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ABSTRACT OF THESIS 

 

 
IMPROVING BICYCLE INFRASTRUCTURE WITH THE USE OF BICYCLE SHARE 

TRAVEL DATA 
 

Bicycling as a mode of transportation has been increasing in recent years due to its 
environmental and health benefits. The availability of bicycles through bicycle share 
programs has made bicycling a more viable option. With this increase, there is a need for 
complementary improvements of bicycle infrastructure. Many local and regional 
transportation agencies are recognizing this need and developing a master plan or safety 
action plan to improve the city’s bicycle and walking facilities. This study examines 
bicycle travel demands and travel patterns in Lexington, Kentucky as generated by SPIN 
bicycle share users. It is hypothesized that the SPIN users emulate bicycle users on and 
around the University of Kentucky campus. Therefore, analyzing their travel patterns will 
provide a valuable understanding of bicycle demand and infrastructure needs. To identify 
such demand, travel patterns and routes were compared to the existing bicycle 
infrastructure in order to determine improvement needs with an ulterior goal to increase 
bicycling as a mode of transportation. The methods of study include five levels of analysis: 
length and duration, temporal, climatic, point density, and modeling. Recommendations 
for improving routes and parking facilities have been developed based on analytical 
methods and results obtained. The findings support the notion that bicycle infrastructure 
influences the travel paths cyclists take. The research supports the idea that commuters are 
using SPIN bicycles to chain their trips with transit and completing the last or first section 
of the trip with a bicycle. It was found that bicycle travel demand fluctuates with weather 
patterns. Furthermore, future work could use the existing data and conduct a detailed 
analysis on the individual trip level to determine what percentage of a completed trip was 
taken on an existing bicycle facility or on a non-facility. These findings may aid 
transportation planning and city officials to make decisions for expanding the existing 
bicycle network in efforts to minimize the percentage of cyclists who take a detour and the 
length of detours when necessary. 
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Geographic Information Systems, Bicycle Safety  
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CHAPTER 1. INTRODUCTION 

Bicycles as a mode of transportation have been increasing in recent years due to 

their low travel cost and associated health and environmental benefits (Karanikola 2018). 

A testament to this is the increased popularity of bicycle share programs in the United 

States and other countries. However, with this increase in bicycling and bicycle share 

programs, there is a need for complementary improvements of bicycle infrastructure. Every 

four years, the American Society of Civil Engineers (ASCE) presents an infrastructure 

report card which depicts the current condition and performance of the United States 

infrastructure. Their most recent report showed a grade D for roads (ASCE 2017). A key 

component in the evaluation of the road infrastructure is public safety. The report notes 

that in 2015, there were 9.5 percent more pedestrian and 12.2 percent more bicyclist 

fatalities than in 2014 (ASCE 2017).  

In 2017, there were 783 bicyclists and other cyclists killed, which accounted for 2.1 

percent of the total traffic fatalities in the United States (NHTSA 2019). Data from the 

National Highway Traffic Safety Administration (NHTSA; 2019) indicate that urban areas 

accounted for 75 percent of the bicycle fatalities with 27 percent of the crashes occurring 

at intersections, 63 percent at non-intersections, and 10 percent at other locations 

(roadsides/shoulders, parking lanes/zones, bicycle lanes, sidewalks, medians/crossing 

islands, driveway accesses, shared-use paths/trails, non-traffic-way areas, and other sides). 

Therefore, it is important to study and understand the growing rates of bicycle travel 

demands in order for transportation agencies to identify where improvements are needed 

aiming to improve bicycle infrastructure and safety. 
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The University of Kentucky (UK) developed a Transportation Master Plan in 2015 

that is an overview of the university’s transportation services and encompasses all modes 

of travel including walking and bicycling where one of the guiding principles is to 

“enhance bicycle access around campus” (UK 2015). However, UK acknowledges the fact 

that “bicycling can only flourish in a well-planned traffic system that protects bicyclists 

from vehicles and pedestrians from bicycles”. Adequate bicycle parking is also imperative 

if bicycling is being promoted as a mode of transportation.  

The UK Transportation Master Plan identified availability of vehicle parking as a 

main current and future issue for UK. Students, faculty, and visitors need a place to park 

their vehicle with a limited number of spaces available. The Transportation Master Plan 

identifies various transportation demand management solutions to encourage alternative 

travel modes. One of the strategies is to continue and expand the ongoing bicycle 

infrastructure improvements which is estimated to reduce the need for 130 vehicle parking 

permits per year. Furthermore, the expansion of a bicycle share program is another strategy 

which is estimated to reduce the need for an additional 181 permits per year. These 

solutions can be seen in Table 1.1 with the estimated cost and number of permits reduced. 

 

Table 1.1 Cost and effectiveness of transportation demand management (UK 2015) 
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Bicycle sharing is a bicycle rental service in which bicycles are available for use 

with a rental fee. These systems have seen an increase in popularity throughout the United 

States and across the world. The user can find a bicycle either docked at bicycle share 

stations or parked along random locations (dockless system) and pay a ridership fee in 

order to use it. These bicycles are intended for short trips, generally between 0.5 and 3.0 

miles, within the bicycle share program’s jurisdiction. There have been bicycle sharing 

programs in Washington, DC, Minneapolis, MN, Denver, CO, New York City, NY, 

Toronto, Canada, and many other cities.  

UK and the Lexington-Fayette Urban County Government (LFUCG) partnered to 

introduce a bicycle share program, called SPIN, to Lexington, Kentucky in July 2018. The 

bicycle share program was implemented as a pilot program through a company called 

SPIN. The SPIN bicycle share program is a dockless system where bicycles can be found 

and left anywhere by following parking rules given by SPIN (LFUCG 2019). Payment to 

ride a bicycle is similar to other bicycle share programs where an app can be downloaded 

on a smartphone to locate and pay for a SPIN bicycle ride. An alternative way to pay is to 

purchase vouchers from the Lexington Transit Center (WKYT 2018). Dockless parking is 

the only difference as compared to the traditional bicycle share programs previously 

described. The pilot program was used to determine if the dockless bicycle share would be 

viable for the city and university with the possibility of future expansion with a larger fleet 

of bicycles. 

This study examines bicycle usage and travel patterns as generated by the SPIN 

bicycle users. The route data collected through the GPS locator that each bicycle comes 

equipped with is saved allowing for meta-analysis and compilation of all user data. This 
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provides a unique opportunity to track users and understand how they travel on and around 

campus. It is hypothesized that the SPIN users emulate general bicycle users on and around 

campus and therefore, analyzing their travel patterns will provide a valuable understanding 

of bicycle demand and infrastructure needs. To identify such demand, travel patterns and 

routes will be compared to the existing bicycle infrastructure to determine improvement 

needs with an ulterior goal to increase bicycling as a mode of transportation. The bicycle 

travel demand in the vicinity of UK campus will also be examined to determine how UK 

can make campus a more bicycle-friendly environment for students, faculty, staff, and the 

community. The outcome of this study will be an infrastructure priority list for LFUCG 

and the UK Transportation Services that can be used when improvements in the existing 

bicycle network are considered. Along with the engineering research and analysis 

performed on the SPIN bicycle data, Landscape Architecture students also worked on this 

project through a studio course to prepare models and visual aids for the infrastructure 

recommendations. 
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CHAPTER 2. LITERATURE REVIEW 

There has been rapid growth of bicycle share programs in the United States and 

around the world (Meddin and DeMiao 2019). A bicycle share is a service in which 

bicycles are made publicly available for individuals to use for a short-term rental period. 

