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ABSTRACT OF THESIS

FAST, SPARSE MATRIX FACTORIZATION AND MATRIX ALGEBRA VIA
RANDOM SAMPLING FOR INTEGRAL EQUATION FORMULATIONS IN

ELECTROMAGNETICS

Many systems designed by electrical & computer engineers rely on electromagnetic
(EM) signals to transmit, receive, and extract either information or energy. In many
cases, these systems are large and complex. Their accurate, cost-effective design
requires high-fidelity computer modeling of the underlying EM field/material inter-
action problem in order to find a design with acceptable system performance. This
modeling is accomplished by projecting the governing Maxwell equations onto fi-
nite dimensional subspaces, which results in a large matrix equation representation
(Zx = b) of the EM problem. In the case of integral equation-based formulations of
EM problems, the M -by-N system matrix, Z, is generally dense. For this reason,
when treating large problems, it is necessary to use compression methods to store
and manipulate Z. One such sparse representation is provided by so-called H2 ma-
trices. At low-to-moderate frequencies, H2 matrices provide a controllably accurate
data-sparse representation of Z.

The scale at which problems in EM are considered “large” is continuously being
redefined to be larger. This growth of problem scale is not only happening in EM, but
respectively across all other sub-fields of computational science as well. The pursuit
of increasingly large problems is unwavering in all these sub-fields, and this drive
has long outpaced the rate of advancements in processing and storage capabilities
in computing. This has caused computational science communities to now face the
computational limitations of standard linear algebraic methods that have been relied
upon for decades to run quickly and efficiently on modern computing hardware. This
common set of algorithms can only produce reliable results quickly and efficiently for
small to mid-sized matrices that fit into the memory of the host computer. There-
fore, the drive to pursue larger problems has even began to outpace the reasonable
capabilities of these common numerical algorithms; the deterministic numerical lin-
ear algebra algorithms that have gotten matrix computation this far have proven
to be inadequate for many problems of current interest. This has computational
science communities focusing on improvements in their mathematical and software
approaches in order to push further advancement. Randomized numerical linear al-



gebra (RandNLA) is an emerging area that both academia and industry believe to be
strong candidates to assist in overcoming the limitations faced when solving massive
and computationally expensive problems.

This thesis presents results of recent work that uses a random sampling method
(RSM) to implement algebraic operations involving multiple H2 matrices. Signifi-
cantly, this work is done in a manner that is non-invasive to an existing H2 code base
for filling and factoring H2 matrices. The work presented thus expands the existing
code’s capabilities with minimal impact on existing (and well-tested) applications. In
addition to this work with randomized H2 algebra, improvements in sparse factor-
ization methods for the compressed H2 data structure will also be presented. The
reported developments in filling and factoring H2 data structures assist in, and allow
for, the further pursuit of large and complex problems in computational EM (CEM)
within simulation code bases that utilize the H2 data structure.

KEYWORDS: numerical simulations, randomized numerical linear algebra, compu-
tational electromagnetics, computational linear algebra
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Chapter 1 Introduction

Randomized numerical linear algebra (RandNLA) is a relatively recent development
in the field of linear algebra that has arisen in response to the need to quickly ana-
lyze large problems and/or data sets [1][2][3]. This is because RandNLA is able to
overcome some of the challenges encountered in pursuing large and computationally
expensive problems in various subfields of computational science. This document will
discuss recent derivations and implementations of RandNLA based algebraic meth-
ods for the H2 data structure. The H2 representation of a matrix relies on a data
structure that is similar to the fast multipole method’s nested data representation.

H2 matrices were developed by Wolfgang Hackbusch and are commonly used in
computational physics applications to form data-sparse (compressed) representations
of large, dense system matrices, Z. Hackbusch has presented developments in the
algebra of H and H2 matrices utilizing deterministic linear algebra methods as re-
cent as 2015 [4][5]. Related recent work is also available in [6]. These H2 algebra
approaches appear to be somewhat complicated and, while it may be possible, it is
unclear how easily these approaches can be incorporated into an existing code base
for filling an H2 representation of Z. In this thesis, we pursue a similar functionality
for H2 matrix algebra using methods from the field of RandLNA. In particular, the
approach pursued here requires only the ability to perform multiplication of an H2

matrix (or its transpose) against a set of randomly generated vectors.
The RandNLA based H2 methods discussed herein are capable of performing H2

algebra in a manner that mimics the existing input/output argument paradigm of
ACA-based fill methods [7][8] that are commonly used to fill the H2 representation
from the original system Z [9]. This mimicry of the ACA fill’s input/output argu-
ment paradigm enables a noninvasive incorporation of H2 algebraic methods within
a code base already capable of performing H2 matrix fills using ACA. Throughout
this document, the new non-invasive, H2 algebra enabling fill method will be referred
to as the Random Sampling Method (RSM). It is important to understand that the
RSM does not replace an ACA fill approach as the RSM can not be used to efficiently
fill an H2 from scratch by sparsely sampling Z; ACA-type methods are still required
for this operation. RSM methods provide a complementary fill method that enables
algebra to be performed on already existing H2 matrices.

Computational linear algebra for the solution of partial differential equations can
be sometimes described, in a trivialized manner, in 3 fundamental steps: matrix fill
(compression), matrix factorization (only if utilizing a direct solver), and solution
(generally iterative [10] or direct solvers [11]). A complete modeling tool will expe-
rience limitations from whichever one of its fundamental steps is the weakest with
respect to memory and run-time efficiency. Therefore, the RSM-based H2 algebraic
methods proposed herein would be less useful if they were not complimented by ef-
ficient factorization methods that can manipulate sparse H2 matrices into a form
enabling efficient solution of an underlying matrix equation. In this direction, the
last section of this thesis discusses additional work that was performed to develop

1



efficient and robust factorization methods for H2 matrices. This portion of the work
presented in this thesis does not involve RandNLA methods.

Copyright c© Owen Tanner Wilkerson, 2019.
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Chapter 2 Background

In order to assist understanding, before detailing the contributions of the H2 algebra
via RandNLA based fill method and a fast H2 factorization, the topics and data
structures that these contributions were built upon must be described. First, the oc-
tree structure that is used to identify spatial relationships in the underlying problem
geometry/mesh as well as the data structures that are used to store the H2 matrix are
detailed and discussed. Then, preexisting work by the University of Kentucky’s Com-
putational Electromagnetics Group (UKCEM) in H2 fill and factorization methods
are summarized.

2.1 Integral Equations

The focus of the work considered here is on integral equation (IE) formulations of
CEM problems. Integral equation formulations use equivalence concepts (or Green’s
theorems) to develop a solvable set of constraints on the degrees of freedom in a given
problem [12]. The development of IE formulations is not trivial. However, for the
purposes of this thesis, it is sufficient to restrict our attention to the resulting matrix
equation, which has the following form,

Zx = b. (2.1)

In this equation, the N -by-1 vector x denotes the unknowns (or degrees of freedom) in
the problem, the M -by-N matrix Z is dense, and b is the M -by-1 excitation vector.
The examples in this thesis consider the particular IE obtained for magnetostatic
applications when a locally corrected Nyström (LCN) method [13][14][15] is used to
discretize the magnetostatic volume IE [16].

2.2 Octree Decomposition

The octree decomposition is a popular algorithm that constructs a tree structure for
grouping and partitioning elements in three-dimensional space. It is well-known for
its role in 3D computer graphics and spatial indexing. In CEM, the octree is used
to spatially partition points (perhaps associated with mesh elements) of a problem
geometry into groups in order to assist in a variety of phases within the analysis. In
the context of this work, the octree provides the spatial groupings needed to identify
near interactions and far interactions at each level of the octree.

(The following discussion of the octree usage refers primarily to mesh cells, which
are treated as if they exist at a point in space. In practice, mesh cells span a finite
region of space. Furthermore, the matrix Z represents interactions between a large
set of source and field basis functions, which themselves represent the underlying
electromagnetic quantities’ variations over the finite-sized cells of the mesh. A given
basis function may in practice span multiple mesh cells; conversely, a single mesh cell
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Figure 2.1: Meshed mock aircraft carrier.

may contain several basis functions. For these reasons, there are some practical details
associated with developing an octree for IE formulations of problems in CEM that
are not addressed in the following discussion, which treats all quantities, including
mesh cells, as if they are located at (infinitesimal) points in space. However, the
details that are not addressed here are not important for the discussion presented in
this thesis, and they are well understood by most practitioners working in the field
of CEM. For the purposes of this thesis, it is sufficient to have a basic understanding
of how one can use an octree to obtain a distinct, multilevel organization of the rows
and columns of the matrix Z in (2.1).)

To pursue the octree decomposition, the problem geometry is first meshed; through
this process, mesh cells are distributed across the target problem’s geometry. These
mesh cells are defined by points in 3-dimensional space and provide a spatially dis-
cretized representation of the geometry. The granularity of this discretized represen-
tation, the distribution of mesh cells, and how many points make up a cell depends on
the meshing algorithm that is used. The specific details of the mesh (such as whether
it is a hexahedral or tetrahedral mesh) are not important for the work reported in
this document. This is because the methods used in this document depend on the
properties of the underlying EM problem, and any mesh that enables accurate nu-
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merical representation of those properties will suffice. An example of a mesh is shown
in Figure 2.1.

Once a meshed geometry is available, the octree decomposition begins by encap-
sulating all of these mesh cells in a single cube; this is the root level of the octree.
(The root level is herein referred to as level-1 of the octree.) Next, the single root-
level cube is subdivided into octants, which reside at level-2 of the tree. Then, the
octree decomposition recursively subdivides any octants that have mesh elements
present within its boundaries. Octants continue to get subdivided into a maximum
of 8 children as long as an octant contains mesh elements. For a static octree that
has a desired number of recursive levels defined, the decomposition halts when that
level is reached. This decomposition forms a tree structure where each node has a
maximum of 8 children. Of course, if a subdivision results in a cube with no mesh
cells present within it, then that cube is discarded and not subdivided any further. In
this application, all of the points that make up the mesh cells that are encapsulated in
the same cube at a given level of the octree is referred to as a group. (Mesh elements
that span multiple groups are assigned to one of the spanned groups and none of the
others.)

