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ABSTRACT OF DISSERTATION 
 
 
 
 

CONNECTING THE PIECES: HOW LOW BACK PAIN ALTERS LOWER 
EXTREMITY BIOMECHANICS AND SHOCK ATTENUATION IN ACTIVE 

INDIVIDUALS 
 

Low back pain in collegiate athletes has been reported at a rate of 37% from a wide 
array of sports including soccer, volleyball, football, swimming, and baseball. Whereas, in 
a military population the prevalence of low back pain is 70% higher than the general 
population. Compensatory movement strategies are often used as an attempt to reduce pain. 
Though compensatory movement strategies may effectively reduce pain, they are often 
associated with altered lower extremity loading patterns. Those who suffer from chronic 
low back pain tend to walk and run slower and with less trunk and pelvis coordination and 
variability. Individuals with low back pain also tend to run with more stiffness in their 
knees. Moving with less joint coordination and more stiffness are potential compensatory 
movement patterns acting as a guarding mechanism for pain.  

Overall the purpose of this project was to determine how chronic low back pain 
influences lower extremity biomechanics and shock attenuation in active individuals 
compared to healthy individuals and examine how the altered lower extremity 
biomechanics are related to clinical outcome measures. We hypothesized that individuals 
who present with chronic low back pain are more likely to exhibit higher vertical ground 
reaction forces and less knee flexion excursion during landing, compared to healthy 
individuals. We also hypothesized that individuals with chronic low back pain will have a 
reduced ability to attenuate shock during landing compared to the healthy individuals. 

This study was a case control design in which physically active individuals 
suffering from chronic low back pain were matched to healthy controls. All participants 
reported for one testing session to assess self-perceived knee function in the form of the 
Knee Osteoarthritis Outcomes Score (KOOS), lower extremity strength and mechanics 
during three landing tasks. Isometric strength was assessed using an isokinetic 
dynamometer during hip abduction, hip extension, and knee extension. The landing tasks 
included a drop vertical jump, a single leg hop, and a crossover hop. A three-dimensional 
motion analysis system with two in-ground force plates and four inertial measurement units 
were used to assess lower extremity mechanics during the landing tasks.  

Individuals with low back pain presented with reduced KOOS scores compared to 
healthy individuals in four of the five subscales, including Symptoms (p=0.007), Pain 
(p=0.002), Activities of Daily Living (p=0.021), and Quality of Life (p=0.003). 



     
 

Alternatively, while there were some strength, kinematic, and kinetic between limb 
asymmetries noted in the low back pain group, there were not between group differences 
with the healthy individuals. In the low back pain group, individuals presented with greater 
dominant limb knee extension strength (p=0.039) and greater dominant limb ankle 
plantarflexion at initial contact during the drop vertical jump, compared to the non-
dominant limb (p=0.022). Individuals with low back pain also presented with greater non-
dominant limb tibia impact during the single limb hop (p=0.008).  

While we did not identify any mechanical differences between individuals suffering 
from chronic low back pain and those who do not, we did identify that an active population 
suffering from low back pain does present with decreased self-perceived knee function 
compared to active individuals without low back pain. As these groups biomechanically 
perform similarly, they do not clinically perform the same, specifically, in terms of the 
KOOS. Such differences should not be overlooked when treating active populations with 
low back pain. If this population is presenting with altered self-perceived knee function at 
a young age, it is likely that it will continue to decline and negatively affect their function. 

 
KEYWORDS: Low Back Pain, Biomechanics, Active, Lower Extremity, Inertial 

Measurement Units  
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  BACKGROUND 

Epidemiology of Low Back Pain 

Chronic low back pain is a debilitating disease globally and is the leading cause of 

physician visits and utilization of healthcare services.[1] It is also a leading cause of 

activity limitation in individuals under 45.[2] It has been previously reported that in the 

US, low back pain incurs total health care expenditures up to $91 billion per year.[3] In 

the general population low back pain affects about 80% of individuals at least once in their 

lives,[4, 5] and during any given year 15-20% of individuals will present with low back 

pain.[3] 

In athletes, low back pain is also a common occurrence. It has been estimated that 

unspecified low back pain occurs in up to 15% of adolescent athletes,[6] though prevalence 

of low back pain is higher in some sports. Low back pain in adolescent gymnasts has been 

reported to be upwards of 86%.[7] Low back pain has been reported in 37% of adult 

athletes in a wide array of sports including soccer, volleyball, football, swimming, 

wrestling, tennis, gymnastics, and baseball.[8, 9] Approximately 30% of college football 

players have reported low back pain[10] while 30% have lost playing time.[8] 

Degenerative disc disease and spondylolysis are the most common diagnoses in athletes 

with low back pain.[8] Greene et al.[11] reported that college athletes with a history of 

low-back injury had three times the risk for subsequent pain compared to those who had 

never experienced pain. Additionally, factors such as presence of low back pain, missed 

training, and time to return to regular training and/or competition were all significant 

predictors of a low back injury in the following season .[11]  
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It has been indicated that the prevalence of low back pain in military personnel is 

70% higher than the general population.[12] In a sample of Marines queried on their past 

injury history, 32% reported an injury while 25% of those injuries were localized to the 

low back.[13] The data were consistent with other high incidences of LBP reported in 

Special Operations Forces commands.[14] Low back pain is the leading cause of lost duty 

days[15, 16] and caused the greatest 5-year risk of disability from the military at rates 

approaching 20%.[17]  

 Etiology of Low Back Pain 

It is common for an individual to experience idiopathic low back pain that can 

persist for long periods of time. Physically active individuals, such as athletes and military 

personnel are no exception to this cause. Chronic unspecified low back pain is defined as 

experienced pain between T12 and gluteal folds with no radiographic or diagnostic 

explanation. It is commonly reported that chronic unspecified low back pain may be due 

to weak core muscles,[6] hip muscle tightness,[18-20] or general overuse pain.[8] 

Individuals who experience low back pain may have a clear diagnosis, based on either a 

defining event or a specific injury, such as end plate fractures or disc herniation.[21] 

Overuse injuries, such as spondylolysis, spondylolisthesis, sacroiliac or vertebral joint 

inflammation, posterior element overuse syndrome, overuse disc degeneration and 

herniation, and vertebral body apophyseal avulsion fractures are common diagnoses in 

patient with low back pain. Additional reasons for low back pain, albeit less common, 

include infections, tumors, and cysts[21] and musculoskeletal deformities such as scoliosis 

or hip dysplasia. Despite the reason for the pain it is common that low back pain leads to 

changes in one’s movement patterns.[22-24] These compensations are often an attempt to 
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reduce or avoid pain and become learned behaviors that may result in lasting damage to 

the lower extremity joints.[25, 26] In a highly active population, such as the military or 

athletes, compensatory lower extremity joint mechanics may alter joint loading and 

increase the risk for secondary lower extremity injury.  

Low Back Pain Movement Strategies  

Regional Interdependence 

Regional interdependence is defined as clinical observations related to the 

relationship purported to exist between regions of the body, specifically with respect to the 

management of musculoskeletal disorders.[27] The human body may alter the way it 

absorbs and transmits forces through the ankle, knee, hip, back, and neck, or how pain in 

a proximal location may affect mechanics at distal and proximal joints. Individuals with 

low back pain tend to exhibit behaviors associated with regional interdependence, as they 

present with altered movement patterns potentially due to the back pain they are 

experiencing.[26, 28] Regional interdependence is similar to the concept of the kinetic 

chain in that the body is connected in a way that an injury at one joint location can have 

lasting affects at other locations due to potential compensations.[29] Regional 

interdependence is demonstrated by individuals with low back pain, as they have presented 

with altered mechanics, specifically at the knee.[28] Most patient reported outcomes are 

specific to a type of injury, disease, or an area of location on the body. Individuals with 

both osteoarthritis at the hip or knee and LBP have been shown to report worse function, 

higher pain, and greater stiffness on patient reported outcomes than those with hip or knee 

osteoarthritis without low back pain.[26] The Knee Osteoarthritis Outcomes Score 
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(KOOS) is used to identify knee related challenges that patient’s experience, and have 

been linked to identifiers leading to possible knee injuries[30] and knee osteoarthritis.[31] 

Granan et al.[30] found that individuals with lower KOOS quality of life scores were at a 

33% greater risk of a secondary ACL tear. Similarly Long et al.[32] reported that 

individuals who had sustained a lower limb injury reported knee quality of life scores that 

were correlated with higher loading during gait, and related to knee osteoarthritis severity. 

Therefore, it is possible that additional patient reported outcomes, not specific to one’s 

injury, but interdependent, may provide a more complete understanding of how the injury 

affects the patient’s overall pain and function. 

 

Neuromuscular Deficits  

 Nadler et al.[25] found that females who reported low back pain in the last 

year had a greater strength discrepancy in the hip extensors (15%) than females who did 

not report low back pain in the last year (5.3%). This hip muscle asymmetry has been 

shown to be predictive of whether or not female athletes will seek treatment for low back 

pain within the following year.[18, 19] Similarly, Kendall et al.[33] found that patients 

with low back pain demonstrated 31% less hip abduction force output than patients without 

low back pain and Hides et al.[34] found that strength deficit patterns associated with 

athletes with low back pain may have negative consequences on performance. Additional 

research suggested that those with lower hip flexor and hip adductor strength were more 

likely to present with low back pain.[20] Overall, those with low back pain tend to present 

with weaker lower extremity musculature, which in other populations, such as anterior 
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cruciate ligament reconstruction, have been known to increase their risk for secondary 

injuries.[35-37] 

 

Gait Biomechanics 

Previous research has demonstrated the interdependence link between LBP and 

altered lower extremity biomechanics. The human body may alter the way it absorbs and 

transmits ground reaction forces through the ankle, knee, hip, back, and neck.[38] These 

alterations may be due to proximal pain leading to poor distal joint mechanics. Individuals 

with low back pain have presented with altered biomechanics at the knee, highlighting 

regional interdependence.[39, 40] Individuals with LBP that presented with lower vertical 

ground reaction forces during walking, also landed with a more extended knee at initial 

contact.[41] This decrease in vertical ground reaction force may be attributed to the fact 

that patients with low back pain tend to walk slower.[42, 43] Voloshin and Wosk suggested 

that individuals with LBP had a diminished ability to absorb shock during walking by up 

to 20%.[44] 

Joint coordination is the coupling of segments to produce efficient movement.[45] 

Inter-segmental or inter-joint coordination uses the segments and the joints, as well as 

temporal spatial organization to identify coordinative movement patters.[46] Joint 

coordination has been used to explain motor control changes of the lower extremity, in 

many pathological populations including those with patellofemoral pain,[47] iliotibial 

band syndrome,[48] hip arthroplasty.[49] Defining the phase movements of coordination 

is necessary for assessing motor control mechanisms during gait.[50] In healthy 

individuals, a faster walking speed tends to lead to a transition of antiphase movement, 
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meaning that their trunk and pelvis move in opposite directions in the transverse plane. 

Whereas, during slower walking speeds healthy individuals move in more in-phase 

movement patterns, meaning that the trunk and the pelvis are moving in the same direction 

in the transverse plane as they step forward.[51, 52] Individuals with low back pain do not 

transition to the antiphase movement associated with faster walking speeds like healthy 

individuals, suggesting a more rigid or “guarded” gait pattern.[22, 23, 53, 54] In the 

transverse plane trunk pelvis coordination of healthy individuals evolves from in phase to 

antiphase coordination walking velocity increases.[52] This suggests that their trunk and 

pelvis move in opposite directions in the transverse plane, while individuals who suffer 

from chronic low back pain walk with less trunk and pelvis joint coordination and 

variability. The lack of ability to move into an out of phase movement suggests that those 

with low back pain move in a stiffer pattern as a guarding mechanism for pain.[55, 56] 

Sung et al.[57] identified that individuals with low back pain present with a 

dominant limb dependence strategy during walking. Individuals with low back pain may 

be more likely to demonstrate poor loading mechanics on the non-dominant limb, 

potentially relying on the dominant limb for effective performance and pain avoidance. 

Individuals suffering from low back pain may become dominant limb dependent by 

increasing their lumbar spine rotation on the dominant side [58, 59], and decreased time 

in single limb stance on the dominant side, during walking [57]. Spending less time on the 

dominant limb, especially during more functional tasks such as running or jumping, may 

inhibit proper load distribution throughout the lower extremity leading to further injury. 
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Functional Biomechanics 

A combination of higher vertical ground reaction forces and smaller knee 

excursions causes force to be transmitted in other directions throughout the body.[60, 61] 

Landing with greater knee extension at initial contact may be indicative of diminished 

lower extremity strength and proprioception,[62] and can sometimes lead to the knee 

converting shock absorption into the frontal plane.[63] Excessive knee valgus motion 

during landing forces the tibia to translate in an inappropriate manner leading to potential 

destruction of the ligaments within the knee, most notably the anterior cruciate 

ligament.[64] Also, landing with higher vertical ground reaction forces and less knee 

flexion results in a greater knee extension joint moment.[60, 65, 66] This torque exposes 

the knee to potential injury. In individuals with low back pain there is a lack of information 

on the interdependence of lower extremity biomechanics in active populations, in which 

complex dynamic movements are more relevant. Hamill et al.[39] found that individuals 

with low back pain exhibit greater knee stiffness during running. Haddas et al.[67] 

identified that females land with greater knee flexion at initial contact, smaller vertical 

ground reaction forces, and greater knee flexion moments compared to males. The lack of 

research surrounding lower extremity functional mechanics in active individuals with low 

back pain demonstrates a critical need to further understand how these individuals 

compensate for pain.  
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Modalities for Biomechanical Analysis 

Three Dimensional Motion Capture 

Three dimensional motion capture has been regarded as the gold standard 

technology for collecting human movement biomechanical data,[68-70] especially during 

sport specific movements.[71, 72] Retroreflective markers are placed specific bony 

landmarks to create a model of the human body, and additional markers are placed on the 

segments of interest to track the human movement. This allows for the calculation of joint 

range of motion and position during certain events in a movement, referred to as 

kinematics. Additionally, kinetic data is collected using force plates, measuring the direct 

amount of force applied to the ground during contact. Three dimensional motion capture 

has been deemed as valid and reliable for assessing many different types of human 

movement, including jumping and landing tasks.[69-72] Unfortunately, three dimensional 

motion capture can be extremely restrictive, as the cameras are very expensive and the 

data must be collected in a controlled laboratory setting, thus performance coaches, 

clinicians, and researchers alike have expressed the need to capture field data, for more 

translatable research.  

