percentage of 2 mos-old WT 
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rats ( including both male and female). PC, HNE and 3-NT levels are presented in Fig. 5.1-

a, 5.1-b, and 5.1-c, respectively. The columns represent oxidative damage levels in the 

brains of all rats, including both males and females at each genotype and age group. The 

blue triangle and red circle symbols represent only males and females at different ages, 

respectively. In Fig. 5.1-a, 2 mos-old PINK1 KO rats showed a trend of higher but not 

significantly increased PC levels in the whole brain compared to WT rats at the same age 

(2 mos). Then, as the age increased, the PC level increased at 4 mos in PINK1 KO rats, 

significantly different from 2 mos-old WT rats. However, PC levels were reduced at the 

age of 6 mos in PINK1 KO rat brain, and then significantly increased at 8 mos. PC levels 

of 8 mos-old KO rats also are significantly higher than both WT rats and PINK1 KO rats 

both at 2 mos-old age. Similar trends were observed after separation by gender. No 

significant differences were observed between males and females of each genotype at the 

same age. 

Fig. 5.1-b showed the HNE levels in the brains of rats. The trends as age increased 

show that HNE levels in the brain of PINK1 KO rats at 4 mos were significantly higher 

than all other groups when analyzing all rats with both genders and also in analyzing only 

females. The 4 mos-old PINK1 KO male rats show significant increased HNE levels 

compared to 2 mos-old WT, 2 mos-old PINK1 KO and 6 mos-old PINK1 KO rats, 

respectively). The decreased HNE levels at 6 mos of PINK1 KO male rats were 

significantly elevated at 8 mos, which is similar to the trend of PC levels of 6 mos-old 

PINK1 KO rats in Fig. 5.1-a. At the age of 4 mos-old, male PINK1 KO rats have less HNE 

levels in the brains than the PINK1 KO females.  

Fig. 5.1-c shows the 3-NT levels in the brains of rats. The PINK1 KO rats group at 6 
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mos of age showed a significant decreased 3-NT level in the brain compared to 4 and 8 

mos-old PINK1 KO rats in Fig. 5.1-c. Male KO rats have more significant changes than 

female KO rats as age increased. The 3-NT levels were significantly higher at 4 mos and 8 

mos of age for PINK1 KO male rats brain compared to 2 mos-old WT rats. A significant 

decrease in the level of 3-NT in the brain from 4 mos-old PINK1 KO male rats also was 

observed at the age of 6 mos, which increased again at the age of 8 mos. At the age of 8 

mos-old, male KO rats have more 3-NT levels in the brains compared to female KO rats.  
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Figure 5.1 The levels of the biomarker of oxidative damage: protein carbonyl, protein-
bound HNE, and 3-NT in the brain of WT and PINK1 KO rats at different ages and genders.  
The oxidative damage levels were revealed by the intensity on the slot blot of each brain 
sample and normalized the PINK1 KO groups to the percentage of 2 mos-old WT level for 
each biomarker. Black stars (*) and significant lines marked the significant changes 
between different age and genotype groups, consisting of both male and female. Purple # 
and purple significant lines (in 5.1-b and 5.1-c) marked the significant changes between 
male and female at same age and genotype group. The levels of oxidative damage were 
affected more in the PINK1 KO rats. Blue # and blue significant lines (in 5.1-b and 5.1-c) 
were used to show significant changes among different age groups for only male rats when 
the male rats have additional significant changes compared to total sample groups. (a) The 
protein carbonyl (PC) levels change as age increased with all samples, including both male 
and female. Both genders follow a similar trend: PINK1 KO rats reaching a high level at 4 
mos of age, decreased at 6 mos, and increased again at 8 mos. WT 2-mos vs. KO 4-mos 
(***, p<0.001); WT 2-mos vs. PINK1 KO 8-mos (****, p<0.0001); PINK1 KO 2-mos vs. 
PINK1 KO 4-mos (*, p<0.05); PINK1 KO 2-mos vs. PINK1 KO 8-mos (**, p<0.01); 
PINK1 KO 6-mos vs. PINK1 KO 8-mos (**, p<0.01). No significant differences between 
male and female at each age were found at each age group. (b) The protein-bound HNE 
(shorted to HNE) levels changed as age increased with all samples, including both male 
and female. PINK1 KO 4-mos rats showed a significantly higher level compared to all 
other groups. PINK1 KO 4-mos vs. WT 2-mos (****, p<0.0001); PINK1 KO 4-mos vs. 
PINK1 KO 2-mos (****, p<0.0001); PINK1 KO 4-mos vs. PINK1 KO 6-mos (****, 
p<0.0001); PINK1 KO 4-mos vs. PINK1 KO 8-mos (****, p<0.0001). All female rat 
groups followed a similar pattern as the total sample groups with all four significant 
differences (significant lines were not shown; p<0.0001). However, significant increased 
HNE levels in PINK1 KO male brain were observed from the 6 mos-old group to 8 mos-
old group (blue #, p<0.05), instead of a significant difference between PINK1 KO 4-mos 
group and PINK1 KO 8-mos group of only males. At the age of 4 mos, a significant gender 
difference also was observed (purple ##, p<0.01). At this age, female PINK1 KO rats are 
more affected by HNE damage than were male rats. (c) The 3-NT levels change as age 
increased with all samples, including both male and female. Both PINK1 KO 4-mos group 
and PINK1 KO 8-mos group showed significantly higher levels of 3-NT than the PINK1 
KO 6-mos group. PINK1 KO 4-mos vs. PINK1 KO 6-mos (***, p<0.001); PINK1 KO 8-
mos vs. PINK1 KO 6-mos (**, p<0.01). Female rats groups followed a similar pattern as 
the total sample groups as age increased, but only one significant decreased level of 3-NT 
was observed in only female rats with increasing age, which is PINK1 KO 4-mos female 
vs. PINK1 KO 6-mos female (the significant line was not shown, p<0.05). PINK1 KO male 
rats demonstrated more changes in brain 3-NT levels compared to female rats. In addition 
to PINK1 KO 6-mos male vs. PINK1 KO 4-mos male (the significant line was not shown, 
p<0.01) and PINK1 KO 6-mos male vs. PINK1 KO 8-mos male (the significant line was 
not shown, p<0.01), significantly increased 3-NT levels also were observed when WT 2-
mos male vs. PINK1 KO 4-mos male (blue ##, p<0.01), and WT 2-mos male vs. PINK1 
PINK1 KO 8-mos male (blue #, p<0.05). At age of 8 mos, a significant gender difference 
also was observed (purple ##, p<0.01). At this age, male PINK1 KO rats were more affected 
by 3-NT damages than were female rats. (Ren et al., 2019b) 
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5.4.2 PINK1 KO male rats have larger ventricle size than female PINK1 KO rats at the 

same age, suggesting more edema occurs in male PINK1 KO rats.  

Ventricle sizes were normalized to the entire brain size and then were assessed for 

significance using multiple t-tests (Fig. 5.2-a). Male PINK1 KO rats always showed 

significantly increased ventricle size compared to female PINK1 KO rats at each age 

(p<0.05, p<0.01, p<0.001, p<0.01, respectively), consistent with the notion that more 

edema occurred in the brains of male PINK1 KO rats. Fig. 5.2-b is presenting representative 

brain images with on MRI at the levels of both hippocampus and striatum. The brain images 

on the first row are from one male PINK1 KO rat at 8 mos-old, in which the ventricles are 

marked with blue color. While the brain images on the second row are from one female 

PINK1 KO rat at 8 mos-old, in which the ventricles are marked in red. The PINK1 KO rats 

at 2, 4, and 6 mos old show the same pattern: ventricle sizes of male PINK1 KO rats are 

larger than the ventricle sizes of female PINK1 KO rats at the same age (images are not 

shown for all age groups). WT rats do not show this pattern.  
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Figure 5.2 The ventricle sizes were measured from MRI images. 
The dimensions of the entire brain and all ventricles including two lateral ventricles, 3rd 
ventricle, and 4th ventricle were measured using the Waxholm Rat program after adjusting 
all the factors. The dimensions were acquired in voxels for each individual slice image of 
each brain. The values of each slice were added together to obtain the size of ventricles or 
the entire brain. The size of the ventricular system was normalized to the size of the entire 
brain. a) In the PINK1 KO rats, the male rats showed significantly larger sizes of ventricles 
in brain compared to those of females at the same ages. No differences were observed 
between males and females in the WT group. b) Representative images of brains from one 
male and one femalre from group of PINK1 KO rats at 8 mos-old. Brain images are 
presented at levels of both hippocampus and striatum. Ventricles of the male PINK1 KO 
rat is marked in blue, while the female PINK1 KO rat is marked in red. The images support 
the data showing in Fig. 5.2-a that male PINK1 KO rats have larger ventricles than female 
PINK1 KO rats. *p<0.05, significantly different.  
(Ren et al., 2019b) 
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5.4.3 Changes in neurochemical metabolites in striatum of rats were observed as age or 

gender varies. 