In the following discussion, the terms “near” groups, “far” groups, and “inter-
action” groups will be frequently used to refer to the relationship between a given
group and all other groups at a given level of the octree. For a given group at a given
level, near groups refer to all non-empty groups that share a face, edge, or vertex
with that group (the self group is included in the near group list). Far groups are
the set of remaining groups. Finally, the interaction groups are the subset of the far
groups that are also the group’s parent’s touching neighbors’ children. In 3-D, the
maximum number of near groups is 33 = 27, and the maximum number of interaction
groups is 63−27 = 289. (The maximum number of far groups is unbounded, growing
geometrically with the tree depth.)

For the sake of visualizing the basic process of this tree-based spatial decom-
position algorithm, a simple spatial decomposition is diagrammed. The quadtree
decomposition is the 2-dimensional (2-D) equivalent to the 3-D octree decomposition
and is easier to diagram. Figure 2.2 demonstrates the 3-level quadtree decomposi-
tion of an 11 cell mesh obtained using the 2-D equivalent of the octree decomposition
described above. In Figure 2.2, the top half of the figure steps through the decom-
position process on the mesh. Each gray circle represents a single mesh cell and the
squares at each level represent the quadtree partitioning groups for the correspond-
ing level. The bottom half of the figure shows the quadtree structure that is built
from the decomposition process. The black circles in the tree represent children that
contain mesh cells and the empty circles represent partition groups that are ignored.
As discussed, partitions are ignored if the partition contains no mesh cells as a result
of the subdivision of the parent group’s contents.

Similar to how quadtree groupings can be depicted using squares, cubes can be
projected onto target geometries to demonstrate the groupings generated by the
group’s octree decomposition. In Figure 2.3, the octree cubes of a 3-level decom-
position of the aircraft carrier from Figure 2.1 are overlaid on the original geometry.
Then in Figure 2.4, the result of a 5 level octree decomposition is overlaid. Each
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Figure 2.2: Illustration of a 3-level quadtree decomposition.

Figure 2.3: Mock aircraft carrier with level-3 octree groups overlaid.

cube seen in these figures is considered a spatial “group” of mesh cell points at that
level of the octree.

In a Nyström Method based analysis, the degrees of freedom (DOF) can be associ-
ated with specific points on the mesh cells, and each DOF acts both as a transmitter
and as a receiver. These DOF are often refered to as “source” and “test” functions.
“Source” DOF correspond to columns of Z, and “field” DOF correspond to rows
of Z. For the remainder of this document, consider that these DOF are antenna
that generate (source DOF) or receive (field DOF) this electromagnetic radiation.
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Figure 2.4: Mock aircraft carrier with level-5 octree groups overlaid.

The source and field DOF interact via the electromagnetic field components radiated
from a source DOF to a field DOF, and this radiation is represented by an element
of the matrix Z. Thus, every point in the mesh represents both a transmitter and
receiver of electromagnetic fields. These fields are transmitted in a simple (usually
homogeneous) background, and this is why the matrix Z is dense.

Depending on the problem and the integral equation formulation used, electro-
magnetic radiation decays at a rate of either 1/r, 1/r2, or, in some near field cases
even, 1/r3 where r is the distance from the radiating source. Therefore, degrees of
freedom that are respectively far from each other are interacting relatively weakly.
This interaction can casually be interpreted as indicating that groups of DOF are
separated from one another can convey less ‘information’ with each other than when
those same groups of DOF are relatively closer together. In fact, degrees of freedom
that are so close to each other that they are practically touching interact immea-
surably strong because limr→0 1/r = ∞. It is this difference in behavior between
”near” and ”far” interactions that makes the octree so useful in constructing efficient
algorithms for CEM applications.

The presentation of the octree overlays in Figures 2.3 and 2.4 allow for the visu-
alization of this notable far/near spatial behavior applied to groups rather than to
individual degrees of freedom. Consider, for a given group cube, that all different
group cubes that are touching the given cube are called near groups. Then, with
respect to the same given group cube, every group that is not a near group is called
a far group. Note from observing Figures 2.3 and 2.4 that, with an increase in level,
groups have an increasing amount of groups that they consider to be far groups. Yet,
for any given level, a group can only have a maximum number of 27 ”near” groups
in 3-dimensional space. It can also be assumed that, in general, a group considers
many more groups to be far than it considers to be near.

The idea of far/weak and near/strong interactions will become important in the
upcoming discussion of H2 representations of Z. For now, it is mainly important to
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understand that the octree’s purpose is to indicate how groups are organized with
respect to each other at each octree level. It is important to know which groups are
close to and which groups are far from given groups at every level of the decom-
position. These groups given by the octree decomposition ultimately correspond to
columns in Z when the groups are considered as sources and rows in Z when the
groups are considered as receivers. The discussion of the H2 structure (Section 2.4)
will explain how this information is used.

2.3 Block Matrices

Before the H2 structure is discussed, three terms describing specific block matrices
that are used throughout this document will be defined. The standard definition of a
block matrix is a matrix that is defined using smaller matrices. A basic block matrix,
T , composed of the matrices A with size M × Q, B with size M × P , C with size
L×Q, and D with size L× P may look like the following:

T =

(
A B
C D

)
=



a1,1 a1,2 ... a1,Q b1,1 b1,2 ... b1,P
a2,1 a2,2 ... a2,Q b2,1 b2,2 ... b2,P

...
...

...
...

...
...

...
...

aM,1 aM,2 ... aM,Q bM,1 bM,2 ... bM,P

c1,1 c1,2 ... c1,Q d1,1 d1,2 ... d1,P
c2,1 c2,2 ... c2,Q d2,1 d2,2 ... d2,P

...
...

...
...

...
...

...
...

cL,1 cL,2 ... cL,Q dL,1 dL,2 ... dL,P


This shows that T is a (M +L)× (Q+P ) matrix made up of 4 smaller matrices. The
smaller matrices that make up a block matrix are commonly referred to as the blocks
of the block matrix. In the example above, A, B, C, and D are the blocks of T . For
the sake of clarity, the terms block-row and block-column will be used to describe the
rows of blocks in a block matrix and columns of a block matrix, respectively, for the
remainder of this document. So, T has 2 block-rows and 2 block-columns. Therefore,
block-row 1 of T is be made up of blocks A and B, block-column 1 is made up of A
and C, and so on. As seen above, the definition of block matrices requires that every
block within a single block-row must have the same number of rows and every block
within a single block-column must have the same number of columns. For example,
it is seen that block-row 1 is composed of blocks with M rows and block-column 1 is
composed of blocks with Q columns.

Three block matrices are referenced throughout this document that each describe
a different organization of the basic block matrix structure seen above. First, a
block diagonal matrix is a block matrix where the matrices along its diagonal are
dense and the off-diagonal blocks are only matrices of all zeroes (or sparse). A
block diagonal matrix containing the same A and B matrices as above along its
diagonal forms a block matrix with 2 block-rows and 2 block-columns that represents
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a (M+M)×(Q+P ) matrix. This block diagonal matrix would look like the following:

(
A 0
0 B

)
=



a1,1 ... a1,Q 01,1 ... 01,P
...

. . .
...

...
. . .

...
aM,1 ... aM,Q 0M,1 ... 0M,P

01,1 ... 01,Q b1,1 ... b1,P
...

. . .
...

...
. . .

...
0M,1 ... 0M,Q bM,1 ... bM,P


Second, a block column matrix is a block matrix with N block-rows and 1 block-
column. A block column matrix built from the same A and C as above and a third
R×Q matrix E would be a block matrix with 3 block-rows and 1 block-column that
represents a (M +L+R)× (Q) matrix. This block column matrix may look like the
following:

 A
C
E

 =



a1,1 ... a1,Q
...

. . .
...

aM,1 ... aM,Q

c1,1 ... c1,Q
...

. . .
...

cL,1 ... cL,Q
e1,1 ... e1,Q

...
. . .

...
eR,1 ... eR,Q


Finally, the third organization of a block matrix used in this document is referred to
as a block row matrix. A block row matrix is a block matrix with 1 block-row and N
block-columns. A block column matrix built from the same A and B as above and a
third M×R matrix F would be a block matrix with 1 block-row and 3 block-columns
that represents a (M) × (Q + P + R) matrix. This block row matrix may look like
the following:

(
A C F

)
=

 a1,1 ... a1,Q b1,1 ... b1,P f1,1 ... f1,R
...

. . .
...

...
. . .

...
...

. . .
...

aM,1 ... aM,Q bM,1 ... bM,P eM,1 ... eM,R


2.4 H2 Data Structure

It was previously mentioned that far interactions are “weak” while near interactions
are “strong”. This description of the physical problem is easily translated into direct
mathematical terms. Performing a rank-revealing LU decomposition on submatrices
of Z corresponding to far and near interactions will show that far interaction sub-
matrices are rank-deficient, whereas near interaction submatrices are full-rank (or
nearly full-rank). For this reason, near-interaction blocks within a problem have
the greatest influence on determining the solution of Zx = b. This occurs because
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Figure 2.5: 1-D PEC Strip [17]

those blocks are transmitting a relatively stronger field level that provides a stronger
constraint on the unknowns.

It was also previously noted that, apart from levels 1 and 2, the majority of
the interactions at each level of the octree decomposition consist of far interactions.
If these far interaction blocks are computed and stored in a dense manner, then
large amounts of computation time and memory are consumed through constructing
many dense representations of interactions that will not significantly influence the
accuracy of the final solution. Therefore, significant computational savings can be
had by approximating long-range interactions between groups of sources and receivers
using lossy compression methods. In addition to reducing computational costs, this
approach can be performed in a manner that controls the error in the approximation
to a level that is acceptable to an end-user. This controllably accurate approximation
of the interaction blocks is discussed in the next section. Before getting to that, we
complete the current section by indicating how the H2 representation utilizes the
octree to specify a multilevel, nested data structure.