Rental costs may vary from free to a reasonable charge with some discounts given to 

students and university employees, depending on the company. In 2018, there were 84 

million shared micro-mobility trips taken in the United States (NACTO 2019). Shared 

micro-mobility consists of stationed-based bicycle share, dockless bicycle share, and 

scooter share programs. Figure 2.1 shows the ridership trends of micro-mobility trips and 

the data indicates that the number of trips taken in 2018 doubled in comparison to the 

previous year. Trip purpose trends have changed over the years as the National Household 

Transportation Surveys (NHTS) have shown an increase in utilitarian cycling such as 

work, school, or shopping trips (Pucher et al. 2011). However, cyclists with a utilitarian 

trip purpose need to reach their destinations on time and thus they need more direct routes 

with lower delays. It is estimated that cyclists are willing to travel about 13.5 percent 

longer to ride on a more pleasant cycling facility as compared to the shortest path route 

(Park and Akar 2019).  
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Figure 2.1 Micro-mobility trip trends (NACTO 2019) 

 

The 2009 NHTS reports that the average bicycle trip length is 2.3 miles with an 

average travel time of 19.4 minutes (NHTS 2009). Bicycle trips to or from work have an 

average trip length of 3.8 miles and an average travel time of 21.2 minutes (NHTS 2009). 

A bicycle share program increases the supply and availability of bicycles for all trip 

purposes, i.e., recreational or utilitarian. However, many communities are questioning 

whether their existing bicycle facilities are adequate enough to support a bicycle share 

program and the increased bicycle demands that one brings to a city (Toole Design Group 

2012). The emergence of these bicycle share programs is fueling efforts to improve bicycle 

infrastructure (Toole Design Group 2012). As one bicycle coordinator puts it, “riding a 

bicycle should not require bravery” (Geller 2009). 

Understanding the preferences of bicyclists and route selection is important for 

decision makers to know where and how to improve infrastructure. Dill and Gliebe (2008) 

used recorded data of bicycle trips from 164 people in Portland, Oregon and estimated that 
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the median bicycle trip distance was 2.8 miles. Only 5 percent of the trips recorded by the 

participants were for exercise with a median distance of 8.5 miles. Work-based trips 

accounted for 25 percent of the recorded trips, 18 percent of the trips were for shopping, 

dining out, or other personal business, and 12 percent of the trips were for social or 

recreational purposes. Bicycle travel data can be captured through various technology 

sources. Smartphone devices such as accelerometers and GPS trackers can be used to 

measure and track bicycle movements. Stamatiadis et al. (2017) discuss traffic, 

infrastructure, environmental, and bicycle behavior as information that can be collected by 

technology sources. Once agencies obtain this data, a better understanding and estimate of 

travel demand can be made. Other trip attributes can be determined such as route choice 

or demographics as they relate to trip purpose. It was determined that turn frequency was 

a negative factor when choosing a route. Another notable finding was that cyclists were 

willing to go considerable distances out of their way to use a bicycle boulevard or a bicycle 

path rather than a bicycle lane on an arterial road. 

One of the key components in the evaluation of road infrastructure is public safety, 

which encompasses all modes of travel. Geller (2009), a bicycle coordinator for Portland, 

Oregon, categorized cyclists into four types based on the comfort or enthusiasm one has 

for bicycling: “the strong and the fearless,” “the enthused and confident,” “the interested 

but concerned,” or “no way, no how.” The percentages in each group can be seen in Figure 

2.2. The target group for improving bicycle infrastructure is ideally the “interested but 

concerned” which is about 60 percent of the population. These individuals have the ability 

to move toward the “enthused and confident” group if bicycle infrastructure is improved 

to their level of comfort. Dill and McNeil (2013) conducted their own study to examine 
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the validity of Geller’s four types of cyclists aiming to use the results to identify actions 

that may increase cycling as a mode of transportation. A random phone survey was used 

to collect data by asking participants to indicate their level of comfort on a scale of 1 to 4 

(1 meaning ‘very uncomfortable’ and 4 meaning ‘very comfortable’) regarding several 

bicycle scenarios, such as different types of facilities based on traffic speeds. The results 

for the city of Portland and surrounding region were very close to Geller’s distribution. 

Other key findings include that women and older adults (older than age 55) were more 

likely to fall into the “no way, no how” category and the “enthused and confident” adults 

were most likely to have cycled to school as a child.   

  

 

Figure 2.2 Distribution of the four types of cyclists (Geller 2009) 

 

Reynolds et al. (2009) used a literature review to study the impact transportation 

infrastructure has on bicycling injuries and crashes. The methods used included tabulating 

results into two categories of infrastructure: intersections and straightaways. Some of the 

data used to analyze bicycle safety were injuries, severity of injuries, and total number of 

crashes. The review consisted of 23 papers – eight examining intersections and 15 

reviewing straightaways. It was found that roundabouts, in particular multi-lane 
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roundabouts, significantly increased the risk to bicyclists. For straightaways, major roads 

posed a higher risk than minor roads to bicyclists, but roads with bicycle facilities were 

associated with lower risks. Sidewalks and multi-use paths had a higher risk associated 

with crash occurrence. 

A survey of bicyclists examined the association between bicycle infrastructure 

availability and the perception of bicycle safety amongst over 3,000 bicyclists living in six 

large Canadian and US cities: Boston, Chicago, New York, Montreal, Toronto, and 

Vancouver (Branion-Calles 2019). Individuals were surveyed about their bicycling habits, 

safety perceptions, and demographic characteristics. The following question was asked to 

measure the respondents’ safety perception: “Overall, how safe do you think bicycling is 

in your city?”. The responses were based on a 5-point scale with “Safe” being 1 and 2, 

“Neutral” being 3, and “Dangerous” being 4 and 5. The results showed that 57.9 percent 

of bicyclists reported bicycling in their city as safe, 15.1 percent as neutral, and 27.0 

percent as dangerous. A Bike Lane Score was estimated for various areas within each city 

where a score of 0 indicates lack of any facilities within 1 kilometer of the area and higher 

scores indicate greater availability of bicycle infrastructure (Winters et al. 2016). The 

results showed that participants who came from areas with higher Bike Lane Scores 

provided a higher response score. This underscores the subjective relationship between 

infrastructure and consideration of bicycling as a safe transport mode. 

Many local and regional transportation agencies are developing a master plan or 

safety action plan to improve the city’s bicycle and walking conditions. Gelinne et al. 

(2017) has created a guide, titled “How to Develop a Pedestrian and Bicycle Safety Action 

Plan”, to assist agencies with improving safety, examining existing conditions, and using 
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a data-driven approach to match safety programs and improvements with demonstrated 

safety concerns.  

The Reno-Sparks, Nevada region developed a Bicycle and Pedestrian Master Plan 

in 2017 (RTC 2017). At the time, the region had 446 miles of bicycle lane miles and 78 

miles of multi-use paths but recognized the need for improvements. The goal of the 

proposed bicycle network was to “provide a continuous network of bicycle facilities with 

the greatest degree of bicycle comfort possible”. The Master Plan also discusses support 

facilities to bicyclists such as bicycle parking, shower and locker facilities, bicycle repair 

stations, park and ride facilities, trailhead and staging areas, bicycle share stations, and 

aesthetically pleasing landscape as additional features that would increase bicycling as 

transport mode.  

The Seattle Department of Transportation (DOT) issued a 2019-2024 

Implementation Plan: Seattle Bicycle Master Plan with a vision to make bicycle riding a 

comfortable and integral part of the daily lives for Seattle people of all ages and abilities 

(SDOT 2019). Prioritization, in order of highest to lowest weight, of five factors is used 

when developing this Master Plan: safety, connectivity, equity, ridership, and livability. 

