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ABSTRACT OF DISSERTATION 

 
 
 

LIGNIN-DERIVED CARBON AND NANOCOMPOSITE MATERIALS FOR 
ENERGY STORAGE APPLICATIONS 

 
   

With a growing demand for electrical energy storage materials, lignin-derived 
carbon materials have received increasing attention in recent years. As a highly abundant 
renewable carbon source, lignin can be converted to a variety of advanced carbon materials 
with tailorable chemical, structural, mechanical and electrochemical properties through 
thermochemical conversion (e.g. pyrolysis). However, the non-uniformity in lignin 
structure, composition, inter-unit linkages and reactivity of diverse lignin sources greatly 
influence lignin fractionation from plant biomass, the pyrolysis chemistry, and property of 
the resulting carbon materials.   

To introduce a better use of lignocellulosic biomass to biofuels and co-products, it 
is necessary to find novel ways to fractionate lignin and cellulose from the feedstock at 
high efficacy and low cost. Deep eutectic solvent (DES) was used to extract lignin from 
high lignin-content walnut and peach endocarps. Over 90% sugar yields were achieved 
during enzymatic hydrolysis of DES pretreated peach and walnut endocarps while lignins 
were extracted at high yields and purity. The molecular weights of the extracted lignin from 
DES pretreated endocarp biomass were significantly reduced. The native endocarp lignins 
were SGH type lignins with dominant G-unit. DES pretreatment decreased the S and H-
unit which led to an increase in condensed G-units, which may contribute to a higher 
thermal stability of the isolated lignin. 

Lignin slow pyrolysis was investigated using a commercial pyrolysis–GC/MS 
system for the first time to link pyrolysis chemistry and carbon material properties. The 
overall product distributions, including volatiles and solid product were tracked at different 
heating rates (2, 20, 40 ℃/min) and different temperature regions (100-200, 200-300 and 
300-600 ℃). Results demonstrate that changes in reaction chemistry as a factor of pyrolysis 
conditions led to changes in yield and properties of the resulting carbon materials. Physical 
and chemical properties of the resulting carbon material, such as porosity, chemical 
composition and surface functional groups were greatly affected by lignin slow pyrolysis 
temperature and heating rate.  

Lignin-derived activated carbons (AC) were synthesized from three different lignin 
sources: poplar, pine derived alkaline lignin and commercial kraft lignin under identical 



 
 

conditions. The poplar lignin-derived ACs exhibited a larger surface area and total 
mesopore volume than softwood lignin-derived AC, which contribute to a larger 
electrochemical capacitance over a range of scan rates. The presence of oxygen-containing 
functional groups in all lignin-derived ACs, which participated in redox reaction and thus 
contributed to an additional pseudo-capacitance. By delineating the carbonization and 
activation parameters, results from this study suggest that lignin structure and composition 
are important factors determining the pore structure and electrochemical properties of the 
derived carbon materials. 

A 3-dimensional, interconnected carbon/silicon nanoparticles composite 
synthesized from kraft lignin (KL) and silicon nanoparticles (Si NPs) is shown to have a 
high starting specific capacity of 2932 mAh/g and a retaining capacity of 1760 mAh/g after 
100 cycles at 0.72 A/g as negative electrode in a half-cell lithium-ion battery (LIB) test. It 
was found the elemental Si and C of the C/Si NPs were most likely linked via Si-O-C rather 
than direct Si-C bond, a feature that helps to alleviate the mechanical degradation from Si 
volume change and assure a sound electronic and ionic conductivity for enhanced 
electrochemical performance. EGA-MS and HC-GC/MS analyses suggest that the 
interaction of the Si, O and C can be tailored by controlling pyrolysis conditions.  

This study systematically investigated the interconnecting aspects among lignin 
source, pyrolysis chemistry, characteristics of the derived carbon materials and 
electrochemical performance. Such knowledge on the processing-structure-function 
relationships serves as a basis for designing lignin-based carbon materials for 
electrochemical energy storage applications.  
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CHAPTER 1. INTRODUCTION 

1.1 Lignin: nature, origin and chemistry 

1.1.1 Molecular structure of lignin 

           Lignocellulosic biomass consists of three major organic polymers: cellulose, 

hemicellulose and lignin. Lignin is a heterogeneous polymer, which fills the spaces 

between cellulose, hemicellulose, and pectin in cell wall and plays a crucial role for the 

structural support of plant biomass [1]. It is widely accepted that the fundamental units of 

lignin are biosynthesized from three main phenylalanine-derived monomers, also referred 

as monolignols, p-coumaryl (H), coniferyl (G), and sinapyl (S) alcohols, which are 

differentiated in the extent of methoxylation on their aromatic rings [2]. The chemical 

structures of the three major monolignol monomers are shown in Figure 1.1. Through 

combinatorial free radical reactions, these monomers assemble into an intricate racemic 

macromolecule to form p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) subunits of 

lignin [3]. Content and compositions of lignin vary among plant species, usually ranging 

from 10 to 30%, with much higher lignin content of up to 50% in endocarp tissues [4]. In 

general, lignin in hardwood (from angiosperms) consists of primarily G and S units, while 

lignin in softwood (from gymnosperms) is mostly composed of G units. Similar levels of 

G and S units plus a small amount of H units are usually found in the lignin of grasses [5, 

6].  
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Figure 1.1 Three phenylpropanoid units in lignin structure 

 

           The monolignols are connected by a heterogeneous networks of inter-unit linkages, 

as shown in Figure 1.2. The most abundant inter-unit linkage involves the β carbon of one 

benzene ring coupled with the phenolic hydroxyl of the other, referred as β-O-4 (β-aryl 

ether) linkage. Other major linkages include ether bonds, α-O-4 (α-aryl ether) and 4-O-5 

(diaryl ether), as well as C-C bonds, β−β (resinol), β-5 (phenylcoumaran), 5−5 (biphenyl) 

and β-1 (spirodienone) [7, 8]. The abundance of inter-unit linkages presented in some 

respective biomass species has been determined by Idaho National Laboratory, as 

summarized in Table 1.1. The heterogeneity in both monolignol composition and inter-unit 

linkages contributes to the recalcitrant nature of lignin, Such heterogeneity also posed 

challenges in selective lignin depolymerization while keeping glucan and xylan intact [9]. 

Seeking an effective biomass fractionation method based on an understanding  of lignin 

composition, structure and cross-linking is essential for co-generating a sugar stream for 

biofuel production and a lignin stream for valorization [10]. 
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Figure 1.2 The main inter-unit linkages in lignin structure [11] 

Table 1.1 Proportions of types of linkages connecting the phenylpropane units in respective 
lignin sources [12]  

Biomass 

feedstocks 
β-O-4 (%) β-5 / α-O-4 (%) β-β (%) 5-5 /4-O-5 (%) 

Poplar 90 7 3 0 

Pine 73 21 4 1 

Switchgrass 94 5 1 0 

Wheat straw 89 10 1 0 

 

1.1.2 Fractionation of lignin 

           Pretreatment is an important unit operation in a biorefinery, which is usually 

followed by enzymatic hydrolysis to convert cellulose into fermentable sugars. During a 

typical pretreatment, the lignin and hemicellulose sheathing over cellulose were removed, 

since the presence of lignin blocks the access of cellulolytic enzymes to cellulose [13]. A 

number of pretreatment techniques have been studied over the years, of which hot water, 
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dilute acid, alkali, and ionic liquid (IL) pretreatment have received the most extensive 

investigation [14]. Because of the variations in pretreatment chemistry and processing 

condition, selection of pretreatment technology significantly affects the structural and 

compositional properties of the extracted lignin. Acid pretreatment methods generally 

break down hemicellulose to improve accessibility of cellulose to enzymatic hydrolysis. 

Although little lignin is  removed from the pretreated solids, during acid pretreatment lignin 

is dissolved and reprecipitated onto the solids thus most of the lignin ends in the solid 

residue after enzymatic hydrolysis [15]. In contrast, alkali-based pretreatments can 

effectively fragment and dissolve a large portion of lignin and some of hemicellulose. 

Lignin can be recovered from the alkaline solution by adjusting the pH to acidic [16].  

           Organosolv pretreatment removes and modifies lignin via a mixture of water and 

organic solvents, such as methanol, ethanol and acetone, with either acid or base catalysts. 

The organosolv pretreatment results in significant lignin deconstruction by hydrolyzing the 

lignin-carbohydrate ester linkages and some inter-unit ether bonds.  Condensed S and G 

units were commonly observed in lignin derived from organosolv pretreatment as 

compared to dilute acid and ammonia pretreatment [17]. IL is a group of salts with melting 

points below some arbitrary temperature, such as 100 °C. The near infinite potential 

combinations of anions and cations to form ILs offer opportunities to fine tune their 

property and function, therefore ILs are often called “designer solvents” [18, 19]. It was 

found the fragmentation of lignin macromolecules was related with the anions of ILs and 

the effect of IL anion on reducing lignin molecular weight is in an order of sulfates > lactate 

> acetate > chlorides > phosphates [20]. Under neutral or basic conditions, strong 
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nucleophiles such as HS- or SO3
2- lead to the cleavage of β-O-4 to form a new α carbon-

carbon double bond; while the weak nucleophiles generate a vinyl ether from the β-O-4 

linkage instead of cleaving it [20]. Despite of recently development in IL pretreatment, 

subsequent hydrolysate conditioning, high solvent and processing equipment cost, IL 

recycling and waste stream treatments hinder industrial relevant application of IL 

pretreatment technology [21-23]. 

           Recent advances in deep eutectic solvents (DES) provide a new approach for 

biomass fractionation and lignin extraction. DES is a mixture of Lewis or Brønsted acids 

and bases acting as either hydrogen-bond donor (HBD) or hydrogen-bond acceptor (HBA) 

[24]. Table 1.2 shows the combination of HBDs and HBAs that mixed at 60 °C [25]. DES 

pretreatment is capable of delivering comparable effectiveness as certain ILs towards 

dissolving lignin from biomass while the chemical costs much less than many ILs due to 

low precursor price, simple synthesis and better recyclability [26]. The interactions 

between HBD and HBA of the DES offer a dual acid/base catalysis system facilitating a 

controlled cleavage of labile ether linkages among phenylpropane units, and thus lead to 

lignin depolymerization [27]. By selecting the appropriate HBD and HBA, DES 

pretreatment can generate a low molecular weight lignin product while maintain most of 

the properties and activity of native lignin [28].  

           The efficacy of a pretreatment method largely depends on the selection of biomass 

feedstock; at the same time, the selection of a pretreatment technology greatly influences 

biomass decomposition, sugar release, and lignin extraction [29, 30]. There is a gap in 

linking the diverse chemical complexity of lignin with pretreatment chemistry and the 
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properties of the extracted lignin in respect of how to separate and utilize the lignin stream 

as a feedstock for making carbon materials for electrochemical energy storage devices. 

Such knowledge is necessary for rational design of lignin fractionation methods that are 

adaptable to various biomass feedstocks and downstream thermochemcial conversion for 

material applications.  

Table 1.2 Hydrogen bond donor and hydrogen bond acceptor combinations that create 
clear DES  [25] 

Hydrogen bond donor Molar ratio Hydrogen bond acceptor 

Lactic acid 9:1 Alanine 

Lactic acid 2:1 Betaine 

Lactic acid 1.3:1 to 15:1 Choline chloride 

Lactic acid 9:1 Glycine 

Lactic acid 5:1 to 9:1 Histidine 

Lactic acid 1:1 to 4:1 Proline 

Malic acid 1:1 Alanine 

Malic acid 1:1 Betaine 

Malic acid 1:1.2 to 1.2:1 Choline chloride 

Malic acid 1:1 Glycine 

Malic acid 1:1 to 2:1 Histidine 

Malic acid 9:1 Nicotinic acid 

Malic acid 1:3 to 3:1 Proline 

Oxalic acid (anhydrous) 1:1 Alanine 

Oxalic acid (anhydrous) 1:1.5 to 1.5:1 Choline chloride 

Oxalic acid (anhydrous) 1:1 to 1.5:1 Proline 

Oxalic acid (dihydrate) 2:1 Alanine 

Oxalic acid (dihydrate) 1:1 Betaine 

Oxalic acid (dihydrate) 1:1 Choline chloride 

Oxalic acid (dihydrate) 1:1 to 3:1 Glycine 

Oxalic acid (dihydrate) 1:1  Histidine  

Oxalic acid (dihydrate) 1:1  Proline 

Oxalic acid (dihydrate) 9:1  Nicotinic acid  

 

1.2 Functionalization synthesis processes of lignin-derived advanced materials 

           Carbon can form many allotropes, such as diamond and graphite, because of its 
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valency. In the last several decades, more allotropes have been discovered such as graphene 

[31], carbon nanotubes [32] and buckminsterfullerene [33]. With good electric conductivity 

and tailorable structure and surface (shape, surface area, porosity, and pore size 

distribution), carbon materials have demonstrated potential in various functional material 

applications, such as electrochemical energy storage, absorbent, catalyst, soil amendment, 

etc. [34]  Recently, biomass as a carbonaceous precursor has received increasing interests 

for its sustainability, abundance, and low cost compared with other alternatives, such as 

coal and petroleum [35]. Thermochemical conversion technologies, including pyrolysis 

and hydrothermal process, are the most important technologies to convert biomass into 

different functional materials [36].  

           The growing demands in the field of catalysts, energy storage and soil amendments 

have attracted increasing interests in the synthesis of low-cost carbon materials from 

biomass with designed functions [34]. Thermochemical processes, including pyrolysis and 

hydrothermal carbonization, have been widely applied to generate carbon material from 

biomass. The reaction mechanisms of the thermochemical processes are very complex, 

which depend on the properties of lignin and the reaction conditions, such as temperature 

and heating rate [37]. The original biochar derived from thermochemical processes has 

limited functional groups and pore structure. Multiple synthesis approaches were 

developed to functionalize biochar with specific purposes. 

1.2.1 Pyrolysis carbonization 

           Pyrolysis is a process for thermal decomposition of materials at elevated 
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temperatures in an inert atmosphere, which has been intensively studied in recent years 

[38]. Based on the heating rates, pyrolysis can be categorized into fast pyrolysis and slow 

pyrolysis. Fast pyrolysis, carried out at temperatures (around 500 °C) and short reaction 

times (1 to 5 seconds), has been considered as an effective method for bio-oil production 

from biomass (normally around 60 to 70 wt%) in addition to biochar (20%) and gas (15%). 

However, slow pyrolysis, at low to moderate temperatures (around 300 °C) and long 

reaction times (up to days), converts biomass to high yield of biochar at the expense of bio-

oil and gaseous products.  

           The behavior of lignin in the pyrolysis process is affected by several factors, 

including the lignin origin (i.e., softwood, hardwood and grass lignin), lignin 

extraction/pretreatment method, pyrolysis heating rate and reaction temperature [39], and 

selection of catalyst [40]. The main products acquired from the lignin pyrolysis includes 

gaseous compounds (e.g., H2, CH4, CO, and CO2), phenolic volatiles and other 

polysubstituted phenols. Besides the abovementioned liquid and gaseous compounds, 

depending on pyrolytic temperature and heating rate, a fraction of lignin is converted to a 

thermally stable solid product, usually referred to as biochar. With plenty of surface 

functional groups (e.g., C-O, C=O and OH), this carbon material can be applied to 

functional materials when subjected to various functionalization processes. 

           Pyrolysis of cellulose and hemicelluloses generates a range of volatile products, 

primarily short chain carboxylic acids, ketones and aldehydes, such as furan, formic acid, 

5-hydroxymethyl furfural and levoglucosenone, etc. [41] Compared to cellulose and 

hemicellulose pyrolysis, the reaction mechanism of lignin pyrolysis is more complex due 



9 
 
 
 

to the heterogeneity in lignin composition and possible multiple reaction phases involving 

prime and secondary reactions [34, 38]. During pyrolysis, the deploymerization of lignin 

starts with the cleavage of the relative weak ether bonds, such as β-O-4 linkages at low 

temperature and produce primarily guaiacol and syringol type monomers along with a 

variety of other products [42, 43]. It is believed that the prime reaction of lignin pyrolysis 

related with the cleavage of β-O-4 linkages to generate vinylphenols. The primary products 

undergo a series of secondary reactions to produce a variety of H, G and S type monomers. 

Lignin pyrolysis involves free radical reactions and the monomer products are presented 

as free radicals [37, 38]. Since free radical reaction are chain reactions, it would not 

terminate as long as the free radicals are present. Hence, the originally volatilized H, G and 

S type would subsequently go through repolymerization and condensation into oligomers 

and finally form solid fractions, namely char and coke. A portion of the monomers capture 

hydrogen radicals  entering into liquid fraction [37, 38]; while other portion of the 

monomers further decompose into gases, such as CH4, CO, CO2 and H2 [43]. As the 

reactions continue, the free radicals chain reaction within char and coke was forced to 

terminate after devolatilization and depletion of hydrogen, leaving some free radicals to 

serve as active sites for the activation to activated carbon [44]. 

1.2.2 Hydrothermal carbonization (HTC) 

           Hydrothermal carbonization is a wet biomass thermochemical conversion 

technology, which mimics the natural process of coal formation but in a short period of just 

minutes to hours. Being placed in a closed reactor, such as an autoclave, the biomass or 

biomass-based precursors are surrounded by water and treated at approximately 130-
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280 °C under self-generated steam pressure. The final products include solid residue, 

referred to as hydrothermal biochar, soluble organic compounds and gaseous products, 

mainly composed of CO2. Compared to pyrolysis carbonization, HTC generates more 

biochar while less gases [45]. In addition, with higher H/C and O/C ratios, the chemical 

structure of hydrothermal biochar is more analogous to natural coal rather than pyrolytic 

biochar [46].  The primary advantage of HTC over pyrolysis is that it can directly deal with 

the high-moisture biomass feedstock without energy-intensive preprocessing/drying [47]. 

However, the high pressure of HTC reaction requires special reactor and process design, 

leading to high capital investments. Under high pressure, feeding solid biomass into 

reactors becomes an engineering challenge, which hinders the scaling up of HTC process 

[47].  

           Although it is believed that HTC process is generally governed by dehydration and 

decarboxylation, the complex reaction networks are not fully understood yet. So far, only 

a series of separate reaction mechanisms are proposed and identified, which include 

hydrolysis, dehydration, decarboxylation, polymerization and aromatization [48]. 

Hydrolytic reactions start from the cleavage of the ester and ether bonds of the bio-

macromolecules within biomass in the presence of water. The wide range products of 

hydrolytic reactions include saccharides of cellulose and hemicellulose and phenolic 

fragments of lignin, which are followed by further dehydration into various sugar 

derivatives (e.g., 5-HMF) [49]. Chemical dehydration significantly lowers the O/C and 

H/C ratios [50]. HTC causes partial elimination of carboxyl groups [51, 52]. When reaction 

temperature increases over 150 °C, both carbonyl and carboxyl groups degrade rapidly and 
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generate CO and CO2 [53]. Depending on the severity of HTC condition, elimination of 

carbonyl and carboxyl groups during decarboxylation leaves plenty of unsaturated 

compounds that are very reactive and prone to repolymerization [54]. The rate of 

carbonization is determined by the degree of aromatic condensation. Aromatization can 

happen under both non-hydrous and hydrothermal conditions, even from cellulose and 

hemicellulose derived carbohydrates [55, 56]. Alkaline condition appears to promote the 

aromatization [57]. It should be noted that all of the separate reactions mentioned above 

are not consecutive steps but rather a parallel pathway network, and that the relative 

significance of the reactions within the whole network primarily depends on the type of 

feedstocks and HTC conditions [48]. 