Bilateral H1-MRS scans of striatum revealed changes of metabolites, including 

glutamine (Gln), glutathione (GSH), taurine, inositol (Ins) and N-acetylaspartate (NAA) as 

functions of age and/or gender (Fig. 5.3-5). The peak area of metabolites was divided by 

the total peak areas of Cr and PCr together. One-way ANOVA was used to analyze the 

results for the function of age, while multiple t-tests were applied to analyze the metabolites 

in the striatum at the same age with different genders. All of the PINK1 KO rats showed a 

significantly higher level of Gln in the striatum compared to the WT control group (Fig. 

5.3-a). A trend of decreased taurine was observed in the striatum as age increased (Fig. 5.4-

a). The 6 mos-old PINK1 KO group showed significantly decreased levels compared to 

both 2 mos-old WT and 2 mos-old PINK1 KO group, respectively. The 8 mos-old PINK1 

KO group showed significantly decreased levels compared to 2 mos-old WT, 2 mos-old 

PINK1 KO, and 4 mos-old PINK1 KO group. In Fig. 5.5-a, the 2, 4, and 6 mos-old PINK1 

KO groups showed a decreased level of Ins in the striatum but not significantly compared 

to the WT group. The 8 mos-old PINK1 KO rats showed a significantly increased level of 

Ins in the striatum compared to all other PINK1 KO group of younger ages. Gender 

differences are shown in Fig. 5.3-b, 5.3-c, 5.4-b, and 5.5-b. At the age of 8 mos, the female 

PINK1 KO rats have significantly higher levels than male PINK1 KO rats for metabolites 

Gln, GSH, and NAA in the striatum (Fig. 5.3-b, 3-c, 5-b, respectively). The taurine levels 

in the striatum of PINK1 KO male were always higher than PINK1 KO female at all other 

ages (Fig. 5.4-b).  
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Figure 5.3 H1-MRS was used to quantify the changes in levels of neurochemical 
metabolites in the rat striatum.  
The peak area of each metabolite was divided by the total peak area of Cr and PCr together 
to normalize the levels of metabolites. (a) All PINK1 KO groups at each age had 
significantly higher levels of Gln than the WT group. WT 2-mos vs. PINK1 KO 2-mos 
(***, p<0.001). WT 2-mos vs. PINK1 KO 4-mos (*, p<0.05). WT 2-mos vs. PINK1 KO 6-
mos (**, p<0.01). WT 2-mos vs. PINK1 KO 8-mos (**, p<0.01). (b, c) In order to 
determine if brain levels of Gln or GSH were different in female and male PINK1 KO rats 
at a given age, comparisons were made only among PINK1 KO rats. At the age of 8 mos, 
female PINK1 KO rats have higher levels of both Gln and GSH compared to male PINK1 
KO rats (*p<0.05). (Ren et al., 2019b) 
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Figure 5.4 H1-MRS was used to quantify the neurochemical metabolites changes in the rat 
striatum.  
The peak area of each metabolite was divided by the total peak area of Cr and PCr together 
to normalize the levels of metabolites. (a) Taurine showed a decreased trend from 2 mos-
old WT to 8 mos-old PINK1 KO combined male and female animals. WT 2-mos vs. PINK1 
KO 6-mos (**, p<0.01). WT 2-mos vs. PINK1 KO 8-mos (***, p<0.001). PINK1 KO 2-
mos vs. PINK1 KO 6-mos (**, p<0.01). PINK1 KO 2-mos vs. PINK1 KO 8-mos (***, 
p<0.001). PINK1 KO 4-mos vs. PINK1 KO 8-mos (**, p<0.01). (b) In PINK1 KO rat 
striatum, the male has a higher level of taurine than females at each same age group. 
*p<0.05, **p<0.01, ***p<0.001. (Ren et al., 2019b) 
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Figure 5.5 H1-MRS was used to quantify the neurochemical metabolites changes in the rat 
striatum.  
The peak area of each metabolite was divided by the total peak area of Cr and PCr together 
to normalize the levels of metabolites. (a) The 8 mos-old KO rats showed increased levels 
of Ins in the striatum compared to the other three younger KO groups. KO 2-mos vs. KO 
8-mos (**, p<0.01). KO 4-mos vs. KO 8-mos (*, p<0.05). KO 6-mos vs. KO 8-mos (*, 
p<0.05). (b) NAA levels in the striatum of 8 mos-old female KO rats are higher than male 
at the same age. **p<0.01. (Ren et al., 2019b) 
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5.4.4 Changes in the brain proteome of PINK1 KO rats associated with age 

PDQuest analysis of all of the 2-D images found seven proteins that had intensities 

that were significantly changed with age. Four of these proteins are associated with energy 

metabolism. The intensities of the protein spots on the gels were normalized to the protein 

intensities of the 2 mos-old PINK1 KO rat group. After in-gel trypsin digestion and peptide 

extraction, MS/MS analyses coupled to interrogation of protein databases were utilized to 

determine the identities of the proteins. All proteins were identified by more than one 

unique peptide sequence. Table 5.1 lists the relevant information from the MS/MS analyses 

that led to the identity of each protein from the brains of PINK1 KO rats that showed 

significantly altered expression with age. A representative 2d-gel image is presented in 

Figure 5.6. The selected spots are labeled on the gel image. Table 5.2 shows the fold-

changes for each identified protein. 
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Table 5.1 Proteins with altered expression in brain of PINK1 KO rats.  
PDQuest and MS/MS results of brain proteins with significantly altered expression with 
age changes in the PINK1 KO rats. The LC-MS analysis, data interrogation, and protein 
identification analysis was performed by Dr. Jian Cai, School of medicine, University of 
Louisville. 

 

 

  

0212 Enoph1 Enolase-phosphatase E1 Q5PPH0 13.41 4 28.9 4.97
4505 Fas Fascin P85845 17.24 8 54.5 6.74
5104 Tpi1 Triosephosphate isomerase P48500 17.27 4 26.8 7.24
6306 Aldoc Fructose-bisphosphate aldolase C P09117 45.45 18 39.3 7.12

6407 Got1 Aspartate aminotransferase,
cytoplasmic P13221 33.90 14 46.4 7.21

7504 Pafah1b1 Platelet-activating factor
acetylhydrolase IB subunit alpha P63004 28.05 11 46.6 7.37

7702 Aco2 Aconitate hydratase, mitochondrial Q9ER34 32.05 23 85.4 7.83

MW
 (kDa)

Spot
# Abbreviation calc.

pIProtein Identified Accession
 #

Coverage
 (%)

# of
Unique

Peptides
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Table 5.2 Fold changes of the seven identified proteins as age increases in the brain of 
PINK1 KO rats.  
The fold changes were calculated by dividing the average of 2, 4, 6 and 8 mos PINK1 KO 
protein spot intensities, respectively, by that of the 2 mos-old PINK1 KO protein spot 
intensities. 