Figure 2.6: Binary tree decomposition of 1-D PEC strip [17]

The H2 representation for Z was originally presented by Wolfgang Hackbusch
and has proven to provide effective data sparse representations of the dense matrices
that result from discrete approximations of integral operators with smooth kernels
[4]. Within the H2 representation of a dense matrix, near interaction blocks at the
finest level of the octree are stored in a dense form, while a controllably accurate,
lossy compression is used for submatrices representing far interactions at each level
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of the spatial decomposition. The lossy compression is obtained using singular value
decompositions to determine the minimum number of degrees of freedom required
to represent interactions between separated sources and observers [18][19][10] for a
given level of desired accuracy. The specific details of these computations are not
the subject of this research effort and are not detailed in this thesis. Instead, we
summarize the basic structure of the resulting H2 matrix, which is important to the
following discussions.

The H2 matrix has the following nested form for an L-level octree:

Zm = Ẑm + UmZm−1V
H
m , for m = 2, 3, ..., L where Z2 = Ẑ2 (2.2)

In this equation, m indicates the octree level of the H2 decomposition. Ẑm is the
sparse matrix storing the near interactions at level m that were not accounted for at
finer levels. Um and V H

m are rectangular, orthogonal, block-diagonal matrices which
compress far interactions via rank reduction at level m. It is also useful to note
that ZL recovers the original interaction matrix Z (i.e., Z = ZL). For the example
illustrated in Figure 2.6, the expanded version of (2.2) is,

Z ≈ Ẑ5 + U5Ẑ4V
H
5 + U5U4Ẑ3V

H
4 V H

5 + U5U4U3Ẑ2V
H
3 V H

4 V H
5 . (2.3)

The spatial partitioning induced by the 5-level octree indicated in Figure 2.6
yields a corresponding partitioning of the rows and columns of the matrix, Z, which
is indicated in Figure 2.7. In Figure 2.7, the red blocks include near interactions
that are filled with a standard dense method at the finest level of the octree (level-5
in this example), and the green blocks indicate far interactions that are filled using
the lossy compression provided by an SVD operation, which is in turn expedited
by the adaptive cross approximation (ACA) discussed in Section 2.4. The resulting
compression of far interactions from level 5 to 3 can be seen in Figure 2.8. Only
near interactions (in red) and the outer product representation of the far interaction
blocks for each level are stored, which provides the desired compression.
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Figure 2.7: Filled system matrix 1-D PEC strip partitioned at level 5 (Ẑ5) [17]

(a) Ẑ5 (b) Level 5 Compression: U5Ẑ4V
H
5

(c) Level 4 Compression: U4Ẑ3V
H
4 (d) Level 3 Compression: U3Ẑ2V

H
3

Figure 2.8: Multilevel Compression (Only shaded blocks are stored)

2.5 Filling the H2 using the Adaptive Cross Approximation

In order to fill the H2 data structure from scratch, the submatrices of Z representing
near and far interactions must be filled. As noted above, near interactions are filled
using standard, dense-matrix operations. This is done because near interactions are
generally not compressible due to the rapid variation of the underlying kernel for
short-range interactions. Sections of Z that correspond to far interactions, on the
other hand, are compressed using a singular value decomposition. Importantly, this
SVD is obtained efficiently (that is, without sampling all elements in the subma-
trix) via the adaptive cross approximation (ACA) [7][20]. For a given source/field
group pairing, the ACA builds a controllably accurate representation of the block
by sampling only a subset of all rows and columns in the block. The singular value
decompositions (SVDs) of the resulting representation of the block is then performed
to obtain a controllably accurate, compressed representation. Next, these compressed
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representations are assembled into the multilevel structure indicated in (2.2); details
of this procedure are presented in [9]. In this way, a full representation of Z is ob-
tained by i) densely sampling the near-neighbor matrix at the finest level of the tree,
and ii) sparsely sampling the interaction blocks at all coarser levels of the tree using
the ACA.

2.6 Upper Triangular Factorization of Integral Equation Matrices

Later in this document, work done prior to the presented investigations in RandNLA
will be detailed with respect to developments in factorization methods for integral
equation matrices. The work that will be discussed in Chapter 8 is a modification
applied to a previously developed upper-triangular factorization [21][22].

The upper triangular factorization is a multilevel, localizing factorization of Z
using localizing basis functions [11][21][23][24],

ZNN
l+1 = PlP

H
l Z

NN
l+1 ΛlΛ

−1
l ≈

[
P

(L)
l P

(N)
l

] [I Z
(LN)
l

0 Z
(NN)
l

] [
Λ(L) Λ(N)

]−1
(2.4)

In (2.4), l = 2, 3, ..., L and ZNN
L+1 recovers the original system matrix Z. Λl is a

permuted block diagonal matrix that contains localizing and non-localizing sources.
Pl is a unitary matrix of the same structure as Λl. A localizing source group radiates
zero field external to the group. The fields radiated by these localizing degrees of
freedom are orthogonal to the receiving vectors of P

(N)
l . This orthogonality results

in the zero block seen in (2.4). The upper triangular structure allows for (2.4) to be
easily inverted recursively up to level 2 of the tree where an LU decomposition must
be used to factor the final Z

(NN)
2 . The most important quality of this factorization

is that Z(NL) = (P (N))HZΛ(L) ≈ 0 is controllably small and allows for the ability for
easy inversion of (2.4) [9] without fill-in.

2.7 Problem Background

As discussed above, in most applications, the M × N system matrix Z has many
low-rank submatrices, which can be identified using an octree partitioning. In other
words, Z has N2 non-zero entries, but only about O(kN) of them are independent
within some tolerance, τ , with k << N . Additionally, Z is large, so operating on or
even building its full dense form is not feasible. Z’s large size ultimately motivates
the advancements detailed regarding fill and factorization methods in this document.
Currently, the ACA fill method is used to build far groups of Z and the SVD of those
sections are used to build the H2 representation of Z.

The RandLNA work presented herein was initially motivated by the desire to build
an H2 representation of a preconditioned system matrix of the form CZ where C is
a preconditioning matrix having a footprint restricted to near-neighbor interactions.
That is, given an H2 representation of Z and a near-neighbor matrix C, how can one
build a single H2 representation of the product of these matrices, CZ? In this regard,
it is important to understand that the primary challenge lies in finding an adequate
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replacement for the ACA algorithm summarized above. The ACA, usually, provides
an efficient method for building low-rank representations of interaction blocks in
Z because the underlying Green function has a closed-form representation that is
relatively cheap to evaluate. In contrast, the submatrices of CZ do not have a
closed analytical form that can be used to compute rows and/or columns. For this
reason, while the ACA method can be used to build submatrices of the product
CZ, the resulting procedure to determine an H2 representation of CZ will be too
computationally expensive to be useful.

Rather than using the ACA to build low-rank submatrices, a method is needed
that can utilize the fact that each of the matrices C and Z are themselves sparse.
For example, it is possible to perform fast matrix-vector products using sparse ma-
trices. And this is where RandLNA methods enter – it is now fairly well-known that
randomized methods can be used to efficiently perform SVDs of low rank matrices if
we can efficiently perform matrix-vector products using those matrices [1][2][25]. (It
is also worth nothing that RandLNA does not provide a replacement for the ACA
method in filling the original representation of Z, since one cannot perform efficient
matrix-vector products until the H2 of Z is already formed. This is why the Ran-
dLNA methods discussed herein are complementary to, rather than replacements of,
the ACA.)

As the RandLNA work discussed herein progressed, it became apparent that, if
one could properly leverage the dimensionality reduction and sampling properties of-
fered by randomized versions of the SVD to target preexisting H2 structures, then it
would be possible to implement additional operations beyond simple preconditioning.
For example, the proposed RandLNA implementation allows for not just precondi-
tioning of a matrix, but also algebraic operations, such as the addition of multiple
H2 matrices without ever needing to decompress the individual H2 structures. Ad-
ditionally, because the overarching mechanic is an SVD, then the results could be
used in creating a new H2 fill method that can fill a new H2 structure using the
results acquired from performing efficient RandNLA based algebra on preexisting H2

structures.
This functionality already had an application in the UKCEM’s preexisting re-

search where the nonlinear relationship between current and voltage in a problem
requires algebra on multiple H2 data structures [26]. This elevated functionality
built into a randomized SVD would allow the components of the Schur Complement
to also be compressed into their own individual H2 structures and then be manipu-
lated as necessary while substantially improving the memory efficiency of the required
Schur Complement process. In addition to this preexisting application, the generality
of having efficient RandNLA based H2 algebra is undoubtedly a powerful capability.
The algorithm that was developed to make these capabilities a reality was coined
as the random sampling method (RSM). One of the most novel properties of this
method, is that it was purposefully designed and developed to mimic ACA fill pro-
cess’s input and output paradigms exactly. This allowed for the incorporation of the
RSM’s capabilities within the UKCEM’s Modular Fast Direct code base in a very
non-invasive manner.
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Chapter 3 Randomized Singular Value Decomposition

The core operation used in assembling an H2 representation of a matrix is the SVD
of submatrices of the matrix. For the case of the matrix Z, this operation is expe-
dited using the ACA. However, when performing H2 algebra, we will use RandLNA
methods to replace the ACA-enabled SVD with a RandLNA-enabled SVD (rSVD).
The core operation that is used to perform the rSVD is the random sampling of a
given submatrix. For this reason, we refer to the randomized methods used herein to
build H2 matrices as random sampling methods (RSMs).

Randomized SVDs take advantage of the following properties:

• RandNLA’s dimensionality reduction (that is, randomly chosen basis vectors
are highly likely to span the desired subspace of low-rank matrices)

• rSVD’s ability to compress submatrices in the H2 data structure (with the
assistance of the work in Chapter 4)

• The ease with which applying intermediate algebraic operations on the data
can be done within a rSVD algorithm

• The fact that the after applying intermediate algebraic operations to the data,
the results are presented in the standard SVD U ,Σ, and V H matrix set; this is
the same matrix format obtained using ACA expedited fill methods, and thus
enables easy integration with an existing, ACA-based H2 fill code.