1.2.3 Functionalization of biochar 

           The original biochar derived from thermochemical conversion has insufficient 

functional groups and limited surface area and porosity, restricting the application of 

biochar as functional carbon materials. Abundant surface functional groups provide extra 

pseudo-capacitance, and large surface area and appropriate pore structure facilitate 

efficient permeation of electrolyte, all preferable features for energy storage applications. 

Therefore, functionalization of biochar is critical for upgrading of the raw material before 

it can be used as a functional material. Surface modification and activation, as primary 

functionalization approaches, are reviewed below. 

Surface modifications 

           Pseudo-capacitance is the electrochemical storage of electricity in an 
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electrochemical capacitor, is accompanied by the charge transfer between electrolyte and 

electrode. Pseudo-capacitance of carbon materials obtained from lignin-derived carbon 

materials is due to the presence of functional groups, such as OH, NH2, COOH, and SO3H 

[34].  The most widely applied heteroatoms or surface functionalities, including oxygen, 

nitrogen and metal oxide, are discussed as follows.  

           The presence of oxygen-containing functional group on carbons is unavoidable, 

since the empty valencies remaining from high temperature treatment are highly reactive. 

The basic oxygen functional groups, such as carbonyl, carboxyl, can be formed when the 

biochar is exposed to atmospheric environment [58, 59]. On the other hand, the activation 

process usually contributes to the addition of acidic oxygen functionalities to the carbon 

surface [59]. Self-discharge is a phenomenon in energy storage devices in which internal 

chemical reactions reduce the stored charge of the devices without any connection between 

the electrodes. Self-discharge is believed to be affected by the oxygen content of the carbon 

materials. Carbons with acidic surface functionalities showed high rates of self-discharge 

[60]. In addition, the presence of oxide functionalities often promotes gas evolvement 

during charging and discharging.  

           Ammoxidation is an industrial process that dope elemental N into benzene ring via 

pyrolysis. The N-enrichment process can be performed by reaction of ammonia or its 

derivatives, such as urea, ammonium carbonate, hydrazine and hydroxylamine [61-63]. 

Addition of nitrogen containing functional groups greatly improves the specific 

capacitance of electrode material even though surface area decreases after ammoxidation. 

The effect of nitrogen highly depends on its location in the graphene network. The electron-
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donor effect of pyridine group, N-6, is not observed, while quaternary group, N-Q, exhibits 

enhanced electron-donor effect. The pyrrolic group, N-5, forms if a proton is donated to 

the nitrogen system [63]. It has been found that the pyridinic forms N-6 and N-Q increase 

as the pyrrolic forms N-5 decrease [64]. The nitrogen atoms, initially introduced from 

various types of precursors (e.g. ammonia or its derivatives, ammonium carbonate, 

hydrazine, hydroxylamine, urea, etc.), are doped into six-membered ring into pyridinic 

nitrogen, via thermochemical conversion processes or oxidized with nitric acid [63, 64]. 

During pyrolysis, starting from 450 °C, pyridinic nitrogen is gradually reformed into 

quaternary nitrogen. Above 800 °C, pyrrolic nitrogen and pyridones are converted to 

pyridinic nitrogen, quaternary nitrogen and nitrogen oxide species. Until 1000 °C, pyridinic 

nitrogen to quaternary nitrogen remained to a constant ratio [62]. It is worth noting, 

however, that the continuous increase in nitrogen content does not always lead to the 

increase in capacitance because the addition of nitrogen is usually at the expense of surface 

area.  

Tuning of the porosity and surface area 

           Surface modification introduces various functional groups, but it has no positive 

effect on increasing porosity and surface area of the carbon materials. Compared with 

activated carbon (AC), the original biochar generated from thermochemical conversion of 

biomass possesses significantly lower surface area and porosity. Therefore, an activation 

process is necessary before the biochar can be applied as a functional material for 

applications in electrochemical energy storage. Depending on mechanisms, physical and 

chemical activation, are the two primary approaches to increase porosity and surface area 
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of the biochar.  

           For physical activation, the most reactive carbon sites of biochar are selectively 

eliminated by either CO2, steam or their mixture. Reaction mechanisms of the CO2 and 

steam activation are shown as follows:  

C + H2O → CO ↑  + H2 ↑ 

C + CO2  → 2CO ↑  

CO + H2O → CO2 ↑  + H2 ↑ 

The pore structure of the biomass-derived AC is greatly affected by activation operation 

conditions, including temperature, heating rate and holding time. The ash content (mainly 

Na2CO3 and Na2SO4) in the kraft lignin had a significant effect on the micropore volume 

of lignin-derived AC for the physical activation, especially for CO2, due to the catalytic 

reactions promoted by ash [65, 66].  

           Chemical activation is generally performed by pyrolyzing biochar with chemical 

activating reagents such as KOH, H3PO4, ZnCl2, etc. at enhanced temperature (700-

1000 °C) [34]. KOH is one of the most commonly used reagents for generating pore 

structure in carbon materials, but the activation mechanism is not fully understood. It is 

believed that the reactions between KOH and carbon begin with solid-solid reactions, 

which are followed by solid-liquid reactions [67]. The activation process consists of several 

simultaneous and/or sequential reactions. KOH dehydrates at 400 °C to produce K2O. 

Carbon will be oxidized by water to produce CO, CO2 and H2. The reactions between K2O 
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and CO2 intermediates finally produce K2CO3. The reaction processes can be illustrated as 

follows [68]:  

2KOH → K2O +  H2O 

C + H2O → CO ↑  + H2 ↑ 

CO+ H2O → CO2 ↑  + H2 ↑ 

CO2+ K2O → K2CO3 

           As catalysts, H3PO4 and ZnCl2 promote formation of pore structure via pyrolysis 

[34]. Montane et al. investigated the mechanisms of H3PO4 catalyzed activation during 

lignin pyrolysis using Thermogravimetric (TG) and differential Thermogravimetric (DTG) 

analyses. The reactions start from dehydration of phosphoric acid to produce vapor and 

P2O5, lignin pyrolysis to produce carbon and volatiles, following by partial volatilization 

of the carbon (to CO and CO2) to produce activated carbon with well-developed pore 

structure and large surface area [69]. ZnCl2 is also widely applied in activation of lignin. 

Because of the high boiling point (732 °C), throughout the pyrolysis process, ZnCl2 

remains in a liquid phase (melting point: 290 °C). Melting ZnCl2 swells lignin at low 

temperature while facilitating depolymerization of lignin- at high temperature, which 

contribute to an even and well-developed pore network [70].   

           In addition to physical and chemical activation, the templating method is also widely 

used to create porosity in biochar. In a typical templating process, a template agent such as 

Pluronic F127 [71] or colloidal silica [72] is first infiltrated into the lignin precursor. The 
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mixture is then subjected to pyrolysis to obtain the templated char. After the template agent 

is removed, the templated char is then subjected to either physical or chemical activation 

to enlarge pore volume and create connection between pores. Finally, activated carbons 

with tailored ratios of micro-, meso- and macropores are acquired. The advantage of 

templated activation is the tunable pore structure. However, template agents are usually 

expensive and cannot be easily recycled, and highly toxic and corrosive acid, such HF or 

H2SO4 is needed to remove the template agents.  Both drawbacks impede 

commercialization of the templated activation technology. 

1.3 Electrochemical energy storage application 

1.3.1 Supercapacitor 

          A supercapacitor is a high-power energy storage device widely used in transportation 

vehicles, power grids and consumer electronics [73]. Compared to batteries, such as 

lithium-ion batteries (LIBs), supercapacitors are favored because of their high-power 

density and long lifespan, which are suitable for short-term energy storage and burst power 

delivery. As shown in Figure 1.3, a typical supercapacitor is made up of two conductive 

electrodes with high surface area, separated by an electron-insulating but ion permeable 

membrane and fully soaked in electrolyte. As the ions of electrolyte spontaneously transfer 

toward/apart the surface of electrodes with electrons moving between the two electrodes 

but no charge transfer occurring across the electrode and electrolyte interface during 

charging and discharging, the capacitance acquired is called electric double-layer (EDL) 

capacitance. The EDL capacitance is simply achieved by physical adsorption of ions 
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without chemical reactions involved on the interface between electrolyte and electrodes 

during charging and discharging. Although EDL is mainly attributed to the primary 

capacitance originated from the electrode made of carbon materials, many carbon materials 

contain functionalities or have modification on their surface, which contribute to extra 

capacitance obtained via redox reactions between the electrolyte and electrode, referred as 

electrochemical pseudocapacitance [74].  

 

Figure 1.3 Configuration and working principle of an EDL supercapacitor [75] 

           Based on the principles of EDL capacitance, porous materials, especially activated 

carbon, have received the most attention as electrode material of supercapacitor not only 

due to their impressive surface area and electric conductivity but also their tailorable pore 

structure (shape, pore size distribution) [76].  Lignin has been considered as a favorable 

precursor for porous carbon materials owing to its high carbon content, highly branched 

and cross-linked structure, and low feedstock cost [44]. Additionally, plenty of oxygen-

containing functional groups formed on the surface of prepared carbon materials offer extra 

pseudocapacitance to the total capacitance [71]. Therefore, lignin-derived carbon materials 
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have received extensive investigation for the potential application as supercapacitor’s 

electrode in the last decade, with some literature summarized in Table 1.3. To obtain higher 

specific surface area and conductivity and tailored surface functionality for overall 

performance, various synthesis strategies have been examined in the lignin-derived carbon 

materials for supercapacitor application. Reviewed here are lignin-derived activate carbon 

and carbon fibers, surface modification of the lignin-derived carbon materials and lignin-

derived carbonaceous composite materials. 
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Table 1.3 Summary of lignin-derived carbon materials for supercapacitor application 

Lignin source Target 
materials Carbonization Activation Modification SSA 

(m2/g) Capacitance (F/g) Electrolyte Ref. 

Hardwood lignin AC Pyrolysis KOH (700 °C, 2h) N/A 907 165@ 50 mV/s 1 M H2SO4 [77] 
Poplar extracted lignin; 
Pine extracted lignin AC Pyrolysis (700 °C, 1h) KOH (700 °C, 1h) N/A 621.25; 

314.95 
86.7, 
48.3 @ 0.5 A/g 1 M H2SO4 [44] 

Alkaline lignin AC N/A 
ZnCl2 (700 °C, 1h) 
KOH (700 °C, 1h) 
K2CO3 (700 °C, 1h) 

N/A 
866,  
1191, 
1585 

142.09,  
251.04,  
263.46 @ 50 mA/g 

6 M KOH [78] 

Corn stover lignin AC Hydrothermal (180 °C, 18h) KOH (800 °C, 3h) N/A 1660 420 @ 0.1 A/g 6 M KOH [79] 

Black liquor lignin AC Pyrolysis (900 °C, 2h) KOH (900 °C, 2h) N/A 1406 87 @ 5 mV/s 1.5 M NEt4BF4/ACN [80] 

Alkali lignin AC Pyrolysis (500 °C, 1h) KOH (800 °C, 1h) N/A 3775 286.7 @ 0.2 A/g 6 M KOH [81] 
Kraft lignin, 
ethanol extracted lignin, 
alkali extracted lignin 

AC Pyrolysis (950 °C, 6h) N/A N/A 
1092, 
519, 
126 

91, 
35, 
53 @ 0.5 A/g 

1 M H2SO4 [82] 

Softwood Kraft lignin AC N/A KOH (800 °C, 1h) N/A 1800 200 @ 10 A/g EMIBF4 [83] 

Kraft lignin AC Pluronic F127 
Pyrolysis (1000 °C, 15 min) 

CO2 (875 °C, 35 min) 
KOH (1000 °C, 35 min) N/A 624 

1148 
102.3, 
91.7 @ 2 mV/s 6 M KOH [71] 

Acid washed lignin AC Pyrolysis (900 °C, 15 min) Pluronic P123, 
EO20PO70EO20 

N/A 803 97.1 F/cm-3@ 289 
mA/cm-2 6 M KOH [84] 

Alcell lignin AC Pyrolysis (900 °C, 2h) Zeolites Y template N/A 1085 250 @ 50 mA/g 1 M H2SO4 [85] 

Alcell lignin AC Pyrolysis (900 °C, 2h) Zeolites β template N/A 930 140 @ 1 A/g 1 M H2SO4 [86] 

Alkali lignin, low sulfur ECNF 
mats Pyrolysis (600 °C, 1h) KOH (900 °C, 2h) N/A 2005 205 @ 0.3 A/g 0.5 M Na2SO4 [87] 

Alkali lignin ECNF 
mats Pyrolysis (1200, 1h) N/A N/A 583 64 @ 0.4 A/g 6 M KOH [88] 

Alkali lignin ACF N/A KOH (850 °C, 0.5h) N/A N/A 344 @ 10 mV/s 6 M KOH [89] 

Alkali lignin ECNF 
mats Pyrolysis (900, 2h) CO2 (850 °C, 3h) N-doped 1113 410 @ 1 A/g 6 M KOH [90] 

Poplar lignin AC Hydrothermal (200 °C, 24h) KOH (800 °C, 1h) N-doped 2218 312 @ 1 A/g 6 M KOH [91] 

Sodium lignosulfonate AC Pyrolysis (900 °C, 3h) TEOS template S-doped 1054 328 @ 0.2 A/g 6 M KOH [92] 

Kraft lignin 
MnO2/E
CNF 
mats 

Pyrolysis (1400 °C, 0.5h) N/A N/A N/A 171.6 @ 5 mV/s 1 M Na2SO4 [93] 

Acetic acid lignin 
Iron 
oxide/H
CNF 

Pyrolysis (900 °C, 1h) N/A N/A 281 121 @ 0.5 A/g 1 M Na2SO3 [94] 

Sodium lignosulfonate NiO/AC Pyrolysis (600 °C, 2h) Pluronic F127 N/A 802 880.2 @ 1 A/g 6 M KOH [95] 

Alkali lignin Graphen
e/C Hydrothermal (240 °C, 16h) N/A N/A 1804 190 @ 0.5 A/g 6 M KOH [96] 

Sodium lignosulfonate SWCNT
/C Hydrothermal (180 °C, 12h) N/A N/A 150.5 292 @ 0.5 A/g 1 M Li2SO4 [97] 



 

20 
 

Lignin derived activated carbons  

           Activated carbon (AC) has been widely applied as electrode materials of 

supercapacitor due to its high specific surface area favored by the EDL capacitance. 

Through flexibly combining various strategies and parameters of carbonization and 

subsequent activation process, lignin can be converted to structure tailorable carbon 

materials and consistently emerging highly porous carbonaceous structures have been 

examined as supercapacitor purpose. Aiming to investigate the effect of activation agent 

on the lignin-derived porous carbon materials, Wu et al. synthesized different structured 

activated carbons from alkaline lignin-by a one-step activation process using ZnCl2, KOH 

and K2CO3. Although the different chemical agent displayed little effect on the formation 

of functional groups at the surface of prepared carbon materials, it demonstrated a critical 

impact on the specific surface area (SSA). The SSAs of the ACs activated by ZnCl2, KOH 

and K2CO3 were 866, 1191 and 1585 m2/g, which lead to 142.09, 251.04 and 263.46 F/g, 

respectively, at a current density of 40 mA/g [78].  

           With black liquor as carbon precursor and KOH as activation agent, Zhang et al. 

systematically examined the effect of operation conditions, including KOH/lignin ratio (1:1 

to 1:5), carbonization temperature (500 and 800 °C) and activation temperature (700, 800 

and 900 °C) on electronical performance of supercapacitors. High carbonization 

temperature does not favor ideal specific capacitance. When carbonization temperature 

increased from 500 to 800 °C, the specific capacitance was reduced from 253.5 to 203.3 

F/g. The KOH/lignin ratio had significant effect on formation of meso- and micropores, 

which lead to an impressive SSA of 3775 m2/g at activation temperature of 800 °C. When 
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activation temperature increased from 800 to 900 °C, the SSA and pore volume 

significantly decreased as a possible result of over-etched pore structure. Consequently, the 

electrode carbonized at 500 °C and activated at 800 °C with KOH/lignin ratio of 4:1 

exhibited highest specific capacitance of 286.7 F/g at a current density of 0.2 A/g and 

retained 207.1 F/g at a high current density of 8 A/g [81].  

           In addition to the processing conditions, the effect of heterogeneity in structure and 

composition of lignin precursors on the structure of porous carbon material and 

supercapacitance performances were also investigated. Compared to pine (softwood) 

lignin-derived AC, poplar (hardwood) lignin-derived AC exhibited a higher level of 

specific surface area and volume of both mesopores and micropores because of the 

variations in structure and composition of lignin between softwood and hardwood. As a 

result, the poplar lignin-derived AC had a higher value of specific capacitance at each 

current scan rate than the softwood lignin-derived AC [44].  

           According to International Union of Pure and Applied Chemistry (IUPAC), pores 

can be classified into macropores, mesopores and micropores [76]. A macroporous material 

is a material containing pores with diameters larger than 50 nm. Mesoporous materials 

contain pores with diameters between 2 nm and 50 nm while microporous materials have 

pores with diameters smaller than 2 nm. It is believed that a bimodal porous structure 

involving micropores and a narrow distribution of pores between mesopores and 

micropores is preferred of energy storage purpose [76]. The macropores are beneficial to 

the fast ion transportation while the mesopores and micropores offer sufficient surface area 

that bulk ion absorption relies. Therefore, to synthesize organized porous materials with 

narrow distributions of mesopores and micropores, a lot of templates have been applied 
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[71, 84-86]. With the assistance of the Pluronic F127 template, Saha et al. synthesized 

lignin-derived mesoporous carbon material. The volume of mesopores enhanced to 58% 

and 66% by subsequent physical (CO2) and chemical (KOH) activation so that obtain SSA 

of 624 and 1148 m2/g, respectively. As a result, the synthesized mesoporous carbon 

materials showed specific capacitance of 102.3 and 91.7 F/g at 2 mV/s for the CO2- and 

KOH-activated carbons, respectively [71].  

Lignin-derived carbon fibers 

           In addition to AC, lignin-derived carbon fibers (LCFs) have also received increasing 

attention for supercapacitor application [98]. A LCFs mat is able to provide a relatively 

high surface area even without activation process [88]. Additionally, it offers potential to 

develop flexible electrode materials due to its nature of mechanically flexible [88, 89]. Lai 

et al. prepared an electrospun carbon nanofiber (ECNF) mat through electrospinning 

aqueous mixture of alkali lignin and polyvinyl alcohol into fiber mat followed by 

stabilization and carbonization. As the mass ratio of lignin/PVA was 70/30, the ECNFs mat 

exhibited a specific surface area of 583 m2/g without the assistance of activation process. 

As a result, the ECNFs (70/30) mat delivered 50 F/g at a current density of 2 A/g and the 

capacitance retained 90% after 6000 cycles. With the assistance of an activation process, 

the specific surface area of the ECNFs mat was enhanced significantly. Ago et al. produced 

ECNFs mat from lignin/PVA (75/25) as carbon precursor followed by a separated KOH 

process and obtained a superior specific surface area of 2005 m2/g, which led to a high 

value of specific capacitance of 205 F/g at current density of 0.3 A/g.   