Over the past 18 months, the Seattle DOT reported a 12 percent increase in bicycle 

ridership and launched the nation’s largest free-floating bicycle share program as a result 

of the $12 million investment in bicycle infrastructure, 13 miles of new facilities, and 

installation of 800 bicycle parking spaces. To continue through 2019, an investment of $76 

million over a six-year period will include 50 miles of new bicycle facilities and 29 miles 

of new projects funded through design and planning.  
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The city of Copenhagen, Denmark has a successful bicycle network with a goal to 

become the “world’s best bicycle city” (Gössling 2013). In 2011, “The City of 

Copenhagen’s Bicycle Strategy 2011-2025” report was issued focusing on four main 

factors: city life, comfort, speed, and sense of security. The report states that on average, 

from 2008 to 2010, 36 percent of all trips to work or educational institutions were by 

bicycle (City of Copenhagen 2011). Furthermore, 17 percent of Copenhagen families own 

a cargo bicycle which is used to transport children or shopping goods as a car alternative 

giving a sense of city life to the individuals. Travel time is a major decision factor when 

choosing to bicycle with 48 percent of Copenhagen cyclists saying that the main reason 

they choose to cycle is because it is the fastest and easiest way to travel. A sense of security 

is necessary for most people to choose to cycle, as Geller (2009) alludes to. In 2010, 67 

percent of Copenhagen cyclists felt safe in traffic, however one of the goals is to reach 80 

percent by 2015 and to increase to 90 percent by 2025.  

The emergence of bicycle share has increased the availability of bicycle usage and 

trip data. Several studies have utilized bicycle share data to evaluate ridership and usage. 

For example, Xu and Chow (2018) analyzed a bicycle share program to investigate the 

relationship between bicycle infrastructure and bicycle share ridership. This study was 

based on longitudinal data using Ridership data from the bicycle share program, Citi Bike, 

from New York City, New York. A total of 152 weeks of data with an average weekly 

ridership of 178,880 bicycle trips was evaluated. Ridership patterns were seen to fluctuate 

based on seasonal patterns. Additionally, the bicycle share program was utilized more on 

weekdays than on the weekend. Three infrastructure scenarios are used, each with a 10 

percent growth of active bicycle stations but the difference in scenarios is how 
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infrastructure investments are introduced. Scenario 1 has no infrastructure investment. 

Scenario 2 has infrastructure investment as planned, but all in the beginning. Scenario 3 

has infrastructure as planned but staged into additions every week. Results show that 

Scenario 2 has the best outcome for cumulative change in average daily ridership. These 

conclusions may help city agencies when deciding to introduce a bicycle share program.  

The use of GPS tracking through smartphones can be used to evaluate the impact 

of infrastructure change on cycling behavior. Studying route detours can help city planners 

and engineers identify where bicyclists are avoiding certain roadway segments. A study in 

Columbus, Ohio performed a route-level analysis using smartphone GPS tracking data by 

comparing the bicyclist’s chosen route with their associated shortest path alternative (Park 

and Akar 2018). The study showed that 91.1 percent of cyclists take some sort of detour 

and cyclists are willing to travel about 13.5 percent longer to ride on a more pleasant 

cycling facility as compared to the shortest path route. Another study collected data on 

bicycle usage from Queensland, Australia and produced heat and volume maps of the 

bicycle patterns (Heesch and Langdon 2016). The Queensland Department of Transport 

and Main Roads provided information on routes with new bicycle infrastructure during the 

study period. One finding was that almost two thirds of weekly bicycle trips were re-routed 

to a new bikeway and off of the previously used road. Furthermore, the data showed that 

over three months, cyclist counts increased by 15 percent into the city from the southern 

suburbs after an existing bikeway was expanded, with a decrease in cycling on other major 

routes.  

Fishman et al. (2014) attempt to understand and quantify the factors influencing 

bicycle share membership in Australia. This study used two bicycle share programs 
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located in Melbourne and Brisbane. Data was collected using an online survey given to 

individuals with both bicycle share memberships and individuals with no association to 

either bicycle share program. The survey included various types of information such as 

helmet wearing, income, and access to a parking area. The study noted that a large 

percentage (61 percent) indicated that helmet issues were the main barrier. It was found 

that individuals with relatively higher income had higher odds of having a membership in 

both programs. Furthermore, those who had access to a parking station within 250 meters 

of their workplace tended to have higher odds of having a membership. 

There have also been studies conducted to identify influencing factors to travel 

demands for bicycling using traditional methods of data collection from surveys or 

observations. For example, Schmiedeskamp and Zhao (2016) examined how several 

seasonal factors affect bicycle ridership using data that was collected for two years from 

automated bicycle counts at locations in Seattle, Washington. The factors studied include 

season, temperature, precipitation, holidays, and day of the week. They found that bicycle 

usage and temperature had a positive correlation along with the number of daylight hours. 

Bicycle usage and precipitation had a negative correlation as one would expect. This 

research can be used by policy makers and planners to better understand bicycle travel 

demands to increase bicycling.  

Another traditional method for collecting bicycle demand data is through a survey. 

Karanikola et al. (2018) conducted a face-to-face questionnaire to 400 residents in a small 

touristic city in Greece where inner-city public transportation does not exist. The survey 

consisted of five sections: mode of transportation in the city according to distance, bicycle 

use in the city and cyclists’ behavior, identification of factors that influence residents to 
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cycle, evaluation of the existing infrastructure, and general respondent demographics. 

Table 2.1 shows the results of the questionnaire regarding the evaluation of the existing 

infrastructure for the cycling network in the city, places for parking, training places for 

children, and the cycling network out of the city. Some of the negative cycling factors that 

were studied include deficiencies to using bicycles because of insufficient infrastructure, 

exposure to extreme weather conditions, low speeds, safety hazards, feeling of oddity, 

physical exhaustion, and lonesomeness on the route.  

 

Table 2.1 Evaluation of the existing cycle infrastructure (Karanikola et al. 2018) 

Infrastructure Facilities Very 
Good Good Mediocre Bad Very 

Bad 

Cycle network in the city 7.5% 4.5% 29.2% 32.5% 26.2% 
Place for parking 5.8% 5.0% 22.8% 38.8% 27.8% 
Training places for children 5.5% 4.8% 17.2% 38.0% 34.5% 
Cycle network out of the city 3.2% 4.0% 17.5% 38.0% 37.2% 

 

Dunlap (2015) identifies the need to better understand the understudied group of 

non-motorized travel, such as biking and walking, in order to allocate funds to improve 

those modes of travel. The study concluded that transportation engineers and planners will 

have the ability to eliminate deterrents of non-motorized transportation by identifying the 

factors that influence biking and walking. Factors studied include weather, land use, and 

infrastructure. Weather is evaluated based on average temperatures and precipitation and 

compared to bicycle usage trends. The study confirmed that weather conditions and daily 

bicycle demands are strongly related as it was illustrated through a statistical model that 

included weather related variables and day of the week. Urban non-motorized travel is 

studied using data from a household travel survey conducted in 2006. Data for the roadway 
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network, topography, and crosswalk locations are displayed on ArcGIS. It was concluded 

that the introduction of non-motorized friendly infrastructure such as bicycle and 

pedestrian paths is a conventional improvement.  

Performing bicycle infrastructure audits is another method to compare and evaluate 

the bicycle infrastructure systems in different cities or countries. Hull and O’Holleran 

(2014) conducted bicycle infrastructure case studies for six European cities: Edinburgh, 

Cambridge, Amsterdam, Rotterdam, The Hague, and Utrecht. Five categories were 

considered as requirements for properly designed bicycle networks: coherence, directness, 

attractiveness, safety, and comfort. Additionally, spatial integration, experience, and social 

economic value were added to evaluate the riders overall experience. One outcome of this 

research was a list of bicycle infrastructure designs that can encourage bicycling including 

continuous wide cycle lanes with segregation when possible, especially on truck roads and 

busy, main roads; clear signage and adequate lighting; the use of high quality material for 

cycle lanes to offer comfort and reduce maintenance; and end route facilities, such as 

lockers, showers, and parking facilities, should be discussed with businesses and 

employers. Other recommendations that are not included in the design of cycle 

infrastructure but have been noted in case studies include regular maintenance of roads, 

cycling training for all new drivers and continue cycling training for school children. 