 

Inertial Measurement Units 

Inertial Measurement Units (IMUs) are sensors that are able to collect 

biomechanical data. They are typically small, portable, and collect data via Bluetooth 

signal. IMUs may include three different types of data captured from magnetometers 

(position in global space), gyroscopes (rotational accelerations), and accelerometers 

(linear accelerations). Multiple combinations of this data have begun to be used in 
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biomechanical data collections for human movement, mainly because of their lesser 

expense and portable use, providing a greater ability for field data collection.[73-76] Many 

attempts have been made to validate IMUs, though there are many inconsistencies in how 

the data are collected, processed, and analyzed.[74, 76-78] IMUs are able to analyze joint 

kinematics,[74, 77] segment impacts identified by peak accelerations,[76, 79], segment 

angular velocities,[75, 80] and shock attenuation in the frequency domain[78, 81, 82] and 

in the time domain, commonly referred to as acceleration reduction.[78, 82] Thus, the 

validation of IMUs for clinical use maybe task and study specific.  

 IMU data have been used in conjunction with three dimensional motion 

capture data, as well as standalone. Elvin et al.[79] determined that increases in knee 

contact angle during landing influences not only vertical ground reaction forces but also 

segment accelerations, with the strongest positive relationship to peak pelvis impacts. 

Further, joint angular velocity has been related to three dimensional mechanics that are 

associated with poor loading mechanics following anterior cruciate ligament 

reconstruction.[75, 80] Early research by Shorten and Winslow[81] identified that as 

running speed increases, tibial impact is increased, then actively attenuated throughout the 

body to adapt for increases in load. Similarly prior shock attenuation research has also 

demonstrated that during a fatiguing run the body loses its shock absorption 

capabilities.[83] In the time domain, Derrick et al.[78] demonstrated that healthy 

individuals present with poor acceleration reduction following a fatiguing run.  
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Significance and Specific Aims 

Low back pain is a common occurrence among active individuals including athletes 

and military service members, and has been known to be a primary cause of reduced levels 

of activity, a loss of sport participation, and lost duty days. Pain avoidance movement 

strategies are documented in a commonly older low back pain population, but lacks 

evidence in these typically younger and more active populations. These changes in 

biomechanical strategies (i.e. inadequate shock attenuation and/or increased sagittal and 

frontal plane knee joint moments) may be associated with a higher risk of a secondary 

lower extremity injury. Active individuals consistently sustain impacts greater than those 

experienced during activities of daily living, due to the nature of sport, activity, or even 

occupation. If active individuals are able to maintain function despite biomechanical 

compensations from low back pain, they may be putting themselves at greater risk for 

reduced long-term musculoskeletal health outcomes. By evaluating lower extremity 

biomechanics and shock attenuation in active individuals who present with low back pain, 

we can begin to understand the magnitude this commonly unspecified condition may have 

on a more active population. Therefore, the primary purpose of this project is to determine 

how chronic low back pain influences lower extremity biomechanics and shock 

attenuation in active individuals compared to healthy individuals and examine how the 

altered lower extremity biomechanics are related to clinical outcome measures. 

Specific Aim 1: To determine the relationship between lower extremity kinematics 

and kinetics and shock attenuation in healthy individuals during a functional 

landing task.  

Hypothesis 1.1: Higher vertical ground reaction forces will be associated 

with poor shock attenuation during landing. 
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Hypothesis 1.2: Lower joint excursion would be associated with poor shock 

attenuation during landing. 

Specific Aim 2: To determine the effects of chronic low back pain on strength, lower 

extremity biomechanics, and shock attenuation during landing compared to a 

healthy population 

Hypothesis 2.1: Individuals with LBP would have weaker hip and 

quadriceps strength compared to healthy control groups. 

Hypothesis 2.2: Individuals with LBP would have altered lower extremity 

biomechanics including decreased knee excursion, and increased knee joint 

loading compared to healthy individuals during landing. 

Hypothesis 2.3: Individuals with LBP would have an inability to attenuate 

shock through the kinetic chain to the trunk during landing, compared to 

healthy individuals. 

Specific Aim 3: To determine how lower extremity biomechanics during landing 

relate to clinical outcome measures in individuals with chronic low back pain 

Hypothesis 3.1: Altered lower extremity mechanics and shock attenuation 

would be related to higher Oswestry Low Back Pain Disability scores and 

lower Knee Injury and Osteoarthritis Outcome Scores 

Hypothesis 3.2: Altered lower extremity mechanics and shock attenuation 

would be related to reduced lower extremity isometric strength 

 

 

Copyright © Alexa Keneen Johnson 2019 
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 THE RELATIONSHIP BETWEEN LOWER EXTREMITY 
MECHANICS AND LOAD CHARACTERIZED BY INERTIAL SENSORS 

DURING LANDING 

 

Introduction 

An individual’s ability to absorb forces plays a critical role in injury risk reduction 

and physical performance optimization. Mechanical shock, generated by ground contact, 

is often attenuated or reduced by the body and controlled by factors not limited to eccentric 

muscle control, soft tissue absorption, and increased joint excursion. During locomotion, 

the lower extremities are often the prime shock absorbers of the body.[61, 84, 85] in which 

the lower extremities can be manipulated to lessen, or better attenuate load during ground 

contact. For example an increase in knee flexion at initial contact reduces vertical ground 

reaction forces.[61, 86] Also, landing with greater knee flexion excursion has been shown 

to mitigate impact stress compared to landing with a stiffer knee.[61, 87-89] The likelihood 

of lower extremity injury, like an ankle sprain or an anterior cruciate ligament injury, 

increases when the load of ground contact becomes larger than what the lower extremities 

can sufficiently attenuate.[90] 

Functional tasks, such as sport specific movements like hopping and jumping, are 

clinically applicable tools for clinicians and researchers to assess patient movement 

strategies, progress, and return to sport participation as they incorporate multiple goals 

within the task. Functional tasks have the ability to highlight injury risk and the capability 

to measure muscle strength, power, proprioception, and neuromuscular control among 

other constructs.[91] Single limb hops are consistently used by clinicians to determine 

lower extremity function, as only one limb is available to absorb the load of the entire body 
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and must decelerate the center of mass in both horizontal and vertical directions.[92] The 

crossover hop provides similar functional assessment capabilities as a single limb hop, 

while adding a level of complexity by incorporating lateral stability requiring the 

individual to hop over a line during three continuous hops. This requires increased hip 

strength and neuromuscular control for not only vertical shock absorption but also lateral 

stability. Assessing functional tasks that require different levels of complexity better 

simulate game like situations for athletes. It is common for healthy individuals to exhibit 

high levels of variability when performing landing tasks.[93] It has also been suggested 

that greater levels of movement variability, such as inconsistent ankle, knee, and hip 

moments, may contribute to a greater injury risk.[93] Further, Nordin and Dufek[94] found 

that healthy individuals change their load absorption strategies and movement variability 

based on task demand. Also, landing with greater vertical ground reaction forces has been 

associated with a greater upright landing posture, for example reduced hip flexion and a 

more rigid trunk, and an increase in risk for injury[61, 90] via greater quadriceps 

demand.[95, 96] Thus, assessing more than one functional task may be important when 

analyzing landing strategies.  

Clinicians often use a battery of tests to return athletes to sport participation that 

include a combination of jumping and hopping.[97] Clinicians may benefit from having 

more information than distance or height jumped, such as lower extremity loading 

parameters and joint kinematics in order to make more informed decisions. While three 

dimensional (3D) motion capture systems provide us with important mechanical 

information on the way an individual moves, they are knowingly expensive, require a 

controlled laboratory space, and require a greater technical understanding, thus most 
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clinics do not have the personnel, physical, and fiscal resources to accommodate 3D 

motion capture systems. Alternatively, inertial measurement units (IMUs) are a less 

expensive technology that may provide the necessary information for clinicians. Derrick 

et al.[78] demonstrated that healthy individuals present with poor acceleration reduction 

following a fatiguing run. In addition, Elvin et al.[79] determined that knee contact angle 

during landing influences not only vertical ground reaction forces but also segment 

accelerations, with the strongest positive relationship to peak pelvis impacts. IMUs are 

portable and have wireless capabilities, which may provide advantages to being used in a 

clinic or field setting. Though IMUs appear to be useful for clinicians, information 

surrounding the use of IMUs during functional tasks collected in clinic settings are 

limited.[75, 77, 98] . Therefore, the purpose of this study was to determine the relationship 

between lower extremity kinematics and kinetics and shock attenuation in healthy 

individuals during a functional landing task. We hypothesized that higher vertical ground 

reaction forces and lower joint excursion would be associated with poor shock attenuation 

during landing.  

 

Methods 

Participants 

Healthy individuals were recruited from university sports teams, fitness centers, 

and the general population for a cross sectional study. Individuals were eligible to 

participate in this research study if they had not experienced a bout of low back pain (LBP) 

lasting more than 48 hours, had never undergone back or lower extremity surgery, had not 
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experienced a lower extremity injury in the last year, had not been diagnosed with a 

musculoskeletal deformity (such as scoliosis or hip dysplasia), were not pregnant, and 

scored less than a 10% on the Modified Oswestry Low Back Pain Disability Index[99] 

(Appendix A). Additionally, these individuals must also have scored a minimum of a 5 on 

the Tegner Physical Activity Scale (Appendix B).[100] Scoring a 5 on the Tegner indicates 

that they were moderately physically active running at least two times a week on uneven 

ground, or competitive cycling, or taking part in heavy construction work. Limb 

dominance was recorded for all individuals as which leg they would choose to kick a 

soccer ball. All individuals read and signed an informed consent approved by the 

University’s Institutional Review Board. Participation in this study included one visit to 

the University of Kentucky’s Sports Medicine Research Institute to complete a 

biomechanical analysis of functional hop tasks. 

 

Procedures 

Hop Testing  

Biomechanical outcome measures were collected during a single limb hop, and a 

cross over hop. Individuals were allowed as many practice trials as they deemed necessary 

to feel comfortable, then five successful trials on both the dominant and the non-dominant 

limb were recorded for biomechanical analysis. The single limb hop and crossover hop 

(Figure 2.1) followed Noyes et al.[97] specifications. In the single limb hop, the starting 

line was placed so individuals must stick the landing on one of two in-ground force plates. 

Individuals were instructed to jump forward as far as possible and stick the landing, 

identified by no double hops, pivoting, shifting, touching the other foot to the ground, or 



16 
 

touching the ground with their hands. A single limb hop in which any part of the foot did 

not land on the force plate was considered a bad trial and individuals were asked to give 

another effort. During the crossover hop the starting line was placed to capture the second 

landing on one of two force plates for kinetic measurements. The crossover hop consisted 

of three continuous single limb hops over a 15cm divide. Any trial in which the 

individual’s foot did not fully cross the divide, or the individuals did not land with their 

foot fully on one force plate during the second hop, they were asked to give another effort 

while still allowing for adequate rest in between trials. Individuals must also have stuck 

the final landing, which was identified by no double hops, pivoting, shifting, touching the 

other foot to the ground, or touching the ground with their hands.  

Three Dimensional Motion Capture  

Three dimensional motion capture was used to examine lower extremity 

biomechanics during the hop tasks. Trunk and lower extremity segments were defined and 

tracked using 14mm markers placed at 7th cervical vertebrae, bilateral acromion 

processes, the sternum, xiphoid process, the 12th thoracic vertebrae, as well as bilateral 

iliac crests, anterior superior iliac spines, greater trochanters, medial and lateral femoral 

epicondyles, medial and lateral malleoli, proximal and distal heel, mid-foot distal to the 

lateral malleoli, and the head of 1st and 5th metatarsals. Additionally, tracking clusters, 

created by rigid thermoplastic with four 9.5mm markers affixed, were placed over the 

pelvis at the posterior superior iliac spine and bilaterally on the lateral thighs and shanks 

(Figure 2.2). After the static calibration, medial and lateral markers placed on anatomical 

landmarks of the lower extremity were removed and only tracking markers were used for 

the data collection during the dynamic movements. Kinematics were collected at 200Hz 
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with a 14-camera 3D motion capture system (Vicon, Centennial, CO) and ground reaction 

forces captured at 2000Hz, on two in-ground force plates (Bertec Corporation, Columbus, 

OH).  

Inertial Measurement Units 

Lower extremity accelerations were collected using three, 9-axis, inertial 

measurement units (IMUs; I Measure U, Vicon, Centennial, CO), sampled at 500Hz. IMUs 

were placed on the sacrum (directly underneath the pelvis cluster used for motion capture), 

and approximately 2cm superior to the medial malleolus on the shank (Figure 2.3).  

 

Data Analysis 

3D motion capture data were analyzed using Visual 3D (C-Motion, Germantown, 

MD). Marker trajectories were filtered using a 4th order lowpass Butterworth filter with a 

cutoff frequency of 6Hz. Ground reaction force data were filtered using a 4th order lowpass 

Butterworth filter with a cutoff frequency of 50Hz. Lower extremity kinematics were 

calculated using Euler angles and kinetics were calculated from inverse dynamics methods 

following International Society of Biomechanics guidelines.[69, 101] Peak vertical ground 

reaction forces (PVGRF), and peak lower extremity joint angles of the hip, knee, and ankle 

were identified during the landing phase of all tasks. Joint angle at initial contact for the 

hip, knee, and ankle were identified at the initiation of ground contact on the force plates 

when the vertical ground reaction force exceeded 10N. Landing phase sagittal plane joint 

excursion was calculated for the hip, knee, and ankle. Joint excursion is the difference 

between the peak joint angle during landing and the joint angle at initial contact. Loading 

rate was assessed as the mean of the derivative of the vertical ground reaction force curve 
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from ground contact, indicated by when the force plates recorded a reading greater than 

50N[102] to PVGRF.  