 

  

2 mos 1
4 mos 1.33
6 mos 1.41
8 mos 1.69

2 mos 1
4 mos 0.89
6 mos 0.69
8 mos 0.98

2 mos 1
4 mos 0.98
6 mos 0.74
8 mos 1.02

2 mos 1
4 mos 0.95
6 mos 0.64
8 mos 1.09

2 mos 1
4 mos 0.67
6 mos 0.57
8 mos 0.16

2 mos 1
4 mos 0.37
6 mos 1.69
8 mos 0.94
2 mos 1
4 mos 0.94
6 mos 0.49
8 mos 0.86

Enoph1 Enolase-phosphatase
E1

Fas Fascin

Pafah1b1
Platelet-activating factor

acetylhydrolase IB
subunit alpha

Got1
Aspartate

aminotransferase,
cytoplasmic

Aco2 Aconitate hydratase,
mitochondrial

Tpi1 Triosephosphate
isomerase

Abbreviation Protein Identified Fold Changes
 (vs 2 mos)

Aldoc Fructose-bisphosphate
 aldolase C



95 
 

The identified proteins can be subdivided into two categories: the proteins related to 

energy metabolism and glutamate regulation; and the proteins related to cell migration, 

motility, and adhesion. As age increased, expression of Tpi1 in brain of PINK1 KO rats 

was increased. Aldoc, Got1, and Aco2 showed decreased levels at 6 mos-old, compared to 

all other three age groups, respectively. These changes of proteins in the brain of KO rats 

at 6 mos-old may provide evidence that contributes to the decreased levels of oxidative 

damage in brains of 6 mos-old PINK1 KO rats. The expression of Enoph1 significantly 

decreased as age increases. Fas and Pafah1b1 significantly increased and decreased at 6 

mos of age, respectively. 

5.5 Discussion 

The current chapter focused on oxidative damage changes, and proteome in the whole 

brain, and the sizes and levels of neurochemical metabolites of the striatum of PINK1 KO 

rats with increasing age and gender variation compared to 2 mos-old WT rats. Male and 

female PINK1 KO rats at 2, 4, 6, 8 months of ages were selected (Ren et al., 2019b).  

Biomarkers of oxidative damage, including protein carbonyls, protein-bound HNE, 

and 3-NT, all showed increased levels as age increased compared to the WT 2 months-aged 

rats. However, the levels of all types of oxidative damage had a similar trend, namely, a 

decreased at 6 months of age. The elevated markers of oxidative damage in this PD rat 

model are consistent with mitochondrial changes known in PD (Greenamyre, 2018). 

PINK1 is a monitor of mitochondrial structure and function (Deas et al., 2009), and 

mutations in PINK1 are a known cause of familial PD (Jiang and Dickson, 2018). 

Mutations in PINK1 likely result in excess superoxide leak from damaged mitochondria 

and could be related to our observed elevated oxidative damage in brain of PINK1 KO rats, 
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since the ultimate mutation in PINK1 is the absence of the gene. 

In addition, ventricle size in the rat brain and neurochemical metabolites level in the 

striatum, including NAA, Gln, GSH and taurine, also exhibited greater changes in male 

KO rats, which are consonant with the known increased risk to develop PD among males. 

The energy metabolism and cell migration, and motility are disrupted in the brain of PINK1 

KO rats. 

The possibly earliest PD biomarker that appears before symptoms, decreased 

glutathione (GSH) and elevated GSSG, the oxidized form of GSH in the parenchyma 

(Chinta et al., 2006; Mischley et al., 2016), could contribute to greater oxidative damage 

in KO rats at younger ages. Blood GSH decreased in the blood of PD patients with age 

(Mischley et al., 2016). The reason for the decreased levels of all types of oxidative damage 

at 6 mos age for KO rats is unknown; this could be speculatively posited as due to 

compensatory responses in the brain. PINK1 KO mice started to show a PD phenotype 

when a decreased level of dopamine was observed (Akundi et al., 2011). The accumulation 

of oxidative damage conceivably triggered PD symptoms and compensation. However, as 

age increased with consequent more impaired mitochondria and neurons, the oxidative 

damage increased again as observed here at 8 mos in brains of PINK1 KO rats (Fig. 1a, 1b, 

1c).  

The MRS studies in the current study were on the striatum, which involves both motor 

and rewards systems. Synaptic plasticity and decreased dopamine release were found in 

the striatum of PINK1 KO mice (Kitada et al., 2007). The ventricular system in the brain 

parenchyma is filled with cerebrospinal fluid (CSF), and the choroid plexus is where CSF 

is produced. CSF circulates up and around the brain and is absorbed into the venous system 
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to protect the brain, to support cerebral blood flow, and to maintain brain homeostasis. 

Idiopathic normal pressure hydrocephalus was found in a patient with parkinsonism and 

initially consistent with PD symptoms (Cucca et al., 2018). The observed larger ventricle 

sizes of the male brain at all ages of PINK1 KO rats (Fig. 4) conceivably could be due to 

hydrocephaluism. Our results provide a hypothesis to potentially explain why males have 

a higher risk to develop PD compared to females. 

DA and Glu signaling are dysregulated in the PD striatum (Gardoni and Bellone, 2015). 

Gln is one source for making Glu then forming GSH, but extra Gln could lead to 

excitotoxicity. In the current study, the higher level of Gln in the striatum of PINK1 KO 

groups at all ages compared to 2 mos-old WT group (Fig. 5-a) is consistent with the known 

decreased plasma GSH level, an early biomarker of PD (Chinta et al., 2006; Mischley et 

al., 2016). Here in striatum of 8 mos-old male PINK1 KO rats, decreased levels of both 

Gln and GSH compared to those of females were observed (Fig. 5-b,c). The accumulation 

of Gln compared to WT rats is consistent with the observations that less GSH and Glu were 

found in PD (Buchanan et al., 2014). DA denervation may regulate glutamatergic signals 

and neural plasticity (Lange et al., 1997). A glutamate antagonist led to anti-akinetic effects 

in PD mice (Lange et al., 1997). γ-glutamyl cysteine ligase, a Nrf2-dependent enzyme, is 

the rate-limiting enzyme during the synthesis of GSH, under control of vitagenes network 

(Miquel et al., 2018). Vitagenes network is composed of several genes that can sense and 

respond to cellular stress to sustain the homeodynamics in vivo (Calabrese et al., 2018; 

Miquel et al., 2018). Vitagenes can produce antioxidants and anti-apoptotic molecules 

including GSH (Calabrese et al., 2014). In the brain, vitagenes mediate the redox 

homeostasis and integrated survival responses (Miquel et al., 2018), confirmed the notion 
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that male sex is a higher risk to PD than female, and confirmed our result in fig. 3-c that 

female PINK1 KO rats have higher level of GSH, which means higher stress tolerance in 

brain of female PINK1 KO rats than the stress tolerance in brain of male PINK1 KO rats 

at 8 mos of age. This result conceivably could be contributed by the regulation of estrogen, 

a notion consistent with the finding that estradiol could upregulate the antioxidant 

expression in human erythrocytes during the menstrual cycle (Chang et al., 2015).  

Taurine is an amino sulfonic acid that is important for neuroprotection and calcium 

homeostasis (Villeneuve et al., 2016). Taurine also is associated with mitochondrial 

function and oxidative damage (Hansen et al., 2010; Schaffer et al., 2009). We showed in 

this study that the taurine levels in the striatum had a decreasing trend (Fig. 5.4-a). The 

level of taurine of 6 mos-old PINK1 KO group was significantly lower than the taurine 

levels of 2-mos WT and 2-mos PINK1 KO groups. The taurine level in the PINK1 KO 

group at 8 mos-old was significantly lower than the taurine levels in the WT control group, 

2- and 4-mos old PINK1 KO groups, respectively. The males always appeared to have 

higher levels than females in each PINK1 KO age group (Fig. 5.4-b). Decreased levels of 

taurine were found in PD patients (Engelborghs et al., 2003), supporting our results that 

PINK1 KO rats had a decreased level of taurine in the striatum. Another study on PINK1 

KO rats also showed that the taurine level is lower in the PINK1 KO rats at 18 weeks (4.5 

months) but became higher at 34 weeks (8.5 months) (Villeneuve et al., 2016).  