Surface modification of lignin-derived carbon materials 
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           Carbon materials have been widely applied to produce EDL capacitor due to their 

good conductivity and high specific surface area that is available from diverse activation 

approaches. Doping heteroatoms, such as N, O, S and P, into the carbon matrix is a 

straightforward approach to incorporate pseudocapacitors into EDL capacitor which 

improve the overall performance of electrode materials. Yang et al. developed an N-doped 

electrospun carbon fiber by electrospinning aqueous mixture of lignin and plant protein 

(hordein/zein, 50/50 wt%). When the ratio of lignin/protein was 80/20, the prepared N-

doped electrospun carbon fiber acquired a nitrogen content of 1.33% along with a specific 

surface area of 1113 m2/g, both of which resulted in high capacitance of 410 F/g at 1 A/g 

and retained 95% of the initial capacitance after 3000 cycles at 5 A/g [90]. Tian et al. 

fabricated a hierarchical S-doped porous carbon material using sodium lignosulfonate as 

carbon precursor through TEOS template activation. The prepared material exhibited a 

surface area of 1054 m2/g and sulfur content of 2.9 wt%. The S-doped carbon material 

delivered a specific capacitance of 328 F/g at 0.2 A/g [92]. 

Lignin-derived carbonaceous composite materials 

           Despite the fact that transition metal oxide nanoparticles offer superior redox-

derived electrochemical pseudocapacitance, metal oxides usually have a high electrical 

resistance, which leads to a low power density for supercapacitor application [99]. A 

practical strategy is to incorporate transition metal oxide nanoparticles into conductive 

materials, but the synthesis process requires binder material to integrate all the components. 

Using a lignin-derived carbon/transition metal oxide composite offers an inexpensive 

approach to improve electric conductivity of supercapacitor electrode with a binder-free 

matrix. MnO2 nanocrystals were successfully deposited on the surfaces of lignin-derived 
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ECNF mats by hydrothermal degradation of aqueous KMnO4 and the MnO2/ECNF 

composite exhibited a capacitance of 171.6 F/g at 5 mV/s [93]. Iron oxide nanoparticles 

embedded in lignin-derived hollow carbon nanofiber were synthesized by a coaxial 

electrospinning process, which delivered a specific capacitance of 121.5 F/g at 5 A/g [94]. 

With the assistance of Pluronic F127, a NiO-containing mesoporous carbon material was 

synthesized through pyrolysis. When applied as a supercapacitor electrode, the prepared 

MPC/NiO composite exhibited a superior specific capacitance of 880.2 F/g at a current 

density of 1 A/g [95]. 

1.3.2 Lithium-ion batteries  

           Batteries, such as LIBs are the most widely used energy storage technology for 

electric transportation and portable consumer electronics [100].  The important criteria to 

evaluate an electric energy storage material are energy density, power density, efficiency, 

life span and costs [101]. Energy density is measured in watt-hours per kilogram by 

determining the amount of energy that a device can store in a given volume, while power 

density is measured in watts per hour by determining the amount of power that a device 

can generate in a given volume. LIBs have a higher energy density than supercapacitors, 

while a supercapacitor has a higher power density than a LIB. This difference makes LIBs 

capable of storing more energy; while supercapacitors release energy more quickly. 

Another important characteristic that must be considered when comparing these two 

devices are the life span during charging/discharging cycles. Supercapacitors exhibit a 

cycle life that is two orders of magnitude larger than that of lithium batteries under full 

charging/discharging [100]. 
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           Lithium is the lightest metal as well as the most electropositive element LIBs [100]. 

The configuration of a LIB consists of a cathode (Li+ host material) and an anode (with Li+ 

accessible inter-atomic sites), which are immersed in electrolyte and isolated by a 

separator, as shown in Figure 1.4. The intercalation and deintercalation of lithium-ions 

causes electrons transfer between cathode and anode during charging and discharging, 

which fulfill the conversion between chemical energy and electrical energy [74].  

 

Figure 1.4 Configuration and working principle of LIBs  

 

Lignin-derived non-graphitic carbon LIB anode  

           Since LIBs s became commercially available in 1991, graphitic carbon materials 

have become the most widely applied negative electrode material for LIBs.  Graphite is a 

crystal of elemental carbon, which is formed by graphene layers bonded by van der Waals 

forces [102]. The intercalation of Li+ between the graphene layers allows good electrical 



 

26 
 

conductivity, mechanical stability and Li-ions dispersion, which makes graphite an 

attractive anode material with low cost but moderate energy density and good cycling 

stability [103]. However, for graphite, at the end of Li intercalation, it is thermodynamically 

favorable to form LiC6, which makes graphite have a theoretical capacity limitation of 372 

mAh/g [104].   

           Non-graphitic carbons are generally able to be divided into “hard carbon” and “soft 

carbon” in terms of bonding strength between sp2 layers (graphene) [105]. Hard carbon 

can be derived from precursors with high oxygen content, such as lignin and cellulose 

fractions [104]. A strong cross linking of hard carbon crystallites immobilizes the carbon 

layers and incorporates the crystallites in a rigid mass [106]. Soft carbon is typically 

synthesized from aromatic hydrocarbons with low oxygen content, such as petroleum and 

coal. The layers of soft carbon are mobile under weak cross linking, which can be converted 

to graphite like crystallites under high temperature [104]. 

           With the better understanding of mechanism model for ions intercalation and the 

development of diverse modification strategies for carbonaceous materials, a variety of 

non-graphitic carbon materials have been evaluated as anode material for LIB application 

[107]. Of all synthetic carbon-based materials, hard carbon materials attracted extensive 

investigation as LIB anode materials. The “house of cards” model can also be used to 

explain the intercalation mechanisms of hard carbon in LIB and sodium-ion battery (SIB) 

negative electrode [108]. The small graphitic grains with disordered orientation in hard 

carbons not only contribute to the insertion of Li-ions between graphene layers but also 

provide nanopores and defects that offers additional gravimetric capacity, allowing a higher 

capacity than the theoretical capacity limitation of graphite [109]. Biomass such as 
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cellulose and lignin, can be easily converted to hard carbon materials and the lignin-derived 

hard carbons have been evaluated as negative electrode materials of lithium-ion materials 

[110, 111].  

           The first attempt at lignin-derived hard carbon for LIB anode application can be 

dated back to 1980s. A series of pyrolytic carbonaceous materials derived from biomass-

based precursors, including lignin, were direct mounted with lithium metal and evaluated 

as anode material of LIB, which offered improved stability and capacity [112]. Afterwards, 

with the hypothesis that the nanovoids and pore openings of hard carbon contribute to a 

large capacity for LIB, a variety of hard carbons derived from sugars, endocarps, woods, 

and lignin under different operation conditions (pyrolysis temperature, heating rate and 

flow rate of argon) were characterized with XRD, SAXS and BET, and lignin-derived hard 

carbon exhibited a capacity of 440 mAh/g as anode material for LIBs [113]. In order to 

acquire lignin-derived hard carbon with higher capacity, various synthetic strategies have 

been applied to develop nanocarbon materials, including carbon fiber, mesoporous carbon 

and graphene. Blending with 10% of polyethylene oxide, lignin-derived electrospun carbon 

fiber mat delivered a capacity of 412 mAh/g at a current density of 30 mA/g [114]. 

Mesoporous carbon materials offer extraordinary interface between electrode and 

electrolyte and facilitate ion transfer and diffusion in the anode. A hierarchical mesoporous 

carbon material generated from lignin demonstrated a capacity of 470 mAh/g after 400 

cycles at a current density of 200 mA/g [115]. The theoretical capacity of graphene is as 

high as 744 mAh/g, which is much higher than that of graphite. A graphene-like carbon / 

Fe3O4 nanocomposite material derived from black liquor was characterized as LIB anode 

material and exhibited a capacity of 750 mAh/g after 1400 cycles at a current density of 
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1A/g [116]. 

           Although the theoretical limitation of graphite can be broken through diverse 

modification or synthetic approaches, the capacity of carbon-based LIBs is still relatively 

low. Therefore, several other anode materials have been investigated to replace carbon-

based materials.  

Lignin-derived Carbon/Silicon nanoparticle composite as LIB anode 

           With a specific capacity of about 3600 mAh/g, silicon has been considered as one 

of the most promising candidates to replace graphite as active material of next generation 

LIB anode [117]. However, the capacity and electronic and ionic conductivity of Si 

composite electrode degrade quickly because of irreversible volume change, delamination, 

and fracture of the Si, and loss of physical contacts caused by the relentless volume 

expansion/shrinkage during insertion/extraction of Li ions, [118, 119]. Additionally, 

development of the solid electrolyte interphase (SEI) on the freshly damaged Si particles 

surface leads to continuous loss of lithium ions and electrolytes [120], further contributing 

to capacity fading of LIBs [121]. Therefore, considerable effort has been devoted to 

improve the electrochemical performance of Si-based LIBs through various approaches 

[122], including structurally engineered Si (e.g. nanostructured Si [123], 3D porous Si 

particles [124], coating [125] etc.), flexible current collector [126], pre-lithiation [127], 

electrolyte additives [128], and improved binder materials [129-131].  

           Among these approaches, composite material combining nanostructured Si core 

with a protecting shell has been considered a promising strategy [132, 133]. Taking 

advantage of this strategy, several lignin-derived carbon/silicon core-shell nanoscale 
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composite have been examined as anode of LIBs [134]. Rios et al. embedded Si 

nanoparticles on electrospun carbon fibers which derived hard wood lignin from 

organosolv in a core-shell structure. As a result, the composite retained a specific capacity 

about 400 mAh/g at a current density of 0.84A/g after 40 cycles [135]. Niu et al. 

synthesized a self-assembly lignin coated silicon nanoparticles composite under the 

assistance of phytic acid, which exhibited a 2950 mAh/g at a current density of 0.3A/g after 

100 cycles. Most recently, Chen et al. developed a lignin-derived C/Si NPs composite via 

a one-pot, binder-free thermochemical conversion process, which showed 1390 mAh/g at 

a current density of 0.54A/g after 100 cycles [136]. Afterwards, by optimizing pyrolysis 

temperature from 800 to 600 °C while keep other condition the same, the lignin-derived 

C/Si NPs composite exhibited an enhanced electrochemical performance by retaining 2378 

mAh/g after 100 cycles at 1 A/g [133]. The synthesis process represented a comparable 

electrochemical performance when Si NPs were replaced with SiOx nanoparticles. After 

250 cycles, the lignin-derived C/SiOx composite maintained about 900 mAh/g at 0.2 A/g 

when tested as a LIB anode [137].  

1.4 Conclusion and research motivation 

           Currently, the commercial potential of lignocellulosic biofuel is hindered by lack of 

appropriate application for lignin fraction. With extensive research focus in the last few 

years, great strides have been made in developing lignin valorization strategies. With the 

rapid development of modern industries and fast-changing electronic technology, the 

demand for energy storage materials is increasing. Having high carbon content, highly 

branched and cross-linked structure and low feedstock cost, lignin has been considered as 

a promising precursor for energy storage materials. However, despite the increasing interest 
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on lignin derived energy storage materials, it is not clear whether the properties of lignin 

itself, such as the plant origin, fractionation method, structure, and composition, affect the 

electrochemical characterization of the derived carbon materials for energy storage 

applications. In addition, despite the wide use of slow pyrolysis to produce carbon materials 

from lignin, little information is available about the effects of slow pyrolysis conditions on 

reaction chemistry and correlation between pyrolysis chemistry and properties of the 

resulting carbon materials.  

           Therefore, in the present study, we aim to develop a novel lignin fractionation 

method to extract lignin from various biomass feedstocks. Due to limited information 

available on fractionating high-lignin content endocarp biomass, DES made of choline 

chloride and lactic acid would be tested to pretreat two representative endocarps (peach 

stone and walnut shell) for efficient production of both sugar stream and high-quality lignin 

stream. Besides, based on fundamental investigation of slow pyrolysis, we will further 

investigate 1) the effect of lignin sources on the pore structure formation of lignin-derived 

ACs; 2) the lignin-nanoparticle interactions during thermal processing and characterize the 

chemical, structural, mechanical and electrochemical proprieties of the derived 

nanocomposite materials. We will explore applications of the lignin-derived activate 

carbon and nanocomposite materials for energy storage application such as supercapacitors 

and for the anode of lithium ion batteries. It is our hope to establish processing-structure-

function relationships as the end goal which will provide critical knowledge and guidance 

on designing lignin-based carbon materials for electrochemical energy storage applications. 

1.5 Organization of Chapters  

           The first chapter serves as a literature review. 
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           The second chapter aims to develop a novel feedstock-agnostic fractionation process 

based on deep eutectic solvent that is suitable for a variety of biomasses such as switchgrass, 

poplar (hardwood), pine (softwood) and high lignin content endocarp biomass with respect 

to quality, and capital and operating cost projections at industrial scale. A suite of analytical 

tools was used to characterize the lignin stream from DES pretreatment. 

           The third chapter investigated the effect of pyrolysis temperature and heating rate 

on the reaction mechanisms and lignin pyrolysis chemistry. This chapter covers 

determination of the overall product distribution of lignin pyrolysis at different heating 

rates in different temperature region, as well as systematical characterizations of 

morphology, pore structure and interfacial chemical property of as prepared solid residues. 

The pyrolysis is the primary process that is applied to thermochemically convert lignin into 

diverse carbonaceous energy storage materials. Knowledge obtained in the third chapter 

provides a fundamental understanding of lignin slow pyrolysis process and serves as a 

foundation to understand synthesis of lignin derived functional carbon materials in the next 

two chapters. 

           The fourth chapter is a study to examine the impact of lignin sources on 

supercapacitors applications in addition to operation conditions. The lignins were isolated 

from different biomass categories which vary from structure to composition. The objective 

of the study is to validate our hypothesis that the non-uniformity in lignin structure, 

composition and reactivity of diverse lignin sources could contribute to different 

thermochemical conversion pathway of lignin and lead to different pore structures and size 

distribution of the derived AC materials and thus influence the electrochemical behavior 

for supercapacitor applications.  
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           The fifth chapter investigated the formation mechanisms of lignin-derived C/Si NPs 

composites which can be used as high-performance anode of LIBs. The objectives of this 

chapter were to determine: 1) the interaction between the Si NPs and C in the composite; 

2) the correlation among the structural, chemical, mechanical and electromechanical 

properties; 3) the connection between the thermochemical conversion conditions and the 

characteristics of C/Si composite. This study is the first attempt to understand the 

processing-structure-property relation of lignin derived C/Si NPs composite materials; 

such relation serves a basis to advancing the development of lignin-derived C/Si NP 

composite anode material. 
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CHAPTER 2. FRACTIONATION AND CHARACTERIZATION OF LIGNIN 

STREAMS FROM UNIQUE HIGH-LIGNIN CONTENT ENDOCARP 

FEEDSTOCKS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*The chapter in whole has been published in Biotechnology for Biofuels.  
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Abstract 

           Background: Lignin is a promising source of building blocks for upgrading to 

valuable aromatic chemicals and materials. Endocarp biomass represents a non-edible crop 

residue in an existing agricultural setting which cannot be used as animal feed nor soil 

amendment. With significantly higher lignin content and bulk energy density, endocarps 

have significant advantages to be converted into both biofuel and bioproducts as compared 

to other biomass resources. Deep eutectic solvent (DES) is highly effective in fractionating 

lignin from a variety of biomass feedstocks with high yield and purity while at lower cost 

comparing to certain ionic liquids.  

           Result: In the present study, the structural and compositional features of peach and 

walnut endocarp cells were characterized. Compared to typical wood biomass, endocarp 

biomass exhibits significantly higher bulk density and hardness. The sugar yields of DES 

(1:2 ChCl:Lac) pretreated peach pit (Prunus persica) and walnut shell (Juglans nigra) were 

determined and the impacts of DES pretreatment on the physical and chemical properties 

of extracted lignin were characterized. Enzymatic saccharification of DES pretreated 

walnut and peach endocarps gave high glucose yields (over 90%); meanwhile, compared 

with dilute acid and alkaline pretreatment, the significantly higher lignin removal rates 

were achieved for DES pretreatment (64.3% and 70.2% for walnut and peach endocarps, 

respectively) with impressive purities (94.0% and 92.7% for walnut and peach endocarps, 

respectively). The molecular weights of the extracted lignin from DES pretreated endocarp 

biomass were significantly reduced. 1H-13C HSQC NMR results demonstrate that the 

native endocarp lignins were SGH type lignins with dominant G-unit (86.7% and 80.5% 

for walnut and peach endocarps lignins, respectively). DES pretreatment decreased the S 
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and H-unit while led to an increase in condensed G-units, which may contribute to a higher 

thermal stability of the isolated lignin.  

           Conclusion: The high lignin content endocarps have unique cell wall characteristics 

when compared to the other lignocellulosic biomass feedstocks. DES pretreatment was 

highly effective in fractionating endocarps to produce both sugar and lignin streams while 

the DES extracted lignins underwent significant changes in SGH ratio, interunit linkages, 

and molecular sizes.   

Keywords: Endocarp, Deep eutectic solvent, Pretreatment, Lignin, Biofuel, Biorefinery   
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Background 

           Almost one quarter of the world’s population has unmet basic energy needs and the 

unprecedented green-house gases emission is causing global climate change [138]. These 

grand challenges have promoted the development of renewable fuels and materials as 

alternatives to the petroleum based fuels and chemicals [139]. Lignocellulosic biomass is 

a complex conglomerate of different biopolymers (such as polysaccharides, lignin and 

protein). From a biorefinery perspective, polysaccharides provide a sugar stream for 

biofuel fermentation; while the value of lignin has not been fully tapped, the aromatic 

nature of lignin makes it a potential source of chemicals and materials [140].  Biofuels 

community are now increasingly interested in fractionating and upgrading lignin to 

building blocks for high value-added chemicals and materials. Lignin based co-products 

will greatly enhance the economic viability of a biorefinery [141]. 

           As an existing underutilized feedstock from horticultural fruit crops, endocarp is the 

hardened inedible portion of the fruit which encases the seed and is discarded. Based on 

the year 2015 USDA Fruit and Tree Nuts Yearbook, the estimated overall annual yield of 

endocarp biomass from U.S. processing plants reached nearly 1 million dry tons, which 

breaks down to almonds: 517.0, walnut: 120.0, peach: 63.6, pistachios: 35.0, olives: 22.7, 

cherries: 16.5, apricots: 2.2, prunes and plums: 0.13, in thousand dry tons [142]. The 

hardened drupe endocarp represents the highest lignin content of any biomass source 

produced in appreciable amounts, up to 50% weight percent [143]. The lignin rich biomass 

can be a preferable feedstock for biorefinery to produce both biofuel and value-added 

chemicals and materials. In addition to provide plenty of lignin resources as feedstock, the 

bulk densities of ground endocarp biomass (i.e., walnut and peach) are 3-4 times higher 
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than the other bioenergy feedstocks such as switchgrass, poplar and pine, as shown in 

Figure 2.1. The bulk and energy density of the feedstock plays a significant role in the 

overall energy and cost balance of a biorefinery [144]. A biomass feedstock with high bulk 

and energy density is more efficient to convert into a biofuel than one with a lower bulk 

and energy density due to the relatively low energy requirements for transportation, storage, 

and distribution of the feedstock from the field to the biorefinery gate [145]. Furthermore, 

the endocarp biomass can be readily collected from the well-established fruit and tree nut 

processing industry, representing a significant advantage in terms of feedstock supply chain 

stability and logistics. 