Acceleration data were collected in the Vicon Nexus software for timing 

synchronization to motion capture data. IMU data were analyzed in Visual 3D to calculate 

acceleration reduction and peak impacts in the vertical direction during landing. In the 

single limb hop, the landing phase was defined as initial contact with the force plate to 

100ms after landing. In the crossover hop the second hop was recorded over the force 

plates and the landing phase was defined as initial contact with the force plates to peak 

knee flexion. Peak tibia and peak pelvis impact during landing were determined as the 

peak positive acceleration from initial contact with the force plates to peak knee flexion. 

Acceleration reduction was the percentage of peak impact between the pelvis and the tibia 

sensor as (Peak Pelvis Impact)/(Peak Tibia Impact)*100.[78, 82] Thus, the reported 

number is the percentage of the amount of impact that was not absorbed from the tibia to 

the pelvis, indicating that a larger percentage indicates less favorable shock absorption 

during landing.  

 

Statistics 

Paired t-tests were run to assess differences between limbs were completed to 

assess dominant to non-dominant limb differences. Pearson Correlation Coefficients were 

used to assess relationships between IMU and biomechanical variables. Correlation 

coefficients were interpreted as little to no relationship with a correlation coefficient 

between 0.00-0.25, a fair relationship between 0.25-0.50, a moderate to good relationship 

between 0.50-0.75, and a good to excellent relationship above 0.75, in which a correlation 
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coefficient of 1.00 indicates a perfect relationship.[103] An alpha value of p=0.05 was set 

for all correlations, using SPSS (SPSS 22, IBM Corporation, Armonk, NY) 

 

Results 

Twenty-six individuals completed this study (20F, 6M; height: 1.70±0.07m; mass: 

70.65±11.12kgs; age24.1±4.1 yrs). All individuals in this study were right leg dominant. 

Self-reported physical activity was recorded in via the Tegner Physical Activity Scale with 

an average score of 7.1±1.1, equivalent to sports such as competitive tennis, and recreation 

soccer, football, and rugby.   

 

Dominant vs Non-Dominant Limb Differences 

 In both the crossover hop and the single limb hop there were no differences 

between the dominant and the non-dominant limb in any IMU or 3D motion capture 

variables (Table 2.1). Due to the lack of differences between the dominant and the non-

dominant limb, variables across limbs were pooled to assess the relationships between the 

IMU variables and the 3D motion capture variables, additionally, dominant limb only 

relationships were assessed. 

 

Crossover Hop 

Acceleration reduction was not significantly correlated to ALR, PVGRF, or hip, 

knee, or ankle excursions (Table 2.2). Alternatively, peak tibia and peak pelvis impact 

demonstrated a statistically significant correlation to ALR (peak tibia: r=0.422, p=0.004; 



20 
 

peak pelvis: r=0.335, p=0.026). PVGRF was moderately correlated to peak tibia impact 

(r=0.537, p=0.0001) and correlated to peak pelvis impact (r=0.419, p=0.005; Figure 2.5). 

Dominant limb only relationships were assessed (Table 2.3), in which acceleration 

reduction was not significantly correlated to ALR, PVGRF, and hip, knee, or ankle 

excursions. Though, peak pelvis impact was correlated to PVGRF (r=0.408, p=0.043; 

Figure 2.4), and dominant limb peak tibia impact was moderately correlated to both 

PVGRF (r=0.591, p=0.001) and ALR (r=0.522, p=0.006; Figure 2.4).  

 

Single Limb Hop 

 Acceleration reduction was significantly correlated to PVGRF (r=0.381, 

p=0.020), but not to any other 3D motion capture variable (Table 2.2). Peak tibia impact 

was not significantly correlated to ALR, PVGRF, and hip, knee, or ankle excursion. Peak 

pelvis impact was fairly correlated to PVGRF (r=0.468, p=0.004, Figure 2.6). Dominant 

limb only relationships were assessed (Table 2.3), in which there were no significant 

correlations between acceleration reduction, peak tibia impact, and peak pelvis impact 

with ALR, PVGRF, and hip, knee, and ankle excursion.  

Discussion 

The overall purpose of this study was to determine the relationship between lower 

extremity kinematics and kinetics with shock attenuation and acceleration reduction in 

healthy individuals during different functional landing tasks. Our hypotheses were 

partially supported, in that acceleration reduction was not correlated with lower extremity 

joint excursions in either task, though those with higher ALR and PVGRF had less 
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favorable acceleration reduction from the tibia to the pelvis during landing in the single 

limb hop.  

Specifically, the crossover hop provided moderate relationships from IMU 

variables to 3D motion capture variables. During the crossover hop, individuals who 

landed during the second hop with higher PVGRF were more likely to exhibit less 

favorable shock absorption, or a higher percentage of acceleration reduction. Although 

acceleration reduction provided no significant relationships to PVGRF in the crossover 

hop, those who exhibited higher peak tibia impacts and peak pelvis impacts also landed 

with greater PVGRF and faster ALR. It is possible that the relationships were stronger 

with single sensor outputs, like tibia impact, and not to acceleration reduction because the 

crossover hop is a multi-dimensional task. With the complexity of the crossover hop, 

incorporating a lateral component, shock is also being absorbed in the frontal plane during 

landing, most likely in the knee.[97, 104-106] Therefore, greater tibia impacts may be 

related to increased PVGRF and ALR because the sensor was placed distal to the knee, 

experiencing ground contact before the body had the opportunity to absorb the shock. 

Further, with the lateral component of the crossover hop and our primarily female 

population, this relationship may have the ability to identify poor landing strategies. Prior 

research has displayed that females have exhibited greater lateral forces and knee 

adduction moments during cutting tasks,[107] that are also commonly seen to lead to 

higher vertical ground reaction forces due to inappropriate landing strategies.[64] While 

frontal plane accelerations were not measured in this study, by doing so may provide 

important injury risk evidence. Absorbing force in the frontal plane has been indicated as 
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a significant risk for injury,[64, 108, 109] especially in relation to anterior cruciate 

ligament injuries.[64, 110]  

Similarly, in the crossover hop there was a relationship between the increase in 

ALR related to higher peak tibia and pelvis impacts. This landing and loading phase built 

into one short ground contact time requires multiple constructs of the human performance 

including, power, proprioception, and neuromuscular control.[91] It has been indicated 

that the rate at which forces are absorbed by the lower extremity may be more important 

than peak forces experienced.[111] Thus, the relationship of loading rate to peak tibia and 

pelvis impacts provides more in-depth information about how individuals may be handling 

the large amounts of load, on a single limb, over a short period of time, while still trying 

to optimize performance. Loading rate has been implicated as a factor for the progression 

or development of injuries,[111] such as osteoarthritis and low back pain.[112] With 

relationships to loading rate, IMUs may provide more informed decisions about both acute 

and long term chronic load bearing overuse injuries.  

Similarly, during the single limb hop individuals who had greater landing forces 

tended to absorb less shock during landing. Peak pelvis impact during the single limb hop 

showed a similar relationship to PVGRF as acceleration reduction. Of the many variables 

involved during landing from high impact tasks, especially on one leg, there are two 

interrelated factors that play a large part in absorbing forces associated with ground 

contact, the time to absorb the force, and the amount of joint flexion excursion experienced 

during landing.[61, 84, 88] Elvin et al.[79] found peak trunk accelerations to be associated 

with knee contact angle during jump landings, whereas in our case, knee flexion excursion 

did not indicate a relationship with IMU variables during landing. It is possible that we did 
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not see similar relationships as they did because they conducted a bilateral jumping task, 

and their sensors were placed on the proximal tibia, contrary to this study in which they 

were placed on the distal tibia.[79] It is also possible that the speed of landing may be 

controlling the shock absorption factor of the landing more so than the lower extremity 

joint angles.[113, 114]   

Although there are significant relationships reported between the IMU variables 

and the 3D motion capture variables, the correlation coefficients were still considered only 

moderate to good at best. One reason there may not be strength in correlations between the 

IMUs and 3D motion capture variables in this study, especially joint excursions, may be 

because shock absorption was measured across the two largest shock absorbing joints, the 

knee and the hip.[61, 85, 88] It is possible that stronger relationships may be present if 

there were a sensor placed on the thigh, allowing us to look at multiple levels of 

acceleration reduction throughout the body, in which the hip and the knee do not combined 

into one shock absorbing mechanism. In a pathological population this may be particularly 

important based on injury location.  

This study is not without limitations, as we had to exclude some data from this 

analysis due to the limits of the IMU sensors. The commercially available sensors that 

were used in this study had an upper limit of 16Gs, and in the case of the landing, some 

individuals exceeded that limit. Further, as IMUs measure accelerations in multiple 

directions as well as rotational velocity, we chose to assess straightforward accelerometer 

variables and their relationships for the sake of clinical translatability. As the purpose of 

this study was to assess the relationship between IMUs and loading mechanics such as 

sagittal plan joint kinematics, PVGRF, and ALR, assessing the vertical direction was the 



24 
 

most appropriate. Additionally, these measures avoid complicated analyses and 

calculations that may not be feasible in a clinical setting as they require additional time 

and expertise.  

Ultimately, we believe that impact during landing may be assessed using inertial 

measurement units (IMUs). IMUs can provide clinicians with a more objective assessment 

of their patients, especially when it comes to returning athletes to sports after injuries. 

Although IMUs may be considered expensive, they are more affordable than force plates 

or fully integrated 3D motion capture systems. IMUs are smaller and can be more user 

friendly with data collection possible through applications on a tablet giving immediate 

feedback to clinicians and patients alike. This work not only provides the relationships 

between vertical ground reaction forces and impacts during landing, but also can also be 

beneficial for clinicians as a resource for normative landing impacts measured with IMUs.  

Clinicians can also use this mechanical loading information to guide treatment strategies 

and evaluate treatment effectiveness. 
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Table 2.1  Mean ± Standard Deviation for all inertial measurement unit data and 3D 
motion capture data, including p values for dominant vs. non-dominant comparisons in 
both the crossover hop, and single limb hop. 

 

 

 

 

 

 Dominant Limb Non-Dominant 
Limb 

P Value  

 Crossover Hop   

Acceleration Reduction (%) 38.8 ± 16.1 39.4 ± 13.6 0.543 

Peak Tibia Impact (G) 13.1 ± 1.8 12.5 ± 2.1 0.095 

Peak Pelvis Impact (G) 4.9 ± 1.9 4.7 ± 1.6 0.244 

PVGRF (N/kg) 28.3 ± 4.0 28.3 ± 3.5 0.987 

ALR (N/kg/s) 661.3 ± 345.4 697.8 ± 365.2 0.448 

Hip Excursion (˚) 5.7 ± 4.7 5.1 ± 3.4 0.629 

Knee Excursion (˚) 38.3 ± 6.3 36.8 ± 3.3 0.328 

Ankle Excursion (˚) 26.7 ± 9.7 24.1 ± 10.3 0.099 

 Single Limb Hop   

Acceleration Reduction (%) 51.8 ± 21.9 49.1 ± 18.2 0.636 

Peak Tibia Impact (G) 14.2 ± 1.6 13.7 ± 1.5 0.733 

Peak Pelvis Impact (G) 7.2 ± 3.2 6.7 ± 2.8 0.526 

PVGRF (N/kg) 33.6 ± 5.2 33.1 ± 3.7 0.730 

ALR (N/kg/s) 939.1 ± 268.6 971.2 ± 403.7 0.733 

Hip Excursion (˚) 10.8 ± 4.6 10.1 ± 4.4 0.554 

Knee Excursion (˚) 39.3 ± 5.4 37.4 ± 4.9 0.285 

Ankle Excursion (˚) 11.7 ± 9.9  8.3 ± 5.2 0.311 
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Table 2.2  Pooled dominant and non-dominant limb correlations of inertial measurement 
unit variables to 3D motion capture variables. *Indicates significant correlation 
coefficient of an alpha value of p<0.05. 

 

 
Table 2.3  Dominant limb correlations of inertial measurement unit variables to 3D 
motion capture variables, represented as: r value (p value). *Indicates significant 
correlation coefficient of an alpha value of p<0.05. 
 

 

 

 Peak Tibia Impact Peak Pelvis Impact Acceleration Reduction  

 Crossover Hop   
PVGRF (N/kg) 0.537 (0.0001)* 0.419 (0.005)* 0.086 (0.577) 
ALR (N/kg/s) 0.422 (0.004)* 0.335 (0.026)* 0.018 (0.905) 
Hip Excursion (˚) 0.249 (0.107) -0.94 (0.549) -0.176 (0.259) 
Knee Excursion (˚) 0.142 (0.363) 0.85 (0.587) 0.063 (0.688) 
Ankle Excursion (˚) -0.023 (0.885) -0.144 (0.358) -0.007 (0.966) 
 Single Limb Hop   
PVGRF (N/kg) 0.197 (0.243) 0.468 (0.004)* 0.381 (0.020)* 
ALR (N/kg/s) 0.272 (0.103) 0.135 (0.424) 0.034 (0.841) 
Hip Excursion (˚) 0.232 (0.166) -0.301 (0.070) -0.319 (0.054) 
Knee Excursion (˚) -0.078 (0.646)  -0.315 (0.058) -0.280 (0.093) 
Ankle Excursion (˚) 0.261 (0.131) -0.116 (0.507) -0.106 (0.543) 

 Peak Tibia Impact Peak Pelvis Impact Acceleration 
Reduction 

 Crossover Hop   
PVGRF (N/kg) 0.591 (0.001)* 0.408 (0.043)* 0.075 (0.720) 
ALR (N/kg/s) 0.522 (0.006)* 0.346 (0.090) 0.024 (0.910) 
Hip Excursion (˚) 0.372 (0.067) 0.041 (0.847) -0.061 (0.773 
Knee Excursion (˚) 0.339 (0.097) 0.263 (0.204) 0.118 (0.573) 
Ankle Excursion (˚) -0.112 (0.593) -0.198 (0.344) -0.008 (0.968) 
 Single Limb Hop   
PVGRF (N/kg) 0.341 (0.153) 0.305 (0.204) 0.228 (0.347) 
ALR (N/kg/s) 0.364 (0.15) -0.030 (0.904) -0.116 (0.637) 
Hip Excursion (˚) 0.223 (0.359) -0.154 (0.530) -0.222 (0.360) 
Knee Excursion (˚) -0.154 (0.530) 0.110 (0.655) 0.159 (0.516) 
Ankle Excursion (˚) -0.249 (0.319) -0.276 (0.268) -0.244 (0.330) 
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Figure  2.1 Visual representation of the single limb forward hop for distance and the single 
limb crossover hop for distance from Noyes et al.[97] 

 

 

 

Figure  2.2 Posterior view of marker placement. 
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Figure  2.3 Inertial measurement unit placement on the medial distal tibia, and attachment 
strap representation. 