NAA and Ins are commonly assessed by MRS for neurodegenerative diseases (Saeed 

et al., 2017). NAA is located in neurons and is involved in neuronal metabolism and 

integrity. About 5 percent decreased NAA levels were observed in the lentiform nucleus 

of PD patients (Firbank et al., 2002). We did not observe a decreasing trend of NAA 
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dependent on age. However, the higher level of NAA in female KO groups than male KO 

groups at age of 8 mos (Fig. 5.5b) indicated that females might have healthier neuronal 

conditions than male under stress from PINK1 deficiency and aging, consistent with the 

oxidative damage observed in current study (Fig. 5.1). The inositol level increased at 8 mos 

of age in PINK1 KO rats (Fig. 5.5-a), suggesting glial activation could become highly 

mobilized, with more inflammatory cytokines as a consequence, in later stages of PD.  

The proteomics study in this chapter focused on the changes in protein levels in brain 

of PINK1 KO rats as a function of age. Seven proteins were revealed with significantly 

altered expression levels in the brain of PINK1 KO rats as age increases. The depletion of 

ATP is involved in the apoptosis cascade. The four energy-related proteins were identified, 

including three proteins involved in glycolysis and the TCA cycle (Tpi1, Aco2, and Aldoc), 

and one protein (Got1) involved in the malate-aspartate shuttle, converting a TCA 

intermediate into glutamate (Glu), essential for learning and memory. The remaining three 

identified proteins are Enoph1, Fas, and Pafah1b1, involved in cell migration and motility. 

Increasing glycolysis may slow the neurodegeneration in PD (Cai et al., 2019). 

Enhanced glycolysis was reported to be associated absence of PINK1 (Gandhi et al., 2009; 

Scheele et al., 2007). PINK1 also was reported as a growth suppressor. PINK1 deficiency 

sustains cell proliferation by reprogramming glucose metabolism via hypoxia-inducible 

factor-1α (HIF1α) (Requejo-Aguilar et al., 2014). The stabilization of HIF1α is mediated 

by the mitochondrial ROS, leading to up-regulated pyruvate dehydrogenase kinase-1, 

which inhibits the activity of the enzyme pyruvate dehydrogenase (Requejo-Aguilar et al., 

2014). It was reported that familial PD patients with PINK1 mutation had increased 

astroglial proliferation (Prestel et al., 2008). The up-regulation of glycolytic enzyme Aldoc 
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enhances the overproduction of methylglyoxal (Liu et al., 2013), which is cytotoxic and 

formed by decomposition of the two triose phosphates in the glycolysis process. 

Meanwhile, accumulation of citrate is linked to the inhibition of Aco2 and results in the 

inhibition of phosphofructose kinase (PFK), associated with inhibition of glycolysis 

(Anandhan et al., 2017). The deceased expression level of Aldoc and Aco2 may contribute 

to the decreased level of oxidative damage of PINK1 KO rats at 6-mos of age by decreasing 

the production of methylglyoxal. In addition, Aco2 is inactivated by the oxidative damage 

from the PINK1 mutation. The inactivation of Aco2 can be compensated by α-ketoglutarate 

dehydrogenase which allows Glu to support the TCA cycle (Anandhan et al., 2017), which 

also could contribute to the decreased level of Aco2 at 6 mos-old with a consequently 

decreased level of oxidative damage, due to less glutamate and subsequent less 

excitotoxicity. The latter also could have resulted by the decreased Got1 level observed in 

this current chapter. ATP depletion was found in neurodegeneration of DA neurons in PD. 

Less Got1 also suggests that less NADH was transferred into the electron transport chain 

on the inner mitochondrial membrane, leading to the accumulation of insufficient energy 

level, which may result in the elevated oxidative damage again at 8 mos of age. Inactivation 

of Tpi1 could contribute to the generation of methylglyoxal (Gracy et al., 1998; Hipkiss, 

2011). Increased level of Tpi1 could possibly decrease the methylglyoxal, contributing to 

the oxidative damage caused by the absence of PINK1 and aging, as well as compensate 

for the disrupted homeostasis and altered energy metabolism. 

 Enoph1 is a bifunctional enzyme that regulates the biosynthesis of methionine (Met) 

via ubiquitous methionine salvage pathway (Wang et al., 2005), which may be involved in 

modulating stress sensitivity. A recent study reported that Enoph1 was upregulated by 
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increasing metastatic potential, as a prognostic factor of hepatocellular carcinoma (HCC) 

patients (Zhuang et al., 2019). HCC cell migration and invasion were promoted by 

overexpression of Enoph1, whereas these characteristics were inhibited by downregulation 

of Enoph1 (Zhuang et al., 2019). Pafah1b1 is important to cell division and motility by 

binding to cytoplasmic dynein, a microtubule (MT) minus end-directed motor protein 

(Moon and Wynshaw‐Boris, 2013), regulating MT function and dynein motor activity 

(Tanaka et al., 2004a). During neuronal migration, Pafah1b1 is necessary for nuclear 

movement (Tanaka et al., 2004b). Fas is an actin-bundling protein that maintains the cell 

adhesion, along with motility and invasion by regulating the cytoskeletal structures. Fas 

also is essential for suppressing immunological synaptic formation. Importantly, 

cytoskeletal remodeling, including actin dynamics, is essential for learning and memory, 

and in late stages of PD, dementia is often observed (Yang et al., 2016). In the brain of 

PINK1 KO rats, the expression of Enoph1 decreased as age increases. Decreased 

expression of Pafah1b1 was observed at 6 mos of age with a dramatically increased 

expression of Fas. It was reported that cell growth and migration was suppressed by the 

absence of PINK1 in lung cancer cells (Liu et al., 2018). Overexpression of PINK1 

upregulated the phosphorylation of Akt, leading to enhanced cell motility (Murata et al., 

2011). The elevated expression of Fas at 6 mos-old may compensate the insufficient cell 

migration due to the decreased expression of Enoph1 and Patah1b1. The dramatically 

decreased expression of Fas at age of 4 mos may contribute to the early onset of PD. 

Although the interaction and relationship between these three proteins are not clear in 

PINK1 KO rats, the cell migration, invasion, and motility are associated with aging and 

deficiency of PINK1.  
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CHAPTER 6. CONCLUSIONS AND FUTURE STUDIES 

The results of experiments presented in this dissertation have mainly investigated 

oxidative damage, brain proteome, and neurochemical metabolites in cognitive and 

neurodegenerative disorders, including chemotherapy-induced cognitive impairment 

(CICI) and a potential model of familial Parkinson disease (PD), to gain insights into the 

pathological and etiological mechanisms and to take steps toward discerning protective and 

preventive strategies.  

The research supports the overall hypothesis that oxidative damage is one of the 

critical factors underlying cognitive and neurodegenerative disorders, including CICI and 

PD, while together with biochemical changes and mitochondrial dysfunctions in brain 

contribute to the pathological mechanisms of CICI and PD.  

6.1 Conclusions and future studies of project 1: CICI 

6.1.1 Conclusions of CICI project 

With the large and increasing number of cancer survivors in the world, such people are 

seeking a longer and better quality of life. CICI is subtle with loss of learning ability, 

memory, attention, executive function and processing speed, and these conditions can be 

long-lasting or short-term, affecting the quality of life of cancer survivors. Patients are 

eager to recover a normal life not only physically, but also mentally. That this condition is 

so debilitating necessitates that urgent investigations into the biochemical mechanisms of 

CICI, ranging from the effects of anti-cancer drugs, prevention and protection of patients 

from cognitive deficits, and other side effects be undertaken.  