 

Figure 2.1 Bulk density of endocarp biomass in flour form in comparison with switchgrass 
and lodge pole pine in flour and pellet forms [144];  

 
           To introduce a better use of lignocellulosic biomass to biofuels and lignin-based co-
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products, it is necessary to find a way to fractionate lignin and cellulose from the feedstock 

at high efficacy and low cost. Several pretreatment techniques have been studied over the 

years, with hot water, dilute acid, alkali, and ionic liquid (IL) being the most extensively 

inverstigated [14]. Hot water pretreatment is effective in releasing hemicellulose sugars 

and improving cellulose digestibility to glucose by cellulolytic enzymes [146, 147]. 

Compared with hot water pretreatment, dilute acid pretreatment can process a wider range 

of biomass types and achieve higher monomeric sugar yields [148, 149]. In contrast, 

pretreatment can also be effective at higher pH levels by adding reagents such as lime, 

calcium carbonate, green liquor, potassium hydroxide, and sodium hydroxide, all of which 

tend to remove a high fraction of the lignin while removing much less hemicellulose than 

for dilute acids [150]. During an alkali pretreatment, the ester bonds cross-linking between 

lignin and xylan are typically cleaved, thus increasing the accessibility of cellulose and 

hemicullose enriched fractions to enzymatic digestion [151-153]. IL is named to reflect the 

unique property of a group of molten salts with melting points below 100 °C. The near 

infinite possible combinations of cations and anions to form ILs provide opportunities to 

fine tune their property and functionality, therefore ILs are often called “designer solvents” 

[18, 19]. However, the subsequent hydrolysate conditioning to remove inhibitors, the 

higher cost for reaction vessels and solvents, and the waste stream treatment can add extra 

cost to the overall process, and thus seriously curb the commercialization of these 

traditional pretreatment techniques [21-23]. 

           Recent advances in deep eutectic solvents (DES) provided a new way for biomass 

fractionation and lignin extraction application. DES is a mixture of two or more chemicals 

acting as either hydrogen-bond donors (HBD) or hydrogen-bond acceptors [24]. DES can 
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be as effective as certain IL towards dissolving lignin from plant materials while costs 

much less than many ILs due to low precursor price, simple synthesis and better 

recyclability [26]. The interactions between HBD and HBA of the DES provide a dual 

acid–base catalysis mechanism which will facilitate controlled cleavage of labile ether 

linkages among phenylpropane units and thus lead to lignin depolymerization [27]. This 

chemistry can be tuned by selecting suitable HBD and HBA which will generate a low 

molecular weight lignin product while maintaining most of the properties and activity of 

native lignin [28]. A few studies have reported applications of DES for extracting lignin 

from grass and agricultural residues [154, 155]. Recent studies also investigated deploying 

this new lignin extraction method to both hardwood and softwood, and characterized the 

resulting DES extracted lignin product [28, 156]. The resulting lignin product has several 

distinctive characteristics: high purity, lower and narrowly distributed molecular weight 

compared to mill wood lignin, and the highly cleaved ether linkages [28]. 

           The efficacy of a pretreatment method largely depends on the selection of biomass 

feedstock; at the same time, the selection of a pretreatment technology greatly influences 

biomass decomposition and sugar release [29, 30]. However, very limited information is 

available on fractionating endocarp biomass, especially using DES. Therefore, to 

demonstrate the feasibility of DES pretreated endocarp biomass for efficient production of 

both sugar stream and high-quality lignin, a choline chloride and lactic acid DES solvent 

was applied to pretreat peach and walnut endocarp biomass. Sugar yields of pretreated 

solids were recorded and the mass balances for DES pretreatment and enzymatic hydrolysis 

for both endocarps were determined. Fractionated lignin streams were characterized using 

thermogravimetric, spectrometric, gel permeation chromatography and NMR analyses. 
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This study provides insights on how to fractionate and upgrade the underutilized endocarp 

feedstocks for biofuels and products. 

Results and Discussion 

Structural and compositional analysis of raw endocarps 

           Compared to other biomass feedstocks, endocarp biomass exhibits distinctive 

compositional and physical properties, such as high lignin content, high bulk density, and 

hardness. It is not clear how these properties correlate to the plant cell wall structure and 

its recalcitrance; such knowledge will guide the selection of a suitable pretreatment 

technology. In comparison with well-known biomass feedstock, such as switchgrass and 

pine, the structural property of walnut and peach endocarp feedstocks was examined using 

scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). As 

can be seen from SEM images in Figure 2.S1, the switchgrass and pine wood samples 

retained fibrous nature, while the edges were partially disrupted due to mechanical cutting 

and grinding. In contract, the walnut and peach endocarps samples showed particulate 

nature and smaller sample sizes, indicating that the endocarps are brittle. CLSM reveals a 

three-dimensional cell wall structure of endocarp and biomass samples by capturing 

multiple two-dimensional images at different depths. Calcofluor white was used to stain 

cellulose and chitin and is commonly used in plant biology to stain cell walls [157]. Figure 

2.2 compared walnut and peach endocarps to switchgrass and pine wood via CLSM. It is 

evident that peach and walnut endocarps exhibit a smaller cellular shape and an increase 

in cellular density when compared to switchgrass and pine wood samples.   
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Figure 2.2 Confocal microscopy of Calcoflour White stained raw biomass: A) switchgrass, 
B) pine, C) walnut endocarp and, D) peach endocarp. 

            

           Additionally, light microscopy was employed to determine the location and 

distribution of lignin within all four biomass types, as shown in Figure 2.3.  The anatomy 

of Arabidopsis cross sectional tissue beneath the first leaf is well characterized and multiple 

metachromatic and monochromatic dyes have been used to determine cross sectional 

composition [157].  Therefore, the use of well characterized stains when applied to 

Arabidopsis can easily be used as a reference when staining other tissues, such as endocarps.  

Figure 2.3 (A – B) depicts primary and secondary cell wall staining of Arabidopsis through 

the use of two dyes 1) Toluidine Blue and 2) Phloroglucinol.  Toluidine blue is a 

metachromatic cationic dye that binds to negatively charged compounds with a primary 

use in detecting pectin and lignin [158, 159]. Toluidine blue will react with carboxylated 

polysaccharides and turn pinkish purple, greenish blue or bright blue with poly-aromatic 

substances, and purplish or greenish blue with nucleic acids [157]. Figure 2.3-A shows a 

blue staining in the metaxylem that is consistent with proper lignin deposition.  Figure 2.3 

(C, E, G, and I) show a similar blue color after Toluidine blue staining, in what we called, 

metaxylem-like tissue.  The relative abundance of metaxylem-like tissues within switch 

grass and pine (C, E) seemed comparable to those within peach and walnut biomass (G 
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and I). To further analyze lignin deposition within tissues, a phloroglucinol stain can be 

employed [160].  Although it is not a true lignin stain, such that it only stains 

cinnamaldehyde groups, it is the most common stain for lignin determination.  This stain 

yields a cherry red color in the metaxylem where these groups are present [161].  Figure 

2.3-B shows a cherry red color in the metaxylem due to the presence of lignin and, therefore, 

lignin is abundantly present in the endocarp of peach and walnut (H and J) when compared 

to switch grass and pine (D and F).  

 

Figure 2.3 Histochemical evaluation of the lignified nature of peach and walnut endocarps. 

Evaluation of endocarp used the anatomically characterized Arabidopsis stem section from 
the lower stem (before first leaf) that have primary and secondary cell walls developed. 
Abbreviations mx = metaxylem, phl = phloem, te = tracheary elements, ep = epidermis 
(note that the cortex is not well defined and grouped with the epidermis), mx-l = 
metaxylem-like staining. A) Toluidine blue staining of transverse cross sections of 
Arabidopsis stem tissue revealed clear demarcation of the metaxylem in blue, which was 
also reflected as being highly lignified in the phloroglucinol (B) stained stem cross section 
due to its cherry red color. The switchgrass and pine shavings stained with toluidine blue 
(C and E) display a metaxylem-like tissue at a very similar capacity when compared to 
peach and walnut (G and I).  Phloroglucinol staining displays a marked increase in lignin 
abundance within the peach and walnut endocarps (H and J) when compared to the 
switchgrass and pine samples (D and F).  Scale Bars (100 µM = C, G, I, J / 200 µM = A, 
B, E, F H / 500 µM = D).  Magnification (2x = D / 4x = E, F / 5x = A, B, H / 6.3x = C, G, 
I, J). 



 

43 
 

           The compositions of walnut and peach endocarps before and after DES pretreatment 

are shown in Table 2.1. Unlike other plant materials, lignin contents were much higher, 

45.4% and 45.0 % for walnut and peach endocarp, respectively. The xylan contents for 

both endocarps were about 15%, comparable to other biomass feedstock, however, the 

cellulose contents were lower than woody and herbaceous biomass [12, 40]. Only trace 

amount (<1%) of galactan, mannan, and arabinan were detected in endocarps, indicating 

that the plants inherit the hardwood characteristics of peach and walnut trees. Glucan and 

xylan in total accounting about 30-35%, despite low, still represent a substantial portion of 

the endocarp biomass. It is worth noting that the extractives were low, however, about 10.2 % 

of walnut and 16.9 % of peach endocarp contents were not accounted as lignin or sugars. 

Those are likely pectins that glue the endocarp cell wall together.   

Table 2.1 Composition of raw endocarps and DES pretreated solids. 

 Peach (%) Walnut (%) 

 Raw DES Raw DES 

Solid recovery - 34.2 ± 2.8 - 40.5 ± 3.2 

Glucan 17.6 ± 2.0 47.1 ± 0.9 20.9 ± 1.1 47.4 ± 3.7 

Xylan 15.3 ± 0.0 4.7 ± 0.2 14.9 ± 0.6 4.2 ± 0.6 

Galactan 0.4 ± 0.0 ND 0.9 ± 0.0 ND 

Arabinan 0.5 ± 0.0 ND 0.4 ± 0.0 ND 

Lignin 45.0 ± 3.6 39.2 ± 1.4 45.4 ± 1.2 40.0 ± 2.7 

Extractives 2.8 ± 0.1 ND 7.1 ± 0.2 ND 

Ash 1.2 ± 0.3 ND 0.6 ± 0.0 ND 

DES pretreatment and enzymatic saccharification 

           Impact of DES pretreatment on the compositions of pretreated biomass was 

summarized in Table 2.1. Compared with the raw endocarps, the DES pretreated walnut 
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endocarp had higher glucan content (47.4 %) but lower xylan (4.2%) and lignin (40.0%) 

contents. Similar trend was observed for DES pretreated peach endocarp (47.1% of glucan, 

4.7% of xylan and 39.2% of lignin). The purity of DES pretreated lignin can achieve up to 

92.1 % and 93.7 % for the extracted walnut and peach lignin, respectively. In addition, the 

DES pretreatment exhibited a more efficient lignin solubility than the alkaline and dilute 

acid pretreatment in the present study. As shown in the Figure 2.4, lignin removal for DES 

pretreated walnut and peach endocarp were 64.3% and 70.2%, respectively, which were 

significantly higher than that of the dilute acid pretreatment (28.5% and 22.2% for walnut 

and peach endocarp, respectively) and the alkaline pretreatment (50.9% and 48.7% for 

walnut and peach endocarp, respectively).  
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Figure 2.4 Effects of three pretreatment methods using deep eutectic solvent (DES), dilute 
acid (DA), and alkaline (AL) on lignin fractionation into pretreatment liquid and solid 
residue streams for peach (P) and walnut (W) endocarps; 
 

           Several other pretreatment technologies were also reported to promote sugar release 

from enzymatic hydrolysis of endocarp biomass. By sequential use of diluted H2SO4 and 
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NaOH pretreatment, 88% of hemicellulose and 64.4% of lignin within buriti (Mauritia 

flexuosa) endocarp were removed, respectively, which lead to a glucose yield of 86% [162]. 

Steam-explosion pretreated olive stones (200–236 °C for 2–4 min) contributed to an 87.7% 

glucose yield in first 8 hours of saccharification [163]. It is well known that low pH 

pretreatment technologies contribute more to the hydrolysis of hemicellulose, while high 

pH value strategies mainly remove lignin but leave a large portion of hemicellulose in the 

pretreated solid [164, 165].  Our results suggest that DES pretreatment is highly effective 

in lignin removal, which agrees with previous reports on choline chloride/lactic acid 

(ChCl:Lac) based DES pretreatment of poplar and Douglas fir [28], rice straw [155], and 

willow [156]. Results from this work along with previous studies demonstrate that DES 

pretreatment was a feedstock agnostic pretreatment method capable of fractionating lignin 

from a variety of biomass feedstocks, including endocarp biomass, with high lignin 

recovery and purity. 

           The effect of DES pretreatment on endocarp biomass was further evaluated by 

enzymatic saccharification of the pretreated endocarp solids, as shown in the Figure 2.5. 

For untreated endocarps, low sugar yields of 10.5 % and 9.5 % were achieved with 

saccharification of walnut and peach endocarp, respectively. The DES pretreated endocarps 

solids showed significantly higher 72-h saccharification sugar yields of 94.8 and 94.5% for 

walnut and peach endocarps, respectively. Results indicate that DES pretreatment can 

greatly enhance enzymatic saccharification of both endocarps due to the substantial 

removal of xylan and lignin as discussed earlier. SEM images of the DES pretreated 

endocarps and the extracted lignin further illustrated the structural changes (Figure 2.S2). 

As compared to the intact and highly ordered structure of untreated endocarp samples, the 
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pretreated samples exhibited deeply etched surfaces and reduced sample sizes, which can 

be attributed to the deconstructive impact of DES solvent due to the removal and re-

arrangement of lignin in addition to dissolve of xylan. The extracted lignin appeared as 

amorphous globusses reflecting the dissolution and re-precipitation of lignin during the 

pretreatment and ethanol-water precipitation and washing process. SEM results provide 

further evidence that DES pretreatment is effective in enhancing enzymatic hydrolysis by 

disrupting cell structure and making cellulose more accessible to enzymes.  
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Figure 2.5 Enzymatic hydrolysis profiles of untreated and DES pretreated peach and 
walnut endocarps. 

 
           The mass balances of the major components, glucan, xylan, and lignin for the DES 

pretreatment and enzymatic hydrolysis of walnut and peach endocarps are shown in the 

Figure 2.6. In general, a similar mass flow and allocation can be observed for both 

endocarps. Upon DES pretreatment, 40.5 and 34.2 g of pretreated solids were recovered 

for walnut and peach endocarps, respectively, based on 100 g dry untreated endocarp. The 

solid streams contain the majority of glucan, a portion of lignin and a slim of xylan. On the 
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same basis, 29.2 g walnut endocarp lignin (64.3 % of total) and 31.6 g peach endocarp 

lignin (70.2 % of total) with a small amount of glucan and xylan went to the liquid fractions 

after pretreatment. Furthermore, approximately 19.1 g glucose and 1.8 g xylose from 

walnut endocarp and 15.8 g glucose and 1.6 g xylose from peach endocarp were recovered 

from the liquid streams of enzymatic hydrolysis. The overall yield of glucose from liquid 

stream were 87.5% and 87.5% for walnut and peach endocarps. 
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Figure 2.6 Mass flow of lignin, glucan, and xylan during DES pretreatment and enzymatic saccharification of walnut and peach 
endocarps. ND: not detected.  
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           In comparison with the high overall glucan balance closure, the mass balance for 

xylan was not well matched up. The overall balance closures of xylan were 17.2 % for 

walnut endocarp and 13.3 % for peach endocarp, respectively. Low xylose yield has been 

reported in a previous study using DES pretreatment of corncob [166]. Although it is 

challenging to compare results between various biomass types, DES solvent systems and 

operation conditions, we hypothesize that xylan underwent decomposition during DES 

pretreatment. To verify this hypothesis and better understand the reaction pathway of xylan, 

pure xylan was employed as a model compound in DES under the same pretreatment 

condition and quantified the products recovered in the liquid fraction. As shown in the 

Table 2.S1, only a slight portion of xylose (6.9 %), can be detected in the pretreatment 

liquid. However, a total 37.6 wt% other products were recovered, including furfural, formic 

acid and levulinic acid; while 25.8 wt% of the starting material remained as solid residue.  

These preliminary results suggest that xylan was degraded during DES pretreatment, but 

future work is warranted to better understand the reaction kinetics and the impact of DES 

solvents on xylan degradation pathways and products.  

Thermogravimetric and spectrometric analysis of lignin streams 

TGA analysis:  

           The normalized thermogravimetric (TG) and differential thermogravimetric (DTG) 

curves of lignin samples, including Kraft lignin (KL), cellulolytic enzyme lignin (CEL), 

residual lignin in pretreated solid (RL) and DES extracted lignin (DESL) are shown in 

Figure 2.7. Overall, continuous mass loss was observed over a wide temperature range and 

the first intense mass loss appeared between room temperature to 130 °C, which can be 

attributed to the evaporation of free and bound water in the lignin samples. The 
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decomposition began around 150 °C and two major DTG phases can be observed from all 

lignin samples. The first phase appeared between 150 to 300 °C, which can be attributed 

to the decomposition of low molecular weight lignin polymers and the release of CO, CO2 

and H2O from cleavage of the side chains of lignin molecules [167]. Following the first 

phase, the second phase, between 300 and 830 °C, showed the most intense peaks, 

indicating the release of volatiles from the degradation of large phenolic polymers. 
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Figure 2.7 TG (solid lines) and DTG (dot lines) curves of Kraft lignin (KL), cellulolytic 
enzyme lignin (CEL), residue lignin (RL) and DES extracted lignin (DESL) from a) peach 
and b) walnut endocarps. 

(a) 

(b) 
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           Unlike CEL and DESL, RL demonstrated a different decomposition profile. The 

DTG curve commenced at 150 °C, rapidly rising to a maximal mass loss rate of 0.080 and 

0.074 %/s for peach and walnut RL, respectively. A slight mass loss rate shoulder was 

observed at approximately 400 °C before the peak finally finished at 830 °C. The 

significantly higher mass loss rate of RL before the shoulder when compared with CEL and 

DESL may be attributed to the impurities, including glucan, xylan and other un-determined 

contents; while the peak after the shoulder revealed the decomposition of lignin remained 

in RL [168, 169]. At the end of thermal degradation, the residual mass fraction followed an 

increase order of CEL < RL < KL < DESL. The significantly higher residue fraction of 

DESL than that of CEL and RL may be attributed to the arduousness of lignin 

decomposition due to the condensation during DES pretreatment, which can also explain 

why the DESL have a broader but lower DGT peak as compared to CEL and RL.   

FTIR analysis:  

           FTIR spectra of CEL, RL and DESL of peach and walnut endocarps were used to 

investigate the structural changes and chemical variations of DES pretreatment on 

endocarp lignins, as shown in Figure 2.S3. All lignin samples exhibited a broad absorption 

band at 3400 cm-1, representing to the O-H stretching vibrations in phenolic and aliphatic 

O-H groups [170]; The intensity of this band decreased in DESL which can be attributed 

to the depolymerization and condensation reactions during DES pretreatment. The 

decreased peaks in DESL between 2920 and 2840 cm-1 represents CHn bonds [171], 

suggesting the removal of alkane side chains. The bands at 1600, 1500 and 1420 cm-1 were 

attributed to aromatic ring stretch vibrations (C=C) and the C-H deformation bonding with 
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aromatic ring vibration at 1450 cm-1 [172]. The increased peaks in DESL at 1220 and 1280 

were corresponding to C-C, C-O and C=O stretching [173], which can be attributed to 

lignin condensation and side chains transfer. The bands at 1140 and 1120 cm-1 were 

associated with guaiacyl (S) and syringyl (G) units of lignin, respectively [173, 174]. The 

more intense band at ~1700 cm-1 in DESL than that of either CEL or RL suggested presence 

of more unconjugated C=O units. The significantly reduced S unit in DESL than CEL can 

be found in both peach and walnut endocarp, which were corresponding to the NMR 

analysis.  