Dangerous or illegal behaviors of both cars and cyclists, such as cars parking in cycle 

lanes, dangerous overtaking of bicyclists, cyclists running red lights, and cycling on 

pedestrian only pavements should be prohibited through enforcement (Hull and 

O’Holleran 2014).   
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Two large cities – Beijing and Copenhagen – were examined to learn how an 

advanced bicycle-friendly city has the ability to spread knowledge to a less advanced city 

(Zhao et al. 2018). A series of interviews with municipal city planners were conducted in 

both cities and details on five principles were discussed: cohesion, safety, directness, 

attractiveness, and comfort. The focus of this study is centered on two main questions: 1. 

How solutions were identified and what impediments were in implementing them, and 2. 

Lessons learned. It was concluded that city planners in both cities recognize that safety is 

the most important of the five factors to consider. However, Copenhagen planners pay high 

attention to perceived safety as opposed to Beijing planners who do not pay as close of 

attention to the difference between the actual and perceived safety. Another key difference 

deals with the cohesion of bicycle-friendly infrastructure. Beijing planners recognize the 

issue caused when cars are parked illegally in the bicycle lanes, but they anticipate that this 

problem should be solved gradually. On the other hand, Copenhagen planners give priority 

to cycling and do not allow space for cars to be parked in the bicycle lanes. In Copenhagen, 

directness is considered as an important principle as it impacts travel time and efficiency 

and is applied with the principles of cohesion and safety. However, in Beijing, the principle 

of directness is not fully considered in the planning environment. It was concluded that the 

efficiency of bicycle infrastructure planning is related to the level of planning knowledge 

and experience gained, shared, and embedded at the local level.  

 In summary, the existing literature provides insight regarding the relationship 

between bicycle travel demand and bicycle infrastructure supply. The literature indicates 

that increased infrastructure is an incentive for bicycling while its absence acts as a 

deterrent. Bicycle share programs have been a popular trend over the past few years, thus 
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increasing the demand for bicycling and number of bicycle trips taken for both commute 

and recreational purposes. Several local and regional transportation agencies are 

recognizing the need for bicycle infrastructure improvements by developing a master plan 

or safety action plan for bicycles and pedestrians. These plans can help agencies not only 

identify their infrastructure needs, but at the same time prioritize investments and 

construction in order to maximize benefits and potential increases in bicycle mode-sharing.   

The use of GPS devices has been a major aid for tracking bicycle trips and having 

access to bicycle trip data for research. Bicycle trip tracking can be a tool for city planners 

to use when determining the best way to allocate funds for improving bicycle 

infrastructure. The installation of new or improved bicycle infrastructure has the ability to 

increase bicycle travel demand and efficiency by giving cyclists more direct routes to travel 

along with a desired level of safety. It is suggested that bicycle facilities on major commuter 

routes would help reduce detours, specifically during peak hours (Park and Akar 2019).   
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CHAPTER 3. METHODOLOGY 

3.1 Data 

The SPIN bicycle share program that was implemented in Lexington, Kentucky 

was based on a total of 400 bicycles dispersed throughout Fayette County (Thompson 

2009). After the first month of implementation, 200 bicycles remained in use with the other 

200 bicycles used for parts to repair broken bicycles (Thompson 2019). Lexington, 

Kentucky has a population of about 324,000 residents (US Census Bureau 2019). UK has 

an enrollment of about 30,000 students (UK 2019). Furthermore, UK is one of the state’s 

largest employers with more than 12,000 staff and 2,000 faculty (UK n.d.) Modern day 

bicycle share programs typically use a downloadable application on a smartphone to locate 

and pay for the bicycle rental. A SPIN bicycle can be located by using the SPIN app that 

shows a map of the current locations of available bicycles in the vicinity of the user. Each 

bicycle has a unique barcode-like identifier represented as a Quick Response (QR) code on 

the back of the seat. Once the QR code is scanned, the bicycle is activated and unlocked. 

When a SPIN bicycle trip is finished, the bicycle can be locked by pulling down on the 

locking lever. The GPS location of the SPIN bicycle is recorded every time the bicycle is 

activated and locked. The start, end, and additional points along the route are recorded 

through the GPS tracker on the bicycle. This is a dockless system, i.e., the user does not 

have to rent or return the bicycle to a fixed parking location. SPIN bicycles can be found 

where the previous users left them, and they can be left anywhere by following parking 

rules given by SPIN (LFUCG 2019).   

The data used in the analysis was obtained from SPIN and consisted of information 

from individual bicycle trips taken from August 18, 2018 to May 3, 2019. For each SPIN 
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bicycle trip, there is a start and end location represented in latitude and longitude 

coordinates. Additionally, “route points” are recorded throughout the trip by a GPS tracker 

device on the bicycle. These points can be seen as a breadcrumb trail to visualize the actual 

user path taken. The number of route points per trip varies based on the length or duration 

of the bicycle trip. An example of a completed trip can be seen in Figure 3.1. The green 

point represents the start location and red point represents the end location of the trip. The 

gray points represent the intermediate route points that show the user’s actual path. Once 

the raw data was received from SPIN, the data was sorted in a way that can be plotted in 

ArcMap using a Python script. The Python script was able to create three feature classes 

of points: Start Points, End Points, and Route Points. The data for the analysis was based 

on SPIN bicycle trips taken from August 18, 2018 to May 3, 2019. 

 

 

Figure 3.1 Example of a completed SPIN bicycle trip 
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There were 46,064 Start Points in Fayette County within the analysis period. 

However, there were almost 3,000 trips that had a route distance of zero or a trip duration 

of zero. Two additional issues associated with the data are the presence of short distance 

trips with long duration or long-distance trips with short duration. Both of these indicate 

that there may be an issue regarding the recorded data that could be attributed to the user 

not locking the bicycle (long duration) or carrying the bicycle in a vehicle to other locations 

(long distance over short duration). It was therefore deemed appropriate to establish a 

reasonable travel distance and duration in order to eliminate such issues. A low speed of 5 

miles per hour (mph) was considered appropriate since it is slightly higher than walking 

speed (approximately 2 to 3 mph) while a high speed of 12 mph was considered the cut off 

point for unusually fast trips. Using the upper speed cutoff value of 12 mph, a total of 4,590 

trips were eliminated.  It should be noted that the trips with lower than 5 mph speeds were 

still used in the analysis of the routes but not considered in the estimation of average rental 

and trip durations. Once the trips with zero distance or zero duration and the trips with 

unusually high travel speeds were removed, a total of 38,505 trips were used in the analysis. 

3.2 Analysis Approach 

ArcMap is used to display the SPIN bicycle trip data in a way that can be visually 

represented. ArcMap is a geospatial processing program and part of ESRI’s ArcGIS 

application (ESRI 2016). This application allows the GIS data to be displayed, explored, 

and edited to create map layouts (ESRI 2016). A projected coordinate system is used to 

show an accurate representation of the city of Lexington. The projection used for the data 

points is “NAD 1983 (2011) State Plane Kentucky FIPS 1600 (US Feet)”. Points are 

grouped in feature classes to allow for a systematic display and analysis. The three primary 
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feature classes are Start Points, End Points, and Route Points. With these three feature 

classes, further geoprocessing tools can be used to extract useful information. For example, 

there were SPIN bicycle trips recorded and taken outside of the Lexington-Fayette area. 

Those points are excluded from the data analysis because the scope of the project focuses 

on Lexington and UK campus areas. 

The three feature classes are added to the ArcMap database. As previously 

mentioned, there are some SPIN bicycle trips that were taken in other parts of Kentucky 

such as Louisville, Kentucky and Richmond, Kentucky. The route points can be seen 

traveling along interstate highways and other high-speed roads. To eliminate these points, 

any data points falling outside of the Fayette County boundary were removed. 

A Fayette County shapefile was obtained from US Census Bureau, Department of 

Commerce and used to select only the points (Start, End, Route) falling within the county 

boundary. Target layers were created for the Start, End, and Route points and they were 

combined with the Fayette County boundary (i.e., source) layer to generate a new layer 

consisting only of the points within the county.  