In the first project, attempts to build a fuller picture of mechanisms of CIC, and thereby 
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for future studies and clinical treatments designed to improve the quality of life of cancer 

survivors without the interference of chemotherapeutic efficacy, were investigated. This 

project investigated the mechanisms of CICI using mouse, and the prototype of ROS-

generating chemotherapeutic drug, doxorubicin (Dox). The effects of 2-mercaptoethane 

sulfonate sodium (MESNA) in Chapter 3 and role of tumor necrosis factor-alpha (TNF-α) 

in CICI in Chapter 4 were studied on the etiological and pathological mechanisms of 

doxorubicin (Dox)-induced cognitive impairment and oxidative damage. 

The first part of the CICI project showed that co-administration of MESNA with Dox 

protects not only plasma, but also brain of mice in vivo against Dox-induced oxidative 

stress. In addition to the known MESNA function that can prevent bladder bleeding, the 

results showed that Dox-mediated deficits of memory are prevented by MESNA. 

Concomitantly, the results demonstrated that metabolism of choline-related compounds 

was affected in Dox-treated mice. The diminished level of choline-containing compound 

in the mice hippocampus, likely are as the consequence of the decreased activities of PC-

PLC and PLD. These studies are the first to demonstrate the protective effects of MESNA 

on Dox-induced cognitive impairment, choline-containing compounds level in 

hippocampus, and PC-PLC activity in brain, providing more evidence for MESNA as a 

potential treatment for CICI. 

In the second part of CICI project, TNFKO mice were used to test the hypothesis that 

TNF-α plays a critical role in our laboratory’s proposed mechanisms of CICI. Dox-induced 

oxidative damage in brain was absent in TNFKO mice. Assessed by oxygen consumption 

rate, mitochondria in brain from TNFKO mice are protected following Dox treatment 

compared to brain mitochondria from the saline-treated WT group. Choline levels in 
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hippocampus and phospholipase D activity of the whole brain also were elevated in Dox-

treated TNFKO mice compared to Dox-treated WT mice. We confirmed the pivotal role of 

oxidative stress-mediated TNF-α in CICI, providing more evidence to support and expand 

our proposed CICI model and subsequent potential intervention. These data provided 

strong evidence that TNF-α is critically involved in the mechanisms of CICI for future 

studies. 

Multiple pathogenic mechanisms most likely are involved in the mechanisms of CICI. 

The cross-talk and interaction among all possible candidates erect a complicated network 

of processes that lead to eventual neuronal apoptosis and cognitive deficits in many cancer 

survivors. Altered brain structures, decreased neural plasticity and telomere shortening 

could contribute to the observed long term cognitive dysfunction. DNA damage, hormone 

changes and polymorphism of genes involved in neural repair and neurotransmission also 

conceivably could contribute to CICI. Neural inflammation and oxidative damage to key 

proteins, lipids, DNA and membranes are considered to be fundamental phenomena 

underlying CICI mechanisms, potentially leading to other contributors to CICI. Oxidative 

damage is one of the most important candidate mechanisms supported by the studies in the 

Project 1 of this dissertation research. The key pro-inflammatory cytokines, including 

TNF-α, that are elevated in the periphery by ROS associated chemotherapeutic drugs, cross 

the BBB, to lead to subsequent neuronal death, particularly in the hippocampus and pre-

frontal cortex. These changes are postulated to result in the clinical presentation of CICI, 

consistent with oxidative damage-mediated elevation of TNF-α, inflammatory cytokines 

and mitochondrial damage found in brain. Subsequent opening of the mitochondrial 

permeability transition pore leads to release Cyt c to activate apoptotic pathways. 
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Combining with the previous work, the data shown in Project 1 allow us to develop a more 

fully detailed model of the mechanisms of Dox-induced, oxidative damage and TNF-α-

mediated CICI (Ren et al., 2019a). The expanded model is shown in Fig. 6.1. 
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Figure 6.1 An expanded model of the mechanism of CICI. This proposed mechanism of 
CICI mediated by ROS-generating chemotherapeutic drugs and associated oxidative stress. 
Such anti-cancer drugs in the periphery trigger oxidative stress and result in protein 
oxidation and lipid peroxidation, producing elevated TNF-α that crosses the BBB by 
receptor-mediated endocytosis or by oxidative stress-mediated disruption of the BBB. 
According to previous studies, TLR4 activation may lead to BBB disruption and cytokines 
productions such as TNF-α. Once TNF-α goes into brain, the local immune response is 
triggered by microglia activation and NF-κB activation, triggering ROS/RNS leading to 
oxidative stress. DNA repair systems are affected by oxidative stress in brain and lead to 
neurodegeneration. Impaired mitochondria function follows the nitration of MnSOD and 
p53 non-transcriptional activation. As a result, the mitochondria permeability transition 
pore (mPTP) is opened. Cyt c released from the pore initiates caspase activation, leading 
to neural apoptosis. Once neurodegeneration and neuronal death happen, cognitive deficits 
of chemotherapy-treated cancer survivors appear. 
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6.1.2 Future studies of CICI 

Due to the central role of TNF-α in the mechanism of CICI, it would be elaborated 

upon and extended if the further involvement of TNF-α is taken into account. Combining 

MESNA treatment and TNF-α absence or block together would be beneficial to further 

study the oxidative stress-mediated TNF-α elevation and subsequent changes in both 

plasma and brain, especially for the activities of PC-PLC and PLD. Since PC-PLC is 

protected by MESNA and PLC is protected by the absence of TNF-α, it would not be 

surprising that both PC-PLC and PLD are fully or partially protected against Dox treatment. 

Considering the cross-talk between TNF-α and PLC, and PLD, study the Dox effects on 

TNF-α and oxidative damage with inhibitor of PLC and/or PLD would be helpful to 

elucidate the relationship of the phospholipase and TNF-α, associated with cognitive 

impairment, to provide more potential markers for protecting cancer survivors against CICI. 

Moreover, the impacts of chemotherapy on the choline metabolism pathway would yield 

quite interesting information, including the alteration of important relative molecules 

acetylcholine, sphingomyelin, and ceramide following Dox.  

6.2 Conclusions and future studies of project 2: PD 

6.2.1 Conclusions of PD project 

The studies in Project 2 examined the suitability of PINK1 KO rat for studying PD by 

investigations into the brain of this KO rat model. Oxidative damage and neurochemical 

metabolites were measured in the brain of PINK1 KO rats as a function of age and gender. 

Adding the female KO rats to the study is important for fully investigating PD. The risk 

factor of gender in PD pathology is supported and explained by employing the female rats 
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together with male rats, especially shown in this dissertation research by the different 

ventricle sizes between male and female rats. The presented elevation of oxidative damage, 

associated with neurochemical changes, reveals altered antioxidant ability, altered level of 

amino sulfonic acid, and altered neuron condition with the absence of PINK1, which is 

consistent with the changes in familial PD brain. Both gender and age contributed to the 

alterations in the brain.  

In addition, the brain proteome of PINK1 KO rats with increasing age was measured. 

The majority of the significantly altered proteins by the absence of PINK1 studied in this 

project are involved in vital processes that can be subdivided into two main categories: 

energy metabolism and glutamate regulation, along with and the migration and motility of 

neurons in KO rat brain.  

Taken together, Project 2 showed the biochemical and structural changes in brains of 

PINK1 KO rats as a function and/or age. The results build more full description of the 

features of the PINK1 KO rat, providing the references for future studies of finding an ideal 

animal model for PD, and for studying of PINK1 in PD to take forward steps of 

investigation of mechanisms of PD. 