Molecular weight distribution analysis of lignin streams 

           To better understand the lignin depolymerization process during DES pretreatment 

of endocarps, gel permeation chromatography (GPC) was applied to determine the 

molecular weight distribution. The weight average molecular weight [175], number 

average molecular weight (Mn) and polydispersity index (PDI) of the CEL, RL, and DESL 

are shown in Table 2.2. The molecular weights of CEL, representing the intact lignin in 

native plant, were significantly higher than that of RL and DESL, indicating that DES 

pretreatment is effective in depolymerizing the native lignin. The extent of size reduction 

was however less intense as compared to IL pretreated lignin with [C2C1Im][OAc] [20, 

176]. It is possible that the depolymerized lignin partially repolymerized during DES 

pretreatment, which has been seen in a previous study on DES extracted sorghum lignin 

[177]. The PDI values reveal the heterogeneity of the size distribution of the lignin samples. 

The relative PDI value of RL was significantly higher than that of CEL and DESL for both 

peach and walnut endocarps. Results suggest that the CEL and DESL were more uniform 

in molecular weight than RL after DES pretreatment. The increasing in heterogeneity of 
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the RL may be explained by either the simultaneous depolymerization and 

repolymerization of lignin oligomers during DES pretreatment or the uncompleted 

deconstruction due to inadequate contact. 

 

Table 2.2 The number-average (Mn) and weight-average [175] molecular weights of Kraft 
lignin (KL) and cellulolytic enzyme lignin (CEL), residue lignin (RL) and DES extracted 
lignin (DESL) from peach and walnut endocarps. 

 CEL from raw biomass Lignin in pretreated solids Precipitated lignin 

 Mw 
(g/mol) 

Mn 
(g/mol) 

PDI 
Mw 
(g/mol) 

Mn 
(g/mol) 

PDI 
Mw 
(g/mol) 

Mn 
(g/mol) 

PDI 

Kraft ND ND ND ND ND ND 4952 2600 1.9 

Peach 6129 2805 2.2 4780 1490 3.2 4344 2431 1.8 

Walnut 7426 3551 2.1 4880 1616 3.0 4200 2460 1.8 

 

NMR characterization of lignin streams 

           To examine the change in chemical structure of endocarp lignins through DES 

pretreatment, 2D 1H-13C HSQC NMR was applied to characterize the endocarp CELs and 

DES extracted lignins. The aromatic region (6.0-8.0/100-150 ppm) of the lignin samples, 

revealed key lignin monolignol subunits, as shown in the Figure 2.8a. 2D NMR spectra of 

aromatic regions showed that both walnut and peach CELs are SGH type lignin, and 

dominated by G unit accounting for up to 80 % of all compositional units. The peach lignin 

had a much higher S unit (15.0%) than the walnut lignin (1.7%) and a lower H units (4.5% 

vs. 11.6%). The S/G ratios of peach and walnut CEL are 0.19 and 0.02, respectively. After 

DES pretreatment, a large portion of S and all of H units were removed. In addition, a large 
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amount of condensed G unit was observed after DES pretreatment, which can be explained 

by its high reactivity toward condensation during pretreatment [172]. The structural 

changes of lignin subunits in the endocarp lignins, i.e., removal of H and condensation of 

G units, are consistent with the results observed in the sorghum lignin treated with DES 

[177].  

 

 

Figure 2.8 13C-1H (HSQC) spectra of aromatic regions (a, top left) and aliphatic region 
(b, top right) of walnut CEL (WCEL), walnut DES extracted lignin (WDESL), peach CEL 
(PCEL) and peach DES extracted lignin (PDESL). The structures of lignin compositional 
units and side-chain linkages were coded with colors corresponding to the cross peaks in 
the spectra.  
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           The aliphatic region (2.5-6.0/50-90 ppm) of the lignins, revealed the lignin inter-

units and side chains, was shown in the Figure 2.8b. Both peach and walnut CELs were 

found to be dominated by β-O-4’ and β-5’ units accompanied with a minor amount of  β-

β’ linkages. After DES pretreatment, β-β’ linkages were significantly increased, at the 

expense of the removal of β-O-4’ and β-5’ linkages. The presence of Hibbert’s ketone (HK) 

(68.6/4.93 ppm) in DES lignin corroborates the cleavage of β-O-4’ linkages by DES. The 

results of side-chain linkages changes, i.e., substantial decreases of β-O-4’ and β-5’, 

increase of β-β’, and the formation of HK, in endocarp lignins are consistent with the DES 

treated sorghum lignin [177] and Douglas fir lignin [178]. The NMR spectra revealed that 

the endocarp lignins of peach and walnut undergo a similar structural change during DES 

treatment as other lignin species, such as sorghum and Douglas fir. 

Conclusions 

           Walnut and peach endocarps have high lignin content, bulk density, and energy 

density compared to common biomass feedstocks, attributing to the unique plant cell wall 

structures. DES pretreatment was shown to be an effective method to fractionate endocarps 

in order to produce both sugar and lignin streams. More specifically, >90% sugar yields 

were achieved during enzymatic hydrolysis of DES pretreated peach and walnut endocarps. 

Lignins were extracted at high yields of 64.3% for walnut and 70.2% for peach endocarps 

with more than 92% purity. Characterization of the recovered lignin streams demonstrated 

that DES pretreatment is effective in depolymerizing the native lignin while at the same 

time keeping thermal stability. The native walnut and peach CELs are SGH type lignin 

with dominant G units. The DES pretreatment significantly removes the S and H unit while 
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condenses the G unit. Meanwhile, the relative abundance of β-β’ linkages in DES extracted 

lignin increased; nearly all β-O-4’ and a large portion of β-5’ linkages were removed during 

DES pretreatment.     

Methods 

Materials 

           The two endocarp feedstocks: peach pit (Prunus persica) and walnut shell (Juglans 

nigra) were collected in 2017 from Center for Crop Diversification at University of 

Kentucky. The remaining pericarp and mesocarp tissues were manually removed from the 

endocarps and the recovered endocarps were washed with DI water, and dried at 40 °C in 

a convection oven. Hybrid poplar (Populus deltoides x P. nigra, clone OP-367/433) and 

lodge pole pine (Pinus contorta), were obtained from the Idaho National Laboratory. The 

raw biomass feedstocks were grounded by a Wiley Mill to pass through a 20 mesh screen. 

Then the grounded biomass was sieved to acquire a particle size range of 0.25 to 0.425 mm. 

All chemicals and reagents were of analytical grade and purchased from Sigma-Aldrich 

(St. Louis, MO, USA) and Fisher Scientific (Waltham, MA, USA). Enzymes, cellulase 

(Cellic® CTec2) and hemicellulase (Cellic® HTec2) were provided by Novozymes North 

America (Franklinton, NC, USA). 

Compositional analysis 

           The percentage of biomass composition, including moisture, extractives, ash, 

glucan, xylan and lignin, was determined with a two-stage acid hydrolysis according to a 

NREL laboratory analytical procedure [179]. Following the two-stage acid hydrolysis, acid 

insoluble lignin was determined by the acid insoluble residue excluding the ash content. 
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The quantity of acid soluble lignin was determined by UV-vis spectrometer at the 

absorbance of 205 nm. The amount of monomeric sugars, glucose and xylose, were 

measured by a Dionex Ultimate 3000 HPLC equipped with a refractive index detector and 

a Biorad Aminex HPX-87H column, using 5mM H2SO4 as mobile phase at a flow rate of 

0.4 ml/min and a column temperature set of 50 °C. Galactose, mannose, and arabinose 

contents were low or absent in raw biomass as analyzed by HPLC using Biorad Aminex 

HPX-87P column using water as mobile phase thus HPX-87H column was used for sugar 

analysis. 

Pretreatment 

Deep eutectic solvent (DES) pretreatment and lignin recovery:  

           The DES in the present study was synthesized from choline chloride and lactic acid 

with a molar ratio of 1:2. The eutectic mixture was prepared by mixing the two components 

in a beaker at their solid state, followed by heating the mixture in an oil bath at 60 °C with 

constant stirring until a homogeneous and transparent DES liquid (ChCl-Lac) was gained. 

For DES pretreatment, 2 g of endocarp biomass was slurried in an 18 g of DES. The 

endocarp biomass (10% biomass loading) was pretreated with the ChCl-Lac solvent in an 

ACE glass pressure vessel reactor at 145 ± 2 °C in an oil bath for 6 hours. The pretreatment 

was carried out with a constant stirring at 200 rpm. After pretreatment, the slurry was rinsed 

with 20 ml ethanol and centrifuged at 4000 rpm for 10 min to separate the pretreated solid 

and liquid fraction. Lignin was precipitated from the liquid fraction by adding water to the 

liquid until reaching a water: ethanol ratio of 1:9 [178]. Precipitated lignin was washed five 

times with a 1:9 ethanol/water solvent and the pretreated biomass was washed five time 

with ethanol to fully remove any remained DES solvent. And then the washed pretreated 
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solids and lignin were freeze-dried for future use. 

Dilute acid (DA) pretreatment:  

           2 g of endocarp biomass was slurried in 18 g of 1% (w/w) sulfuric acid solution in 

a 20 ml SS316 stainless steel reactor and pretreated at 160 ± 2 °C in an oil bath for 40 min. 

After pretreatment, the slurry was centrifuged at 4000 rpm for 10 min to separate the solids 

and liquid. The recovered biomass solids were washed four times with 35 ml of hot DI 

water to remove any residual sugars and excess sulfuric acid and kept at 4 °C for further 

analysis.  

Alkaline (AL) pretreatment:  

           2 g of endocarp biomass was slurried in 18 g of 2% (w/w) NaOH and 0.5% H2O2 

solution in a 20 ml SS316 stainless steel reactor and pretreated at 160 ± 2 °C in an oil bath 

for 60 min. After pretreatment, the slurry was centrifuged at 4000 rpm for 10 min to 

separate the solids and liquid. The recovered biomass solids were washed four times with 

35 ml of hot DI water to remove any residual sugars and excess alkali and kept at 4 °C for 

further analysis. 

Enzymatic hydrolysis and mass balance 

           Enzymatic saccharification of untreated and pretreated endocarps were carried out 

according to the NREL laboratory analytical procedure [180]. The cellulase (Cellic® CTec2, 

protein content 188 mg/ml) was applied at enzyme loading of 20 mg CTec2 protein/g 

glucan supplemented with hemicellulase (Cellic® HTec2, protein content 27 mg/ml) 

loading of 0.26 mg/g glucan. The saccharification was performed at 50 °C, 0.05 M citrate 

buffer and pH 4.8 in an orbital shaker. After 72 h of hydrolysis, the remaining solids were 
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collected by centrifugation and washed four times with DI water to remove residual sugars, 

while the supernatant liquid fractions were analyzed by HPLC for the monosaccharides as 

mentioned in the composition analysis section. Mass balances (Glucan, xylan and lignin) 

were closed on the liquid and solid streams of fractionated endocarps after DES 

pretreatment and enzymatic hydrolysis on dry basis of 100 g starting biomass. 

Characterization of lignin and untreated and treated endocarps 

Confocal laser scanning microscopy (CLSM):  

           Calcoflour White Stain (Sigma Aldrich, St Louis MO) was prepared by mixing 

Calcoflour White Stain with 10% Potassium Hydroxide at 1/1 (v/v) and specimens were 

soaked under the coverslip in solution for 1 minute prior to imaging.  Specimens were 

imaged under an Olympus FV1200 Laser Scanning Microscope at 60x. All images were 

captured using Fluoview software version 4.2 with the same settings: excitation 

wavelength of 405 nm, dichroic beam splitter of 405/488/559 nm, and a bright field range 

of 70 nm starting at 410 nm. Minimal processing was performed aside from fluorescence 

normalization. The figure was cropped and edited in Adobe Photoshop and Illustrator. 

Staining and Imaging for Light Microscopy:  

           A solution of Toluidine Blue was made by mixing 0.05% (w/v) Toluidine Blue 

(Sigma Aldrich, St Louis MO) with distilled water and a phloroglucinol stain was prepared 

fresh using 50% 1M HCL and 50% distilled water with a 5% (w/v) of phloroglucinol.  

Biomass samples were briefly exposed to these solutions by immersing them between 3-5 

minutes. Specimens were imaged under an Olympus stereomicroscope in bright field 

conditions.  Images were captured using cellSens Dimension software (Olympus).   
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Scanning electron microscopy (SEM):  

           Images of the raw, pretreated endocarps and DES extracted lignin samples were 

obtained by a FEI Quanta 250 FEG SEM operating at SE mode under low vacuum (0.40–

0.65 Torr). Samples were prepared for imaging by freeze-drying using an AdVantage 2.0 

bench top lyophilizer (SP Scientific, Warminster, PA). The dried biomass samples were 

sputter-coated in gold and the imaging was performed at beam accelerating voltages of 2 

kV. 

Gel permeation chromatography (GPC) analysis:  

           The samples were acetylated using acetic acid and acetyl bromide as published 

protocol for GPC analysis [181]. The weight-average molecular weight [175] and number-

average molecular weight (Mn) of the lignin samples were determined by a Dionex 

Ultimate 3000 HPLC system, which equipped with a Mixed-D PLgel column (5 μm 

particle size, 300 mm x 7.5 mm i.d., linear molecular weight range of 200 to 400,000 u) 

and ultraviolet [182] detector at wavelength of 280 nm. 

Fourier transform infrared spectroscopy (FTIR):  

           A Nicolet Nexus 870 FTIR was used to obtain FTIR spectra of the lignin samples. 

Spectra were obtained using an average of 64 scans between 400 and 4000 cm−1 with a 

spectral resolution of 2 cm−1.  The raw FTIR spectra were baseline corrected and 

normalized using Omnic 6.1a software and compared in the range 700-2000 cm−1. 

Thermogravimetric analysis (TGA):  

           All TG and differential thermogravimetric (DTG) data were acquired using a 

Thermo Scientific Q500 TGA analyzer. In brief, 10 mg of lignin sample was placed in a 
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crucible, heated in a nitrogen environment from room temperature to 105 °C ramping at 

10 °C/min and held for 40 min to determine the moisture content. Then, temperature was 

increased to 900 °C ramping at 10 °C/min and held for 20 min to measure volatile content.  

Cellulolytic enzyme lignin (CEL):  

           The untreated endocarps were extracted with a mixture of toluene-to-ethanol ratio 

of 2:1 (v/v) [183, 184]. The extractives-free samples were grinded using a SPEX 

SamplePrep 8000D ball mill loaded with 10×10 mm balls at 550 RPM in a frequency of 5 

min with 5 min pauses in-between for 1.5 h time in total. The milled fine powder was then 

subjected to enzymatic hydrolysis with a mixture (1:1 by volume) of Cellic® CTec2 and 

HTec2 at 50 °C, 0.05 M citrate buffer and pH 4.8 in an orbital shaker for 48 h. The residue 

was isolated by centrifugation and enzymatic hydrolyzed one more time with fresh 

enzymes. The lignin-enriched residue was extracted with dioxane-water (96% v/v, 10.0 

mL/g biomass) for 24 h. After separation of supernatant with residue, dioxane extraction 

was repeated one more time. The extracts were combined, roto-evaporated to reduce the 

volume at less than 45 °C and freeze dried. The obtained lignin samples, designated as 

CEL, was used for further analysis.  

Nuclear magnetic resonance (NMR) spectroscopic analysis:  

           Two-dimensional heteronuclear single-quantum correlation NMR (2D HSQC NMR) 

spectroscopy of lignins were obtained at 25 °C on a Bruker Avance III HD 500-MHz 

spectrometer incorporated with a 5 mm N2 cryogenically cooled BBO H&F probe using 

Bruker pulse sequence (hsqcetgpspsi2.2). Test samples were prepared by dissolving 20 mg 

of CEL in 100 mg DMSO-d6 in a micro-NMR tube, while 40 mg of DES lignin in 0.5 mL 

DMSO-d6 in 5 mm NMR tube. The HSQC experiments were performed with the following 
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acquisition parameters: spectra width 12 ppm in F2 (1H) dimension with 1024 data points 

(acquisition time 85.2 ms), 166 ppm in F1 (13C) dimension with 256 increments 

(acquisition time 6.1 ms), a 1.0-s delay, a 1JC–H of 145 Hz, and 128 scans. The central 

DMSO-d6 solvent peak (δC/δH at 39.5/2.49) was used for chemical shifts calibration. 

Assignment and the relative abundance of lignin compositional subunits and inter-unit 

linkage were estimated as described in literatures [183, 185]. For volume integration of 

monolignol compositions of syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H), the cross 

peaks of S2/6, G2, and H2/6 contours were used with G2 integrals doubled. The Cα signals 

were used for volume integration for inter-unit linkages estimation. The abundances of 

aromatics and side-chain linkages were presented as percentage of total SGH units. 
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Figure 2.S1 SEM images of raw biomass samples: a) switchgrass, b) pine wood, c) walnut 
endocarp, d) peach endocarp. 

 

 

Figure 2.S2 SEM images of unpretreated, DES pretreated and extracted lignin of walnut 
and peach endocarp: a) unpretreated walnut endocarp, b) and c) DES pretreated walnut 
solid, d) extracted walnut lignin, e) unpretreated peach endocarp, f) and g) DES pretreated 
peach solid, h) extracted peach lignin.   
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Figure 2.S3 FTIR spectra of Kraft lignin (KL) and cellulolytic enzyme lignin (CEL), 
residue lignin (RL) and DES extracted lignin (DESL) from a) peach and b) walnut 
endocarps.  
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Table 2.S1 Composition analysis for DES pretreatment of xylan and liquid fraction of endocarps 

  Glucose, % Xylose, 
% 

Lignin,  
% 

Residue, 
% 

5-HMF, 
% 

Furfural, 
% 

Formic Acid, 
% 

Levulinic 
Acid, 

% 

ND, 
% 

Xylan ND 6.9 ± 0.2 ND 25.8 ± 0.0 0.7 ± 0.0 33.9 ± 6.5 2.9 ± 0.1 0.2 ± 0.0 29.6 ± 6.8 

Peach endocarp 0.0 ± 0.0  0.2 ± 0.0 31.6 ± 0.7 15.0 ± 0.8 0.2 ± 0.0 2.8 ± 0.1 overlapped overlapped 16 ± 3.7 

Walnut endocarp 0.1 ± 0.0 0.3 ± 0.1 29.2 ± 0.3 18.0 ± 1.3 0.4 ± 0.0 2.3 ± 0.0 overlapped overlapped 9.2 ± 3.3 
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CHAPTER 3. UNDERSTANDING SLOW PYROLYSIS OF LIGNIN BY LINKING 

PYROLYSIS CHEMISTRY AND CARBON MATERIAL PROPERTIES 
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Abstract 

           As a highly abundant renewable carbon source, lignin can be converted to a variety 

of advanced carbon materials with tailorable properties through slow pyrolysis. However, 

unlike fast pyrolysis of lignin which has been extensively investigated, the process of lignin 

slow pyrolysis is so far not well understood especially for the purpose of producing carbon 

materials. Therefore, in this study, slow pyrolysis of kraft lignin was investigated with a 

commercial pyrolysis–GC/MS system. The overall product distributions, including 

volatiles and solid product were tracked at different heating rates (2, 20, 40 ℃/min) and 

different temperature regions (100-200, 200-300 and 300-600 ℃). Solid residues were 

further characterized using a suite of analytical tools to determine the morphology, pore 

structure, conductivity, and interfacial chemical properties for potential material 

applications. This study provides insights into lignin slow pyrolysis chemistry and 

properties of the resulting carbon material thus helps a better design and control of lignin 

slow pyrolysis processes for synthesizing functional carbon material.  