Furthermore, UK has provided a shapefile of the campus boundary that was used 

to determine the number of SPIN bicycle trips that started and ended on campus. The same 

process was followed here as well by using the UK campus boundary as the source layer. 

This process resulted in a total of 29,472 SPIN bicycle trips originating within the UK 

campus boundary and a total of 27,585 SPIN bicycle trips ending within the UK Campus 

boundary. This shows that there were several SPIN bicycle trips that started on UK campus 

but then ended somewhere else. This suggests that students may have taken a SPIN bicycle 
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from UK campus to their off-campus housing but did not make the trip to campus on a 

SPIN bicycle. 

Point density maps are used to visually depict the number of occurrences of a 

feature at the same location.  A point feature is a GIS object that has an X and Y location 

coordinate and is usually represented as a “point” or dot on a map (ESRI 2018). However, 

multiple points at the same location are plotted on top of each other and thus it is difficult 

to distinguish one location with a large number of points from another location with few 

points. The point density is used to address this issue through visualizing the data and 

depicting locations where there could be several points at the same location. The input is 

a cluster of points with each point representing a single event. The output is a colored cell. 

The cell represents the number of points within the neighborhood divided by the area of 

the neighborhood. Figure 3.2 shows how a cluster of points can be represented as a point 

density output. Darker color cells have more points in the neighborhood as compared to a 

lighter color cell. A point density is represented as a raster image that overlays the base 

map. To better understand the story behind the point density, several symbology 

techniques can be used. For example, the color scale should be chosen that appropriately 

represents the data such as dark to light, red to green, etc. Several point density maps will 

be created to show high density SPIN bicycle activity in Lexington and UK campus. A 

point density using SPIN bicycle trip data will have the units of bicycles per specified 

radius. 
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Figure 3.2 Example a point density depiction 

 

The number of SPIN bicycle trips per day can be determined and used in a model 

for predicting the number of trips taken per day. Literature findings have suggested that 

weather and daily bicycle trips are strongly correlated. Trip characteristics, such as trip 

duration and route distance, will be tested to determine if duration or distance affects the 

number of daily trips taken and which one is a better predictor. The models will be linear 

in nature and developed using several explanatory variables such as weather-related data 

and trip characteristics. These models can be used to identify how external factors are 

correlated when predicting bicycle travel demand. The models will be compared based on 

their predictive power, significance of variables, and examination of how well variables 

match prior findings and rational tests. The stronger model will be selected as the 

representative model for predicting the number of daily SPIN bicycle trips. To ensure the 

validity of the model, a validation and training approach was undertaken where 90 percent 

of the data was used for model development and the remaining 10 percent was used for 

estimating the number of trips per day and compared to the actual data.   
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CHAPTER 4. ANALYSIS 

This section presents the analysis undertaken to determine the travel patterns of the 

SPIN bicycle share users and identify the infrastructure needs to address them.  

4.1 Length and Duration 

The SPIN bicycle trip data has been analyzed based on trip length and duration 

(travel time). Literature findings have suggested that the average bicycle trip length ranges 

from 2.3 to 2.8 miles with an average travel time of about 20 minutes. The collected SPIN 

bicycle data shows similar trends to these. As noted in the previous section, the data was 

filtered considering only trips with travel speeds ranging from 5 to 12 mph. This was done 

in order to capture only the completed trips that have reasonable trip lengths with 

associated travel times. For example, a trip with a distance of 1.5 miles completed in 120 

minutes most likely was the result of the rider forgetting to lock the bicycle and end the 

trip. The majority of the SPIN bicycle trips with travel speeds ranging from 5 to 12 mph 

(95.6 percent) taken in Fayette County during the analysis period had a distance of 2.5 

miles or less (Figure 4.1). Furthermore, 94.6 percent of the SPIN bicycle trips had a travel 

time of 20 minutes or less (Figure 4.2).  
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Figure 4.1 SPIN bicycle trips by route distance 

 

 

Figure 4.2 SPIN bicycle trips by duration 

 

 The analysis also considered the day of week the trip was taken, i.e., weekday or 

weekend. Weekday trips had an average trip length of 0.9 miles with an average travel time 

of 7.9 minutes. Weekend trips were longer in both distance and duration with an average 

trip length of 1.2 miles and an average travel time of 10.9 minutes. Weekday trips are likely 

the result of utilitarian trips to work or school while weekend trips may be for recreation 

or exercise purposes, thus resulting in longer trips.  
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4.2 Temporal Analysis 

The trip data has been further analyzed based on the day of the week, month, and 

college semester to determine any temporal trends in ridership and usage. The data used in 

this portion of the analysis consists of SPIN bicycle trips taken during the analysis period 

while excluding trips with a travel speed or travel time of zero and excluding trips with a 

travel speed exceeding 12 mph. Trips with an unusually long duration are still considered 

in this analysis because trip duration does not affect the count and route taken when 

considering temporal factors. Figure 4.3 shows the number of SPIN bicycle trips per 

semester by the day of the week. The enrollment numbers are large because one student 

may be enrolled in more than one class per day. Wednesdays had the greatest number of 

SPIN bicycle trips taken with the weekends having the least amount of usage. The fact that 

UK has a large population of students who generally are on campus on weekdays could 

explain the weekday-weekend differences.  

 

 

Figure 4.3 Number of SPIN bicycle start trips by day of the week 
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Figure 4.4 shows the monthly usage of SPIN bicycles with the winter months 

having a lower number of SPIN bicycle trips than the summer months. The Fall semester 

had more than double the number of SPIN bicycle trip as compared to the Spring semester. 

This could be because weather was more enticing in the Fall than in the Spring semester, 

thus resulting in significantly more trips. Furthermore, the UK course enrollment data 

shows that there was a larger number of enrolled students in the Fall 2018 semester than 

the Spring 2019 semester (Table 4.1). This could partially address the variation in monthly 

SPIN bicycle usage between the fall and spring semester months. Another explanation for 

the lower SPIN bicycle usage in the Spring semester may be the novelty of the program in 

the Fall semester and students who arrived back on UK campus wanted to ‘try them out’ 

with diminishing marginal utility as the semester and school year continues. Finally, 

weather conditions could also contribute to these differences, where more inclement 

weather is typically observed during the spring semester.   

 

 

Figure 4.4 Number of SPIN bicycle start trips by month 
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Table 4.1 Course enrollment data  

Day of Week 
Number of Enrolled Courses 

Fall 2018 Spring 2019 

Monday 59,470 49,974 
Tuesday 55,373 49,164 

Wednesday 61,579 51,718 
Thursday 54,185 48,254 

Friday 42,662 36,463 
 

In order to better understand the daily differences noted in Figure 4.3 and determine 

whether indeed there is a day of week effect, a rate for the number of SPIN bicycle trips 

per 1,000 enrolled courses was developed. It can be seen in Figure 4.5 that the rate in the 

Fall 2018 semester is nearly double the Spring 2019. Furthermore, as Figure 4.3 illustrates, 

Wednesday appeared to have the highest number of SPIN bicycle trips taken. It was 

hypothesized that Wednesday had the highest number of enrolled students as some courses 

have a Monday-Wednesday and Wednesday-Friday schedule; a fact that was verified with 

the data in Table 4.1. The conversion of the number of trips to a rate per 1,000 students 

normalized these rates and demonstrated a more uniform distribution throughout the week. 

There are still differences among weekdays, but these are rather smaller in magnitude than 

the ones observed in Figure 4.3. Overall, the weekly SPIN bicycle usage rate increase over 
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the course of the week. This trend may be attributed to factors not related to course 

enrollment such as weather or trip purposes other than going to school. 

 

 

Figure 4.5 SPIN bicycle trips per 1,000 enrolled courses 
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day travel patterns may occur because on weekends, people may start their daily routines 

at a later time, they do not typically have to be their destinations early morning and are not 

confined in the typical classroom periods and work schedule. 