An SVD is appealing because the resulting U ,Σ, and V H matrices that are built from
the sampled H2 data, which was subject to algebraic operations, can immediately
be used to fill a new H2 data structure. Therefore, this newly constructed H2 will
reflect the intermediate algebraic operations that were applied during the rSVD. The
output of a U ,Σ, and V H matrix set mimics the ACA’s output, which is essential
for developing a non-invasive fill method alternative. Therefore, before addressing
the RSM, discussing a basic randomized SVD that operated on the H2 structure
will cover all of the RandNLA present in the RSM without the RSM’s additional
functionality obscuring the details of the RandNLA principles. Yet, before discussing
a simplified H2 randomized SVD, a basic randomized SVD needs to be described in
order to identify the challenges that come with a H2 randomized SVD.

3.1 Basic Randomized SVD on a dense, full matrix Z

A basic randomized SVD on a dense M × N matrix Z can be described as follows
[27]:
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Step 1: Generate Ω which is a set of
K random vectors, forming
an N ×K matrix

Step 2: Calculate Y = ZΩ (Y will
be M ×K)

Step 3: Find an orthogonal basis, Q,
that spans the range of Y (Q
will be M × q)

Step 4: Form a temporary matrix,
B, by B = QHZ (B will be
q ×N)

Step 5: Get SVD of B, giving B =
ŪΣV H

Step 6: Finally, U can be found by
applying the orthogonal ba-
sis to Ū . Giving U = QŪ

We briefly justify this six-step procedure for estimating the SVD of matrix Z as
follows. A required component to assure this randomized algorithm’s proper func-
tionality is to build a orthogonal matrix, Q, such that Z ≈ QQHZ. This can be done
by first estimating the range of Z through randomly sampling the column space of Z
by multiplying it against a set of uniformly or normally distributed random vectors
Ω. Then, an orthogonal basis that spans the range of the resulting subspace from
ZΩ needs to be found. Finding an orthogonal basis that spans the range of the ZΩ
subspace can simply be found by taking the QR decomposition of the subspace. This
is because, if ZΩ has n linearly independent columns, then the first n columns of
the Q matrix resulting from ZΩ = QR will form an orthogonal basis for the column
space of ZΩ. As long as Z’s structure is well sampled by using a sufficient number
of random vectors (more on determining this number in Chapter 6), then Q should
span the main range of Z and be a near-optimal basis. This connection between Q
and Z is known because R(Q) = R(ZΩ) ⊆ R(Z) where R(·) denotes the column
space or range of a matrix [28].

One fundamental definition of the singular value decomposition is that the columns
of U from Z = UΣV H are the left-singular vectors of Z and one fundamental property
of the singular value decomposition is that the left-singular vectors that correspond to
the non-zero singular values of Z provide an orthonormal basis that spans the range of
Z. This gives us R(Z) = R(U). It is now seen that R(Q) = R(ZΩ) ⊆ R(Z) = R(U)
and resolving the equality gives R(Q) ⊆ R(U). Therefore, the factor Q must capture
the dominant left singular vectors of Z [28].

In step 4, Q can be used to apply dimensionality reduction on Z by forming
B = QHZ. Conveniently, because ZH = V ΣHUH , it is true that R(ZH) = R(V ).
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Additionally, that means that R(BH) ⊆ R(ZH) = R(V ) and that B must provide
information on the dominant right singular vectors of Z [28].

In Step 5 above, with the information provided by B and the RandNLA di-
mensionality reduction provided by QH , the deterministic SVD of a q ×N matrix is
performed to acquire B = ŪΣV H . Then, because Q was built to achieve Z ≈ QQHZ,
then Z ≈ QQHZ = QB = QŪΣV H . Finally, after considering Z = UΣV H we can
derive that Z = UΣV H ≈ QŪΣV H . It is now shown that all is needed is to apply the
found orthogonal basis, Q to Ū in order to recover the excluded singular vectors that
are not present in Ū but were previously proven to be captured in Q. This leaves
approximately equivalent U ,Σ, and V H matrix sets for the SVD and rSVD of Z. At
this point it is perhaps worth emphasizing that the only operations required involving
Z are left and right matrix-vector multiplications. Other operations, such as QR and
SVD decompositions, are performed only on results of these products and not on Z
itself. This is why, provided the number of columns in Ω is small compared to the
number of columns in the matrix Z, randomized methods provide an efficient re-
placement of the ACA algorithm when performing H2 preconditioning and algebraic
operations.

Of course in all RandNLA methods and algorithms, error can be introduced as
a result of the random sampling of the column space, especially if the vectors of Ω
have little orthogonality. This error will be discussed further alongside the RSM in
Chapter 6. For now, it is only important to notice the trivial nature of the algorithm
above given that it is operating on a dense matrix. Additionally, if it was necessary
to take a randomized SVD of the full H2 structure, then the algorithm would not
have a significantly different algorithmic pattern of that found in the trivial example
above. Therefore, a far more useful form of a H2-specific randomized SVD will be
described.

Copyright c© Owen Tanner Wilkerson, 2019.
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Chapter 4 Group Specific Matrix-H2 Left And Right Multiplies

It has been previously established that the initial, ACA-based H2 fill process iter-
atively samples rows and columns of a submatrix of Z (associated with a given set
of source and field groups), and the SVD is then taken of each of the row/column
sample sets. So, describing a basic randomized SVD that takes the SVD of the full
H2 is not very useful as that bulk operation is never used in the fill or factorization
processes that are being discussed in this document. Instead, it is more useful to
discuss a randomized SVD that can target specific source groups and field groups at
specific levels within the H2 data structure (that is, a submatrix of the desired H2

structure).
There are two multiplies against the H2 structure that occur in an H2-specific

randomized SVD (see Section 3.1). First, a right multiply would be required for
(H2)Ω. Second, a left multiply would be required for QH(H2). In this regard, it
is important to observe that these matrix-multiply operations occur on vectors that
do not span the entire domain/range of the H2 matrix. For example, depending on
the submatrix of the H2 being constructed, Ω may span only a single group at the
finest level of the octree. However, prior to the work discussed in this thesis, the only
multiplies that existed in the UKCEM tool set for H2 matrices were those to multiply
an H2 matrix on the left or right by a matrix, B, that contained all degrees of freedom
represented in the H2. Therefore, the entire H2 structure would be recursed by the
multiply giving (4.1) and (4.2).

BZ = BẐNear +
L−2∑
n=1

BUL...UL−(n−1)ẐL−nV
H
L−(n−1)...V

H
L (4.1)

ZB = ẐNearB +
L−2∑
n=1

UL...UL−(n−1)ẐL−nV
H
L−(n−1)...V

H
L B (4.2)

For each column in B, each of these is an O(N) operation.
In (4.1) and (4.2), ẐNear is just ẐL when L is the finest level of the problem’s

octree decomposition. These multiplies are useful, but if multiplies against only
specific groups at a certain level are desired, which is common during the far group
build process, then this full manner of multiplying with the H2 is very wasteful.
Therefore, adaptations were applied to the existing H2 multiplies in order to make
group targeting possible. Developing these multiplies within the UKCEM tool set
constituted a primary component of the effort.

4.1 Operand Matrix Partitioning by Target Groups

Consider that a given matrix, B, is being right multiplied onto Z (i.e. ZB). It has
already been established that Z could be massive and should not be operated on
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via its dense representation. Therefore, B must be multiplied by the right of the
H2 representation of Z (i.e. H2B). For this example, consider the H2 and octree
decomposition given in Figure 2.6 and that B is to only operate on the source groups
1 and 3 at the finest level (i.e., level-5). Consider that group 1 contains degrees of
freedom 2, 5, and 7 and group 3 contains degrees of freedom 1, 3, 8, 9. Because each
degree of freedom represents a row and column of the full, dense representation of
Z, degrees of freedom are organized on Z continuously and sequentially from 1 to
N with N being the total number of degrees of freedom in Z. In the context of this
document, B will always be organized and indexed globally by degrees of freedom,
because B is constructed to operate on Z rather than Z’s compressed representation
via the H2. Yet, the H2 is organized and indexed by octree groups, not degrees of
freedom. Additionally, it is unlikely that the degrees of freedom are partitioned into
octree groups in such a way that indexing by groups is equivalent to indexing globally
by degrees of freedom like how Z is indexed. Therefore, because of this difference
in organization and indexing between H2 and B, it is unlikely that the operand B
is organized in a way that it could operate on the H2 without mapping to the H2’s
indexing space. So, if B operates on Z and only on groups 1 and 3 at the finest level,
B may look something like 

a1 a2 ... aN
b1 b2 ... bN
c1 c2 ... cN
d1 d2 ... dN
e1 e2 ... eN
f1 f2 ... fN
g1 g2 ... gN


(4.3)

where rows b, d, and e would need to operate on group 1 and rows a, c, f, and g
would need to operate on group 3. B could be indexed by rows in order to extract
the correct rows to multiply against the correct blocks in the H2 structure, but it is
more convenient to preprocess the matrices operating on the H2 and format them
into a block matrix that is organized by groups like the H2. So, before operating on
source or receiver groups, B is converted into a block column or block row matrix,
respectively. This would make the current hypothetical B to be organized in the
following manner: 

b1 b2 ... bN
d1 d2 ... dN
e1 e2 ... eN
a1 a2 ... aN
c1 c2 ... cN
f1 f2 ... fN
g1 g2 ... gN


(4.4)

The operation of mapping from the full (or, non-grouped) representation of B in (4.3)
to the group-wise partitioned representation of B in (4.4) is referred to as operand
partitioning by target groups. The “target groups” are the finest-level groups of the
H2 structure that are spanned by B.
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4.2 Basic H2 Right Multiply Against Matrix

Now that the purpose of the initial structure change of the matrix operand has been
described, the group specific H2 right multiply process is detailed. In general, in
order to multiply the H2 by a matrix, one must recurse through all of the layers
that are formed from the H2’s nested structure. (Depending on the structure of B
in relation to the octree group boundaries, in some cases it may not be necessary to
incorporate all layers.)