Keywords: Carbon materials, electrochemical storage, analytical pyrolysis, lignin, 

morphology 
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Introduction 

           Increasing frequency of extreme weather events and environmental deterioration as 

a result of anthropogenic climate change, has become a great threat around the globe. 

According a special report on global warming by the Intergovernmental Panel on Climate 

Change of the United Nations in 2018, the “human caused” carbon dioxide emissions has 

to be cut by 45% of the 2010 level by 2030 to avoid a rapid, far-reaching possibility of 

irreversible environmental damage [186]. In 2017, carbon dioxide emissions from burning 

fossil fuels for energy accounted for about 76% of total U.S. anthropogenic greenhouse gas 

emissions and about 93% of total U.S. anthropogenic CO2 emissions [187]. 

Lignocellulosic-based biofuels are promising carbon-neutral alternatives to fossil fuels 

[188]. Lignocellulosic biomass consists primarily of cellulose, hemicelluloses and lignin. 

From a biorefinery perspective, polysaccharides (cellulose and hemicelluloses) provide a 

sugar stream for biofuel fermentation; while the value of lignin has not been fully tapped 

[4].  

           Lignin is the second most abundant biopolymers on earth after cellulose, which 

constitutes approximately one quarter of the terrestrial plant biomass [189]. Lignin polymer 

is made of three major phenylpropanes, namely p-hydroxybenzyl alcohol, coniferyl 

alcohol, and sinapyl alcohol, arranged in a hyperbranched topology through ether and/or 

C-C bonds [44]. Unlike cellulose, a straight chain polymer of glucose units, lignin is a 

highly cross-linked polyphenolic polymer with on ordered repeating units [190]. The 

highly heterogeneous structure of lignin makes it a difficult substrate for catalytic 

conversion to make molecules at high yield and selectivity. Proceeding from necessity of 

improving economy viability of biorefinery operation, a thrust on converting lignin into 
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fuels and value-added products through thermochemical technologies has attracted new 

incentives.  

           Thermochemical conversion technologies, including pyrolysis, liquefaction, 

combustion and gasification, have attracted increasing interests as they offer a flexible and 

relatively simple way to convert biomass into electric power, heat, fuels and chemicals 

[191]. Fast pyrolysis, as a representative thermochemical conversion technique, has been 

favored for its capability of maximized conversion of biomass into a liquid oil (up to 70 

wt.%) [192-194]. Numerous studies have reported using fast pyrolysis as a 

depolymerization method to obtain phenolic compounds from lignin [195]. Although it is 

generally accepted that pyrolysis of lignin involved with free phenoxyl radicals that formed 

by thermal decomposition [196], the formation mechanism of monomeric and oligomeric 

products has not been fully elucidated [38, 197-202]. According to a model proposed by 

Piscorz et al., lignin was first cracked into phenolic oligomers, from which a variety of 

phenolic monomers were formed during the secondary reactions [203]. A competing model 

proposed by Pushkaraj et al. believed that the oligomers were formed at secondary 

reactions through repolymerization of monomers generated from the primary reaction of 

lignin pyrolysis [204].  

           Over the last decade there has been a growing interest in converting lignin into 

functional carbon materials for various applications. For example, lignin, lignin-derived 

biochar and activated carbon as adsorbents to remove pollutant in water, including Pb, Cu, 

Zn, Cd, Ca, Sr, Cd, Cr, Sr and Li, have been examined [205]. Generated through 

thermochemical conversion and/or activation methodologies, lignin-derived carbon 

materials have demonstrated potential applications in energy storage materials, such as 
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supercapacitor [44], anode [206] and cathode [207] of lithium-ion batteries. By doping 

functional groups, such as COOH, NH2 and SO3H, lignin-derived carbon material also 

found applications as metal-free solid acid catalysts which can be applied in a variety of 

acid catalyzed reactions, e.g. esterification and hydrolysis [34, 208]. Despite the fact that 

slow pyrolysis is one of the most commonly-used thermochemical methods to convert 

lignin into carbonaceous materials, operation parameters of slow pyrolysis and 

performance of the prepared carbon materials vary significantly in the literature [44]. For 

example, when converting lignin into activated carbon materials though slow pyrolysis for 

supercapacitor application, the temperature ranged from 500 to 1400 °C and heating rate 

ranged from 2 °C to 20 °C/min [34, 35, 44, 111].  Contradictory results have been reported 

on regarding how pyrolysis/carbonization temperature affect electrochemical performance 

of lignin-derived carbon material as electrode of supercapacitor. Activate carbon prepared 

from lignin-rich black liquor had a specific capacitance of 41.4 F/g when carbonized at 

600 °C; while the capacitance decreased to 21 F/g when carbonized at 900 °C [209]. In 

another study, however, specific capacitance increased to 87 F/g at carbonization 

temperature of 900 °C using the same carbon precursor and activate agent [80].  Chen et 

al. reported lignin-derived C/Si nanoparticles composite through a one-pot, slow pyrolysis 

process. When lignin and Si nanoparticles were co-pyrolyzed at 800 °C and heating rate of 

2 °C/min, the resulting material had a specific capacity of 1390 mAh/g [136] as compared 

to a much higher specific capacity of 2378 mAh/g at pyrolysis temperature of 600 °C [133].  

           Despite the wide use of slow pyrolysis to produce carbon materials from lignin, little 

information is available about the effects of slow pyrolysis conditions on reaction 

chemistry and correlation between pyrolysis chemistry and properties of the resulting 
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carbon materials. In this study, slow pyrolysis of kraft lignin was investigated using a 

commercial pyrolysis–GC/MS system to recover and examine the multi-phased products 

generated from lignin thermal decomposition over the time course. The overall product 

distributions, including volatile and solid products were tracked at different heating rates 

(2, 20, 40 ℃/min) and different temperature regions (100–200, 200–300 and 300–600 ℃). 

Solid residues were further characterized to determine the morphology, pore structure, 

conductivity, and interfacial chemical properties for potential material application. The 

study provides mechanistic insights on the formation of intermediate monomers and 

oligomers and biochar during lignin slow pyrolysis, serving a basis for developing lignin-

derived functional carbon materials. 

Experimental 

Materials 

           Phenol, acetic acid, acetone and methanol were purchased from Fisher Scientific 

Company. Kraft lignin, guaiacol, 4-propylphenol, vanillin and syringaldehyde were 

purchased from Sigma-Aldrich Company.   

Evolved gas analysis-mass spectrometer (EGA-MS) analysis 

           At the EGA-MS mode, the micro-pyrolyzer was directly connected to a mass 

spectrometry (MS) detector (7890B/5977A, Agilent, Santa Clara, CA) through a 

deactivated metal tube (UA-DTM-2.5 N, Frontier Lab, Fukushima, Japan). Volatiles were 

able to be detected in real time by the MS without further separation by a GC column. For 

a typical EGA-MS analysis, 200 ± 10 µg of the kraft lignin placed in a deactivated stainless-

steel cup was heated from 100 °C to 800 °C in a micro-pyrolyzer (EGA/PY-3030D, 



 

73 
 

Frontier Lab, Fukushima, Japan) at a desired heating rate (2, 20 and 40 ℃/min). The total 

ion thermogram (TIT) was displayed by recording total ion intensity of MS versus the 

programmed temperature. 

Slow pyrolysis and heart-cutting-GC/MS (HC-GC/MS) 

           Pyrolysis tests were performed in a micro-pyrolyzer (EGA/PY-3030D, Frontier Lab, 

Fukushima, Japan). The temperature of the reactor can be precisely controlled from 40 to 

900 ℃ with 1 ℃ intervals at preset heating rate. For each test, 1100 ± 50 µg of kraft lignin 

was put in the deactivated stainless-steel cup, loaded into the micro-pyrolyzer and 

pyrolyzed at set conditions. Helium was used as the carrier gas and the molecules generated 

by the micro-pyrolyzer were send to a GC/MS (7890B/5977A, Agilent, Santa Clara, CA) 

for composition analysis. The GC was equipped with a two-way splitter which directed the 

gas stream into both MS and flame ionization detector (FID). The MS was used for 

compound identification, which was connected with GC via a capillary column (Ultra 

Alloy-5, Frontier Lab, Fukushima, Japan). The FID detector was used for compound 

quantification. The calibration curves of the products were created using five different 

concentrations of acetic acid (carbohydrates), toluene (aromatic hydrocarbons), phenol (H 

type substances, C6 and C6C1), 4-propylphenol (H type substances, C6C2), guaiacol (G 

type substances, C6C1), vanillin (G type substances, other than C6C1), syringaldehyde (S 

type substances, PAHs, and long chain fatty acid) as standard compounds. The micro-

pyrolyzer system was also equipped with a MicroJet Cryo-Trap suite (1030Ex, Frontier 

Lab, Fukushima, Japan) at the head of the GC column to selectively trap volatiles generated 

from desired temperature regions (100-200, 200-300, and 300-600 °C) with liquid nitrogen 

before transferring to GC/MS for detailed composition analysis, which is referred as heart-
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cutting (HC) in this study. The GC oven was hold at 40 °C for 2 min and then heated from 

40 to 320 °C at a heating rate of 20 °C/ min then hold at 320 °C for an additional 10 min.  

Characterization of lignin-derived solid residues 

Scanning electron microscopy (SEM):  

           Images of the solid residue samples were obtained by a SEM (Quanta 250 FEG, 

Thermo Fisher Scientific, Madison, WI) operating at SE mode under low vacuum (0.40–

0.65 Torr). The residue samples were sputter-coated in gold and the imaging was performed 

at beam accelerating voltages of 10 kV. 

Fourier Transfer Infrared Spectrometry (FTIR): 

           IR analysis of KL and pyrolyzed KL samples was performed on a FTIR (Nicolet 

iS50, Thermo Fisher Scientific, Madison, WI) at a resolution of 4 cm-1 for 32 scans in the 

range of 450 to 4000 cm-1. For a typical analysis, a background spectrum was obtained 

before pressing the powders samples against a diamond crystal to acquire data -. The 

background spectrum was subtracted, and each spectrum was baseline corrected using 

OMNIC 8.2 software. 

Raman spectrometry: 

           Raman spectra of the samples were recorded with a DXR micro-Raman instrument 

(Thermo Scientific, West Palm Beach, FL). A diode-pumped Nd:YVO4 green laser was 

used as an excitation source (λ=532 nm excitation). Each spectrum was deconvoluted using 

pseudo-Voigt function into four peaks around ~1190 cm-1, ~1348 cm-1, ~1474 cm-1 and ~ 

1600 cm-1 corresponds to D1, D, D2 and G, respectively. D/G band ratio was evaluated by 

using both intensity/height ratio (ID/IG) and area ratio (AD/AG). Finally, the lateral size of a 

domain, La(nm) was calculated according to following equations [210]. 
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Where, 

𝐿𝐿𝑎𝑎,𝐼𝐼 = lateral size of a domain based on peak height (nm) 

𝐿𝐿𝑎𝑎,𝐴𝐴 = lateral size of a domain based on peak area (nm) 

𝐶𝐶0 = Wavelength-dependent prefactor (-12.6 nm) 

𝜆𝜆 = laser wavelength (532 nm) 

𝐶𝐶1 = Wavelength-dependent prefactor (0.033) 

𝐼𝐼𝐷𝐷/𝐼𝐼𝐺𝐺 = Height ratio of D to G peak 

𝐴𝐴𝐷𝐷/𝐴𝐴𝐺𝐺  = Area ratio of D to G peak 

Brunauer–Emmett–Teller (BET):  

           The BET surface area was determined using a gas adsorption analyzer (TRISTAR 

3000, Micromeritics Instruments, Norcross, GA). In each test, approximately 100 mg of 

sample was used. Nitrogen was the adsorption gas and the analysis were performed at the 

boiling temperature of liquid nitrogen. Samples were degassed under vacuum at 160 ℃ 

overnight before the BET measurements to obtain the specific surface areas. 

X-ray photoelectron spectroscopy (XPS): 

           KL and pyrolyzed samples were prepared by pressing into a pallet and mounted on 

a conductive silicon wafer using conductive carbon tape. XPS (K-Alpha, Thermo Fisher 

Scientific, Madison, WI) measurements were conducted by focusing on monochromatic Al 

K-α radiation (energy of 1486.6 eV) onto a 400 µm diameter focused spot on the sample. 
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Results and discussion 

EGA-MS analysis of lignin slow pyrolysis 

           Figure 3.1 shows the total ion thermogram (TIT) obtained from the EGA-MS 

analysis of kraft lignin from 100 to 800 ℃ at different heating rates. At the heating rate of 

2 ℃/min, there were two continuous peaks can be observed from the TIT profile at around 

220 ℃ and 334 ℃. Similar trend can be observed from differential thermogravimetric 

(DTG) curves, where the first peak is primarily related to the release of light phenols and 

gas molecules (H2, CO and CO2) derived by the cleavage of lateral β-ethers; while the 

second peak representing the formation of phenolic monomer, dimers and oligomers as the 

scission of aryl ether bonds [211, 212]. The volatiles evolved from lignin decomposition 

terminated at approximately 500 ℃ thus nearly no signal was detected at temperatures > 

500 ℃. In comparison, at heating rate of 20 ℃/min, there was an additional peak appeared 

at 175 ℃ and the overall EGA profile was shifted toward higher temperature. The volatiles 

evolved from lignin decomposition terminated at approximately 600 ℃ at heating rate of 

20 ℃/min. As heating rate further increasing to 40 ℃/min, no clear difference was 

observed as compared to the profile obtained at heating rate of 20 ℃/min. The EGA 

profiles provided a rough snapshot about lignin decomposition and products distribution 

across 100 to 800 ℃, with which we can use to divide the pyrolysis course into three 

continuous regions, 100–200, 200–300 and 300–600 ℃ to investigate the detailed volatiles 

composition for each temperature region.  
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Figure 3.1 Total ion thermogram (TIT) of kraft lignin using EGA-MS analysis from 100 
to 800 ℃ at a heating rate of 2 ℃/min, 20 ℃/min and 40 ℃/min. 

 

Products distribution of lignin slow pyrolysis at 2 ℃/min heating rate 

           Table 3.1 shows the yields of GC/MS detectable volatile compounds and solid 

residues from kraft lignin slow pyrolysis at different heating rates (2, 20 and 40 ℃/min) 

and three temperature regions: 100–200, 200–300 and 300–600 ℃. In order to understand 

the effect of temperature, the product distribution was first compared at heating rate of 

2 ℃/min. It was not surprising that the overall volatiles yield increased when temperature 

increases. For example, the decomposition of lignin slow pyrolysis started at low 
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temperature and the volatiles yield was 1.73 g/100g lignin, 5.78 g/100g lignin and 16.38 

g/100g lignin at 100–200, 200–300 and 300–600 ℃, respectively. Regardless of the heating 

rates, 2-methoxy-4-vinylphenol was the most primary product (22.4–25.5 g/100g lignin) 

and other major products include hydrocarbons (2-butene, benzene, toluene and xylenes), 

carbohydrates (acetic acids, acetone and several long chain fatty acids), phenolic 

compounds (phenol, 2-methylphenol, guaiacol, 2,4-dimethylphenol, cresol, 4-ethyl-2-

methoxyphenol, 2-methoxy-4-propenylphenol, homovanillic acid, 3,5-dimethoxy-4-

hydroxyacetophenone, etc.) and polycyclic aromatic hydrocarbons (PAHs) (2,3,8-

thihydroxy-4-isopropyl-6-methyl-1-naphthaldehyde, 6-methoxyhemigossypol, 5-

methoxy-7-methylbenz(a)anthracene, benzo[vwx]hexaphene). The detailed product 

distribution and formation mechanism of each category during slow pyrolysis was 

discussed under heating rate of 2 ℃/min.  

  



 

 
 

79 

Table 3.1 Product distribution of kraft lignin slow pyrolysis at multiple temperature regions 

Compound name 
2 °C / min 20 °C / min 40 °C / min 

100-200 °C 200-300 °C 300-600 °C 100-200 °C 200-300 °C 300-600 °C 100-200 °C 200-300 °C 300-600 °C 

2-butene 0.04 ± 0.06 0.42 ± 0.03 0.24 ± 0.01 0.06 ± 0.02 0.22 ± 0.04 0.26 ± 0.06 0.03 ± 0.01 0.16 ± 0.01 0.26 ± 0.02 

acetone - 0.01 ± 0.00 0.07 ± 0.02 - 0.01 ± 0.00 0.08 ± 0.01 - - 0.07 ± 0.01 

benzene - 0.01 ± 0.00 0.37 ± 0.00 - - 0.28 ± 0.03 - - 0.50 ± 0.05 

acetic acid 0.01 ± 0.01 - 0.48 ± 0.01 0.05 ± 0.02 - 0.15 ± 0.00 0.05 ± 0.01 - 0.13 ± 0.08 

toluene 0.01 ± 0.00 0.02 ± 0.00 0.64 ± 0.02 - 0.01 ± 0.00 0.65 ± 0.08 - - 0.57 ± 0.04 

3-furaldehyde 0.01 ± 0.00 0.07 ± 0.00 0.01 ± 0.00 - 0.12 ± 0.02 0.07 ± 0.00 - 0.10 ± 0.01 0.08 ± 0.02 

ethylbenzene - - 0.01 ± 0.00 - - 0.01 ± 0.00 - - 0.01 ± 0.00 

xylenes - 0.03 ± 0.00 0.30 ± 0.02 - 0.01 ± 0.00 0.29 ± 0.06 - 0.01 ± 0.00 0.25 ± 0.03 

phenol 0.06 ± 0.01 0.07 ± 0.00 1.53 ± 0.04 0.04 ± 0.01 0.06 ± 0.01 1.64 ± 0.12 0.05 ± 0.00 0.04 ± 0.00 1.66 ± 0.18 

methylphenols - 0.11 ± 0.01 1.53 ± 0.01 - 0.12 ± 0.03 1.32 ± 0.09 - 0.09 ± 0.01 1.32 ± 0.05 

guaiacol 0.16 ± 0.02 0.12 ± 0.00 0.86 ± 0.00 0.15 ± 0.01 0.08 ± 0.03 1.27 ± 0.07 0.14 ± 0.00 0.05 ± 0.02 1.26 ± 0.05 

dimethylphenols 0.08 ± 0.01 0.03 ± 0.00 1.01 ± 0.05 0.08 ± 0.00 0.05 ± 0.02 1.03 ± 0.04 0.07 ± 0.00 0.04 ± 0.01 1.01 ± 0.05 

creosol - 0.15 ± 0.02 2.01 ± 0.00 - 0.05 ± 0.00 2.31 ± 0.03 - 0.03 ± 0.00 2.35 ± 0.06 