 

 
 

 
 
Figure  2.4 Crossover hop pooled data scatter plots of significant relationships between 
IMU variables and 3D motion capture variables. 
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Figure  2.5 Crossover hop dominant limb data scatter plots of significant relationships 
between IMU variables and 3D motion capture variables. 
 

 

 
 

 
Figure  2.6 Single limb hop pooled data scatter plots of significant relationships between 
IMU variables and 3D motion capture variables. 
 

 

 

 

 

 

 



30 
 

 LOWER EXTREMITY STRENGTH AND BIOMECHANICAL 
DIFFERENCES BETWEEN ACTIVE INDIVIDUALS WITH AND WITHOUT 

CHRONIC LOW BACK PAIN 

Introduction 

More than 80% of individuals in the general population experience an episode of 

low back pain (LBP) at some point during their lifetime.[4, 5] In active populations, up to 

37% suffer from LBP,[9] and military populations report 70% higher prevalence than the 

general population.[12] Individuals with LBP develop musculoskeletal deficits such as 

weaker trunk strength,[115] and poor behavioral mechanisms.[116] They also tend to 

adapt their movement patterns to compensate for and/or avoid pain[117] with factors such 

as altered trunk and pelvis joint coordination.[23, 118] Compensation strategies often 

becomes a learned behavior that can result in lasting damage to the joints of the lower 

extremities caused by altered loading mechanics.[28, 119, 120] In highly active 

populations chronic altered lower extremity joint mechanics, for instance increased lower 

extremity loading and reduced joint excursion, may increase the risk for secondary lower 

extremity injury.[9]  

Movement analyses in individuals experiencing LBP may help understand how and 

where compensations of altered mechanics are affecting the body, increasing the risk of 

injury. When conducting movement analyses in individuals with LBP, it has been 

recommended that the spine and lower extremities be examined together.[121] Although 

the majority of research on LBP has focused on the biomechanics of the back and trunk, 

independent of the lower extremities, little research[39, 43] has considered the lower 

extremities in those with LBP. Individuals with LBP who present with lower vertical 

ground reaction forces during walking, also landed with a more extended knee at initial 
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contact.[41] Lower vertical ground reaction force may be attributed to demonstrated 

slower walking speeds in patients with LBP.[42, 43] Landing with increased knee 

extension at initial contact may be indicative of reduced lower extremity strength and 

proprioception.[62] Similar research found that patients with current LBP ran with greater 

knee stiffness profiles compared to those without LBP.[39] Individuals suffering from 

LBP may become dominant limb dependent by increasing their lumbar spine rotation on 

the dominant side [58, 59], and decreased time in single limb stance on the dominant side, 

during walking [57]. Spending less time on the dominant limb, especially during more 

functional tasks such as running or jumping, may inhibit proper load distribution 

throughout the lower extremity leading to further injury.[122]   

Regional interdependence explains how pain or an injury in one location can lead 

to pain or injury beyond the original location of pain.[27, 123] Regional interdependence 

has become a more widely accepted explanation for secondary injuries and/or pain beyond 

the location of original pain.[27, 123] The human body may alter the way it absorbs and 

transmits ground reaction forces through the ankle, knee, hip, back, and neck, or how pain 

in a proximal location may affect distal joint mechanics.[124] Regional interdependence 

is demonstrated by individuals with LBP, as they have presented with altered mechanics, 

specifically at the knee, while also having indicated subsequent hip and knee 

osteoarthritis.[28] Individuals with both osteoarthritis at the hip or knee and LBP have 

been shown to report worse function, higher pain, and greater knee stiffness during running 

than those with hip or knee osteoarthritis without LBP.[26] As research has begun to link 

the interdependence between LBP and altered lower extremity mechanics,[39] there is a 
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lack of information on complex dynamic movements that are more relevant to an active 

population where LBP is so common.  

While research studying the interdependence between the lower extremities and the 

trunk together is warranted,[121] shock attenuation through the kinetic chain to the trunk 

is increasingly important to identify key absorption strategies. Inertial measurement units 

(IMUs), small portable sensors that have high clinical applicability, have begun to be used 

to assess shock absorption strategies.[80, 125, 126] Previous research suggests that LBP 

is associated with an inability to attenuate shock by 20% from the femur to the forehead 

during walking.[44] Further, persons with lower limb amputation also commonly present 

with LBP[127, 128] and have shown to exhibit a reduced ability to attenuate shock which 

may lead to increased joint moments.[129, 130] Due to their ease of use, IMUs may be 

able to provide effective information for clinicians to make more informed rehabilitation 

decisions, especially in active populations. Therefore, additional research is necessary to 

determine a connection between shock attenuation and lower extremity mechanics. 

Mechanical compensation strategies may be associated with an increased risk of a 

secondary lower extremity injury.  

Active individuals, including first responders, athletes and military personnel 

consistently sustain impacts greater than those typically seen during activities of daily 

living, due to the nature of sport, activity, or even occupation. Prolonged performance with 

mechanical compensations from LBP may increase the risk for reduced long-term 

musculoskeletal health outcomes. Evaluation of lower extremity mechanics and shock 

attenuation in active individuals who present with LBP may identify the magnitude this 

commonly unspecified condition has on a more active population. Therefore, the purpose 
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of this project was to determine the how individuals who suffer from chronic LBP present 

with altered lower extremity strength, biomechanics and shock attenuation during landing 

compared to a healthy population. We hypothesize that individuals with LBP will have 

weaker hip and quadriceps strength compared to a healthy control group. We also 

hypothesize that individuals with LBP will have altered lower extremity biomechanics 

including decreased knee excursion, increased knee joint loading, as well as an inability 

to attenuate shock through the kinetic chain to the trunk during landing, compared to 

healthy individuals.  

 

Methods 

Participants 

This study is a cross sectional case control study examining the differences between 

individuals who suffer from low back pain (LBP) and healthy controls (CTRL). 

Individuals with LBP were recruited from local sports medicine clinics, athletic trainers, 

fitness centers, and the general population. Patients were eligible to participate in this study 

if they currently suffering from chronic LBP, which has persisted for at least four months, 

had not sustained a lower extremity injury in the past year, had never undergone lower 

extremity surgery, were not experiencing radicular symptoms, had not been diagnosed 

with a musculoskeletal deformity, such as scoliosis or hip dysplasia, scored greater than a 

10% disability on the Oswestry Disability Index (ODI, Appendix 1), a patient reported 

outcome geared toward understanding an individual’s self-perceived low back function in 

different areas of life.[99, 131] Individuals must also have scored a minimum of a 5 on the 
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Tegner Physical Activity Scale (Appendix 2). CTRL participants were recruited from an 

active population and included if they did not have a history of LBP injury, or surgery, a 

history of lower extremity surgery or lower extremity injury within the last year, or scored 

lower than a 10% on the ODI. Healthy control participants were matched to the LBP 

patients based on mass (±5kgs), age (±2 years), Tegner physical activity score (±2 points 

but no less than 5), dominant leg (used to kick a ball), and sex (assigned at birth). All 

individuals read and signed an informed consent approved by the University’s Institutional 

Review Board. Participation in this study included one visit to the University of 

Kentucky’s Sports Medicine Research Institute to complete clinical outcome measures that 

included patient reported outcomes, lower extremity strength measures, and a 

biomechanical analysis of movement strategies during different functional tasks.  

 

Clinical Outcomes Measures 

Strength  

Lower extremity hip and knee strength was measured using a Biodex System 4 

isokinetic dynamometer (Biodex Medical Systems, Shirley, NY). Isometric hip abduction 

was measured side lying, with the hip abducted at 0 degrees (Figure 3.1).[65] Isometric 

hip extension was measured in the supine position with the hip flexed at 60 degrees (Figure 

3.1). Isometric knee extension was measured in a seated position with the knee flexed at 

60 degrees (Figure 3.1). For each test, individuals received two practice trials warming up 

at 50% effort, then one practice trial at 100% effort, before completing three maximal 

effort trials with 30 seconds rest between each trial. Verbal encouragement was provided 
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throughout the test. Peak torque across the trials for each joint direction and limb was 

recorded and normalized to body mass. 

 

Biomechanical Outcome Measures 

Functional Tasks 

Biomechanical outcome measures were collected during three functional tasks, a 

single limb forward hop for distance, single limb crossover hop for distance, and a drop 

vertical jump. All single limb tasks were completed on both legs, whereas the drop vertical 

jump is a bilateral task. Individuals were allowed as many practice trials as necessary to 

feel comfortable with each movement. Five successful trials of each functional task were 

recorded for the biomechanical analysis. The order of testing of each functional task was 

randomized to prevent fatigue or leaning bias. The single limb hop and crossover hop 

followed Noyes et al.[97] specifications (Figure 3.2). For the single limb hop the starting 

line was placed so individuals must stick the landing on a force plate. During the crossover 

hop the starting line was placed to capture the second landing on a force plate for kinetic 

measurements. A single limb hop in which any part of the foot did not land on the force 

plate was considered a bad trial and individuals were asked to give another effort. For the 

crossover hop, anytime in which the individuals foot did not fully cross the 15cm divide, 

or during the second hop in which the individuals did not land with their foot fully on the 

force plates, the individuals were asked to give another effort. Adequate rest time was 

always provided between trials. For both single limb hops, individuals must also have 

stuck the final landing, which was identified by no double hops, pivoting, shifting, 

touching the other foot to the ground, or touching the ground with their hands. Individuals 
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were instructed to complete the single limb hops by jumping as far as possible while still 

being able to stick the landing.  

The drop vertical jump was completed according to Paterno et al.[132] 

specifications (Figure 3.3). Individuals stood on a 45cm box and leaned forward until they 

naturally dropped off the box. At ground contact they performed a maximal effort vertical 

jump. A vertec vertical jump measurement tool was provided for visual feedback and 

maximal effort motivation for the participant. Individuals were placed on the box so that 

they landed with one foot on each in ground force plate, though this information was not 

divulged to the participant to preserve natural mechanics. If at any time, any part of the 

foot did not land on the force plate, or two feet landed on one plate, the trial was considered 

a bad trial and individual was asked to perform a replacement trial. Pain was evaluated 

after every task using a visual analog scale, rating pain from 0-10.[133]  

Three Dimensional Motion Capture 

Three dimensional motion capture was used to examine trunk and lower extremity 

biomechanics during the three different functional tasks. Trunk and lower extremity 

segments were defined and tracked using 14mm markers (Figure 3.4) placed at 7th cervical 

vertebrae, bilateral acromion processes, the sternum, xiphoid process, the 12th thoracic 

vertebrae, as well as bilateral iliac crests, anterior superior iliac spines, greater trochanters, 

medial and lateral femoral epicondyles, medial and lateral malleoli, proximal and distal 

heel, mid-foot distal to the lateral malleoli, and the head of 1st and 5th metatarsals. 

Additionally, tracking clusters, created by rigid thermoplastic with four 9.5mm markers 

affixed, were placed over the pelvis at the posterior superior iliac spine and bilaterally on 

the lateral thighs and shanks (Figure 3.4). After the static calibration, medial and lateral 
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markers placed on anatomical landmarks of the lower extremity were removed and only 

tracking markers were used for the data collection during the dynamic movements. 

Kinematics were collected at 200Hz with a 14 camera three dimensional motion capture 

system (Vicon, Centennial, CO) and ground reaction forces captured at 2000Hz, on two in 

ground force plates (Bertec Corporation, Columbus, OH). 

Inertial Measurement Units 

Lower extremity vertical accelerations were collected using three, 9- axis, inertial 

measurement units (IMUs; I Measure U, Vicon, Centennial, CO). Acceleration data were 

collected in the Vicon Nexus software for timing synchronization to motion capture data, 

sampled at 500Hz. IMUs were placed on the sacrum (directly underneath the pelvis cluster 

used for motion capture), and approximately 2cm superior to the medial malleolus on the 

shank (Figure 3.5).  

 

Data Analysis 

Three-dimensional motion capture data was analyzed using Visual 3D (C-Motion, 

Germantown, MD). Marker trajectories were filtered using a 4th order lowpass 

Butterworth filter with a cutoff frequency of 6Hz. Ground reaction force data were filtered 

using a 4th order lowpass Butterworth filter with a cutoff frequency of 50Hz. Lower 

extremity kinematics were calculated using Euler angles, while kinetics were calculated 

from inverse dynamics methods following International Society of Biomechanics 

guidelines. Peak vertical ground reaction forces (PVGRF), and peak lower extremity joint 

angles of the hip, knee, and ankle were identified during the landing phase of all tasks. 

Joint angle at initial contact for the hip, knee, and ankle were identified at the initiation of 
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ground contact on the force plates when the vertical ground reaction force exceeded 10N. 

Landing phase sagittal plane joint excursions were calculated at the hip, the knee, and the 

ankle. Joint excursion was calculated as the difference between peak joint angle at landing 

and angle at initial contact. Loading rate was assessed as the mean of the derivative of the 

vertical ground reaction force curve from ground contact (greater than 50N to 

PVGRF).[102]  

Raw IMU data were analyzed in Visual 3D to calculate acceleration reduction and 

peak impacts in the vertical direction during landing. In the drop vertical jump, the landing 

phase of the jump was defined as initial contact with the force plate (greater than 20N) to 

peak knee flexion. In the single limb hop, landing was defined as initial contact with the 

force plate to 100ms after landing. In the crossover hop the second hop was recorded over 

the force plates and the landing phase was defined as initial contact with the force plates 

to peak knee flexion. Peak tibia and peak pelvis impacts during landing were determined 

as the peak positive acceleration from initial contact with the force plates to peak knee 

flexion. Acceleration reduction was the percentage of peak impact between the pelvis and 

the tibia sensor as peak pelvis impact/peak tibia impact * 100[78, 82]. Thus, the reported 

number is the percentage of the amount of impact that was not absorbed from the tibia to 

the pelvis, indicating that a larger percentage indicates less favorable shock absorption 

during landing.  