Figure 4.1: Group Specific H2 Right Multiply Matrix

In Figure 4.1, starting at the bottom right hand side of the pyramid and fol-
lowing counterclockwise around the pyramid, the translation of B’s contributions
across the H2 layers is seen. In Figure 4.1, Ûm, V̂ H

m , and T̂m represent a block
sample corresponding to Um(rcvGrpsm, rcvGrpsm), V H

m (srcGrpsm, srcGrpsm), and
Tm(rcvGrpsm, srcGrpsm) block matrices, where T is equivalent to Ẑm when m is not
equal to the finest level, rcvGrpsm are the targeted receiver groups at level m, and
srcGrpsm are the targeted source groups at level m. Other than the sampling of Um,
V H
m , and Tm, the activity shown in Figure 4.1 is executing the exact same operations

seen in equation (4.2).
Because B is being right multiplied against the H2, B must start its translation

process by being multiplied by the finest level’s V H blocks that correspond to groups
1 and 3. A very important property of the compressing outer product matrices
can now be clearly seen through this example. The outer product matrices at each
level act as a translating matrix to its parent level’s information. In other words, in
order to operate on level 3’s information, one must translate through level 4’s and
5’s compressing outer product matrices. This translation is required for numerically
mapping a given operand into coarser level’s compressed organization. Therefore,
the operand B must be initially organized with respect to the finest level, regardless
of whether groups at the finest level are the explicit target or not. For example, as
part of building an H2 representation, one will of course need a level-3 block of the
underlying matrix for which the H2 is being constructed. However, due to the nested
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nature of the H2, any H2 matrix-vector products that are used as part of the process
will have to start with vectors that are partitioned in terms of finest level groupings.

This simple initial reorganization with respect to the finest level can be illustrated
using the example of Figure 2.5. Consider having B target group 1 at level 3 of the
geometry seen in Figure 2.6. In order for B to be reorganized at the finest level, B
just needs to be organized with respect to group 1 at level 3’s finest level descendants,
which are groups 1, 2, 3, and 4. So, B will be initially restructured to be a block
column matrix with 4 block-rows. B’s rows will be properly distributed throughout
the four new block matrices so that the rows are still operating on the same degrees
of freedom they would have corresponded to in a dense multiply with Z.

Once initially reorganized, B can begin to be applied to form the bm matrices on
the upward pass. bm must also be reorganized before continuing on to operate on
V̂ H
m−1. V̂ H

m−1 is going to be organize with respect to level m-1 groups, yet bm will
initially be organized with respect to level m groups. This reorganization step has
been called ascension. The opposite of ascension, being reorganized with respect to a
finer level’s groups, is called descension. In Figure 4.1, the ascension and descension
steps are depicted by arrows that cross over into a different level. The ascension
of bm utilizes the tree to form a new version of the block column matrix that is
organized by its parent groups. If the parent contains more than one of the groups
being targeted in bm as children, then those blocks are simply stacked together. If
the parent encapsulated degrees of freedom that are not being operated on by B,
then the corresponding rows of bm−1 are padded with zeros. For example, consider
applying ascension to just the initial B operand. Going back to the original example
of targeting groups 1 and 3 at level 5 with B, it can be seen in Figure 2.6 that group
1 at level 5 would ascend into group 1 at level 4 and group 3 at level 5 would ascend
into group 2 at level 4. Consider that group 2 at level 5 contains degrees of freedom
4 and 6, and group 4 at level 5 contains degrees of freedom 10 and 11. Then, because
groups 1 and 2 at level 5 fall under group 1 at level 4, and groups 3 and 4 at level 5
fall under group 2 at level 4, the ascended form of B would be

b1 b2 ... bN
d1 d2 ... dN
e1 e2 ... eN
0 0 ... 0
0 0 ... 0
a1 a2 ... aN
c1 c2 ... cN
f1 f2 ... fN
g1 g2 ... gN
0 0 ... 0
0 0 ... 0


Because B still only operates on the degrees of freedom that fall under groups 1 and
3 at level 5, it can be seen that zero padding is inserted into rows that correspond to
degrees of freedom 4, 6 in group 2 of level 5 and to degree of freedom 10 and 11 in group
4 at level 4. It is important to remember that the H2’s levels are always organized by
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groups. Yet, reorganizing rows in order to match them to their corresponding degrees
of freedom is only required at the finest level. Once the rows are reorganized with
respect to the finest level, only stacking operations need to occur at all coarser levels
because within the UKCEM toolset parents construct their own degree of freedom
lists by simply concatenating their children’s DOF lists. Alternatively, if group 1 and
3 at level 5 were to both be the only children of group 1 at level 4, then the two child
blocks would just be stacked. This would make the ascended form of B be

b1 b2 ... bN
d1 d2 ... dN
e1 e2 ... eN
a1 a2 ... aN
c1 c2 ... cN
f1 f2 ... fN
g1 g2 ... gN


In Figure 4.1, the ascension process is applied to every bm. Additionally, the descen-
sion process is intuitively the reverse process of ascension. Row blocks of the block
column matrix being descended are just split apart out of the parent block. Because
parents construct their own degree of freedom lists by simply concatenating their
children’s degrees of freedom lists, the proper rows to split out of the parent block for
a given child to form its own block is known by examining the number of degrees of
freedom that the child encapsulates and the order at which the parent has its children
stored. The parent group will store a list of child groups in an order that is the same
as the order at which the child’s degree of freedom lists were concatenated to create
the parent’s degree of freedom list. So, starting with the first child in the parent’s
child list, the rows 1 to F, where F is the number of degrees of freedom under the first
child group, will be extracted from the parent block to form that child’s descended
block. Then, the second group in the parent’s child list will extract rows F+1 to
F+1+G, where G is the number of degrees of freedom under the second child group,
from the parent block to form its descended child block. This process is repeated for
every child group under the parent.

4.3 Left and Right H2 Multiplies with Truncation

The left multiply is implemented as the transpose of the right multiply for the ease
of development. Consider the right and left multiply examples in Figures 4.2 and
4.3, respectively. The multiplies in Figures 4.2 and 4.3 are operating on an H2

with more levels than our previous example in order to highlight some interesting
spatial behavior that allows for cost saving decisions to be made in the H2 multiplies
with sufficiently deep trees. Observe the behavior in Figure 2.8. The shaded blocks
of Ẑm never touch any blocks past one level above m and one level below m. The
bandwidth of a given Ẑm is isolated to only levels m-1, m, and m+1. Therefore, the
near-neighbor interactions at any level that are not being touched by a near-neighbor
at a specific level will not contribute to operations on those near-neighbor groups.
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Figure 4.2: Group Specific H2 Right Multiply Matrix

Therefore, if the H2 multiply is targeting groups at level 7 of the H2 depicted in
Figures 4.2 and 4.3, the T blocks finer than level 8 and coarser than level 6 and Znear

can be ignored. Therefore, the multiplies seen in Figures 4.2 and 4.3 respectively
show what the multiplies in Figures 4.4 and 4.5 would look like when the ability to to
ignore some of these near-neighbor interactions is utilized. Ignoring these blocks allow
for some operations savings with no error introduction because of those block’s lack
of contributions. This feature of the H2 multiplication is referred to as truncation.

Copyright c© Owen Tanner Wilkerson, 2019.
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Figure 4.3: Group Specific H2 Left Multiply Matrix
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Figure 4.4: Group Specific H2 Right Multiply Matrix targeting groups at level 7
showing truncation
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Figure 4.5: Group Specific H2 Left Multiply Matrix targeting groups at level 7 show-
ing truncation
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Chapter 5 Randomized SVD for H2 Matrices

With proper group targeting H2 multiplies having been defined above, it is now possi-
ble to describe a randomized SVD for H2 matrices. It is quickly noticed by observing
Algorithm 1 that the general flow is almost identical to that seen in section 3.1. The
primary differences are in the details that come with converting a randomized SVD
to operate on block matrices and the context that is introduced by operating on the
H2 structure.

input : H2, tree, srcGrps, rcvGrps, level, tolerance
output: U ,Σ, and V H

1: Determine number of random vectors, K //will be discussed in Section 6.3;
2: Ω = random(numOfDofs(srcGrps), K) //uniform or normal distribution;
3: HΩ = H2

level(rcvGrps, srcGrps)Ω;

4: [û, ŝ, v̂H ] = truncated-svd(HΩ, tolerance);
5: Q = û;
6: B = QHH2

level(rcvGrps, srcGrps);
7: [Ū , Σ, V H ] = svd(B);
8: U = QŪ ;
9: return U ,Σ, and V H ;

Algorithm 1: H2-based randomized SVD

In dense randomized SVD’s, Ω is a uniformly distribution set of K random vectors
of length N that is employed in order to apply the initial dimensionality reduction
and random sampling steps of the RandNLA algorithm (determining K ’s value is
discussed in Section 6.3). Ω fills the same role here but is also used to perform
sampling of Z via operations on the H2 structure. This sampling is a very useful
utility that comes almost naturally when applying a randomized SVD to H2 matrices
in this group specific manner. The randomized SVD is designed to take in a set of
source groups, a set of receiver groups and a level at which those groups reside so that
the randomized SVD can be applied to the matrix block for a specific set of source
and receiver groups at a given level. This design of the randomized SVD is meant to
mimic the ACA’s input and output paradigm.

During the ACA-based build method, the ACA is called to build, from scratch, a
specific section of Z that corresponds to a given set of source and receiver groups. The
ACA relies on a row/column sampling method along with calling to a method of mo-
ments or Nyström Method backend in order to build a far block of Z [13][20][29][30].
After building a far block of Z, the SVD of the built block is provided as output for
use in constructing the H2 structure.

Because the randomized SVD’s described in Algorithm 1 are used to operate on
existing H2s (likely provided by a prior ACA build call) and not on Z directly, the
randomized SVD can be used to efficiently sample Z for a specific far block via its H2
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representation and provide that block’s SVD representation. To perform this same
block-specific building seen in the ACA, the RSM utilizes existing H2s and multiplies
them by Ω through the use of the adapted H2 multiplies discussed in Chapter 4. Using
a Ω that is organized in the form discussed in Section 4.1, the multiplies, as described
in Section 4.2, operate only the desired groups during its execution. The results of
these multiplies are in the form of a block column matrix that is also organized in the
same group-based manner as Ω. This resulting block column matrix have row-blocks
that are organized to operate on the desired target receiver groups passed to the
multiplies as an argument and the columns of the block column matrices operate on
a dimensionally reduced basis that was applied by using the random sampling matrix
to estimate the range of the target source groups. Therefore, through leveraging the
indexing paradigms and multiplies discussed in Chapter 4, the H2-based randomized
SVD can be used to efficiently sample Z for specific blocks via operations on its
H2 representation without the risk of abundant, wasteful operations and proceed to
produce the blocks’ SVD representations.