 

 

Figure 4.6 Hourly distribution of SPIN bicycle start trips 

 

 

Figure 4.7 Weekday hourly distribution of SPIN bicycle start trips 
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Figure 4.8 Weekend hourly distribution of SPIN bicycle start trips 
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only 54 degrees in the Spring semester as compared to 66 degrees in the Fall semester. 

Figure 4.9 shows the number of trips taken per day and the temperature for the 

corresponding day. The data shows that the daily bicycle trip counts follow similar trends 

to the daily average temperatures over the time period.  

 

Figure 4.9 Daily SPIN bicycle usage trends with average daily temperature trends 
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duration (minutes). The models can be used to determine the level of influence each 

variable has on cycling.  

The data used in the first linear regression model consisted of trips taken in Fayette 

County during the analysis period while excluding trips with a travel distance or travel 

time of zero and those with a travel speed exceeding 12 mph. For this reason, the average 

duration variable was not considered due to potential inaccurate duration estimates.  

Table 4.2 shows the model structure, i.e., variables in the model, their coefficients 

and significance for predicting the number of trips per day. The variables included in the 

model are average temperature, day of week, average wind speed, precipitation, and 

average route distance. Model 1 has an R2 value of 0.523, an Akaike's information criterion 

(AIC) of 2984.679, and a Bayesian information criterion (BIC) of 3009.550.  

 
Table 4.2 Model 1 parameters 

Variables Coefficients Significance 

Constant 21.853 0.329 
Average Temperature (F) 4.513 0.000 
Day of Week  -39.924 0.000 
Average Wind Speed (mph) -5.206 0.000 
Precipitation (inches) -31.637 0.007 
Average Route Distance (miles) -43.422 0.000 

 

Model 2 and Model 3 used only the SPIN bicycle trips with travel speeds ranging 

from 5 to 12 mph in order to determine whether the average trip duration or average route 

distance is the better predictor of daily number of SPIN bicycle trips. The same four 

variables were used in both models – average temperature, day of week, average wind 
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speed, and precipitation – with the addition of average trip duration or average route 

distance.  

Table 4.3 and Table 4.4 show the model parameters for each set of variables. The 

R2 values for the model including average trip duration (Model 2) and the model including 

average route distance (Model 3) are 0.487 and 0.496, respectively. The AIC and BIC for 

Model 2 are 2713.159 and 2738.030, respectively. The AIC and BIC for Model 3 are 

2708.247 and 2733.117, respectively.  

 
Table 4.3 Model 2 parameters for average trip duration 

Variables Coefficients Significance 

Constant 45.772 0.001 
Average Temperature (F) 2.370 0.000 
Day of Week -27.671 0.000 
Average Wind Speed (mph) -2.817 0.001 
Precipitation (inches) -16.644 0.017 
Average Trip Duration (minutes) -4.901 0.000 

 

Table 4.4 Model 3 parameters for average route distance 

Variables Coefficients Significance 

Constant 50.909 0.000 
Average Temperature (F) 2.368 0.000 
Day of Week -26.941 0.000 
Average Wind Speed (mph) -2.815 0.001 
Precipitation (inches) -17.007 0.014 
Average Route Distance (miles) -47.895 0.000 

 

The constant variable represents the number of daily SPIN bicycle trips that would 

be taken without any adjustment for the other variables. The average temperature has a 
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positive correlation with daily usage which means that the number of trips increase as the 

temperature increases. Average wind speed and precipitation have a negative correlation 

as one would expect, meaning that the higher average wind speeds and greater amounts of 

precipitation result in a lower number of daily trips. All three temporal variables conform 

to a priori expectations: adverse weather conditions result in fewer trips. Day of the week 

has a negative correlation which means that there fewer trips during the weekend than 

during a weekday. This finding is consistent with prior research conclusions. Lastly, 

average trip duration and average route distance also have a negative correlation. Longer 

duration trips would result in a lower number of overall trips. The same is observed with 

the longer distance trips.   

Model 2 and Model 3 are compared since they use the same set of data in the 

regression – trips with travel speed ranging from 5 to 12 mph. The model that includes 

average route distance (Model 3) servers as better model for predicting the number of SPIN 

bicycle trips for any given day based on the comparison of R2 values, AIC, and BIC. Based 

on this comparison, Model 1 is more appropriate for prediction since it is based on a larger 

data set and has a higher R2 value than Model 3. 

To evaluate Model 1, a validation and training approach was taken where 90 

percent of the data was used for Model 4 and the remaining 10 percent was used for 

estimating the number of trips per day.  The average distance was used as the trip predictor 

based on the conclusions drawn from the comparison of Model 2 and Model 3. The 

coefficients for Model 4 are shown in  

Table 4.5; the model has an R2 value of 0.530, AIC of 2701.397, and BIC of 

2725.554. The estimated number of trips was compared to the actual number of trips for 
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the remaining 10 percent of the data. The range of the differences resulted in a maximum 

overestimation of 63 trips and a maximum underestimation of 207 trips. The average of 

the differences is an underestimation of 15 trips. Table 4.6 shows a comparison of the four 

models based on R2, AIC, and BIC.  

 
Table 4.5 Model 4 parameters for training approach 

Variables Coefficients Significance 

Constant 25.954 0.269 
Average Temperature (F) 4.514 0.000 
Day of Week -38.644 0.001 
Average Wind Speed (mph) -5.468 0.000 
Precipitation (inches) -31.997 0.008 
Average Trip Duration (minutes) -43.338 0.000 

 

Table 4.6 Model comparison 

 Model 1 Model 2  Model 3 Model 4 

R2 0.523 0.487 0.496 0.530 
AIC 2984.679 2713.159 2708.247 2701.397 
BIC 3009.550 2738.030 2733.117 2725.554 

 

Based on Table 4.6, Model 4 serves as the best prediction model and can be used 

to predict the number of daily SPIN bicycle trips with a set of variables known to affect 

trip choice. Model 4 is selected because it has the highest R2 value and the lowest AIC and 

BIC. The complete regression equation can be seen below. Transportation agencies may 

use this knowledge of the various explanatory variables to predict the travel demand for 

bicycle facilities based on location specific weather.  
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 25.954 + 4.514�𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎� − 38.644(DAY) − 5.468�𝑊𝑊𝑊𝑊𝑊𝑊𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎�

− 31.997(𝑃𝑃𝑃𝑃𝑇𝑇𝐶𝐶𝑊𝑊𝑃𝑃) − 43.338(𝐷𝐷𝑊𝑊𝐷𝐷𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) 

4.5 Point Density Analysis 

The SPIN bicycle travel patterns are displayed using point density maps to visually 

show locations of high-density bicycle traffic. The data used in the point density analysis 

consists of trips taken during the analysis period while excluding trips with a travel speed 

or travel time of zero and excluding trips with a travel speed exceeding 12 mph. Trips with 

an unusually long duration are still considered in this analysis because trip duration does 

not affect the path taken by a rider.  

Figure 4.10 is a point density map of all points (Start, End, and Route). This map 

shows the general locations of bicycle usage as well as those with heavy bicycle usage. 

This map and the others to be displayed in the following sections can be used to determine 

locations and routes which may need bicycle infrastructure improvements. The point 

density maps with their color scales depict level of overall usage and one can observe the 

various bicycle routes, such as those along Avenue of Champions and Rose Street that have 

high usage. Similarly, several sidewalks on campus and in the area surrounding the campus 

show a large concentration of bicycle usage.   
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Figure 4.10 All Points point density map 

 

Figure 4.11 is a point density map of only the Start and End points. This map shows 

the origin and destinations of a bicycle trip, which can be used to define the purpose of 

bicycle trips. Most of the high-density areas appear near major classroom buildings and 

residence halls on UK campus. This pair of origin and destination suggests that students 
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are cycling to and from class or from their residence hall to class and back. The 

southernmost red cluster appears near the bus stop for the stadium parking lot which 

suggests that commuters (faculty or students) begin or end a trip at the bus stop.       