6.2.2 Future studies of PD 

It is too early to permit a definitive answer to whether PINK1 KO rat is a good animal 

model for PD. While there are changes in oxidative damage in brain with age and, in the 

case of 3-NT, with gender, as well as changes in ventrical sizes and striatal metabolites 

with age and gender difference. Proteomics analyses provided insights that are worth 

further exploration into energy metabolism, glutamate regulation, and cell migration and 

motility. However, there was no α-synuclein deposition in brain, severely dampening the 
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notion that the PINK1 KO rat is a model of PD with high fidelity. For further study of this 

PINK1 KO rat model at older age may be helpful. Investigations into the key proteins and 

metabolites may conceivably provide potential additional insights into specific treatment 

or prevention of Parkinson diseases, eventually lead to extended and healthy human 

lifespan with a better quality of life.  
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APPENDIX 

TABLE TO SUPPLEMENT TABLES OR FIGURES 

Figure 3.3 b 

 Saline Dox 
 0.916 0.908 
 1.01 0.836 
 0.897 0.761 
 0.828 0.877 
 0.888 0.844 
 0.983 0.870 
 1.01 0.879 
 0.853 0.926 
 0.858 0.860 
 0.974 0.837 
 0.966 0.857 
   
N 11 11 
Mean 0.926 0.860 
Std 0.065731409 0.043103048 
SEM 0.068317413 0.0464915 

 

Figure 3.3 c 

 Saline Dox Dox/Mesna Mesna 
 1.07 0.722 0.775 1.09 
 1.01 0.769 0.693 1.05 
 1.10 0.709 0.735  
 1.22 0.870 0.840  
 1.11 0.728 0.662  
 1.17 0.764   
 1.05 0.757   
 1.14 0.723   
 1.08 0.727   
 1.13 0.650   
  0.624   
  0.532   
  0.581   
  0.624   
     
N 9 13 4 1 
Mean 1.112 0.697 0.733 1.050 
Std 0.062805 0.091026694 0.07766 0.028284 
SEM 0.059552 0.109049653 0.090738 0.027603 
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Figure 4.3 
 WT Saline WT Dox TNFKO Dox 

TNFKO 
Saline 

 1.08 0.65 0.789 1.04 
 1.13 0.624 0.772 0.981 
 1.04 0.532 0.783 1.02 
 1.05 0.581 0.882 1.2 
 1.01 0.624 0.776 0.954 
 1.07 0.622   

     
     
N 6 6 5 5 
Mean 1.063333 0.6055 0.8004 1.039 
Std 0.045497 0.046403 0.046079 0.09601 
SEM 0.018574 0.018944 0.020607 0.042937 
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Fig 4.4 a,b 

 WT Saline WT Dox TNFKO Dox 
TNFKO 
Saline 

 98.23009 50.97345 58.40708 108.8153 
 96.63717 64.77876 54.69027 112.8414 
 105.1327 61.59292 46.19469 113.397 
 95.37947 73.06174 79.39569 110.8571 
 95.60287 80.13816 83.8658 112.2998 
 109.0177 68.66167 70.09187 111.4734 
    105.5331 
     

N 6 6 6 7 
Mean 100 66.53445 65.4409 110.7453 
Std 4.037514 11.1401 16.31988 1.841031 
SEM 1.648308 4.547927 6.662564 0.695844 

 

 WT Saline WT Dox TNFKO Dox 
TNFKO 
Saline 

 89.4845 73.93095 83.72857 97.75567 
 103.4013 66.00141 86.06037 99.13375 
 107.1142 74.92252 94.67936 101.9916 
 96.954 79.73763 86.05748 104.3349 
 100.8836 79.49543 86.13155 101.8802 
 102.1091 77.23817 94.46626 105.6355 
 97.13444 87.15967 89.9338 90.01151 
 101.0374 88.87319 85.04753  

 101.8814 82.0748 87.30135  

  79.75942 89.42641  

   93.88762  

N 9 10 11 7 
Mean 99.99999 78.91932 88.79275 100.1062 
Std 6.743146 5.581468 4.232344 2.5926 
SEM 2.247715 1.765015 1.2761 0.979911 
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Fig 5.1 a 

 

 

M WT 2 mos F M KO 2 mos F M KO 4 mos F     

106.9156 106.4359 106.4359 110.6896 110.6896 113.7463 109.4692 109.4692 135.9455

110.9991 112.8093 112.8093 128.0578 128.0578 122.1465 129.5828 129.5828 134.6138

91.85923 96.26248 96.26248 100.3649 100.3649 84.67331 105.364 105.364 113.4719

84.4733 102.8765 102.8765 108.1402 108.1402 79.01053 121.1789 121.1789 115.2734

87.36865 106.9156 105.4724 105.4724 117.3096 99.79194 99.79194 109.5391

110.9991 117.8448 117.8448 117.5626 128.9895 128.9895 116.1444

91.85923 113.7463 140.5999 140.5999 160.9503

84.4733 122.1465 136.9134 136.9134 144.2356

87.36865 84.67331 135.9455

79.01053 134.6138

117.3096 113.4719

117.5626 115.2734

109.5391

116.1444

160.9503

144.2356

N 5 9 4 6 12 6 8 16 8
Mean 96.32318 100 104.596 111.7616 108.7515 105.7415 121.4862 125.129 128.7718
Std 11.91755 10.38899 6.910084 9.861785 14.64791 18.78922 15.11979 16.56983 18.14945
SEM 5.329691 3.462998 3.455042 4.026057 4.228487 7.670666 5.345652 4.142458 6.416799

          

N
Mean
Std
SEM

      M KO 6 mos F M KO 8 mos F

119.558 119.558 114.914 136.9579 136.9579 140.0042

112.6031 112.6031 116.58 139.528 139.528 136.194

90.83826 90.83826 111.6142 114.7677 114.7677 118.2119

115.8763 115.8763 94.36012 122.3837 122.3837 109.8961

106.3091 106.3091 126.2803 125.7692 125.7692 119.4038

99.39035 99.39035 112.3736 122.3302 122.3302 139.4795

114.1828 114.1828 120.1636 144.244 144.244 141.5439

122.0245 122.0245 126.0585 140.0042

114.914 136.194

116.58 118.2119

111.6142 109.8961

94.36012 119.4038

126.2803 139.4795

112.3736 141.5439

120.1636

126.0585

8 16 8 7 14 7
110.0978 112.6954 115.293 129.4258 129.3367 129.2476
10.61017 10.38709 10.15861 10.85154 11.50138 12.99369
3.751262 2.596772 3.591611 4.101496 3.073872 4.911152
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 Fig 5.1 b 

 
 
 

M WT 2 mos F M KO 2 mos F M KO 4 mos F     

98.8789 104.6823 104.6823 0 105.4453 105.4453 102.8702 0 118.7694 118.7694 129.3203

99.42412 103.9507 103.9507 103.0602 103.0602 109.7833 116.5919 116.5919 116.5346

90.10179 103.6053 103.6053 110.5361 110.5361 114.3942 119.3617 119.3617 122.9786

101.9699 96.64338 96.64338 105.6537 105.6537 97.72884 115.1414 115.1414 127.5731

100.7436 98.8789 102.218 102.218 83.21787 119.3121 119.3121 133.8613

99.42412 97.48986 97.48986 93.2734 118.2757 118.2757 132.7073

90.10179 102.8702 116.519 116.519 122.8654

101.9699 109.7833 98.95969 98.95969 119.726

100.7436 114.3942 129.3203

97.72884 116.5346

83.21787 122.9786

93.2734 127.5731

133.8613

132.7073

122.8654

119.726

N 5 9 4 6 12 6 8 16 8
Mean 98.22366 100 102.2204 104.0672 102.1392 100.2113 115.3664 120.5311 125.6958
Std 4.696265 4.552383 3.745041 4.334923 8.428754 11.3395 6.799543 8.237661 6.181288
SEM 2.100234 1.517461 1.87252 1.769725 2.433172 4.629332 2.404002 2.059415 2.185415

      M KO 6 mos F M KO 8 mos F

0 104.6561 104.6561 100.3971 0 109.0645 109.0645 108.0446

102.1251 102.1251 100.8044 110.6557 110.6557 97.87628

101.7083 101.7083 110.6841 104.1143 104.1143 97.69983

80.28591 80.28591 98.74709 100.378 100.378 111.219

98.2735 98.2735 111.6196 122.1543 122.1543 107.2055

95.05537 95.05537 103.9642 103.1616 103.1616 104.8361

89.92893 89.92893 95.13411 99.67559 99.67559 107.8935

95.86136 95.86136 94.84415 108.0446

100.3971 97.87628

100.8044 97.69983

110.6841 111.219

98.74709 107.2055

111.6196 104.8361

103.9642 107.8935

95.13411

94.84415

8 16 8 7 14 7
95.98682 99.00558 102.0243 107.0291 105.9985 104.9678
7.88216 7.595772 6.377756 7.829768 6.492272 5.247882