Also note that if Ω were to be an identity of appropriate size, then the matrix
returned by the adapted H2 multiplies would be the exact same matrix that would
result from sampling a dense representation of Z for the rows and columns that corre-
spond to the target groups at the target level. This observation can be used to extract
sections of the matrix without performing an SVD-based truncation/approximation.

Copyright c© Owen Tanner Wilkerson, 2019.
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Chapter 6 Random Sampling Method

The random sampling method (RSM) is a modified H2 randomized SVD that can be
used to build a new H2 structure that results from the intermediate application of
algebra on preexisting H2 matrices. The RSM relies on the randomized SVD as its
RandNLA foundation for three major reasons. First, the multiplication against Ω al-
lows for the extraction of dense samples of the system matrix Z that is represented by
the H2 that correspond to specific groups at any level of the decomposition. Second,
these samples of Z are dimensionally reduced, which allows for efficient manipulation
of the extracted samples. Finally, the algorithm presents many intermediate opportu-
nities for added operations in the dimensionally reduced space and, as seen in Section
3.1, through dimensional expansion is able to still produce an equivalent U , Σ and
V H decomposition to the decomposition that a more expensive deterministic SVD
would produce.

The RSM has been designed to seamlessly fit in to the place of the ACA fill
method in an H2 fill, but it does not replace the ACA fill. This is because the RSM
and ACA fill methods have completely separate use cases, both of which result in the
construction of an H2 data structure. So, the same code base is now able to fill an
H2 from scratch by using the ACA, and it is able to fill an H2 that is obtained as
the result of algebraic operations on existing H2s using the RSM.

The RSM build method’s noninvasive design that allows it to fit in the same code
flow as ACA fill methods allows for the introduction of powerful H2 algebra func-
tionality without alienating developers by requiring them to learn a new, complicated
library that performs H2 algebra. Additionally, this ability to perform H2 algebra
without invasive changes to the code base in O(k2N logN) time complexity allows
for easier integration of H2 algebra in applications. Calling the RSM to perform H2

algebra on existing H2s is as simple as constructing a new, simple data structure
called Meta H2, which will be discussed in Section 6.1, and passing the structure
to the same H2 fill routine that has always been called to fill a new H2. Now, the
existing fill routines identify when a meta H2 structure is present and automatically
branch into the RSM-based fill methods. If no meta H2 is passed to the fill routines,
then they know that a simulation is building an H2 from scratch using the ACA and
the code automatically branches into the appropriate code path.

6.1 Meta H2 Structure

The RSM currently has the functionality to multiply existing H2s on the right by
diagonal matrices, multiply existing H2s on the left by block diagonal matrices, and
add/subtract existing H2s. Commands are administered to the RSM by passing a
meta H2 data structure to the standard fill routine call that already existed in the
code base. Once passed to the RSM, the meta H2 will be treated as the following
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equation:

H2
RSM =

N∑
n=1

P [n] H2[n]A[n] (6.1)

Where H2
RSM is the new H2 data structure that is to result from the RSM’s

execution, P [n] is a block diagonal matrix, H2[n] is a preexisting H2 data structure
one would like the operate on, and A[n] is a diagonal matrix.

P [n] H2[n] A[n]

is a single component clause in the meta H2. The meta H2 sums all of the passed
component clauses together enabling the addition and subtraction of preexisting H2

data structures.
The meta H2 data structure has the following fields that the developer is required

to fill:
struct {

int N //numberOfComponentClauses;
struct H2* H2[N];
struct diagMatrix* A[N];
struct blkDiagMatrix* P[N];
struct octree* CompTree[N];

} metaH2 ;
Algorithm 2: Meta H2

The meta H2 data structure seen in Algorithm 2 holds the number of compo-
nent clauses (seen as N in (6.1) also) and four length N arrays of pointers. These
arrays of pointers reference all the operands needed for the RSM to execute (6.1).
These required operands are H2 structures, block diagonal matrices, and diagonal
matrices which are seen as H2[], P [], and A[] respectively in (6.1) and Algorithm 2.
Additionally, an array of pointers referencing the octrees used for indexing the H2

data structure given through H2[] must be provided in the meta H2 data structure
as CompTree. Currently, all H2 given to the meta H2 must use identical octrees.
Therefore, CompTree can currently be implemented as a single pointer to a common
octree.

Now, the simplicity and familiarity that the developer experiences when wanting
to leverage the RSM to perform powerful and efficient algebra on H2 data structures
that was mentioned in the Chapter 6 introduction can be thorough described. Because
of the non-invasive design of the RSM build method, it is not necessary for the
developer to learn a new set of libraries, helper routines, or rewrite any of their
existing code in order to leverage the new H2 algebra in the form of (6.1). The
developer only needs to understand i) the general structure of the newly added meta
H2 data structure, ii) that the build routine they have always used to construct
H2 representations from scratch can now efficiently compute (6.1) using existing H2

representations, and iii) the functionality to compute (6.1) is executed by passing
the meta H2 data structure as an argument to the those familiar build routines. In
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other words, to compute (6.1) on a desired set of existing H2 representations, the
developer only needs to construct a meta H2 that points to the desired operands
for each component clause and pass that meta H2 as an optional argument to the
same build routine they have traditionally called to build an H2 representation. By
detecting the optional presence of the meta H2, the build process will internally
handle all of the intricacies involved with operating on existing H2 data structures
to perform H2 algebra in the form of (6.1) via the RSM . Therefore, the developer
is now able to leverage the power behind being able to perform efficient H2 algebra
by only needing to learn a new data structure, of which is just composed of pointers
to a superset of already familiar data structures, and utilize the same build routines
that they always use to acquire H2 representations.
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6.2 Performing H2 Algebra via Random Sampling Method

Algorithm 1 will now be expanded into the full RSM:
input : metaH2, srcGrps, rcvGrps, level, tolerance
output: U ,Σ, and V H

;
Determine the number of random vectors, K, by finding the max rank of the
rcvGrps U blocks out of all of the metaH2.CompH2s and adding a margin
of 5 to that value;

;
Sum = ZeroMatrix;
for i← 1 to metaH2.N do

Ω = random(numOfDofs(srcGrps), K);
;
H2i = metaH2.H2[i];
Ai = metaH2.A[i];
Pi = metaH2.P [i];
//get H2(AO) (multiply AO first because vector - block matrix multiply
is quick compared to H2A. Therefore, H2(AO) is faster than (H2A)O) ;
MatH2AO = H2 rightMultiply(H2i, (AiΩ), rcvGrps, srcGrps, level);
;
//get PH2AO;
MatPH2AO = PiMatH2AO;
;
//continue to sum all PH2AOs for all metaH2 clauses;
Sum = Sum + MatPH2AO;

end
;
//get truncated SVD representation so you only need to retain O(KN)
independent pieces of information;

[û, ŝ, v̂H ] = truncatedSVD(Sum, tolerance);
Q = û;
;
//Clear out Sum;
Sum = ZeroMatrix;
for i← 1 to metaH2.N do

H2i = metaH2.H2[i];
Ai = metaH2.A[i];
Pi = metaH2.P [i];
//sum all ((QHP)H2)A across all metaH2 clauses;
MatQHPH2 = H2 leftMultiply((QHPi), H2i, rcvGrps, srcGrps, level);
Sum = Sum + MatQHPH2Ai;

end
;
[Ū , Σ, V H ] = svd(Sum);
U = QŪ ;
;
return U ,Σ, and V H ;

Algorithm 3: RSM Algorithm
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One important idea to state about the RSM is that it can be used to build both
far and near interaction blocks. In order to build near blocks with the same RSM
algorithm (Algorithm 3), it is as simple as using an identity in place of the random
sampling matrix Ω. This near block build counterpart to the RSM has been named the
identity sampling method (ISM). Using an identity allows for basic dense operations
on the near blocks of the existing H2, because the blocks of the H2 are being extracted
out by multiplying them by identity matrices. Therefore, no dimensionality reduction
via random sampling is occurring when operating on near blocks.

The general idea behind the RSM is better understood when it is broken down in
steps and explained in plain English. The following list attempts to supply this step
by step explanation:
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Step 1: Generate Ω which is a set of K random vectors, forming a NumOfSrcDofs×K
matrix where NumOfSrcDofs is the number of source degrees of freedom that
are encapsulated by all the groups operated on at a given level. Determining
the value of K is discussed in Section 6.3. As discussed in Section 3.1, Ω’s
objective is to randomly sample the column space of targeted groups in order
to acquire an estimation of the range of the target groups while also provid-
ing some convenient dimensionality reduction. The better the targets’ column
spaces’ minimum spanning bases are extracted during random sampling, the
more effective and less erroneous the dimensionality reduction process and the
derivation of a range spanning orthogonal basis, Q, will be later in the algo-
rithm.

Step 2: Apply the postconditioning diagonal matrix, A, that the developer wishes to
multiply to Z via H2 operations on Ω first. Because the matrix is diagonal,
applying to Ω does not influence the random sampling’s effectiveness. Call this
new matrix AΩ.

Step 3: Convert AΩ to its proper block column matrix equivalent that was discussed in
Section 4.1 in order to then multiply AΩ on the H2’s right side using the new
multiply routines discussion in Chapter 4. This product will now sample the
proper groups of degrees of freedom of Z from the H2’s compressed structure.
Additionally, dimensionality reduction will be applied to this sampling. Call
the result of this product ZAO.

Step 4: The H2 multiply will actually supply ZAO in block column form. This form
makes the left multiplication of the preconditioning block diagonal matrix, P ,
simple. Apply the preconditioning block diagonal matrix, P , that the developer
has supplied using a simple block matrix multiply onto ZAO and call this
product PZAO.