3,4-dimethoxytoluene - - 0.12 ± 0.00 - - 0.10 ± 0.00 - - 0.09 ± 0.00 

1,2-bizenediol,3-methyl - 0.02 ± 0.00 0.45 ± 0.06 - 0.02 ± 0.01 0.45 ± 0.02 - 0.01 ± 0.00 0.46 ± 0.03 

4-ethyl-2-methoxyphenol 0.01 ± 0.00 0.03 ± 0.01 0.57 ± 0.05 0.01 ± 0.00 0.01 ± 0.00 0.84 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.85 ± 0.02 

2-methoxy-4-vinylphenol 0.11 ± 0.03 2.32 ± 0.06 3.67 ± 0.07 0.03 ± 0.01 0.82 ± 0.14 4.69 ± 0.22 0.02 ± 0.00 0.49 ± 0.03 5.20 ± 0.08 

2,6-dimethoxyphenol 0.05 ± 0.00 0.04 ± 0.00 0.26 ± 0.02 0.05 ± 0.00 0.02 ± 0.01 0.39 ± 0.03 0.04 ± 0.00 0.02 ± 0.01 0.39 ± 0.01 

trans-isoeugenol - 0.03 ± 0.00 0.11 ± 0.01 - 0.02 ± 0.00 0.13 ± 0.01 - 0.02 ± 0.00 0.16 ± 0.01 

2-methoxy-4-propylphenol - - 0.07 ± 0.01 - - 0.11 ± 0.00 - - 0.10 ± 0.00 

4-ethylcatechol - 0.01 ± 0.00 0.13 ± 0.02 - - 0.11 ± 0.01 - - 0.10 ± 0.00 

vanillin 0.08 ± 0.03 0.11 ± 0.01 0.06 ± 0.00 0.05 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.04 ± 0.00 0.10 ± 0.01 0.14 ± 0.00 

isoeugenol 0.01 ± 0.00 0.30 ± 0.01 0.48 ± 0.01 - 0.18 ± 0.00 0.75 ± 0.02 - 0.13 ± 0.01 0.84 ± 0.02 

apocynin 0.07 ± 0.00 0.06 ± 0.00 0.10 ± 0.00 0.04 ± 0.00 0.06 ± 0.00 0.16 ± 0.00 0.03 ± 0.00 0.06 ± 0.00 0.15 ± 0.01 

benzene, 1,2,3-trimethoxy-5-methyl- 0.04 ± 0.02 0.16 ± 0.04 0.22 ± 0.01 0.02 ± 0.00 0.03 ± 0.00 0.43 ± 0.02 0.02 ± 0.00 0.02 ± 0.00 0.44 ± 0.02 
2-propanone, 1-(4-hydroxy-3-
methoxyphenyl)- 0.02 ± 0.00 0.10 ± 0.01 0.06 ± 0.00 0.01 ± 0.00 0.08 ± 0.01 0.14 ± 0.00 - 0.06 ± 0.01 0.16 ± 0.01 

3,5-dimethoxyacetophenone - 0.06 ± 0.01 0.08 ± 0.01 - 0.02 ± 0.00 0.09 ± 0.00 - 0.01 ± 0.00 0.10 ± 0.00 

methyl homovanillate - - 0.03 ± 0.02 - - 0.04 ± 0.01 - - 0.06 ± 0.00 
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3-ethoxy-4-methoxybenzaldehyde 0.08 ± 0.01 0.16 ± 0.01 0.25 ± 0.07 0.04 ± 0.00 0.08 ± 0.00 0.30 ± 0.04 0.02 ± 0.00 0.08 ± 0.01 0.38 ± 0.01 

homovanillic acid 0.21 ± 0.00 0.18 ± 0.01 0.11 ± 0.01 0.07 ± 0.00 0.26 ± 0.01 0.21 ± 0.01 0.04 ± 0.00 0.24 ± 0.01 0.24 ± 0.01 

2,6-dimethoxy-4-allylphenol 0.04 ± 0.02 0.10 ± 0.01 0.10 ± 0.00 0.01 ± 0.00 0.07 ± 0.00 0.15 ± 0.01 0.01 ± 0.00 0.06 ± 0.00 0.21 ± 0.00 
acetophenone, 4'-hydroxy-3,5-
dimethoxyphenhl 0.25 ± 0.01 0.22 ± 0.01 0.18 ± 0.01 0.05 ± 0.03 0.34 ± 0.03 0.34 ± 0.06 0.03 ± 0.02 0.28 ± 0.01 0.38 ± 0.07 

hexadecanoic acid 0.28 ± 0.11 0.02 ± 0.00 0.01 ± 0.00 0.17 ± 0.18 0.30 ± 0.12 0.05 ± 0.04 0.13 ± 0.17 0.19 ± 0.12 0.03 ± 0.01 

oleic acid 0.16 ± 0.21 0.08 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.24 ± 0.18 0.11 ± 0.10 0.01 ± 0.01 0.35 ± 0.17 0.11 ± 0.12 

octadecanoic acid 0.16 ± 0.12 0.05 ± 0.00 0.01 ± 0.00 0.07 ± 0.08 0.29 ± 0.03 0.06 ± 0.06 0.05 ± 0.06 0.27 ± 0.19 0.04 ± 0.01 
2,3,8-thihydroxy-4-isopropyl-6-methyl-
1-naphthaldehyde 0.01 ± 0.00 0.08 ± 0.01 0.07 ± 0.00 - 0.05 ± 0.01 0.16 ± 0.01 - 0.04 ± 0.01 0.18 ± 0.01 

6- methoxyhemigossypol - 0.04 ± 0.00 0.11 ± 0.01 - 0.06 ± 0.03 0.38 ± 0.08 - 0.03 ± 0.02 0.36 ± 0.07 

5-methoxy-7-methylbenz(a)anthracene 0.02 ± 0.02 0.48 ± 0.02 0.12 ± 0.00 - 0.21 ± 0.11 0.37 ± 0.00 - 0.17 ± 0.05 0.45 ± 0.01 

secoisolariciresinol - 0.33 ± 0.02 0.16 ± 0.01 - 0.07 ± 0.00 0.42 ± 0.04 - 0.04 ± 0.01 0.47 ± 0.02 

benzo[vwx]hexaphene - 0.37 ± 0.02 0.24 ± 0.01 - 0.06 ± 0.03 0.48 ± 0.07 - 0.04 ± 0.01 0.55 ± 0.03 

Total volatiles yield 1.73 ± 0.70 5.78 ± 0.31 16.38 ± 0.56 0.97 ± 0.33 3.71 ± 0.86 20.03 ± 1.41 0.77 ± 0.28 2.92 ± 0.71 21.08 ± 1.13 

Char weight 47.46 ± 2.95 42.02 ± 3.31 41.57 ± 2.49 

Total yield 71.35 ± 4.52 66.73 ± 5.91 66.33 ± 4.62 



 

81 
 

           Although it is commonly believed that lignin pyrolysis goes through two-step 

reactions, primary and secondary, the formation mechanism of intermediate products has 

not reached a general agreement. Demirbaş suggested that the phenolic compounds and 

their alkyl substituted products were formed by recombination and cyclization reactions 

from C2, C3 and C4 fragments via aldol condensation [213]. Branca et al. believed that 

guaiacol and syringol were the intermediate species of pyrolysis and phenols were formed 

by demethylation rather than demethoxylation from guaiacol in the secondary reactions 

[201, 202].  Li et al. proposed that vinylphenols (4-vinylphenol and 2-methoxy-4-

vinylphenol) were the principle products generated from the cleavage of β-O-4 linkages; 

while the other phenolic compounds (H and G type), including phenol, ethylphenol, 

guaiacol, methylguaiacol, ethylguaiacol, trans-isoeugenol and vanillin were generated via 

the secondary reactions from the vinylphenols [38]. Results from our study at heat rate of 

2 ℃/min, show the yield of 2-methoxy-4-vinylphenol was 6.1 g/100g lignin, accounting 

for 25.5% of total yield of GC/MS detectable phenolic compounds from 100-600 ℃. 

Particularly, in the temperature region of 200–300 ℃ and at a heating rate of 2 ℃/min, the 

yield of 2-methoxy-4-vinylphenol was 2.32 g/100g lignin, accounting for 40.14% of total 

phenolic compounds yield at that temperature region. The dominant yield of 2-methoxy-4-

vinylphenol supports that vinylphenols are the preferential products of β-O-4 cleavage 

linkages during pyrolysis of lignin.  

           Interestingly, unlike a previous report [38] in which both 4-vinylphenol and 2-

methoxy-4-vinylphenol were the dominant products, there was no 4-vinylphenol seen in 

the present study. After evaluated the kraft lignin with 13C-1H Heteronuclear Single 

Quantum Coherence Nuclear Magnetic Resonance (HSQC NMR), we believed the lignin 
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source might contribute to the absence of 4-vinylphenol. As can be seen from Figure 3.S1, 

the NMR spectra of aromatic regions revealed the chemical structure of kraft lignin was 

dominated by G-unit (96.4%) along with S (3.6%) and no H-units were observed. Whereas 

the corn stover lignin mentioned in a previous study [38] had roughly the same amount of 

H (36 mol%), G (34 mol%) and S (30 mol%) units[214], which explained the presence of 

4-vinylphenol in pyrolysis products. Therefore, 4-vinylphenol and 2-methoxy-4-

vinylphenol were the primary products corresponding to a cleavage of the β-O-4 linkages 

that connect with H-units and G-units. For kraft lignin, no 4-vinylphenol was produced due 

to the absence of H-unit. 

           In addition to 2-methoxy-4-vinylphenol, a variety of other phenolic monomers were 

detected. The compounds were categorized into p-hydroxyphenyl (H), guaiacyl (G) or 

syringyl (S) type. At heating rate of 2 ℃/min, the overall yield of G type compounds was 

12.05 g/100g lignin (guaiacol, creosol, 4-ethyl-2-methoxyphenol, 2-methoxy-4-

vinylphenol, 2-methoxy-4-propylphenol, vanillin, isoeugenol, apocynin, guaiacylacetone, 

methyl homovanillate, and homovanillic acid), accounting for 50.44% of total GC/MS 

detectable volatiles yield. The overall yields of H-type (phenol, methylphenols, 

dimethylphenols, and 4-ethylcatechol) and S-type (2,6-dimethoxyphenol, 2,6-Dimethoxy-

4-allylphenol) compounds were 4.56 and 0.59 g/100g lignin, respectively, accounting for 

19.00% and 2.47% of total GC/MS detectable volatiles yield. Because the primary products 

were highly reactive and vulnerable to a series of secondary reactions during pyrolysis, H-

type compounds could be derived from 2-methoxy-4-vinylphenol as secondary reaction 

products during pyrolysis[38]. However, S-type compounds cannot be obtained from 

pyrolysis of H or G-units[43, 215-217]. In fact, demethoxylation of S-type compounds can 
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only occurred to a very minor extent (0.6%) at pyrolysis temperature of 650 ℃[215]. 

Therefore, the production of S type compounds can only be related to the S-unit of lignin 

and the low yields of S type compounds can be self-explained by low S-unit content in the 

staring lignin. 

           In addition to phenolic monomers, pyrolysis of lignin also generated a small amount 

of light hydrocarbons (2.09 g/100g lignin), short-chain carbohydrates/or carboxylic acids 

(1.44 g/100g lignin) and polycyclic aromatic hydrocarbons (PAHs) (1.54 g/100g lignin) at 

heating rate of 2 ℃/min, as shown in Table 3.S1. The yield of light hydrocarbons accounts 

for 8.75% of the total GC/MS detectable volatiles yield. The light hydrocarbons were 

probably generated through a combination of dehydration, dihydroxylation and 

dealkylation of phenols [218]. About 43.75% of the total GC/MS detectable carboxylic 

acids were generated in the 100–200 ℃ region, of which 95.24% was fatty acids, including 

hexadecanoic acid, oleic acid and octadecanoic acid. The formation of the light carboxylic 

acids  was attribute to the recombination and cyclization of the initial degraded C2, C3 and 

C4 fragments [213]. As the pyrolytic temperature increases, the yield of fatty acids declined 

while the other short-chain carboxylic acids and hydrocarbons (such as acetic acid, benzene, 

toluene, and xylene) increased. The intensity of reaction enhances with increasing 

temperature, at high temperature, the propagation of reaction does not favor the formation 

of those long chain fatty acid. The significantly increasing C2, C3, C4 and C5 units with 

temperature also supported the hypothesis that the long chain fatty acids derived from the 

recombination and condensation of low molecular compounds [177, 213]. In addition, at 

heating rate of 2 ℃/, the yield of PAHs accounts for 6.45% of the total GC/MS detectable 

volatiles yield. It was believed that the formation and augmentation of PAHs from the 
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combustion of gasoline was involved the recombination reaction of multiple light aliphatic 

hydrocarbons, such as acetylene and ethylene [219]. However, pyrolysis does not generate 

such a large amount of short hydrocarbons to fuel the augmentation of PAHs. Zhou et al. 

proposed that the PAHs were formed from the condensation of single ring aromatic 

hydrocarbons, such as benzene, toluene, xylene, which derived from demethoxylized 

guaiacol or syringol [220]. In the present study, however, we found that the occurrent of 

PAHs was started at very low temperature (100-200 ℃) and there was almost no aromatic 

hydrocarbon yield at that temperature region. Plus, it was observed that there were plenty 

of functional groups substituted on the benzene rings of PAHs rather than simple 

condensation of several neat benzene rings. Therefore, the majority of PAHs were more 

likely formed from repolymerization of phenolic monomers [221]. The yield of PAHs was 

0.97 g/100g lignin between 200-300 ℃, which was significantly higher than that between 

300-600 ℃ of 0.54 g/100g lignin. The decreasing yield of PAHs can be attributed to the 

fact that depolymerization outcompeted the repolymerization at high temperature [222]. 

           At heating rate of 2 ℃/min, around 47.46 g/100g lignin of solid residue remained 

after pyrolysis. In terms of formation mechanisms, the solid product of lignin pyrolysis can 

be classified into two distinct categories: 1) the residue of lignin pyrolytic 

depolymerization is the most primary solid component, referred as char in the present study; 

2) repolymerization of PAHs and phenolic radicals propagates the formation of 

repolymerized char, also referred as coke [43]. For fast pyrolysis which mainly focused on 

volatiles (bio-oils, low molecular molecules), rather than solid residues, the distinctions 

between coke and char were usually ignored in most publications and all solid residues, 

both coke and char, were indiscriminately called “char”. However, it is necessary to take 
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this mechanistic difference into account in the discussion of slow pyrolysis since the 

primary application of the solid products would be functionalized carbon materials. 

The effect of heating rate on lignin slow pyrolysis 

           Solid residues yield was known to increase with the decrease of heating rate at 

expense of gaseous volatile products for lignin fast pyrolysis [189, 223], which was in good 

agreement with results of present study. When comparing different temperature regions 

across various heating rates, it was noticed that 2-methoxy-4-vinylphenol constituted the 

largest amount among all GC/MS detectable volatiles at both low (100-300 ℃) and high 

(300-600 ℃) temperature regions. The ratios of the 2-methoxy-4-vinylphenol yield to the 

yield of all other G type compounds were 0.54, 0.72 and 1.52, respectively, at 40, 20 and 

2 ℃/min at low temperature region (100-300 ℃). The increasing ratio following 

decreasing heating rates suggests that more 2-methoxy-4-vinylphenol was converted to 

other G-type compounds through secondary reactions. While at the high temperature 

region (300-600 ℃), the ratios were 0.85, 0.79 and 0.85 for 40, 20 and 2 ℃/min heating 

rate, respectively. Results indicate that rate of the secondary reactions tends to be consistent 

across all heating rates at high temperatures.  

           Lignin pyrolysis proceeds via free radical reactions, which is temperature dependent 

[224]. The concentration of free radicals at low temperature region was lower than that of 

high temperature region [224]. But, at the same (low) temperature, compared to lower 

heating rate (2 ℃/min), the concentration of free radicals would be much higher at higher 

heating rate (20 or 40 ℃/min) in the pyrolyzer reactor because in the same unit of time (the 

time for free radicals transferring to MS from pyrolyzer with carrier gas) more radicals 

were generated at high rather than low heating rate (2 ℃/min). But, at high temperature 
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region, the concentration of free radicals would be increased significantly so that the 

difference caused by various heating rates could be neglected, which can be partially 

proved by the very similar conversion rate of 2-methoxy-4-vinylphenol to other G-type 

compounds.  

           The enhanced heating rate lead to higher reaction severity, which can cause fast 

release of gases and volatiles due to continuous blasts during pyrolysis. In comparison, at 

low heating rate of slow pyrolysis, the free radicals have better chance to repolymerize 

with themselves to form PAHs and with char to form coke, which lead to increasing yield 

of the solid residues. And the decreasing yields of GC/MS detectable PAHs with the 

decrease of heating rate can be explained by the increasing of coke due to the 

repolymerization of GC/MS detectable PAHs. 

Characterization of lignin-derived solid residue 

Morphology of the solids 

           SEM images of solid residues collected from pyrolysis of kraft lignin at different 

temperatures and 2 ℃/min heating rate are shown in Figure 3.2. Images of the solid 

residues generated at low pyrolysis temperatures of 200 ℃ (Figure 3.2a and 2b) and 300 ℃ 

(Figure 3.2c and 2d), showed rough surfaces, clumps and sign of matrices and tunnels, 

indicating the lignin particles had been melted and fused into large sphere shape particles, 

which was also reported in other literatures [44, 189]. When pyrolysis temperature 

increased to 500 ℃, as shown in Figure 3.2e-h, the rough surface of the solid residue 

became smoother (Figure 3.2e and 2f), and tunnels and pores of different sizes were 

observed on the solid residue, as can be seen in Figure 3.2g and 2h. The tunnels and pores 
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could be signs of volatiles generation at high pyrolysis temperature of 500 ℃. Interestingly, 

at pyrolysis temperature of 700 ℃, a thin layer of dust-like fine particles was observed on 

the surface of solid residue (Figure 3.2j), probably due to coke formation from 

repolymerization of the phenolic free radicals and PAHs [225, 226]. While debris and 

cracks showed a clear sign of crystallization and brittle properties (visually examined 

during grinding) can be seen on the surface of the solid residues collected at 800 ℃ (Figure 

3.2l). In addition, the average particle size of the solid residue was decreased as pyrolysis 

temperature increases from 500 to 800 ℃, likely due to particles were much easier to be 

broken down when grinding due to the increased modulus of elasticity (increased 

brittleness) with temperature [227]. In brief, the SEM images were consistent with the 

previous discussion on mechanics and demonstrate solid residue forming processes from 

lignin with temperature increase.   

 
Figure 3.2 SEM images obtained from solid residues of pyrolysis of kraft lignin under 
heating rate of 2 ℃/min at multiple temperature regions: a) and b) 200 ℃; c) and d) 300 
℃; e) to h) 500 ℃; i) and j) 700 ℃; k) and l) 800 ℃ at different magnifications. 
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Compositional and physical properties of the solid residues 

           The properties of lignin derived solid residues collected at 300, 600 and 800 ℃ are 

shown in Table 3.2. As the temperature increases, the C content increases while H, N and 

O contents decrease. The H/C ratio indicates the aromaticity and stability of the solid 

residues; while O/C ratio clearly indicates the polarity and the abundance of oxygen 

containing functional groups in the solids [228]. The decreasing in H/C and O/C atomic 

ratios clearly indicates that the relative degree of aromaticity and polarity decreases as 

pyrolysis temperature increases. Physical properties, including specific surface area and 

conductivity, were also characterized. The surface area for solid residue collected from 

pyrolysis at 300 °C was too low to quantify, indicating the carbonization at this temperature 

just started and no pore structure had formed or the pores in the raw lignin collapse at low 

temperature due to melting/transitioning to glass state [189]. As pyrolysis temperature 

increases, specific surface areas of the lignin-derived solid residues increased, reaching 

174 and 576 m3/g for solids collected at 600 and 800 °C, respectively.  