 

 

Figure 4.11 Start and End point density map 
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4.4.1 Routes Analysis 

Critical to understanding and determining bicycle infrastructure improvements is 

the evaluation of existing bicycle facilities and how they are currently function. The use 

of SPIN bicycle trip data can be used determine how users utilize segments of the roadway 

system and bicycle infrastructure. The existing bicycle paths in Lexington, Kentucky were 

obtained from the LFUCG Division of Planning in a digital format as a shapefile to be 

used in ArcGIS. The first step is to display the shapefile to the map and determine the 

facilities that will be analyzed. The facilities denoted in the attribute table showed several 

biking and pedestrian facilities such as bike lane, buffered bike lane, shared use path, 

walking trail, mowed path, etc. The paths that are designated for bicycle use were selected 

and those paths are used in the evaluation of existing bicycle facilities.   

The facilities that have been selected to evaluate based on their description in the 

attributes table include: Existing bike lane, existing buffered bike lane, existing paved path, 

existing sharrow, existing signed bike route, existing shared use trail, funded bike lane, 

funded buffered bike lane, funded on road bike facility, funded shared use trail, funded 

sharrow, funded signed bike route, proposed bike lane, proposed bike lane and trail, 

proposed on road bike facility, proposed shared use trail, proposed signed bike route, 

unfunded shared use trail.   

Once the bicycle facilities of interest have been selected, the travel demand on these 

routes can be determined and depicted on a map. A point density map will be used to show 

the intensity of bicycle travel on these selected bicycle facilities. The first part will be 

examining how the existing bicycle routes are being utilized. Figure 4.12 is a map that 

shows a point density of SPIN bicycle Route Points for only the trips completed along an 
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existing bicycle facility. Routes in the vicinity of the UK campus that show a high travel 

usage are along the Avenue of Champions/Euclid Avenue, Rose Street, Woodland 

Avenue, and Columbia Avenue. It can be seen that routes further away from the UK 

campus have less bicycle travel usage.  
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Figure 4.12 Travel demand on existing bicycle facilities 

 

The second part of this analysis is to examine the bicycle travel usage for routes 

that were completed along areas lacking any bicycle infrastructure as defined earlier. This 

can be done by clipping, or removing, any Route Points that are located within a certain 

distance from the centerline of the existing bicycle facility. For this research, a radial 
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distance of 30 feet from the centerline of the bicycle facilities has been used to remove 

Route Points on these facilities. The 30-foot buffer radius was decided in order to address 

the possibility that a bicyclist may have used another part of the facility adjacent to the 

actual route (for example someone riding on a sidewalk next to a bicycle lane) or to address 

the inaccuracy of the bicycle’s GPS tracker. Figure 4.13 shows a point density map of the 

remaining Route Points that are not along an existing bicycle infrastructure. This map will 

be used to identify locations and routes that have heavy bicycle traffic but without any 

bicycle infrastructure or designated facility. The data in Figure 4.13 show that there is high 

demand for a corridor connecting the north and south ends of the campus.  
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Figure 4.13 Travel demand along non-bicycle facilities 

 

4.4.2 Parking Analysis  

The introduction of SPIN bicycles has increased the demand for bicycle parking on 

UK campus, specifically around classroom buildings and resident halls. UK has been 
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placing signs by trees that frequently have bicycles locked to them with hopes to encourage 

students to use designated parking facilities instead. However, as Figure 4.14 shows, 

students are disregarding these signs and still locking their bicycle to a tree or other objects, 

like the light pole in Figure 4.14. SPIN bicycle trip data can be used to identify locations 

where additional bicycle parking is needed to meet demands. This will be done through an 

analysis of the areas with high density Start and End Points. The UK infrastructure data 

included the locations of existing bicycle parking facilities on within UK campus. 

 

               

a. light pole                b. tree 

Figure 4.14 Inappropriate bicycle locking 

 

Bicycles used through the dockless SPIN bicycle share program can be left 

anywhere that is permitted to leave a bicycle which is not necessarily a bicycle parking 
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facility. A dockless bicycle share system provides additional insight as to where bicycles 

have the tendency of being left without the potential consequences if the bicycle was 

owned, such as theft or vandalism. For example, a bicyclist may leave a SPIN bicycle 

outside a classroom building. However, if the bicyclist owned the bicycle, they will most 

likely lock it to a bicycle rack for security. Some common locations that bicyclists leave 

SPIN bicycles are next to a classroom or office building, in the grass near a sidewalk, and 

at or near a bicycle rack as shown in Figure 4.15.  

 

  

  

Figure 4.15 Common SPIN bicycle locations 
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The points used for analyzing existing bicycle parking facilities are the Start Points 

and End Points. The objective is to determine where bicycle parking is being properly 

utilized and where additional bicycle parking may be needed. To begin, the Start and End 

Points are displayed on the map and merged into one set of points for this analysis, since 

an end location will then turn into a start location when a new user finds an available SPIN 

bicycle. A point density map can be used to show areas of high beginning and ending trip 

locations (Figure 4.11). High density areas can be seen in the core of campus, near 

Patterson Office Tower and Whitehall Classroom. On south campus, there are high density 

areas near the student dorms and the main campus library (William T Young Library).  

The existing bicycle parking infrastructure will be considered in this analysis. The 

point density map in Figure 4.16 can be used in combination with the map of the existing 

bicycle parking racks (Figure 4.11). For this analysis, any Start or End Points that are 

located within a 50-foot radius of an existing bicycle parking rack will be clipped to show 

only the Start and End Points that are not located near a bicycle parking rack. It was 

determined that only about 21 percent of the SPIN bicycle trips started or ended within 50 

feet of an existing bicycle parking rack. Figure 4.17 is the resulting point density map 

showing high density areas where the remaining 79 percent of SPIN bicycle trips started 

or ended outside of the set 50-foot radius of an existing parking location. This map will 

assist in determining locations that could benefit from either expanding the existing bicycle 

parking rack or installing a new bicycle parking rack. One limitation in this analysis is that 

the size and shape of the parking rack was not considered. Therefore, a 50-foot radius may 

overestimate or underestimate the area depending on whether the parking rack is small or 

exceeds the radius. Figure 4.17 shows that there are several locations where there is a high 
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concentration of bicycles and identifies the need for additional facilities that will be 

discussed in the next section.   

 

 

Figure 4.16 Existing bicycle parking on UK campus 
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Figure 4.17 Start and end points away from existing bicycle parking 
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CHAPTER 5. RECOMMENDATIONS 

The objective of the analysis presented here is to identify areas where demand 

exceeds supply, i.g., bicycle infrastructure, and identify areas where improvements may be 

needed. To achieve this, the focus of the data shown in Figure 4.13 (routes) and Figure 

4.17 (parking) is on the red and orange clusters indicating high bicycle travel and parking 

demand. Therefore, new or improved bicycle facilities should be considered for these areas. 

Locations requiring bicycle infrastructure improvements are developed based on this 

assumption and depict the routes and parking locations that seem to be candidates for 

additional evaluation in order to determine what infrastructure improvements may be 

needed. Four routes and four bicycle parking locations have been identified through this 

process. These routes and locations will be further analyzed to determine appropriate 

design to meet travel demands.  

5.1 Route Recommendations 

Figure 5.1 is a map with the recommended routes that could benefit from a bicycle 

facility. Four routes have been identified to improve the bicycle infrastructure along these 

heavily traveled paths that are without a bicycle facility. Three of the four routes (Routes 

1 – 3) are internal to UK campus while the fourth route  (Route 4) is along South Limestone. 

The routes within campus demonstrate the need for higher connectivity between the north 

and south parts of the campus as well as within the campus area. The path along South 

Limestone indicates the need for connectivity between the campus and the city though it 

may be more difficult to address this need given the vehicular travel demands along this 

corridor.    
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Figure 5.1 Recommended improved bicycle routes 

 

The research team has worked closely with the UK senior level Landscape 

Architecture class to develop conceptual designs for the recommended bicycle routes. The 

class presented alternatives during the UK Landscape Architecture Design Week. 