Step 5: Repeat all of the previous steps for all of the component clauses given in the
meta H2 and add all of the resulting PZAOs together. We have to go ahead and
apply the summation before we take the SVD as the SVD lacks the distributive
property. This SVD is necessary to find a matrix Q whose columns form an
orthonormal basis for the range of the summations of all of the PZAOs. A
truncated SVD is applied here, because only the most significant singular values
are needed for the construction of the new H2.

Step 6: Now starts the process of applying the orthonormal basis for dimensionality
reduction as discussed in Section 3.1. This consists of computing ((QHP )Z)A
for every component clause of the meta H2 and adding all of those products
together.

Step 7: Finally an SVD can be taken of the sum of the ((QHP )Z)As. Then the or-
thonormal basis must be applied to the U resulting from that SVD in order to
recover excluded singular vectors as discussed in Section 3.1.
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6.3 Determining K-Value Dynamically

In order to achieve dimensionality reduction and maintain controllable error intro-
duction, the sampling matrix would have to be either the minimal spanning basis of
your target matrix, Z for this discussion, or a set of K << N random, orthogonal
vectors. Determining either of those matrices in this setting is far too expensive.
Therefore, randomness is relied upon to try to quickly generate a set of vectors that
span the basis of the target matrix, Z, well enough to only introduce minimal error.
The number of random vectors in the random sampling matrix Ω will determine how
likely the minimum spanning bases are captured in the random sampling that occurs
when multiplying the target matrix, Z, by Ω. The more random vectors generated,
the more likely all of the basis of the target matrix will be covered by the sampling,
thereby resulting in low error. Yet, a high number of random vectors will also drive
up computation costs.

It was found that rather than statically defining the value of K, adding 5 to the
maximum rank of the rcvGrps’ U blocks, given by the preexisting H2s that the RSM
operates on, at the target level served as a great approximation of an ideal number
of basis to attempt to generate. The maximum rank of the U blocks give a good idea
of the rank of the interaction blocks being targeted. Therefore, by adding a small
margin, it is hoped that enough orthogonality will be captured in the random vectors
in order to span the basis well enough to achieve low error and reasonable runtime
performance.

Copyright c© Owen Tanner Wilkerson, 2019.
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Chapter 7 Results and Analysis of Testing the RSM

All of the following tests were executed on an i7-7700K at 4.2GHz using 8 OpenMP
threads. In the following sections, different examinations of the RSM’s performance
will be analyzed by testing it on a locally corrected Nyström discretization of a
magnetotstatic volume integral equation [16] solution of the fields in four different
geometries: a thin steel strip, an imprinted plate, a steel shell with an outer radius
of 0.25m and inner radius of 0.15m, and a large nonconformal steel shell. All of these
test cases used a fill tolerance of 10−6. Therefore, an error close to the order of 10−6 is
satisfactory performance for the RSM fill method. For all of these cases, the RSM was
assigned through the meta H2 structure to just multiply the original H2 built by the
ACA by identity matrices. The relative RMS errors reported are the relative RMS
errors that resulted from comparing the RSM-built H2 to the original ACA-built H2.
These results are used to analyze the base behavior of the RSM.

Figure 7.1: Thin Steel Strip

Figure 7.2: Steel Shell with 0.25m radius
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Figure 7.3: Imprinted Plate

Figure 7.4: Nonconformal Steel Shell

7.1 Timing of the RSM and ACA Fills vs Number of Degrees of Freedom

In Figure 7.5, the total fill times of the RSM and the ACA are compared for varying
sized test cases using a 5 level tree. It can be seen that the RSM is consistently 1
to 2 orders of magnitude faster than the corresponding ACA fill. This is because the
RSM does not have to rely on standard matrix fill methods like method of moments
or Nyström Method.

39



Figure 7.5: ACA and RSM Fill Time vs Degrees of Freedom

7.2 Dynamic K Error vs Number of Degrees of Freedom

Figure 7.6: Dynamic K error vs number of degrees of freedom for level 4 trees
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Figure 7.7: Dynamic K error vs number of degrees of freedom for level 5 trees

In Figures 7.6 and 7.7, the reconstruction error under the usage of the dynamic
K value found via the method discussed in Section 6.3 vs the number of degrees of
freedom in the test case is compared. It can be seen that in all of these cases for
both a 4 and 5 level octree, the errors remain smaller in order of magnitude than the
acceptable error order of magnitude of 10−6.

7.3 Error of Dynamic K and Static Ks

Figures 7.8 through 7.12 are comparing the error of static set K values versus the
dynamically decided K value. The RSM allows for the developer to statically set a K
value via software options. When K is statically defined by the developer, the RSM
stops determining the K value dynamically and uses the developer-defined K at every
level and for every group of the RSM build process. This functionality of being able
to define a static K value and stop the usage of a dynamic K value allows for the
observation of how well the methodology of determining K dynamically (discussed in
Section 6.3) is performing. In all of these plots, it is important to note that the error
when using the dynamic K value is roughly the same order of magnitude as the error
for a statically set K =1000, but because of the size of these test cases, we know that
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Figure 7.8: Comparing static K errors and dynamic K error

Figure 7.9: Comparing static K errors and dynamic K error

the dynamic K values found are certainly less than 1000. Therefore, the method used
to determine the dynamic K seems to be providing K values that perform adequate
sampling of the target matrix without wastefully oversampling the target matrix.
This claim is strongly supported by the results discussed later in Section 7.5.
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Figure 7.10: Comparing static K errors and dynamic K error

Figure 7.11: Comparing static K errors and dynamic K error
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Figure 7.12: Comparing static K errors and dynamic K error
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7.4 Dynamic K Error vs Tree Depth

Figure 7.13: Dynamic K vs Tree Level

In Figure 7.13, the behavior of the error introduced when using the dynamic K
value as tree level increased can be seen. It can be seen that the error for all of the
test cases hovers around an order of magnitude of 10−6. This plot does suggest that
there is some error being introduced in the level 8 nonconformal sphere test. This
error is not high enough to suggest any issues in the RSM. Numerical round off is a
likely culprit for this increase in error.

7.5 Comparison between Error and Time Savings of K-Values

Figure 7.14: Runtime - error tradeoff for thin strip with a 5 level tree
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Figure 7.15: Runtime - error tradeoff for steel shell of radius 0.25m with a 5 level tree

Figure 7.16: Runtime - error tradeoff for imprinted plate with a 6 level tree

Figure 7.17: Runtime - error tradeoff for nonconformal sphere with a 7 level tree

The collection of figures in this section share some of the most important knowl-
edge acquired from the analysis. On each plot, K values (static and dynamic) are
plotted on the x-axis, the RSM total fill time for each K value is plotted on the top
y-axis, the relative RMS error introduced by each K values is plotted on the middle
y-axis, and the relative RMS error is plotted again on the bottom y-axis on a log
scale. For all of the statically defined K values, it can be seen that a K value that is
small may have low fill time, but accomplishes this low fill time by risking undersam-
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Figure 7.18: Runtime - error tradeoff for nonconformal sphere with a 8 level tree

pling of the target matrix. Undersampling means that there were not an adequate
number of random vectors used to accurately estimate the range of Z via random
sampling, therefore causing high error introduction for the RSM. Additionally, a K
value that is large may have low error introduction, but accomplishes this low error
by requiring more operations and risking oversampling of the target matrix. A high K
value already harms fill time because more operations are required by the multiplies
within the RSM to apply the random sampling of Z using a large number of random
vectors. Yet, a large number of random vectors may also be sampling redundant basis
when randomly sampling Z, this very wasteful behavior is called oversampling. So,
the goal of the dynamic K is to not only avoid undersampling and oversampling at
all cost, but also to attempt to maintain a favorable, if not optimal, ratio of total
fill time and error introduction. In all of these plots, it is seen that the usage of
dynamic K corresponds consistently to the lowest error AND lower total fill time
when compared to any of the statically set K values. This shows that the presented
approach in Section 6.3 for determining K dynamically is providing a good balance
between fast execution and low error levels.

7.6 RSM Truncation Tolerance Error Control

Additional tests were run to ensure that the error introduced by the RSM can be
controlled to a saturation point. To test this, different multipliers were applied to the
SVD truncation tolerance that the RSM is using. 13 multipliers ranging from 0.001
to 10000 were tested, the multiplier value for each point in Figure 7.19 can be seen
on as a label next to the data point. The curve seen in Figure 7.19 is the expected
behavior. As the tolerance is loosened, more singular values are being dropped when
forming the truncated representation within the RSM. Therefore, singular values that
represent significant information are being dropped and not being used in the RSM
constructed H2 and causing the RSM H2 to deviate from the original ACA built H2.

Copyright c© Owen Tanner Wilkerson, 2019.
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Figure 7.19: Error controllability through RSM truncation tolerance
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Chapter 8 Diagonal Factorization

In the pursuit of solving large problems in CEM, efficiently representing and storing
the system matrix is only one component of the challenge. The resulting linear
systems are often very difficult to solve. Applying a basic LU factorization or any
other fundamental factorization to Z in order to attempt to solve the system would
be, in most cases, impossible. A system with a million degrees of freedom, which is
a feasible size for modern problems, would take 14TB just to store Z. Additionally,
an LU factorization has a runtime complexity of O(N3). Therefore, it would take
a couple of months to perform an LU on a 1 million unknown system on a nice
desktop PC, if you had the memory. Luckily, the H2 data structure allows for the
efficient storing of a 1 million degrees of freedom system using ∼ O(N1.5) floating-
point numbers rather than the O(N2) required by the dense representation. And now,
it is even possible to easily perform H2 algebra in O(k2N logN) time complexity. Yet
the system still needs to be solved, and before solving can be performed, factoring
of the H2 still needs to be done in a computationally efficient manner. Additionally,
the approach used in the factorization will greatly impact performance in the solve.