 

Statistical Analysis 

Sample size estimations were based on prior data examining biomechanical 

characteristics, like those proposed in Aim 2, in an unspecified LBP population who 
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completed a stop jump task. Based on sample size estimations (G*Power 3.0.10, Germany) 

using peak knee flexion data during landing of the stop jump, with a Cohen’s d effect size 

of 0.61, a sample size of at least 43 LBP participants was needed to attain 80% statistical 

power for independent samples t-test with an alpha level of 0.05. An interim power 

analysis was calculated from the data on our first 12 subjects. Based on this analysis, a 

sample size of at least 25 LBP participants would be needed 80% power and an alpha level 

of 0.05.  

A 2x2 (group, limb) repeated measures Analysis of Variance (ANOVA) was used 

to determine the differences in peak knee extension strength, peak hip strength, hip, knee, 

and ankle excursions and peak joint moments, PVGRF, and shock attenuation in the LBP 

and the CTRL group, as well as the dominant limb to the non-dominant limb. Conducting 

a 2x2 repeated measures ANOVA also allowed us to understand if there is a group x limb 

interaction. Post-hoc paired t-tests were run for variables with significant limb differences 

or limb x group interactions, while independent t-tests were run for variables with 

significant group differences or limb x group interactions. Statistical significance was set 

at p≤ 0.05. All statistical analyses were performed in SPSS (version 24; IBM Corp, 

Armonk, NY).  

Results 

 Twenty-eight individuals who suffered from low back pain (LBP) and 

twenty-eight healthy control (CTRL) individuals completed this study. There were no 

significant differences between groups in demographic variable such as height (LBP: 

1.7±0.07m, CTRL: 1.7±0.08m; p=0.896), mass (LBP: 72.06±12.1kg, CTRL: 

72.66±13.2kg; p=0.861), age (CTRL: 24.6±4.5, LBP: 25.0±4.8yrs; p=0.785) and activity 
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level (CTRL: 7.0±1.1, LBP: 6.7±1.1; p=0.359). While subjects between groups were 

matched in terms of sex, there were more females (21) than males (7) that presented with 

LBP. Individuals had suffered from LBP for an average of 4.7 ± 3.0 years. As expected 

ODI scores was significant between groups, as was a requirement for inclusion in the 

study. Every individual in the CTRL group reported an ODI score of 0%, while in the LBP 

group scores ranges from 10-34%, with the average ODI score being 16.4%. 

 

Strength 

Limb asymmetries in peak knee extension strength were identified (p=0.0001; 

Table 3.1) in the repeated measures ANOVA, and post hoc analysis paired t-tests indicated 

that both the CTRL group (p=0.005) and the LBP group (p=0.039) demonstrated greater 

peak knee extension strength in the dominant limb compared to the non-dominant limb 

(Figure 3.6). No significant differences existed between groups, limbs, or a group x limb 

interaction in peak hip abduction strength or peak hip extension strength (Table 3.1). 

 

Drop Vertical Jump 

During the drop vertical jump (Table 3.2), RM ANOVA revealed within subject 

limb differences for average loading rate (p=0.026) and ankle flexion angle at initial 

contact (p=0.005). The CTRL group had a greater asymmetry in their average loading rate 

during landing (p=0.007), indicating that their dominant limb experienced higher average 

loading rates than their non-dominant limb, while no significant differences between limbs 

in average loading rate where found in the LBP group (Figure 3.7). Post hoc paired t-tests 
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also indicated that individuals in the LBP group landed with greater ankle plantar flexion 

on their dominant leg compared to their non-dominant leg (p=0.022; Figure 3.7).  

 

Crossover and Single Limb Hops 

In the single limb hop (Table 3.4), a limb x group interaction for hip flexion angle 

at initial contact (p=0.022; Figure 3.8) was identified. Interestingly, though there was a 

limb x group interaction, post hoc t-tests did not identify either a group difference or a 

limb difference in hip flexion at initial contact. There was also a limb x group interaction 

for peak tibia impact during landing (p=0.012, Figure 3.8). Individuals with LBP exhibited 

higher peak tibia impact on the non-dominant limb compared to their dominant limb 

(p=0.008; Figure 3.8). A similar difference was not present in the CTRL group. 

Additionally, the RM ANOVA model indicated there was a limb difference in average 

loading rate (p=0.048) during the single limb hop. Post hoc analysis identified no between 

limb differences in either group in average loading rate during landing. The RM ANOVA 

model also indicated there was a limb difference in ankle excursion (p=0.010; Figure 3.8) 

during the single limb hop. Specifically, the CTRL group experienced greater ankle 

excursion in the dominant limb compared to the non-dominant limb (p=0.032). 

Asymmetrical ankle excursion was not present in the LBP group. In addition, in the 

crossover hop (Table 3.3) no significant group or limb differences were identified.  

 



42 
 

Discussion 

The overall purpose of this study was to determine how individuals who suffer from 

chronic LBP present with altered lower extremity strength, biomechanics and shock 

attenuation during landing compared to a healthy population. The goal was to identify how 

individuals suffering from chronic LBP may compensate for pain in a way that has the 

potential to put them at greater risk for a secondary injury or reduced long-term 

musculoskeletal health. Our hypotheses were partially supported in that both the CTRL 

group and the LBP group exhibited asymmetrical quadriceps strength between the 

dominant and non-dominant limbs, though there were no quadriceps strength differences 

between groups. Interestingly, both groups’ levels of asymmetries were within the healthy 

range, greater than 90% symmetry.[134, 135] The CTRL group demonstrated 92% 

strength symmetry, and the LBP group demonstrated 95% strength symmetry between the 

dominant and non-dominant limbs. While there are significant differences between limbs 

in both groups, neither the LBP nor the CTRL groups’ case would these be considered 

clinically meaningful asymmetries. Hip abduction nor hip extension strength were 

significantly different between the CTRL group and the LBP group. The lack of 

differences in hip strength is not in agreement with previous research that found athletes 

who suffer from LBP demonstrated 31% less hip abduction force compared to those who 

did not suffer from LBP.[33] Nadler et al.[25] also reported that athletes who presented 

with LBP the prior year also demonstrated greater hip extension strength asymmetry. It is 

possible that we did not report the same differences in hip strength as previous research 

due to the nature of our population. Our LBP group was a younger, continuously active 

population, potentially not allowing for strength declines due to LBP that are commonly 

seen.  
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  In the drop vertical jump our hypotheses were partially supported, as individuals 

with LBP presented with increased ankle plantar flexion angles at initial ground contact 

on their dominant limb compared to their non-dominant limb. This asymmetrical limb 

interaction was not present in the CTRL group. There were no other lower extremity 

kinematic differences between limbs or groups. This is in contrast with Hamill et al.[39] 

in which they identified that during running, individuals suffering from LBP exhibited 

greater levels of knee stiffness compared to those who did not suffer from LBP, suggesting 

that those with LBP may not adequately attenuate foot-ground impact. While not 

significantly different from the CTRL group, our LBP group presented with higher 

PVGRF’s and loading rates, but did present with significantly asymmetrical ankle 

kinematics. It is possible that individuals with LBP use compensatory kinematic patterns, 

like increased ankle plantarflexion, to reduce ground impact and the resultant pain.  

Further, the drop vertical jump is a bilateral task with multiple goals; landing 

successfully immediately followed by a maximal vertical jump. It was unexpected to 

identify asymmetrical loading rate patterns in healthy individuals, though there were not 

asymmetrical loading patterns in individuals with LBP. It is possible that the individuals 

in the LBP group landed with increased dominant limb ankle plantar flexion at initial 

contact, which may be a compensation strategy this is allowing them to land with 

symmetrical ALR. It is possible the LBP group does not exhibit loading rate asymmetries 

due to their compensations strategies. Individuals with LBP may try to reduce the amount 

of load placed on, or experienced by their low back, as a compensation strategy to avoid 

pain.[41] Though, this potential compensation strategy may lead to symmetrical load 

distribution it may put them at a higher risk of an ankle sprain, as the mechanism of injury 
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for a lateral ankle sprain includes increased plantar flexion combined with inversion and 

internal rotation.[136]  

 During the single limb hop, individuals suffering from LBP presented with 

higher non-dominant limb peak tibia impacts during landing compared to their dominant 

limb, an asymmetry not exhibited in the CTRL group. Sung et al.,[57] identified that 

during walking individuals with LBP present with a dominant limb dependence strategy. 

Individuals with LBP may be relying on the dominant limb for effective performance. 

Because they rely on the dominant limb for effective performance, landing on the non-

dominant limb may be unfamiliar and less able to absorb load. The increase in tibia impact, 

but not similar increases in lower extremity joint kinematics, suggests greater load on the 

tissues, bones, and joints in the non-dominant limb. If individuals are unfamiliar with 

landing on their non-dominant limb this may lead to reduced neuromuscular control,[137-

139] and the body’s ability to properly absorb shock from the ground, potentially relating 

back to their proprioception and postural control.[140] 

IMUs could be used to assess impact in individuals with LBP. This increase in 

impact has also been associated with chronic overuse injuries,[125] such as stress 

fractures,[141, 142] as well as altered loading patterns in individuals who have undergone 

anterior cruciate ligament reconstruction.[80, 126] Long-term altered loading mechanics 

can lead to osteoarthritis,[143-145] commonly seen in those with LBP.[26, 28] Further, 

the ability for an IMU to assess these loading alterations during landing is beneficial for 

clinicians, as IMUs are portable and may provide easier translatability and accessibility in 

a clinical setting.  
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Future work assessing mechanics in individuals with LBP may benefit from 

accounting for the side in which an individual experiences back pain, as well as how long 

they have been experiencing pain. In this study, data were compared between groups and 

limbs as dominant and non-dominant limb comparisons based on previous LBP literature 

following similar methods.[23, 25, 39] Though LBP is not typically a traumatic injury and 

identifying a specific side of pain may be difficult for some individuals, as the pain is not 

always localized. Despite that some individuals describe midline LBP, it is possible that 

accounting for pain location, such as an involved side and uninvolved side, similar to lower 

extremity pathology research, may provide additional beneficial information in the way an 

individual with LBP mechanically compensates for pain.  

There are limitations to this study, one being the unbalanced sample size in sex, 

that our sample is primarily female. Females are more likely to present with LBP, [146-

148] and suffer from compensations from LBP, than males.[25, 67] Sex differences may 

have been apparent with a more even dispersion of males and females, providing additional 

insight to possible compensation mechanisms in individuals with LBP. Another limitation 

of this study may be the unspecified presentation of LBP. Inclusion of this study required 

individuals to present with chronic LBP for a minimum of four months. In an active 

population a diagnosis of a specific injury may be more beneficial to identify mechanical 

alterations during functional activities. Because compensation strategies are learned, it is 

possible that additional mechanical alterations may develop in individuals who have been 

suffering from pain for a longer period. In this study individuals were included if they had 

been suffering from LBP for four months or greater, though suffering from LBP may 

consist of lifelong pain. As there have been many definitions of the timeline that defines 
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chronic, based on the CDC’s National Health Interview Survey, and the majority of people 

experiencing pain over three months, we defined chronic as four months or greater.[149] 

It is possible that those suffering for many years may have adapted different types of 

compensations as those who have been more recently suffering in the last year.  

While there are no differences in knee extension strength or hip strength between 

healthy individuals and those suffering from LBP, there were some movement 

discrepancies during functional tasks. The type of task identified different landing 

strategies, in terms of bilateral and unilateral landing tasks, thus it is important for 

clinicians to understand different tasks may produce different strategies in individuals with 

LBP, and this should be taken into account when assessing different functional tasks. In a 

more landing explicit task, such as the single limb hop, individuals with LBP present with 

asymmetrical ground impacts during landing. Such movement strategies may be 

considered compensation strategies to avoid pain. Rehabilitation for athletes with LBP 

tends to focus on trunk and core musculature,[8] both of which are beneficial for landing 

control, though, it may be advantageous of clinicians to ensure individuals present with 

lower extremity landing mechanics that support absorption of forces from ground contact. 
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Table 3.1 Mean ± standard deviations for peak strength variables in the dominant and 
non-dominant limb in both the CTRL and the LBP groups. ¥ Denotes significant limb 
differences via the RM ANOVA. 
Strength CTRL LBP 
 Dominant Non- Dominant Dominant Non-Dominant 

Knee 
Strength¥ 2.30 ± 0.4* 2.12 ± 0.3 2.25 ± 0.5* 2.14 ± 0.5 

Hip 
Abduction 1.62 ± 0.4 1.61 ± 0.3 1.72 ± 0.3 1.71 ± 0.5 

Hip Extension 2.05 ± 0.6 1.88 ± 0.5 1.87 ± 0.5 1.84 ± 0.6 
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Table 3.2 Mean ± standard deviations for biomechanical variables measured during the 
drop vertical in the dominant and non-dominant limb in both the CTRL and the LBP 
groups.  Denotes significant group x limb interactions via the RM ANOVA. ¥ Denotes 
significant limb differences via the RM ANOVA. *Denotes significant differences via 
post hoc analysis. Significance determined by p≤ 0.05. 