2.786764 1.898943 2.254877 2.959374 1.735133 1.983513

          

N
Mean
Std
SEM
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Fig 5.1 c 
 

 
 
 

M WT 2 mos F M KO 2 mos F M KO 4 mos F     

89.68431 97.51335 97.51335 0 113.2659 95.2887 95.2887 0 135.4538 111.564 111.564

109.5689 98.13586 98.13586 96.55184 105.1529 105.1529 115.6369 134.9594 134.9594

106.7277 87.10676 87.10676 100.0258 124.734 124.734 125.1377 110.4472 110.4472

104.0292 108.6752 108.6752 114.3165 97.50757 97.50757 120.5083 115.7808 115.7808

98.55875 89.68431 106.4491 86.18965 86.18965 111.1066 106.6983 106.6983

109.5689 99.46337 97.67488 97.67488 102.1957 96.29762 96.29762

106.7277 113.2659 99.82921 104.0446 104.0446

104.0292 96.55184 106.4831 106.0648 106.0648

98.55875 100.0258 135.4538

114.3165 115.6369

106.4491 125.1377

99.46337 120.5083

111.1066

102.1957

99.82921

106.4831

N 5 9 4 6 12 6 8 16 8
Mean 101.7138 100 97.85779 105.0121 103.0517 101.0913 114.5439 112.638 110.7321
Std 7.855982 8.005499 8.809029 7.53644 10.38279 13.08219 12.14209 11.53109 11.36635
SEM 3.513302 2.6685 4.404514 3.076739 2.997254 5.340781 4.292878 2.882772 4.01861

          

N
Mean
Std
SEM

      M KO 6 mos F M KO 8 mos F

0 111.4891 104.1084 104.1084 0 109.2907 116.0204 116.0204

106.2988 105.1315 105.1315 129.1392 111.4152 111.4152

98.08235 90.28207 90.28207 130.1861 104.5377 104.5377

95.91336 95.53654 95.53654 115.805 99.64329 99.64329

90.193 93.68998 93.68998 122.334 85.16485 85.16485

90.93321 106.1284 106.1284 103.065 99.66792 99.66792

84.43519 80.51105 80.51105 119.1603 98.43136 98.43136

84.39599 78.23112 78.23112 109.2907

111.4891 129.1392

106.2988 130.1861

98.08235 115.805

95.91336 122.334

90.193 103.065

90.93321 119.1603

84.43519

84.39599

8 16 8 7 14 7
95.21763 94.71 94.20238 118.4258 110.2758 102.1258
9.806818 9.99029 10.8216 9.959651 12.78152 9.989135
3.467234 2.497573 3.826015 3.764394 3.416004 3.775538
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Fig 5.2  
 

 

  WT 2 mos 0.008012 0.010771 0.009051

KO 2 mos 0.014837 0.012963 0.0213 0.013542 0.016041 0.024416

KO 4 mos 0.024492 0.012845 0.009123 0.031238 0.021476 0.015073

KO 6 mos 0.009455 0.032917 0.019473 0.038861 0.011437 0.018332

KO 8 mos 0.020223 0.012837 0.017765 0.027521 0.015562 0.011611

N 5 5 5 4 4 5
Mean 0.015404 0.016467 0.015342 0.027791 0.016129 0.015404
Std 0.007003 0.009241 0.005846 0.010607 0.00412 0.007003
SEM 0.003132 0.004133 0.002614 0.005304 0.00206 0.003132

Male

WT 2 mos

KO 2 mos

KO 4 mos

KO 6 mos

KO 8 mos

N
Mean
Std
SEM

  0.009341 0.009855 0.007422

  0.008832 0.013815 0.006094 0.007968 0.006603 0.00845

  0.010697 0.007673 0.007242 0.006612 0.010464

  0.006497 0.004857 0.006923 0.011262 0.01324

  0.007276 0.014471 0.006574 0.007036 0.011396 0.009804

5 5 5 5 5 5
0.015404 0.015404 0.015404 0.015404 0.015404 0.015404
0.007003 0.007003 0.007003 0.007003 0.007003 0.007003
0.003132 0.003132 0.003132 0.003132 0.003132 0.003132

Female
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Fig 5.3 a 

 WT 2 mos KO 2 mos KO 4 mos KO 6 mos KO 8 mos KO 2 mos 
 0.544 0.526 0.593 0.557 0.664 105.4453 

 0.415 0.608 0.683 0.558 0.699 103.0602 
 0.455 0.66 0.565 0.607 0.549 110.5361 
 0.471 0.6 0.514 0.593 0.559 105.6537 
  0.657 0.564 0.648 0.638 102.218 
  0.622 0.536 0.643 0.598 97.48986 
  0.535 0.617 0.594 0.561 102.8702 
  0.628 0.564 0.534 0.533 109.7833 
  0.485 0.526 0.534 0.594 114.3942 
  0.639 0.533 0.568 0.527 97.72884 
  0.62 0.633 0.585 0.533 83.21787 
  0.616 0.539 0.525 0.536 93.2734 
       

       
       
       
       
N 4 12 12 12 12 12 
Mean 0.47125 0.599667 0.57225 0.5788 0.582583 102.1392 
Std 0.053916 0.055006 0.050516 0.0406 0.057166 8.428754 
SEM 0.026958 0.015879 0.014583 0.0117 0.016502 2.433172 
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Fig 5.3 b 

 KO 8 mos 
Male 

KO 8 mos 
Female 

 0.561 0.664 
 0.533 0.699 
 0.594 0.549 
 0.527 0.559 
 0.533 0.638 
 0.536 0.598 
   

   
N 6 6 
Mean 0.547333 0.617833 
Std 0.025758 0.05953 
SEM 0.010516 0.024303 

   
 

Fig  5.3 c 

 KO 8 mos 
Male 

KO 8 mos 
Female 

 0.207 0.238 
 0.196 0.23 
 0.21 0.22 
 0.215 0.203 
 0.188 0.242 
 0.188 0.217 
   

   
   
N 6 6 
Mean 0.200667 0.225 
Std 0.011622 0.014533 
SEM 0.004745 0.005933 
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5.4 a 

 WT 2 mos KO 2 mos KO 4 mos KO 6 mos KO 8 mos 
 0.544 0.526 0.593 0.557 0.664 

 0.415 0.608 0.683 0.558 0.699 
 0.455 0.66 0.565 0.607 0.549 
 0.471 0.6 0.514 0.593 0.559 
  0.657 0.564 0.648 0.638 
  0.622 0.536 0.643 0.598 
  0.535 0.617 0.594 0.561 
  0.628 0.564 0.534 0.533 
  0.485 0.526 0.534 0.594 
  0.639 0.533 0.568 0.527 
  0.62 0.633 0.585 0.533 
  0.616 0.539 0.525 0.536 
      

N 4 12 12 12 12 
Mean 0.47125 0.599667 0.57225 0.5788 0.582583 
Std 0.053916 0.055006 0.050516 0.0406 0.057166 
SEM 0.026958 0.015879 0.014583 0.0117 0.016502 

 

5.4 b 

 Male Female 

KO 2 mos 0.915 0.989 0.996 0.927 1.069 1.065 0.877 0.923 0.915 0.899 0.91 0.971 

KO 4 mos 0.996 0.924 0.914 0.884 0.998 0.991 0.914 0.856 0.854 0.927 0.894 0.825 

KO 6 mos 0.957 0.997 0.867 0.881 0.996 0.869 0.759 0.84 0.788 0.77 0.79 0.761 

KO 8 mos 0.858 0.784 0.878 0.861 0.852 0.885 0.846 0.795 0.708 0.804 0.763 0.847 

N 4 4 4 4 4 5 5 5 5 5 5 5 
Mean 0.932 0.924 0.914 0.888 0.979 0.015 0.015 0.015 0.015 0.015 0.015 0.015 
Std 0.059 0.099 0.058 0.028 0.091 0.007 0.007 0.007 0.007 0.007 0.007 0.007 
SEM 0.030 0.049 0.029 0.014 0.046 0.003 0.003 0.003 0.003 0.003 0.003 0.003 
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5.5 a 