UKCEM has developed O(N) sparse direct methods to directly factor compressed
representations of Z using localizing sources, see section 2.6. This factorization
method uses the physical concept of localization to develop an efficient linear al-
gebraic factorization for Z which maintains the sparseness of Z. As mentioned in
section 2.6, the submatrix Z

(NL)
l = (P

(N)
l )HZ

(NN)
l+1 Λ

(L)
l is controllably small. This al-

lows for a upper triangular form to be achieved, which allows an approximate matrix
inverse to be recursively applied to the factored structure until only an LU or QR
decomposition needs to be performed on Z

(NN)
2 , which is computationally reasonable

[22].
This upper triangular factorization can be further evolved. For the same rea-

son that Z
(NL)
l is approximately 0 in the upper triangular form, Z

(LN)
l could also

become approximately 0 if Λ(N) were to be replaced with conj(P (N)). Using Λ̂l =[
Λ

(L)
l conj(P

(N)
l )

]
would yield

Z
(NN)
l+1 = (Λ̂T

l )−1Λ̂T
l Z

(NN)
l+1 Λ̂lΛ̂

−1
l

= (Λ̂T
l )−1

[
Z

(LL)
l Z

(LN)
l

Z
(NL)
l Z

(NN)
l

]
Λ̂−1l

≈ (Λ̂T
l )−1

[
Bl 0

0 Z
(NN)
l

]
Λ̂−1l

(8.1)

Yet, the addition of conj(P (N)) as the orthogonal complement of Λ(L) now causes
Λ̂ to be ill conditioned in some cases. Therefore, this may cause error in reconstructing
Z from this new factored form. Conveniently, B can be used to indirectly control
the conditioning of Λ̂. Because B is determined by the localizing part of Λ̂, then
by taking the SVD of B one can determine the parts of Λ(L) that should be kept to
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control Λ̂’s conditioning. Sampling Λ(L) for the subspace that corresponds to the well-
conditioned parts of B is as simple as postconditioning Λ(L) by vl, where vl is found

from svd(Bl) = ulσlv
H
l . This postconditioning forms Λ̂B,l =

[
Λ

(L)
l vl conj(P

(N)
B,l )

]
.

The factorization then becomes

Z
(NN)
l+1 ≈ (Λ̂T

B,l)
−1

[
B̂l 0

0 Z
(NN)
l

]
Λ̂−1B,l (8.2)

where B̂l is controllably well conditioned.
Yet, there is one more convenience that allows for this method to be improved

even further. If Z is symmetric, B̂l is also symmetric. Therefore, the factorization can
be simplified one step further by performing a symmetric SVD on B̂l, which results
in B̂l = QH

l ΣlQl = QH
l SlSlQl where Sl is the sqrt(diag(Σl)). The factorization can

then be completely diagonalized by using Λ̄l =
[
Λ

(L)
l vlQ

H
l S
−1
l conj(P

(N)
B,l )

]
. This

yields the block diagonal factorization of

Z
(NN)
l+1 ≈ (Λ̄T

l )−1
[
I 0

0 Z
(NN)
l

]
Λ̄−1l (8.3)

8.1 Test Case Comparing Diagonal Factorization and Upper Triangular
Factorization

The upper triangular factorization and diagonal factorization have been tested and
compared abundantly in [22], [31], and [18]. Here, the numerical results for a single
test case that has been under investigation in some current work will be reviewed.
The test case geometry is shown in Figure 8.1. Tables 8.1 and 8.2 show time reported
in seconds and memory reported in GB. For this discussion, the Nit and RR columns
can be disregarded.

Figure 8.1: Two electrodes with a connecting bridge

It can be seen in Tables 8.1 and 8.2 that the diagonal factorization, although
having a double factor time, consistently has a 4x speed up is solve time compared
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Table 8.1: Triangular factorization of circuit test case from Figure 8.1

Table 8.2: Diagonal factorization of circuit test case from Figure 8.1

to the triangular factorization. The triangular factorization’s increase in solve time
is because of its need to invert via back-substitution. The diagonal factorization does
not require any inversion or back-substitution until the coarsest level.

8.2 Implementation of the Diagonal Factorization

A diagonal factorization development map was provided in the appendix that was
used during the implementation of the diagonal factorization into UKCEM’s main
modular fast direct (MFD) code base. Aside from setting up the needed surrounding
code framework for the diagonal factorization, a significant amount of work was put
in to transposing the ΘR algorithm [32]. The ΘR is a multilevel QR-like factorization
that operates on the H2 to ultimately take the QR of the column groups of Z. The
ΘR is used to determine the localizing source degrees of freedom Λ

(L)
l used in both the

triangular and diagonal factorizations. Localizing receiver degrees of freedom can be
used to achieve the diagonal factorization results by calculating the preconditioning
factoring blocks of the diagonal factorization form rather than computing (Λ̂T

l )−1 and
Λ̂T

l . In order to get these localizing receiver degrees of freedom, a row based ΘR was
needed. This was achieved by developing the RΘ, which is a ΘR that operates in the
transpose space.

Copyright c© Owen Tanner Wilkerson, 2019.

51



Chapter 9 Summary

A randomized numerical linear algebra approach for applying H2 algebra in a non-
invasive manner and a diagonal factorization for H2 representations have been de-
tailed. It has been observed that RandNLA can be adapted to operate onH2 matrices,
which enables efficient H2 algebra to be performed. It is also important to emphasize
that the RandNLA methods outlined here can be non-invasively incorporated in an
ACA-based H2 code. This design choice allows the easy incorporation of powerful
H2 algebra into code bases without the need for major refactoring and maintains a
familiar developer experience when leveraging this new functionality.

Although not explored herein due to time limitations, it is expected that the
computational costs of the proposed RSM-based H2 algebra methods will scale with
a complexity of O(k2N logN), and reduction to O(k2N) costs is likely possible. To
achieve this complexity reduction, modification to the multiplies discussed in Chapter
4 would need to be done to enable the caching of finer level’s far interaction sampling
which is mathematically seen as operation on V̂ H and ÛH in Figures 4.4 to 4.5. The
build process constructs the H2 representation from the finest decomposition level to
the coarsest decomposition level. Additionally, the multiplies that the RSM relies on
must decompose the target groups down to the finest level decomposition as operating
on all finer level’s V̂ Hs and Ûs is required as discussed in Chapter 4. Therefore, it is
likely that the same groups of finer level’s V̂ Hs and Ûs will be sampled multiple times
through the RSM-based fill process. Therefore, caching these repeatedly sampled far
interactions is likely to reduce the overall complexity for a factor of O(logN).

Additionally, a method to dynamically determine the number of random vectors
required to apply random sampling and dimensionality reduction through random
sampling in competitive time and competitive error was described. The success of
this decision making rule was clearly observed. Yet, the context of this paper allowed
for a convenient method for determining the dynamic number of random vectors by
observing the rank of the preexisting H2 matrices. The ability to determine a well-
performing K-value is unlikely in most other applications. Most other applications
wishing to determine an adaptive K-value to leverage in a random sampling must
pursue a probabilistic approach, as described in [33].

Finally, in separate work, it has also been observed that a diagonal, localization-
based factorization is effective at reducing the time necessary to apply the resulting
inverse approximations to excitation vectors [22] [31] [18].

Both of the advancements described in this document have demonstrated contri-
butions to the effort of pursuing increasingly massive and computationally expensive
problems in computational EM.

Copyright c© Owen Tanner Wilkerson, 2019.
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Appendix

In this appendix, two PDFs are included showing flowcharts that were created during
the development of the work discussed in this document to act as road maps for the
software development process.

RSM Development Map
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Diagonal Factorization Development Map
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Prepare MLSSM

Implementation	of	Diagonal	Factorization

Get
NL_Localizing

Modes and
perform

diagonal_NL
factorization

Start at Finest
Level (kL)

Store Λleft and
 Λright (will

probably occur at
the time they are

found in the
above process)

Symbol Legend:

START

Process

Important step in the
system that isn't a

"process"

Comment

END

Using updated
functions from

triangular
factorization 

ThetaR and
RTheta

(Implement
RTheta. ThetaR

is already present
from Triangular
Factorization)

Update SSM
representation of
the sources and
observers at the

current level

if (associated(updatedTreeD%lvls)) then
        call IntegerVecDestroy(grpList)
        grpList =
IntegerVecCopy(updatedTreeD%lvls(theLevel)%modifiedGrps_NL)
        thisTree = updatedTreeD
    else
        thisTree = treeD
    endif

Shifting SSM
index and scaling

tolerance

Current Level - 1
= 1

current level =
current level - 1
then collapse
ssm at current

level

NO

Solve and
postprocess

YES

construct Λ's
(SVDs, QRs,

etc.)
Make B block
and condition

Update Λ's to
implement the B
block's influence

Store Λ's at
current level into

container

Get Frobenius Norm of
R matrix for tolerance

scaling (need to
examine code to get a
better understanding of

how the scaling is
handled.)

Get intermediate
modes in

preparation for
diagonal_OL

factor

The diagonal_NL
gives us Z(NN)l+1

Perform ThetaR
on Z(NN)

l+1 to get
r_i(l+1) which is

the diagonal
blocks of R found

by the ThetaR

Perform SVD
on Z(NN)

l+1
* r_i(l+1)^-1 to
acquire v^H

then, the intermediate localizing
modes are found:

hat{Λ^(L)_i(l+1)} = r_i(l+1)^-1*hat{v}

Perform RTheta
on Z(NN)

l+1 to get
r_i(l+1) which is

the diagonal
blocks of R found

by the ThetaR

Perform SVD
on Z(NN)

l+1
* r_i(l+1)^-1 to
acquire v^H

then, the intermediate localizing
modes are found:

hat{Λ^(L)_i(l+1)} = r_i(l+1)^-1*hat{v}

Acquiring
new ΛL

left
and ΛNL

right

Acquiring ΛL
right

 and ΛNL
left

Acquiring final
intermediate Λ's

for OL_factor
which are just
considered the
new Λleft and

 Λright

perform
diagonal_OL

factor

Store Λleft and
 Λright (will

probably occur at
the time they are

found in the
above process)

Update SSM
representation of
the sources and
observers at the

current level

Shifting SSM
index and scaling

tolerance

Make B block
and condition

Update Λ's to
implement the B
block's influence

Store Λ's at
current level into

container

Get Frobenius Norm of
R matrix for tolerance

scaling (need to
examine code to get a
better understanding of

how the scaling is
handled.)

Update the Z(NN)

Update the Z(NN)
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