 
 

 

 CTRL LBP 
 Dominant Non- Dominant Dominant Non-Dominant 

Peak Tibia 
Impact 13.96 ± 1.3 13.85 ± 1.7 13.17 ± 1.6 12.76 ± 1.7 

Peak Pelvis 
Impact 6.55 ± 2.8  5.89 ± 2.8  

Acceleration 
Reduction 50.15 ± 17.8 50.34 ± 16.3 37.23 ± 15.5 38.51 ± 15.4 

VGRF 21.14 ± 4.1 19.13 ± 3.3 22.09 ± 5.0 22.09 ± 5.7 
Peak Loading 
Rate 

1045. 46 ± 
284.2 925.89 ± 215.0 1086.42 ± 

329.9 1082.57 ±326.6 

Average 
Loading Rate 
 

372.79 ± 
112.9* 326.60 ± 105.5 371.34 ± 

163.48 391.6 ± 177.3 

Hip Excursion 41.40 ± 17.9 41.68 ± 18.7 41.99 ± 17.9 42.29 ± 17.3 
Knee 
Excursion 59.97 ± 10.4 59.30 ± 9.6 60.61 ± 14.7 60.98 ± 13.4 

Ankle 
Excursion 39.4 ± 7.3 37.73 ± 6.3 40.61 ± 7.9 39.8 ± 6.8 

Hip at Initial 
Contact 43.16 ± 11.7 43.50 ± 10.6 39.76 ± 8.5 40.20 ± 9.7 

Knee at Initial 
Contact 29.52 ± 7.7 31.42 ± 6.3 28.69 ± 6.1 29.77 ± 6.6 

Ankle at 
Initial Contact 
¥ 

-16.16 ± 5.8 -13.97 ± 5.3 -14.32 ± 5.8* -12.33 ± 5.7 

Peak Hip 
Extension 
Moment 

-3.81 ± 1.2 -3.62 ± 1.2 -4.12 ± 1.8 -4.25 ± 1.8 

Peak Hip 
Flexion 
Moment 

2.61 ± 0.9 2.49 ± 0.8 2.87 ± 0.8 2.88 ± 0.9 

Peak Knee 
Extension 
Moment 

2.29 ± 0.3 2.26 ± 0.4 2.46 ± 0.5 2.40 ± 0.4 
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Table 3.3 Mean ± standard deviations for biomechanical variables measured during the 
crossover hop in the dominant and non-dominant limb in both the CTRL and the LBP 
groups. ¥ Denotes significant limb differences via the RM ANOVA. *Denotes significant 
differences via post hoc analysis. Significance determined by p≤ 0.05. 

 

 

 

 

 

 CTRL LBP 
 Dominant Non- Dominant Dominant Non-Dominant 

Peak Tibia 
Impact 12.89 ± 1.9 12.37 ± 2.2 12.35 ± 2.1 12.56 ± 1.9 

Peak Pelvis 
Impact 4.96 ± 2.0 4.56 ± 1.4 5.41 ± 2.4 5.28 ± 2.3 

Acceleration 
Reduction 38.97 ± 16.5 37.76 ± 11.6 44.23 ± 18.5 41.85 ± 16.3 

VGRF 30.45 ± 4.7 30.58 ± 6.0 30.17 ± 5.4 21.54 ± 5.8 
Peak Loading 
Rate 

1650.01 ± 
451.8 1694.05 ± 609.3 1715.31 ± 

562.5 1776.08 ± 603.5 

Average 
Loading Rate 

857.8 ± 
331.8 878.70 ± 430.5 888.65 ± 

387.1 964.23 ± 422.9 

Hip Excursion 6.94 ± 4.9 5.71 ± 3.3 7.47 ± 4.0 7.28 ± 5.4 
Knee 
Excursion 38.40 ± 5.0 36.43 ± 3.1 37.75 ± 7.5 37.30 ± 6.9 

Ankle 
Excursion 24.02 ± 7.7 21.51 ± 8.5 22.04 ± 7.6 23.08 ± 9.8 

Hip at Initial 
Contact 42.93 ± 9.4 41.31 ± 10.2 41.94 ± 8.9 40.35 ± 8.1 

Knee at Initial 
Contact 19.08 ± 3.7 19.18 ± 4.7 19.43 ± 3.9 18.96 ± 4.8 

Ankle at 
Initial Contact -1.79 ± 8.9 0.42 ± 9.8 1.06 ± 6.7 0.58 ± 10.4 

Peak Hip 
Extension 
Moment 

-4.97 ± 1.2 -4.67 ± 1.2 -4.83 ± 1.6 -4.89 ± 1.6 

Peak Knee 
Extension 
Moment 

3.00 ± 0.5 2.97 ± 0.5 2.96 ± 0.6 2.86 ± 0.6 
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Table 3.4 Mean ± standard deviations for biomechanical variables measured during the 
single limb hop in the dominant and non-dominant limb in both the CTRL and the LBP 
groups. Denotes significant group x limb interactions via the RM ANOVA. ¥ Denotes 
significant limb differences via the RM ANOVA. *Denotes significant differences via 
post hoc analysis. Significance determined by p≤ 0.05. 

 

 

 

 

 CTRL LBP 
 Dominant Non- Dominant Dominant Non-Dominant 

Peak Tibia 
Impact  13.87 ± 1.7 13.59 ± 1.5 12.84 ± 1.9* 14.24 ± 1.3 

Peak Pelvis 
Impact 7.22 ± 3.3 6.73 ± 2.8 7.23 ± 3.9 7.28 ± 3.7 

Acceleration 
Reduction 51.81 ± 21.9 49.16 ± 18.2 57.95 ± 31.1 51.10 ± 25.1 

VGRF 35.94 ± 5.8 34.77 ± 4.0 34.53 ± 4.9 35.08 ± 4.9 
Peak Loading 
Rate 

2012.05 ± 
573.7 2005 ± 540.0 1976.97 ± 

406.1 2103.40 ± 456.9 

Average 
Loading Rate ¥ 

1029.48 ± 
256.0 1080.85 ± 372.1 1011.61 ± 

260.8 1092.21 ± 342.4 

Hip Excursion 14.30 ± 7.0 13.93 ± 7.2 12.64 ± 4.9 14.61 ± 6.4 
Knee 
Excursion 41.38 ± 5.3 39.53 ± 5.7 39.54 ± 7.5 39.11 ± 5.3 

Ankle 
Excursion ¥ 12.63 ± 8.3* 9.74 ± 5.4 12.41 ± 6.6 10.32 ± 7.47 

Hip at Initial 
Contact  43.99 ± 10.4 45.87 ± 10.4 47.09 ± 10.6 45.06 ± 8.4 

Knee at Initial 
Contact 16.38 ± 5.7 17.22 ± 5.7 17.69 ± 4.9 17.89 ± 4.8 

Ankle at Initial 
Contact -6.35 ± 8.1 -4.86 ± 6.3 -5.53 ± 6.2 -3.78 ± 8.0 

Peak Hip 
Extension 
Moment 

-6.11 ± 1.8 -5.88 ± 1.5 -6.14 ± 2.0 -6.29 ± 1.9 

Peak Knee 
Extension 
Moment 

3.04 ± 0.5 2.95 ± 0.4 3.12 ± 0.7 3.09 ± 0.7 
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Figure  3.1 A: Biodex setup for hip abduction strength. B: Biodex setup for hip extension 
strength. C: Biodex setup for knee extension strength. 

 

 

 

 

Figure  3.2 Visual representation of the single limb forward hop for distance and the 
single limb crossover hop for distance from Noyes et al.[97] 
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Figure  3.3 Visual representation of the drop vertical jump. 
 

 

Figure  3.4 Posterior view of marker placement. 
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Figure  3.5 Inertial measurement unit placement on the medial distal tibia, and attachment 
strap representation. 
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Figure  3.6 Knee extension strength differences between dominant and non-dominant 
limbs, as well as between CTRL and LBP groups. The black line represents the CTRL 
differences between limbs, and the blue line represents the LBP differences between 
limbs 
 

 

 

Figure  3.7 Average loading rate and ankle plantar flexion angles at initial contact 
differences between limbs and groups. The black line represents the CTRL differences 
between limbs, and the blue line represents the LBP differences between limbs. 
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Figure  3.8 Peak tibia impact, average loading rate, ankle excursion, and hip flexion at 
initial contact differences between limbs and groups. The black line represents the CTRL 
differences between limbs, and the blue line represents LBP differences between limbs. 
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 CLINICAL DIFFERENCES BETWEEN ACTIVE INDIVIDUALS WITH 
AND WITHOUT CHRONIC LOW BACK PAIN AND THEIR RELATION TO 

LOWER EXTREMITY MECHANICS 

 

Introduction 

Low back pain (LBP) is one of the most prevalent conditions in the general 

population, and is also a common medical presentation among physically active 

individuals, affecting up to 37% of athletes in a single year.[9] LBP affects athletes of all 

ages,[7, 9, 21] and of varying sports including soccer, gymnastics, rowing, handball, ice 

hockey, field hockey, basketball, and rugby[8, 150]. Factors such as high training volume, 

physical loads, repetitive motions, strains, forced body positions, and contact may 

influence the prevalence of LBP in athletes.[150] In the athletic population, LBP of a lesser 

intensity may not disrupt participation despite significant discomfort, which can increase 

the risk for further injury.[11] LBP of a greater intensity may have negative consequences 

on performance and result in time loss from participation.[8, 11] It has been well 

documented that a previous history of LBP is a risk factor for later occurrences of LBP,[11, 

151] and secondary lower extremity musculoskeletal deficits, such as knee laxity. [9, 25]  

Patient reported outcomes, such as the Oswestry Disability Index, is often used to 

help clinicians understand how LBP effects individuals lives.[99, 131] Most patient 

reported outcomes are specific to an area of location on the body, injury, or disease. 

Regional interdependence is the theory that pain or an injury in one location can lead to 

pain or injury beyond the original location of pain.[27, 123] In this case, individuals who 

suffer from LBP may have pain or develop injuries in their lower extremities, such as knee 

pain. It possible that some patient reported outcomes, not specific to one’s injury, may 
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help clinicians understand how their patients’ current injury may affect additional body 

locations and overall function. Regional interdependence has been identified in individuals 

with LBP who have presented with altered mechanics at the knee.[39] Similarly 

interdependence results in subsequent hip and knee osteoarthritis.[28] Individuals with 

both osteoarthritis at the hip or knee and LBP have been shown to report worse overall 

function, higher pain, and greater joint stiffness than those with hip or knee osteoarthritis 

without LBP.[26] The Knee Osteoarthritis Outcomes Score (KOOS) is used to identify 

knee related challenges, and has been linked to identifiers leading to possible knee 

injuries[30] and knee osteoarthritis.[152] Individuals with lower KOOS quality of life 

scores are at a 33% greater risk of a secondary ACL tear.[30] Similarly, individuals with 

a lower limb injury had a high rate leading to knee osteoarthritis, and those with knee 

osteoarthritis presented with lower KOOS scores.[32] Therefore, patient reported 

outcomes for the knee may provide insight to into how individuals with LBP may suffer 

beyond the low back. 

It has also been documented that individuals with LBP present with reduced vertical 

ground reaction forces during walking[41], potentially a pain avoidance strategy. For 

example, individuals with LBP have presented with a 20% reduced ability to absorb shock 

during walking.[44] Additionally, individuals with LBP run with greater knee 

stiffness[39], and less trunk and pelvis joint coordination.[23, 118] Despite these findings, 

there has not been a well-informed way for clinicians to identify such altered mechanics. 

Three dimensional (3D) motion capture systems are the gold standard for assessing these 

altered mechanics in human movement.  As most rehabilitation clinics do not have access 

to the 3D motion capture systems to assess loading mechanics, therefore patient reported 
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outcomes may help identify LBP patients with reduced knee function and indirectly altered 

mechanics.[32] Patient perceived function and muscle strength have demonstrated 

significant relationships with loading mechanics in a variety of different clinical 

populations.[35, 153-157] Understanding these relationships may be beneficial for 

clinicians to make more informed decisions when treating a LBP population. Thus, the 

purpose of this study was two-fold, first to determine how individuals with LBP present 

clinically compared to healthy individuals, and second to determine how lower extremity 

mechanics during landing relate to clinical outcome measures in individuals with LBP. 

We first hypothesized that individuals with LBP would present with less favorable clinical 

outcome measures than healthy individuals. Additionally, we hypothesized that altered 

lower extremity mechanics and shock attenuation will be related to lower Knee Injury and 

Osteoarthritis Outcome Scores and reduced lower extremity isometric strength.  

 

Methods 

Participants 

This study was a cross sectional case control examining the differences between 

individuals who suffer from low back pain (LBP) and healthy controls (CTRL), and further 

the way in which individuals with LBP move, may be related to clinical outcome measures. 

Individuals with LBP were recruited from local sports medicine clinics, athletic trainers, 

fitness centers, and the general population. Patients were eligible to participate in this study 

if they were currently suffering from chronic LBP, which has persisted for at least four 

months, had not sustained a lower extremity injury in the past year, had never undergone 
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lower extremity surgery, were not experiencing radicular symptoms, had not been 

diagnosed with a musculoskeletal deformity, such as scoliosis or hip dysplasia, scored 

greater than a 10% disability on the Oswestry Disability Index (ODI), and a minimum of 

a 5 on the Tegner Physical Activity Scale (Appendix 2). CTRL participants were recruited 

from an active population and included if they did not have a history of LBP, injury, or 

surgery, a history of lower extremity surgery, had a lower extremity injury within the last 

year, scored lower than a 10% on the ODI. Healthy control participants were matched to 

the LBP patients based on mass (±5kgs), age (±2 years), Tegner physical activity score 

(±2 points), dominant leg (choose to kick a soccer ball), and sex (assigned at birth). All 

individuals read and signed an informed consent approved by the University’s Institutional 

Review Board. Participation in this study included one visit to the University of 

Kentucky’s Sports Medicine Research Institute to complete clinical outcome measures that 

included patient reported outcomes, lower extremity strength measures, and a 

biomechanical analysis of movement strategies during different functional tasks. 

 

Clinical Outcome Measures 

All individuals completed clinical outcome measures prior to the biomechanical 

analysis. Individuals completed two patient reported outcome questionnaires and maximal 

lower extremity strength measurements. 