Conceptual drawings for each route are included in Appendix A. The majority of the 
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designs focuses on connecting Routes 1, 2 and 3 to create a continuous path from the north 

end of campus to the south end. The plans use existing sidewalks and walking areas where 

a shared path was created for both bicyclist and pedestrians. Route 4 developed a plan for 

the section of South Limestone between Cooper Drive and Scott Street where a 

bidirectional bicycle facility was proposed in the place of the two-way left-turn lane. It 

should be noted that these designs are conceptual and preliminary and additional evaluation 

is needed in the future so details could be addressed in order to make them feasible projects 

for implementation.  

5.2 Parking Recommendations 

Figure 5.2 presents the recommended locations for adding bicycle parking racks or 

expanding existing bicycle parking racks based on the high density locations in Figure 

4.17. The gray points in Figure 5.2 are locations of existing bicycle parking racks while the 

other red colored areas depict need for bicycle parking facilities. The locations of the 

existing bicycle parking racks are shown in order to determine whether the 

recommendation is expansion of existing parking or addition of a new parking rack. Four 

locations have been identified as requiring improved or additional bicycle parking and all 

are within the UK campus. Two of the locations are in the vicinity of residence halls 

(Location 1 and Location 3), one is near major classroom buildings (Location 2), and 

another (Location 4) is at the UK Football stadium parking lot where many faculty and 

commuters park their vehicles and ride the LexTran buses to main campus. Figure 5.2 

shows that there are some areas that require a revisit of the facilities provided, i.e., update 

or expansion of the existing parking facility. This could be the case for Locations 1, 2 and 

4. However, Location 3 suggests that there is a need for the introduction of a bicycle 
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parking rack since one does not exist where the high-density areas are shown. Location 3, 

near the Woodland Glen residence halls, may need to be expanded or provide another 

parking rack. 

 

 

Figure 5.2 Recommended improved bicycle parking locations 
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 Recommendations for addressing the need for more bicycle parking include 

expanding existing bicycle parking and adding new parking facilities. The demanded 

bicycle rack capacity will be reported for each recommended location using the point 

density map (Figure 5.2). The daily count of Start and End points within the dark red region 

of each of the four recommended locations was first determined. The maximum number 

and average number of daily count was reported and compared to the existing number of 

parking spaces, if applicable (Table 5.1). It is important to note that the reported count 

numbers are only those that are SPIN bicycles and do not include the number of bicycles 

that are personally owned.  

 

Table 5.1 Bicycle parking need 

Location Total Trips 
Daily Count Existing 

Capacity Maximum Average 

1 (East) 122 6 0.5 0 
1 (West) 297 8 1.4 54 
2 (North) 124 4 0.5 0 
2 (South) 238 8 0.9 0 

3 546 13 2.1 0 
4 1269 28 4.9 20 

 

Location 1 would benefit with the expansion of 6 parking spaces to the east of 

Location 1 since this area does not have an existing bicycle rack. The west area in Location 

1 has an existing bicycle rack with capacity greatly exceeding the maximum SPIN bicycle 

demand. This difference could be attributed to the potential use of the rack by other users 

and therefore the SPIN bicycles were able to be left dockless. Both red areas within 

Location 2 do not have an existing bicycle facility. The southern red area is located at the 
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White Hall Classroom which is one of the major classroom buildings and the northern red 

area is located near the student center. Both areas in Location 2 would benefit with the 

addition of a bicycle rack with the rack capacity at least the maximum daily count as shown 

in Table 5.1. These areas appear to have the demand for 4 to 8 parking spots. The red areas 

in Location 3 are located at the main sidewalk entrance to the Woodland Glen residence 

halls which is a major starting and ending location of SPIN bicycle usage. The existing 

parking facilities in this region appear to meet the demands of bicycle parking. It is 

recommended to add another bicycle parking facility where the red area is located. 

Location 4 is at the UK football stadium parking lot near the bus stop for the LextTran UK 

campus route. It is recommended that the existing parking facility be expanded to meet the 

demand for a maximum of 28 parking spots. The existing parking rack has a capacity of 

20 spots.   
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

The use of GPS devices has been a major aid for tracking bicycle trips and having 

access to bicycle trip data for research. City planners can use such data to determine the 

best way to allocate funds for improving bicycle infrastructure. The installation of new or 

improved bicycle infrastructure has the ability to provide cyclists with safe and efficient 

travel routes.  

This study examined bicycle travel demand and travel patterns as generated by 

SPIN bicycle users. Data from the bicycle share company, SPIN, was provided in order to 

evaluate the travel patterns and travel demand for the bicycle share pilot program. The data 

was processed and analyzed in order to address temporal and climatic effects, define 

temporal and travel-related variables that could predict travel demand, and determine 

infrastructure needs through a point density analysis. Maps were created as the product of 

the point density analysis to provide insight to ways to improve bicycle routes and bicycle 

parking. Existing bicycle facilities were considered in order to determine where to 

recommend new bicycle paths and bicycle parking. As a result, four routes and four 

parking locations were identified as the high demand areas. Conceptual design ideas were 

created through the collaboration with Landscape Architecture students.  

Overall, the analysis indicate bicycle trips are influenced by weather conditions, 

travel time, and travel distance. Bicycle travel demand fluctuates with weather patterns. 

Various weather characteristics can be used to predict daily bicycle usage such as 

precipitation, wind speed, and temperature. However, the elasticity of bicycle travel 

demand may vary based on culture and dependency on cycling. Bicycle-friendly cities, 

like Copenhagen, Denmark, most likely do not see a dramatic drop in bicycle usage in the 



57 
 

presence of rain. In places where cycling is a small percentage of mode choice and 

individuals may have the option to drive a car, such as it is the case in the United States, a 

larger decrease in bicycle travel demand when adverse weather conditions are present may 

be seen.  

Based on the data and point density analysis, it is apparent that bicycle 

infrastructure influences the travel paths cyclists take. Travel demand on routes without an 

existing bicycle facility varies depending on the bicyclists’ comfort and perceived safety 

on that route. For example, non-bicycle routes within UK campus showed heavy travel 

demand whereas South Limestone showed less travel demand. This could be due to the 

perceived differences in the safety level along each corridor based on vehicle volume and 

travel speeds. The travel demand for cycling can be used to identify areas to supply bicycle 

infrastructure where it is appropriate.  

The analysis of the Start and End points showed that a high-density area was located 

at the LexTran bus stop near the stadium parking lot. This supports the idea that commuters 

are using SPIN bicycles to chain their trips with transit and completing the last or first 

section of the trip with a bicycle. Bicycle share can be seen as a way to connect individuals 

to and from transit stops and solving the “last mile” problem. One factor that plays a role 

in the success of trip chaining with cycling is having adequate parking spots to meet the 

demand. Recommendations for expanding the existing bicycle parking facility at the 

LexTran bus stop were provided. 

Future work could use the existing data and conduct a more detailed analysis on the 

individual trip level to determine what percentage of a completed trip was taken on an 

existing bicycle facility or on a non-facility. Common detours could be identified by 
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locating where certain routes or areas are avoided. These findings could aid transportation 

planning officials to make decisions for expanding the existing bicycle network in efforts 

to minimize the percentage of cyclists who take a detour and the length of detours when 

necessary.  

The UK Transportation Services and the LFUCG Division of Planning/Traffic 

Engineering could use these findings and conclusions to aid their decisions to improve the 

bicycle network throughout UK campus and to connect campus to the city of Lexington. 

Successful improvements and connectivity have the ability to make cycling as a mode of 

transportation more enticing for students and faculty as well as for the residents of 

Lexington.  
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APPENDIX 

This appendix includes conceptual designs created by UK Landscape Architecture. 

It should be noted that these designs are conceptual and preliminary and additional 

evaluation is needed in the future so details could be addressed in order to make them 

feasible projects for implementation.
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South Limestone Master Plan 
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