 WT 2 mos KO 2 mos KO 4 mos KO 6 mos KO 8 mos 
 0.951 0.834 0.88 0.857 0.897 

 0.862 0.87 0.863 0.842 0.938 
 0.895 0.861 0.828 0.891 0.883 
 0.879 0.855 0.873 0.855 0.909 
  0.832 0.931 0.876 0.878 
  0.881 0.861 0.9 0.942 
  0.879 0.907 0.9 0.939 
  0.775 0.803 0.862 0.882 
  0.837 0.873 0.893 0.976 
  0.858 0.897 0.86 0.874 
  0.949 0.872 0.867 0.932 
  0.919 0.899 0.855 0.958 

      
N 4 12 12 12 12 
Mean 0.89675 0.8625 0.873917 0.8715 0.917333 
Std 0.038595 0.044182 0.034352 0.0199 0.034576 
SEM 0.019298 0.012754 0.009917 0.0057 0.009981 

 

 

5.5 b 

 KO 8 mos 
Male 

KO 8 mos 
Female 

 1.001 1.098 
 1.012 1.111 
 1.041 1.109 
 1.02 1.088 
 0.978 1 
 1.024 1.093 

   
N 6 6 
Mean 1.012667 1.083167 
Std 0.021556 0.041711 
SEM 0.0088 0.017028 
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Table 5.2 

Tpi 

 KO 2 mos KO 4 mos KO 6 mos KO 8 mos 
 606.7 547.7 706.5 923.3 

 338.1 462.3 385.4 427.1 
 411 671.7 535.4 534.9 
 474.3 466 566.1 925.9 
 436.9 501 450.2 649.9 
 241.8 354.2 1047.9 758.2 
 496 743.2 1403.1 929.1 
 485.9 833.4 463.6 391.3 
 236 605.1 630.4 789.8 
 394.8 404.3 348.4 1500.7 
 557.3 442.7 544 544.7 
 623.6 1035.9 368.9 607.9 
     

N 12 12 12 12 
Mean 441.8667 588.9583 620.825 748.57 
Std 126.4232 200.365 311.1434 302.98 
SEM 36.49524 57.84039 89.81937 87.464 

 

Aldoc 

 KO 2 mos KO 4 mos KO 6 mos KO 8 mos 
 1795.4 2208.6 1484.8 1902.7 

 2479 1417.9 1022.9 2850 
 2318.9 2095.2 1399.8 2940.9 
 2053.4 1845.2 1637.9 1780.8 
 2100.5 1569.3 1776.1 1756 
 2176.1 1478.5 901.7 3276.6 
     

 3171.8 3182.4 1998.6 3358.7 
 3198.4 2643 2286.8 1173.1 
 2866.5 1283.2 2188.1 2527.5 
 1288.6 1284.6 1113.8 2669.9 
 2914.1 3791.9 1303 1730.9 
 1338 1785.5 1933.4 1260.3 
     

N 12 12 12 12 
Mean 2308.392 2048.775 1587.242 2269 
Std 647.7731 794.2024 458.9222 760.56 
SEM 186.996 229.2665 132.4794 219.55 
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Got1 

 KO 2 mos KO 4 mos KO 6 mos KO 8 mos 
 4356.2 4344.8 2956.9 4499.6 

 4955.1 4519.6 1638.6 4589.1 
 4978.9 4911.9 2659.7 5835.2 
 4385.3 4976 3655.5 5820.8 
 5446.1 5167.2 4915.2 4481.4 
 3509.9 3762.8 3449.5 5186.9 
     

 6981.3 6808.5 4152.9 7430.3 
 8100.8 5954 5232.3 3693.6 
 5150.8 3980.4 3139.3 4860.6 
 3072.1 4779.9 4849.7 6859.2 
 5580 4963.8 2426.8 4789.9 
 2994.6 4016.9 5102.5 2767.4 
     

N 12 12 12 12 
Mean 4959.258 4848.817 3681.575 5067.8 
Std 1502.494 862.837 1175.448 1284.8 
SEM 433.7326 249.0796 339.3226 370.88 

 

 

Aco2 

 KO 2 mos KO 4 mos KO 6 mos KO 8 mos 
 1905.3 1074.8 1466.1 2814.1 

 1673.5 1092.9 309.6 2173.7 
 1552 3667.3 1882.4 1818.1 
 1440.2 1882.7 631.7 2953.8 
 3469.6 2583.8 1215.8 1487.1 
 942.8 825.9 531.5 2389.5 
     

 1921.6 1017.8 1457.4 1564.2 
 2448.5 1669.5 2185.2 1851.6 
 1394.7 853.9 1360.9 1661 
 1625.8 2387.5 1564.6 2618.7 
 2608.6 1966.6 1083.2 2307.7 
 1746.8 2607.2 903.1 1160.7 
     

N 12 12 12 12 
Mean 1894.117 1802.492 1215.958 2066.7 
Std 668.834 885.8047 555.4547 564.55 
SEM 193.0757 255.7098 160.346 162.97 
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Enoph1 
 KO 2 mos KO 4 mos KO 6 mos KO 8 mos 

 242.5 110.6 2.5 228.3 
 134.1 180.5 3.5 2.9 
 245.1 174.5 300.5 4.5 
 161.3 140.1 154 6.8 
 315.5 373.6 244.8 10.4 
 242.3 5.7 8.7 2.1 
     

 8.8 10 4.6 5.7 
 272.4 165.6 3.7 8.3 
 256.3 5.5 85.3 5.8 
 234.9 238 87.5 12.1 
 6.5 3.7 144.1 2.6 
 5.2 5.7 169.8 55.7 
     

N 12 12 12 12 
Mean 177.075 117.7917 100.75 28.767 
Std 112.8474 117.6457 103.0423 64.504 
SEM 32.57623 33.96139 29.74574 18.621 

 

Fas  

 KO 2 mos KO 4 mos KO 6 mos KO 8 mos 
 369 131.5 2.5 1230 

 625.3 617.6 596.2 2.9 
 3.5 9.9 893.5 4.5 
 1142.6 13 970.9 6.8 
 477.1 11.7 4.4 154.5 
 9.8 5.7 788.5 2.1 
     

 8.8 10 1104.2 5.7 
 662.1 458.4 757.5 207.5 
 396.8 5.5 645.7 5.8 
 744.4 370.8 11.2 734.8 
 6.5 3.7 822.5 672.3 
 5.2 5.7 915.9 1174.6 
     

N 12 12 12 12 
Mean 370.925 136.9583 626.0833 350.13 
Std 376.5283 217.8129 397.7133 474.87 
SEM 108.6944 62.87717 114.8099 137.08 
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Pafah1b1 

 KO 2 mos KO 4 mos KO 6 mos KO 8 mos 
 438.1 154.8 174.2 501.2 

 672.1 581.4 212.5 630.8 
 531.8 588.2 359.7 331.2 
 453.7 295.2 222.1 523 
 809.7 789.3 258.3 355.6 
 437.7 188.3 246.3 401.4 
     

 471.5 724.1 465.4 689.3 
 924.9 695.1 402.4 770.3 
 560 315.9 340.1 208.8 
 369.4 812.7 470 913 
 1026.4 965.7 195 341.3 
 473 637.5 178.5 531.4 
     

N 12 12 12 12 
Mean 597.3583 562.35 293.7083 516.44 
Std 213.7312 263.793 109.2953 205.36 
SEM 61.69888 76.15047 31.55084 59.282 
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