Patient Reported Outcomes 

Individuals completed the ODI (Appendix 1), a patient reported outcome geared 

toward understanding an individual’s self-perceived low back function in different areas 

of life.[99, 131] The ODI has ten sections including pain intensity, personal care, lifting, 
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walking, sitting, standing, sleeping, sex life, social life and traveling, allowing individuals 

to identify where they fall for each section on a five-point Likert scale. A total score of 50 

points is possible on the ODI. To calculate the total score, the following equation is used: 

(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 / 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 50) 𝑥𝑥100 in which the score is reported in 

a percent format i.e. ODI = 22%.[99] A higher score ODI indicates greater pain and greater 

functional disability due to the pain. A score from 0-20% indicates minimal disability, 21-

40% is a moderate disability, 41-60% is a severe disability, 61-80% is considered crippled, 

and 81-100% is indicated as bedridden or an exaggeration (Appendix 1).[99] 

Individuals also completed the Knee Injury and Osteoarthritis Outcomes Score 

(KOOS; Appendix 3), a patient reported outcome geared toward understanding an 

individual’s self-perceived knee function in different areas of life.[152, 158, 159] The 

KOOS provides separate scores for each of the five sections that include knee symptoms 

(SYM), pain, quality of life (QOL), activities of daily living (ADL), and sport and 

recreation (SR). The KOOS uses a 5-point Likert scale for each question. To score each 

section of the KOOS the number of questions in the section over the score on the Likert 

scale was converted to out of 100 points. KOOS section scores range from 0-100, with a 

100 being considered a perfectly healthy score, indicating no knee problems.[152, 158] 

Lower Extremity Strength 

Lower extremity hip and knee strength was measured using a Biodex System 4 

isokinetic dynamometer (Biodex Medical Systems, Shirley, NY). Isometric hip abduction 

was measured side lying, with the hip abducted at 0 degrees (Figure 4.1).[65] Isometric 

hip extension was measured in the supine position with the hip flexed at 60 degrees (Figure 

4.1). Isometric knee extension was measured in a seated position with the knee flexed at 
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60 degrees (Figure 4.1). For each test, individuals received two practice trials warming up 

at 50% effort, then one practice trial at 100% effort, before completing three maximal 

effort trials with 30 seconds rest between each trial. Verbal encouragement was provided 

throughout the test. Peak torque across the trials for each joint direction and limb was 

recorded and normalized to body mass. 

 

Biomechanical Outcome Measures 

Functional Tasks 

Biomechanical outcome measures were collected during a single limb forward hop 

for distance (Figure 4.2). Individuals were allowed as many practice trials as they deemed 

necessary to feel comfortable with each movement, then five successful trials of each 

functional task, were recorded for biomechanical analysis. The single limb hop followed 

Noyes et al.[97] specifications (Figure 4.2). In the single limb hop the starting line was 

placed so individuals must stick the landing on one of two in ground force plates. During 

the crossover hop the starting line was placed to capture the second landing on one of two 

force plates for kinetic measurements. A single limb hop in which any part of the foot did 

not land on the force plate was considered a bad trial and individuals were asked to give 

another effort. Individuals must also have stuck the final landing, which was identified by 

no double hops, pivoting, shifting, touching the other foot to the ground, or touching the 

ground with their hands. Individuals were instructed to complete the single limb hops by 

jumping as far as possible while still being able to stick the landing. Pain was evaluated 

after every task using a visual analog scale, rating pain from 0-10.[133]  
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Three Dimensional Motion Capture 

Three dimensional motion capture was used to examine trunk and lower extremity 

biomechanics during the three different functional tasks. Trunk and lower extremity 

segments were defined and tracked using 14mm markers placed at 7th cervical vertebrae, 

bilateral acromion processes, the sternum, xiphoid process, the 12th thoracic vertebrae, as 

well as bilateral iliac crests, anterior superior iliac spines, greater trochanters, medial and 

lateral femoral epicondyles, medial and lateral malleoli, proximal and distal heel, mid-foot 

distal to the lateral malleoli, and the head of 1st and 5th metatarsals (Figure 4.3). 

Additionally, tracking clusters, created by rigid thermoplastic with four 9mm markers 

affixed, were placed over the pelvis at the posterior superior iliac spine and bilaterally on 

the lateral thighs and shanks. After the static calibration, medial and lateral markers placed 

on anatomical landmarks of the lower extremity were removed and only tracking markers 

were used for the data collection during the dynamic movements. Kinematics were 

collected at 200Hz with a 14 camera three dimensional motion capture system (Vicon, 

Centennial, CO) and ground reaction forces captured at 2000Hz, on two in ground force 

plates (Bertec Corporation, Columbus, OH). 

Inertial Measurement Units 

Lower extremity vertical accelerations were collected using three, 9- axis, inertial 

measurement units (IMUs; I Measure U, Vicon, Centennial, CO). Acceleration data were 

collected in the Vicon Nexus software for timing synchronization to motion capture data, 

sampled at 500Hz. IMUs were placed on the sacrum (directly underneath the pelvis cluster 

used for motion capture), and approximately 2cm superior to the medial malleolus on the 

shank (Figure 4.4). 
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Data Analysis 

Three dimensional motion capture data was analyzed using Visual 3D(C-Motion, 

Germantown, MD). Marker trajectories were filtered using a 4th order lowpass 

Butterworth filter with a cutoff frequency of 6Hz. Ground reaction force data were filtered 

using a 4th order lowpass Butterworth filter with a cutoff frequency of 50Hz. Lower 

extremity kinematics were calculated using Euler angles. Only lower extremity variables 

that effect knee loading during landing were included in this analysis, as the goal was 

determine their relationship to a knee osteoarthritis health related patient reported 

outcome. Peak vertical ground reaction forces (PVGRF), average loading rate, and peak 

knee and ankle flexion angles were identified during the landing phase of the single limb 

hop. Joint angle at initial contact for the knee and ankle were identified at the initiation of 

ground contact on the force plates when the vertical ground reaction force exceeded 10N. 

Landing phase sagittal plane knee and ankle excursions were calculated as the difference 

between the peak joint angle during landing and the joint angle at initial contact. Average 

loading rate (ALR) was assessed as the mean of the derivative of the vertical ground 

reaction force curve from ground contact, indicated by when the force plates recorded a 

reading greater than 50N,[102] to PVGRF.  

Raw IMU data were analyzed in Visual 3D to calculate acceleration reduction and 

peak impacts in the vertical direction during landing. In the single limb hop, landing was 

defined as initial contact with the force plate (greater than 20N) to 100ms after landing.  

Peak tibia and peak pelvis impacts during landing were determined as the peak positive 

acceleration from initial contact with the force plates to peak knee flexion. Acceleration 
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reduction was the percentage of peak impact between the pelvis and the tibia sensor as 

(peak pelvis impact/peak tibia impact)/100[78, 82]. Thus, the reported number is the 

percentage of the amount of impact that was not absorbed from the tibia to the pelvis, 

indicating that a larger percentage indicates less favorable shock absorption during 

landing.  

 

Statistics 

Group differences were assessed to determine if clinical outcome measures beyond 

the back may provide benefit to clinicians in guiding rehabilitation. Independent t-tests 

were run to determine differences in KOOS scores, peak hip abduction strength, peak hip 

extension strength, and peak knee extension strength, between the LBP and the CTRL 

group. An alpha value of a=0.05 was used to determine group differences using SPSS 

(SPSS 25, IBM Corporation, Armonk, NY). 

In the LBP group, relationships between loading mechanics variables and clinical 

outcome measures were assessed using Pearson Correlation Coefficients, confirmed via 

scatterplots. Correlation coefficients were indicated as little to no relationship with a 

correlation coefficient between 0.00-0.25, a fair relationship between 0.25-0.50, a 

moderate to good relationship between 0.50-0.75, and a good to excellent relationship 

above 0.75, in which a correlation coefficient of 1.00 indicates a perfect relationship.[103] 

Multiple linear forward regressions were used to determine if KOOS scores and lower 

extremity strength variables could predict loading mechanics during the single limb hop. 

Only loading mechanics variables that exhibited a relationship with clinical outcome 

measures were included in the regression analysis. Additionally, sex, as a variable was 
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entered into every regression model to account for well-known sex differences in 

individuals with LBP.[18, 25, 67] Models were compared and the highest adjusted R2 was 

identified as the best model. An alpha value of a=0.05 was used for all regression models, 

using SPSS (SPSS 25, IBM Corporation, Armonk, NY). 

   

Results 

Twenty-eight individuals who suffered from low back pain (LBP) and twenty-eight 

healthy control (CTRL) individuals completed this study. There were no significant 

differences between groups in demographic variable such as height (LBP: 1.7±0.07m, 

CTRL: 1.7±0.08m; p=0.896), mass (LBP: 72.06±12.1kgs, CTRL: 72.66±13.2kgs; 

p=0.861), age (CTRL: 24.6±4.5, LBP: 25.0±4.8yrs; p=0.785) and activity level (CTRL: 

7.0±1.1, LBP: 6.7±1.1; p=0.359). While subjects between groups were matched in terms 

of sex, there were more females (21) than males (7) that presented with LBP. ODI scores 

were significantly different between groups, as expected due to the fact that a minimum 

ODI score of 10% was a requirement for inclusion in the study. Every individual in the 

CTRL group reported an ODI score of 0%, while in the LBP group scores ranges from 10-

34%, with the average ODI score being 16.4%. 

 Individuals with LBP presented with worse perceived knee function, lower 

KOOS scores, compared to the CTRL group in four KOOS subscales (Table 4.1), 

including SYM (p=0.007), Pain (p=0.002), QOL (p=0.021), and ADL (p=0.003). There 

were no significant differences between the two groups in the KOOS Sports and 

Recreation Score.  Strength including, peak knee extension strength, peak hip abduction 
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strength or peak hip extension strength was not significantly different between groups for 

either the dominant or the non-dominant limb.  

Seven loading mechanics variables exhibited a relationship with clinical outcome 

measures (Appendix 4). Dominant limb peak pelvis impact showed a moderate negative 

relationship to ADL scores (r=-0.645, p=0.003). Dominant limb acceleration reduction 

also showed moderate negative relationships to ADL scores (r=-0.622, p=0.006), 

dominant limb hip abduction strength (r=-0.559, p=0.030) and dominant limb hip 

extension strength (r=-0.558, p=0.031). Dominant limb PVGRF showed a fair relationship 

to dominant limb peak knee extension strength (r=0.428, p=0.033). Dominant limb ALR 

showed a fair relationship to dominant limb peak knee extension strength (r=0.463, 

p=0.020). Non-dominant acceleration reduction showed moderate negative relationships 

to QOL (r=-0.521, p=0.032), SR (r=-0.500, p=0.021), and non-dominant limb peak knee 

extension strength (r=-0.534, p=0.027). Non-dominant limb ALR showed a positive 

moderate relationship to non-dominant peak knee extension strength (r=0.662, p=0.0001) 

and a positive fair relationship to non-dominant peak hip extension strength (r=0.451, 

p=0.035). Non-dominant knee excursion showed a positive fair relationship to QOL (r= 

0.452, p=0.016). Linear regressions were used to predict loading mechanics from the 

clinical outcome measures that demonstrated significant correlations. Three of the seven 

linear regressions provided a significantly reliable model, including dominant limb peak 

pelvis impact, dominant limb acceleration reduction and non-dominant limb ALR. Sex and 

ADL significantly explained 35.6% of the variance peak pelvis impact while landing on 

the dominant limb (r2=0.356, p=0.014, Figure 4.5A). Sex and ADL significantly explained 

35.5% of the variance of acceleration reduction during landing on the dominant limb 
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(r2=0.355, p=0.029, Figure 4.5B). Sex and non-dominant peak knee extension strength 

explained 50.2% of the variance of non-dominant ALR (r2=0.502, p=0.001, Figure 4.5C).  

 

Discussion  

The overall purpose of this study was to determine if individuals with LBP 

exhibited worse clinical outcome measures of knee function compared to healthy 

individuals, and determine if self-perceived levels of knee function could predict 

mechanical loading. Our first hypothesis was supported; KOOS scores were lower in 

individuals with LBP compared to healthy individuals. Individuals with LBP presented 

with worse self-reported knee function in terms of their symptoms, pain, quality of life, 

and activities of daily living. Understanding how LBP may influence self-perceived knee 

function could be important to clinicians when determining rehabilitation methods. 

Individuals in the LBP group report the lowest KOOS score in the QOL section, with the 

majority of individuals with LBP reporting that they are aware of knee problems at least 

monthly. Individuals with LBP are more likely to suffer from knee osteoarthritis than those 

without LBP.[26, 28] Assessing knee function in individuals with low back pain may 

provide the clinician with a more holistic view of the patients overall levels of physical 

function and performance. While total scores of individuals with LBP are not quite to the 

magnitude as individuals who have recently sustained a knee injury, they are worse than a 

healthy population, and seem to be progressively declining. Thus, beneficial for clinicians 

to assess self-perceived knee function to potentially delay the onset of any further 

complications. While the majority of rehabilitation for those with LBP focuses on core 

strength and back stability, using patient reported outcomes that focuses on knee function 
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may help identify individuals at the greatest risk of developing a secondary disease, such 

as knee osteoarthritis.   

While group differences between KOOS scores were small, they were still 

significant. The minimal detectable change for a knee injury population in the KOOS 

ranges from 5 points to 12 points, depending on the sub scale.[159] While our LBP group 

did not meet the criteria for minimal detectable change, all differences were greater than 

the standard error of measurement in a knee injury group.[159] Our LBP group is highly 

active and still participating in sports, it is possible that as our population ages these scores 

may progress to what is considered clinically significant and should not be overlooked, as 

effect sizes were moderate to large (Table 4.1). Both KOOS Pain and QOL have strong 

effect sizes, at 0.92 and 0.84 respectively, and the narrowest 95% confidence intervals, not 

crossing zero. With this decrease in KOOS scores, it may be possible that the mechanical 

compensations from LBP may be affecting self-perceived knee function. Similarly, KOOS 

SYM and ADL indicated moderate effect sizes at 0.75 and 0.67 respectively, also with 

narrow 95% confidence intervals. These differences in clinical outcome measures of knee 

function may be explained by common fear avoidance or fear of re-injury strategies that 

are typically displayed by those with LBP. It is well documented that individuals with LBP 

are more likely to experience pain avoidance strategies in the form of reduced joint range 

of motion,[160] reduced lumbar extension strength,[115] and a fear of re-injury.[161] It is 

possible that individuals with LBP present with worse KOOS scores due to pain avoidance 

strategies. Overall, pain avoidance may drive mechanical compensations that include the 

lower extremities, which over time, could potentially influence how individuals with LBP 

perceive their knee function. 
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The second purpose of this study was to determine how lower extremity mechanics 

during landing related to clinical outcome measures in individuals with LBP. We 

hypothesized that altered lower extremity mechanics and acceleration reduction would be 

related to lower KOOS scores and reduced lower extremity isometric strength. On the non-

dominant limb, greater knee extension strength and sex was predictive of 50.2% of the 

variance of higher non-dominant limb loading rates during the landing of the single limb 

hop (Figure 4.5). Additionally, lower KOOS ADL scores and sex were predictive of 36.5% 

of the variance of higher peak pelvis impact while landing on the dominant limb and 35.5% 

of the variance of poor acceleration reduction during the landing of the single limb hop 

(Figure 4.5). For the sake of simplicity, focusing on peak pelvis impact over acceleration 

reduction may be more clinically feasible, as peak pelvis impact is part of the acceleration 

reduction calculation, and it is easier to assess and interpret. Peak pelvis impact was 

assessed via a sensor attached directly on top of the sacrum and would be affected by both 

hip and knee kinematics. During a landing specific task, such as the single limb hop, hip 

and knee flexion are the primary lower extremity movements required to reduce pelvis 

impact.[61, 94]  

On the other hand, peak tibia impact did not present with any significant 

relationships to clinical outcome measures. This may be due to the fact that the IMU placed 

on the tibia is inferior to the knee joint and though it represents the accelerations traveling 

to the knee, it does represent the accelerations attenuated at the knee, which may have a 

significant impact on knee function.  It is possible that higher loads traveling through the 

knee and making it to the pelvis, are represented by poor self-perceived knee function. 

Further, ADL scores were predictive of mechanical pelvis loading when landing on the 
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dominant limb, while strength was the only predictive variable on the non-dominant limb.  

It is possible that in individuals with LBP the dominant limb drives their perception of 

function. 

Previous literature has identified that individuals with LBP present with decreased 

hip extension and hip abduction strength,[18, 25, 33] this was conflicting to what we 

found, a lack of strength differences between individuals with LBP and the CTRL group. 

In addition, contrary to what was expected, we found that on the non-dominant limb, knee 

extension strength, which is primarily quadriceps strength, predicted higher average 

loading rates. Although the performance levels of the LBP group during the single limb 

hop was not included in this analysis, it is possible that that they jumped higher and further, 

leading to higher loading rates. This relationship may be explained by the idea that 

individuals with LBP exhibit a dominant limb dependency strategy[57] and when required 

to use the non-dominant limb to complete a functional task they may not have adequate 

absorption strategies. The unfamiliarity of moving on their non-dominant limb may also 

help explain why ineffective absorption strategies were present. 

 Even though these individuals exhibit LBP it is also possible that they may not be 

exhibiting compensations during functional tasks, as the pain may not be great enough to 

alter motor pathways to cause compensations. Individuals who have undergone anterior 

cruciate ligament reconstruction, that are stronger have been shown to perform better on 

hop testing.[42]  

It may be possible that inn the LBP group, those that demonstrate greater knee 

extension strength have less LBP severity or may not have been suffering from LBP as 
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long. The lack of strength differences may explain why active individuals with LBP did 

not demonstrate the mechanical compensations that were expected.  

While there were also no differences in KOOS SR scores, it is possible that 

individuals with LBP recognize their poor knee function in low level activities, not during 

sport situations. While this seems opposite than what we would expect with typical 

injuries, with LBP typically being a non-traumatic injury,[8] it may be that pain is 

exacerbated following sport participation more often than during sport participation, 

explaining why we see differences in the KOOS scores focusing on lower intensity 

functional tasks.  

Biomechanical characteristics associated with the onset and progression of knee 

osteoarthritis are cumulative overtime.[145] Individuals suffering from LBP for longer 

periods of time, or may present with a greater levels of back pain, may demonstrate 

different mechanical compensation strategies, and may have increasingly worse self-

perceived knee function. It would be advantageous for future research to examine if the 

amount of time an individual suffers from LBP or if their level of pain has an effect on 

their self-perceived knee function, especially in an athletic population where exposure to 

risk of injury is high. One limitation of this study is while we identified a minimum level 

of pain for inclusion in the LBP group, all individuals in this study, despite level of 

disability on the ODI were still actively participating in their sport. It is possible that the 

ODI may not be specific enough to an active population with LBP to tease out mechanical 

compensations that previous literature has reported, like weaker hip abduction and hip 

extension strength. 



72 
 

Another limitation of this study may have been the inability of individuals with 

LBP to separate knee and low back limitations, when interpreting KOOS questions. While 

it was emphasized that this survey asked questions related to their knee function and knee 

pain it is possible that some individuals had difficulty deciphering functional limitations 

specific to the knee For example, the KOOS includes questions focused on difficulty 

during standing, sitting, and rising from sitting (Appendix 3), all of which may be affected 

by back pain and knee pain. 

While assessing a non-traumatic injury population is not always clear, it was 

evident that individuals with LBP commonly present with decreased self-perceived knee 

function compared to active individuals without LBP. Further it was presented that self-

perceived knee function during activities of daily living predicted a significant portion of 

loading variables, specifically pelvis impact and acceleration reduction on the dominant 

limb during a single limb hop. Identifying these relationships indicates clinicians may be 

able to use these patient reported outcomes as predictors of biomechanical outcomes for 

active individuals with LBP. Clinicians may be able to include these patient reported 

outcomes in order to identify potential lower extremity loading mechanics in active 

individuals with LBP. This may be able to enhance rehabilitation programs, delaying the 

onset of risk factors associated with secondary injuries and reduced long-term 

musculoskeletal health. 
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Table 4.1 Mean ± standard deviations for clinical outcome measures in both the CTRL 
and the LBP groups. *Denotes significant differences between groups where significance 
determined by p≤ 0.05. 

 

 

 

 

 CTRL LBP P-Value 
Hedges G Effect Size 

(95% Confidence 
Interval) 

KOOS – 
SYM* 98.2 ± 5.1 93.3 ± 7.5 0.007 0.75 (0.21, 1.30) 

KOOS- Pain* 99.4 ± 2.6 95.2 ± 5.8 0.002 0.92 (0.37, 1.47) 

KOOS- ADL* 99.8 ± 0.8 98.5 ± 2.6 0.021 0.67 (0.13, 1.20) 

KOOS-SR 98.5 ± 4.2 94.8 ± 9.5 0.066 0.50 (-0.04, 1.03) 

KOOS-QOL* 99.1 ± 3.6 92.6 ± 10.2 0.003 0.84 (0.29, 1.38) 

Dominant Peak 
Knee 
Extension 
Strength 

2.3 ± 0.4 2.2 ± 0.5 0.768 0.22 (-0.34, 0.78) 

Non-dominant 
Peak Knee 
Extension 
Strength 

2.1 ± 0.3 2.1 ± 0.5 0.864 0.00 (-0.56, 0.56) 

Dominant Peak 
Hip Abduction 
Strength 

1.6 ± 0.4 1.7 ± 0.3 0.426 -0.28 (-0.92, 0.35) 

Non-dominant 
Peak Hip 
Abduction 
Strength 

1.6 ± 0.3 1.7 ± 0.5 0.537 -0.23 (-0.87, 0.40) 

Dominant Peak 
Hip Extension 
Strength 

2.0 ± 0.6 1.8 ± 0.5 0.347 0.36 (-0.28, 1.00) 

Non-dominant 
Peak Hip 
Extension 
Strength 

1.8 ± 0.5 1.8 ± 0.5 0.817 0.00 (-0.63, 0.63) 
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Figure  4.1 A: Biodex setup for hip abduction strength. B: Biodex setup for hip extension 
strength. C: Biodex setup for knee extension strength. 

 

 

 

 

 

 

 

 

 

Figure  4.2 Visual representation of the single limb forward hop for distance from Noyes 
et al.[97] 
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Figure  4.3 Posterior view of marker placement. 
 

 

 

Figure  4.4 Inertial measurement unit placement on the medial distal tibia, and attachment 
strap representation. 
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Figure  4.5 Observed data over predicted data using the model equations for the 
significantly predicted models of dominant limb peak pelvis impact, dominant limb 
acceleration reduction, and non-dominant average loading rate. 
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 CONCLUSION 

Overall the purpose of this project was to determine how chronic low back pain 

influences lower extremity biomechanics and shock attenuation in active individuals 

compared to healthy individuals and examine how the altered lower extremity 

biomechanics are related to clinical outcome measures. The specific aims were as follows: 

 

Specific Aim 1: To determine the relationship between lower extremity kinematics 

and kinetics and shock attenuation in healthy individuals during a functional landing task.  

In aim 1, we found a moderate relationship between lower extremity impact and 

loading mechanics during landing, specifically that peak tibia and peak pelvis impact 

presented with significant relationships to loading rate and peak vertical ground reaction 

forces in a crossover hop. Thus, we believe that impact during landing may be able to be 

assessed using inertial measurement units (IMUs). Assessing impact during landing via 

IMUs may provide clinicians with a more objective assessment of their patients, especially 

athletes returning to sports following injuries. Although IMUs may be considered 

expensive, they are more affordable than force plates or fully integrated three dimensional 

motion capture systems, and as the technology advances are proving to be a practical tool 

in many environments to measure mechanics. IMUs are smaller and may be more user 

friendly during data collections, using tablet-based applications to provide immediate 

feedback to clinicians and patients alike. The results from aim 1 not only identify 

relationships between vertical ground reaction forces and impacts during landing, but may 

also act as a resource of preliminary normative landing impacts measured with IMUs for 
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clinicians.  Clinicians can also use this mechanical loading information to guide treatment 

strategies and evaluate treatment effectiveness.  

 

Specific Aim 2: To determine the effects of chronic low back pain on strength, 

lower extremity biomechanics and shock attenuation during landing compared to a healthy 

population 

Next, in aim 2, we assessed group differences between active individuals with low 

back pain and healthy individuals. While there were no differences between the two 

groups, there were interlimb differences present in the low back pain group that did not 

exist in healthy individuals. Specifically, in the low back pain group peak tibia impact was 

higher in the non-dominant limb compared to the dominant limb during the single limb 

hop. Also, during the drop vertical jump individuals with low back pain landed with 

increased ankle plantar flexion angles at initial ground contact on their dominant limb 

compared to their non-dominant limb. These findings support the idea of dominant limb 

dependence strategies in individuals with low back pain, suggesting they present with poor 

mechanical strategies on their non-dominant limb, relying on the dominant limb for 

performance. This preliminary analysis of movement strategies during landing may 

indicate compensation strategies to either avoid pain, or possibly related to neuromuscular 

deficits. Both pain avoidance and neuromuscular deficits are types of alterations that 

clinicians should consider when treating individuals with low back pain. 

 

Specific Aim 3: To determine how lower extremity biomechanics during landing 

relate to clinical outcome measures in individuals with chronic low back pain 
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In aim 3, active individuals with low back pain presented with worse KOOS scores 

compared to healthy adults. While the difference in KOOS scores is small between those 

with low back pain and healthy individuals, the reduction in scores provides important 

information for clinicians. Clinicians can use questionnaires about self-perceived knee 

function in individuals with low back pain as a possible way to target rehabilitation. As 

individualized medicine becomes increasingly important, using self-perceived knee 

function may be one way clinicians can help direct individualized rehabilitation. 

Specifically, self-perceived knee function during activities of daily living predict about 

35% loading variables during a single limb hop. Identifying this relationship shows that 

clinicians may be able to utilize these patient reported outcomes as predictors of 

biomechanical outcomes for active individuals with low back pain, and possibly even in 

populations with more traumatic injuries in which loading mechanics are increasingly 

altered.  

 

It is possible that we did not see as strong as relationships or group differences as 

we had hypothesized due to the active nature of the population. In our case, individuals 

suffering from low back pain were all still actively participating in their activity and/or 

sport thus potentially masking mechanical compensations. In addition, while we 

understand that the tasks that were included in this study were not tasks you would ask a 

typical low back pain population to experience, for an active population they provide 

clinical relevance. As these tasks are commonly carried out within sports medicine clinics 

for progress assessment and return to sport decisions in a number of lower extremity 

injuries, they may not be the best tasks to highlight compensations in individuals with low 
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back pain. Future research may benefit from assessing slightly lower intensity and 

repetitive tasks in which mechanical compensations may be more pronounced, such as 

running. It should also not be ignored that the first responder and tactical populations are 

also important in this discussion, as tactical populations present with low back pain at 

increasing rates compared to athletes. First responders and military personnel consistently 

sustain impacts greater than those typically seen during activities of daily living and also 

potentially different than active individuals. Further assessments highlighting tactical 

athlete’s compensations to low back pain would be ideal, as this population doesn’t get the 

chance to slow their activity participation like a typical active individual would. Thus their 

mechanical compensations may be more pronounced leading to a possible greater risk of 

secondary injury and reduced musculoskeletal health.  

Ultimately, this research is a first step towards understanding a bigger goal of how 

individuals with low back pain compensate for their pain, how it may lead to secondary 

injuries or reduced long-term musculoskeletal health, and how we can work with clinicians 

to improve such outcomes. We first identified that IMUs may be able to be utilized to 

assess loading during a crossover hop, providing a preliminary analysis of technical yet 

clinical applicability when evaluating functional tasks. Next, we did not identify any strong 

mechanical differences between individuals suffering from chronic low back pain and 

those who do not. Though, we did identify that an active population suffering from low 

back pain does present with decreased self-perceived knee function compared to active 

individuals without low back pain. While these groups biomechanically perform similarly, 

they do not clinically perform the same, specifically, in terms of self-perceived knee 

function. Such differences should not be overlooked when treating active populations with 
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low back pain because if this population is presenting with altered self-perceived knee 

function at a young age, it is likely that it will continue to decline and negatively affect 

their function. 
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APPENDIX 4. CLINICAL RELATIONSHIP SCATTERPLOTS 
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KOOS - Symptoms 
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KOOS – Sport and Recreation 
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