Table 3.2 Composition, physical properties and higher heating value (HHV) of solid 
residues from slow pyrolysis of kraft lignin at multiple temperature regions 

Residue C H O N Others Atomic H/C Atomic O/C Surface Area 
m2g-1 

300 ℃ 66.9±1.4 5.3±0.0 26.5±0.1 0.2±0.0 1.1±1.5 0.94±0.0 0.30±0.1 - 

600 ℃ 85.7±1.8 3.0±0.0 7.1±0.1 0.3±0.0 3.9±1.9 0.42±0.0 0.06±0.0 174 

800 ℃ 90.0±1.9 1.7±0.0 4.1±0.1 0.4±0.0 3.8±2.0 0.23±0.0 0.03±0.0 576 

 

Chemical characterization of solid residues 

           FTIR analysis offers a better understanding of the impact of pyrolysis temperature 

on the chemical structure of solid residues. Figure 3.3a shows FTIR spectra of KL, seven 
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solid residues collected via pyrolysis from 200 to 800 °C with a 100 °C interval and solid 

residue collected from pyrolysis at 800 °C followed by a two-hour hold. No significant 

differences can be spot between the spectra of KL and solid residue collected at 200 °C, 

indicating relatively stable chemical structure under low temperature. However, declining 

IR signals were observed, suggesting decreasing functional groups in the solids (increasing 

carbonization extent) with pyrolysis temperature increasing from 200 to 600 °C. The broad 

IR band around 3100~3600 cm-1(attributed to hydrogen bonded -OH) and peaks around 

2843~2936 cm-1(attributed to -CHn stretching) were reduced, which was evidence of lignin 

dehydration and decomposition of lignin side chains. The reducing peaks at ~1701 cm-1 

(C=O) and 1030 cm-1 and 1081 cm-1 (both attributed to C-O bonds) likely owing to 

cracking and reformation of carboxyl (-COOH), carbonyl (-C=O) and ether-based groups 

(R-O-R). Peaks at 1425 cm-1 (attributed to methoxyl), and 1265 cm-1 and 1364 cm-1 

(attributed to aromatic-bonded oxygen) were gradually decreased, confirming the 

demethoxylation of G type substrates from pyrolysis occurring at lower temp (200-400 °C) 

[202]. When pyrolysis temperature increased higher than 700 °C, the IR signals of solids 

became nearly unapparent due to the completion of lignin decomposition.  

           Figure 3.3b illustrates well defined Raman signals were obtained for the sample 

residues obtained above 400 °C. These Raman signals were deconvoluted into four pseudo-

Voigt shaped peaks at ~1170 cm-1(D1), 1345 cm-1(D), 1500 cm-1(D2) and 1600 cm-1(G). 

The band around 1170 cm-1 is related to interstitial defects, oxygen superficial groups and 

ions impurities [229]. D band at 1345 cm-1 is related to the disordered carbon [230]. Any defect 

that breaks the symmetry of the graphite increases the intensity of D-band. G-band at 1600 

cm-1 is associated with the E2g vibration mode of graphitic lattice (stretching vibration 
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between any pair of sp2 carbon atoms) [231]. Overall, D, D2 and G bands related 

to sp2 bonded turbostratic nanocrystalline carbon [232]. Based on Table 3.3, it was noted 

that the increasing temperature increases the ID/IG ratio or AD/AD ratio. For disordered 

carbon materials these ratios can be related to the lateral size of the graphene domain (La). 

Calculated La values are shown in Table 3.3. Furthermore, these values are plotted in 

Figure 3.3c. It is evident that at 500 °C, La has the highest value. When the temperature 

increases from 500 °C to 800 °C, La decreases gradually. This trend is consistent with the 

SEM results which shows the average particle size decreases from 500 °C to 800 °C. 

 

Table 3.3 Structural parameters calculated from Raman measurements 

Sample ID IG AD AG ID/IG AD/AG La,I/nm La,A/nm 
KL-400 297 372 68177 48140 0.798 1.416 6.207 3.499 
KL-500 275 397 60117 47097 0.692 1.276 7.161 3.882 
KL-600 233 332 44349 29364 0.701 1.510 7.066 3.281 
KL-700 66 71 14123 6605 0.934 2.138 5.302 2.318 
KL-800 115 105 21196 9288 1.094 2.281 4.529 2.171 

KL-800-Hold 110 100 19264 8731 1.103 2.206 4.490 2.246 

*KL-400 to 800 represent solid residues obtained from pyrolysis of kraft lignin under heating rate of 2 ℃
/min at multiple temperature from 400 to 800 ℃; KL-800-Hold represents solid residues obtained from 
pyrolysis of kraft lignin under heating rate of 2 ℃/min at 800 ℃ followed by holding at 800 ℃ for 2 hours. 
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Figure 3.3 a) FTIR, b) Raman spectrums and c) La, 1 and La, A of kraft lignin slow pyrolysis 
at multiple temperature regions. La, 1 is lateral size of a domain based on peak height (nm); 
La, A is lateral size of a domain based on peak area (nm). 

 

(a) 

(b) (c) 
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           XPS analysis examined the surface chemistry transformation of the pyrolytic 

biochar with temperature increase. Figure 3.4 shows the XPS survey spectra and high 

resolution C1s spectra of solids obtained from KL pyrolyzed at different temperatures. 

Table 3.4 summarized the elemental composition and chemical states in each sample based 

on the XPS analysis. Adhering to previous discussions, the dropping C-O content indicated 

cracking and reformation of ether linkages, while the growing C-C(sp2) carbon suggested 

an increasing aromaticity and carbonized material. It was noted that the oxygen content in 

the solids gradually decreases, while carbon content increases as the pyrolysis temperature 

increases from 100 to 600 °C. The result was consistent with the elemental analysis in 

Table 3.2, which suggested an increasing extent of carbonization as pyrolysis reactions 

proceed. However, interestingly, as temperature keep increasing from 600 to 800 °C, a 

significant surge of oxygen content from 8.69% to 19.08%, which was not agree with the 

elemental analysis result. Since the XPS analysis determined surface functionalities of 

solid residues, the increasing O1s exhibited more oxygen-containing functional groups on 

the solid residue surface. Those functionalities probable obtained from the aggregation of 

coke due to repolymerization when pyrolysis became more moderate.  



 

93 
 

 

 
Figure 3.4 a) XPS spectrums of kraft lignin slow pyrolytic solid residue at multiple 
temperature regions; b) C 1s peaks of lignin slow pyrolytic solid residue at multiple 
temperature regions. 

 
 
 
 
 
 
 
 

(a) 

(b) 
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Table 3.4 The summary of elemental composition and chemical states in each sample based 
on XPS 

Sample Carbon[a] 
(C1s) C-C(sp2) [b] C-C(sp3) [b] C-O[b] C=O[b] COOH[b] Oxygen[a] 

(O1s) 

KL 54.70 56 13 24 4 2 23.61 

KL-200 66.41 47 12 29 7 3 21.14 

KL-300 71.03 51 11 29 3 3 19.58 

KL-400 74.33 59 13 20 2 2 15.76 

KL-500 76.91 73 9 9 3 2 11.29 

KL-600 79.69 70 13 7 3 3 8.69 

KL-700 72.92 71 6 10 5 4 12.75 

KL-800 63.57 60 16 8 5 4 19.08 

KL-800-Hold 67.58 63 11 8 4 3 15.83 

[a] atomic percentages, [b] Percentage based on C1s peak deconvolution, *KL-200 to 800 represent solid 
residues obtained from pyrolysis of kraft lignin under heating rate of 2 ℃/min at multiple temperature from 
200 to 800 ℃; KL-800-Hold represents solid residues obtained from pyrolysis of kraft lignin under heating 
rate of 2 ℃/min at 800 ℃ followed by holding at 800 ℃ for 2 hours. 

 

           Hexagonal graphite (h-graphite) is the thermodynamically stable form of graphite 

with an ABAB stacking sequence of graphene layers. Turbostratic carbon (t-carbon) is 

generally considered as a variant of haphazardly crumpled h-graphite. XRD is usually 

applied to determine the structures of h-graphite and t-carbon [233]. XRD spectra of lignin-

derived solid residues are shown in Figure 3.5. All three samples exhibited two broad 

peaks at approximately 20 and 44 degree, corresponding to the (002) and (100) planes. 

With the increase of pyrolysis temperature, the peak at the (002) plane declines while the 

(100) plane increases. The hump around 20 degree indicated an amorphous and non-

graphitized property of the residue collected from pyrolysis at 300 °C, which can be 

explained by both incomplete oxidation and the amorphous coke on the surface layer of 

lignin at low temperature. The diminishing peak at (002) plane indicated larger crystallite 

size, namely the formation of crystalline structure as temperature increases from 300 to 

800 °C [233]. The gradually increasing peak at 44 degree with the increase of pyrolysis 
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temperature represents the increasing extent of disorder. The XRD results showed that 

during slow pyrolysis, the amorphous lignin were converted to biochar with a turbostratic 

graphite structure [234]. 
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Figure 3.5 XRD spectrums of kraft lignin slow pyrolytic solid residue at multiple 
temperature regions. 

 

Connecting pyrolysis chemistry with properties of the resulting carbon material  

           Physical and chemical properties of the resulting carbon material from lignin slow 

pyrolysis correlate to pyrolysis temperature and heating rate. Properties such as porosity, 

chemical composition and surface functional groups are critical factors for the function and 

performance of carbon materials. As amorphous lignin is converted to biochar with a 

crumpled turbostratic graphite structure, specific surface areas of the lignin-derived solid 

residues increase with pyrolysis temperature. Overall, the relative degree of aromaticity 

and polarity decreases as pyrolysis temperature increases. But, due to coke formation from 
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repolymerization of the phenolic free radicals and PAHs, the oxygen-containing functional 

groups on the surface of solids increase significantly when pyrolysis temperature is higher 

than 600 °C. Despite the fact that limited specific surface area was obtained at relatively 

low pyrolysis temperature (400-500 °C), macropores formed at low temperature facilitate 

the access of reactants (such as SO3H) to the active site [208]. For applications as a support 

of solid acid catalysts,  low pyrolysis temperature is preferred since crosslinking of 

crumpled t-carbon at 600 °C or higher could hinder the access of reactants to active sites 

[235]. For applications requiring high porosity (mesopores and micropores) and specific 

surface area, such as supercapacitor electrode and pollutant absorbent etc., however, high 

pyrolysis temperature of 600-1200 °C is often preferred [44, 236]. Heating rate appears to 

be another important factor affecting the carbon material properties through direct impact 

on pyrolysis chemistry. High heating rate causes great reaction severity, in turn leading to 

rapid release of gases and volatiles. At low heating rate, the free radicals have better chance 

to self-polymerize to form PAHs and with char to form coke. The change in reaction 

chemistry eventually lead to change in yield and properties of the resulting carbon materials. 
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Conclusions 

           The product distribution from kraft lignin slow pyrolysis was investigated using a 

micropyrolyzer coupled GC-MS at various heating rates. A total of 40 GC-detectable 

volatiles from lignin slow pyrolysis were identified and quantified, including hydrocarbons, 

carbohydrates/carboxylic acids, phenolic compounds and PAHs. Vinylphenols are the 

primary products corresponding to cleavage of the β-O-4 linkages while the primary 

products underwent a series of secondary reactions and produce a variety of H, G and S 

type compounds. Solid product of lignin pyrolysis can be classified into two distinct 

categories, char and coke. Char derives from lignin thermochemical decomposition; while 

coke forms through repolymerization of free radicals and PAHs with char. With heating 

rate increase, the volatile yield increased while solid residues yield decreased. With 

pyrolysis temperature increase, specific surface areas of the lignin-derived solid residues 

increase. Primary ether linkages of lignin units, such as β-O-4, α-O-4 and 4-O-5 and side 

chains, such as methyl, methoxy, carboxyl and carbonyl groups decrease, which contribute 

to the decrease of relative degree of aromaticity and polarity as pyrolysis temperature 

increases. Although elemental C increases and O decreases with respect to temperature, the 

oxygen-containing functional groups on the surface of solids increase significantly when 

pyrolysis temperatures are higher than 600 °C due to coke formation from repolymerization 

of the phenolic free radicals and PAHs. 
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Table 3.S1 Product distribution of kraft lignin slow pyrolysis at multiple temperature regions 

Compound name 
2 °C / min 20 °C / min 40 °C / min 

100-200 °C 200-300 °C 300-600 °C 100-200 °C 200-300 °C 300-600 °C 100-200 °C 200-300 °C 300-600 °C 

Hydrocarbons 0.05 ± 0.06 0.48 ± 0.04 1.56 ± 0.05 0.06 ± 0.02 0.24 ± 0.04 1.50 ± 0.25 0.03 ± 0.01 0.17 ± 0.02 1.60 ± 0.15 

Carbohydrates 0.63 ± 0.46 0.23 ± 0.01 0.57 ± 0.04 0.30 ± 0.28 0.95 ± 0.35 0.52 ± 0.22 0.25 ± 0.25 0.91 ± 0.49 0.45 ± 0.24 

H-type substances 0.14 ± 0.02 0.22 ± 0.01 4.19 ± 0.11 0.12 ± 0.01 0.23 ± 0.06 4.10 ± 0.26 0.12 ± 0.01 0.18 ± 0.02 4.08 ± 0.28 

G-type substances 0.67 ± 0.09 3.36 ± 0.13 8.02 ± 0.17 0.36 ± 0.02 1.67 ± 0.19 10.63 ± 0.38 0.28 ± 0.01 1.18 ± 0.08 11.35 ± 0.26 

S-type substances 0.09 ± 0.02 0.14 ± 0.01 0.36 ± 0.02 0.06 ± 0.00 0.09 ± 0.02 0.54 ± 0.04 0.05 ± 0.00 0.07 ± 0.01 0.59 ± 0.01 

PAHs 0.03 ± 0.02 0.97 ± 0.05 0.54 ± 0.02 0.00 ± 0.00 0.38 ± 0.17 1.39 ± 0.17 0.00 ± 0.00 0.29 ± 0.09 1.53 ± 0.12 

Others 0.12 ± 0.03 0.40 ± 0.06 1.13 ± 0.15 0.06 ± 0.00 0.15 ± 0.03 1.37 ± 0.08 0.04 ± 0.00 0.12 ± 0.01 1.47 ± 0.06 
Total volatiles 

yield 1.60 ± 0.68 5.38 ± 0.25 15.25 ± 0.41 0.90 ± 0.33 3.56 ± 0.84 18.66 ± 1.33 0.72 ± 0.28 2.80 ± 0.70 19.61 ± 1.07 
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CHAPTER 4. EFFECT OF THE STRUCTURE AND SOURCE OF LIGNIN 

PRECURSORS ON ACTIVATED CARBON FOR ENERGY STORAGE 

APPLICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*The chapter in whole has been published in RSC Advances.  
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Abstract 

           Valorization of lignin to high-value chemicals and products in company with biofuel 

production could greatly improve the economic viability of a biorefinery. With a growing 

demand for electrical energy storage materials, lignin-derived activated carbon (AC) 

materials have received increasing attention in recent years. The non-uniformity in lignin 

structure, composition and reactivity of linkages of diverse lignin sources could contribute 

to different thermochemical conversion pathway of lignin and lead to different pore 

structures and sizes of AC materials and thus influence the electrochemical behavior for 

energy storage applications, such as supercapacitors; while there is an apparent gap in our 

understanding of the impact of the lignin precursor on the electrochemical properties of the 

derived ACs. In the present study, lignin-derived ACs were prepared under identical 

conditions from three different lignin sources: poplar, pine, and commercial kraft lignin. 

Electrochemical properties and capacitance behavior of the derived ACs were examined. 

Results showed distinctive distributions of numerous micro-, meso- and macro-porous 

channels in lignin-derived ACs. The poplar lignin-derived ACs exhibited a larger BET 

surface area and total meso pores volume than softwood lignin-derived AC, which 

contribute to a larger electrochemical capacitance over a range of scan rates. X-ray 

photoelectron spectroscopic analysis (XPS) results revealed the presence of oxygen-

containing functional groups in all lignin-derived ACs, which participated in redox reaction 

and thus contributed to an additional pseudo-capacitance. A possible process mechanism 

was also proposed to explain the effects of lignin structure and composition on lignin-

derived AC pore structure during thermochemical conversion. This study provides insight 

into how the lignin composition and structure affect the derived ACs for energy storage 
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applications. 

Keywords: Lignin, activated carbon, supercapacitor, biorefinery 

Introduction 

           For the past two centuries, the extensive use of fossil fuels has brought humans to 

an age of unprecedented prosperity and rapid development. However, it has been a 

consensus that the increasing frequency of extreme weather events, environmental 

deterioration, climate change, etc., caused by greenhouse gas emissions, is the greatest 

threat humans have ever faced [237]. How we respond to these challenges will remarkably 

affect both current and future generations and all other creatures on earth. Biofuels provide 

potential and promising alternatives to traditional fossil fuels and mitigate global warming 

trend [188], which can be broadly categorized as first and second-generation biofuels. The 

first-generation biofuels are produced from starchy crops, such as corn. The second-

generation biofuels utilize lignocellulose biomass, such as agriculture residue. 

Lignocellulosic biomass is a composite mixture of cellulose, hemicellulose and lignin, in 

which cellulose and a portion of the hemicellulose can be used to produce biofuels, while 

lignin is underutilized under current biorefinery configurations.  

           Lignin is the second most abundant aromatic polymer on earth [238]. As projected 

by the 2009 Renewable Fuel Standard (RFS2) on the basis of the Energy Independence and 

Security Act of 2007, the US alone will generate approximately 60 million dry tons of 

lignin annually as a byproduct from cellulosic biorefineries by the year 2022 [16]. This will 

add to the existing ~100 million tons of lignin from the paper and pulping industry [239]. 

Despite its great potential as a feedstock for a variety of high-value chemicals and 



 

103 
 

materials, lignin valorization is challenging, due to the complex structure and 

compositional heterogeneity of lignin [16]. Today, lignin is usually burnt for heat and 

power, which inevitably generates persistent particle and organic pollutants and causes 

environmental issues [240]. Therefore, other options are needed to unlock the full potential 

of lignin [16]. Utilization of lignin or lignin-derived materials as an electrochemical 

electrode is well-suited to meet demands of the fast-growing energy storage market, such 

as batteries and supercapacitors [241].  

           A supercapacitor, also known as electrical double layer capacitor (EDLC), is a 

power energy storage device. Compared to batteries, supercapacitors have high power 

density and long lifespan, which are suitable for short-term energy storage and burst power 

delivery. They are capable of bridging the gap between traditional dielectric capacitors and 

batteries or fuel cells [242]. Porous carbon materials, which have high surface areas for 

charge storage, are the most popular electrode materials for supercapacitors [243]. Lignin 

has been considered as a preferred precursor for activated carbon materials because of its 

high carbon content, highly branched and cross-linked structure, and low feedstock cost. 

Despite many publications on lignin-derived activated carbon materials for supercapacitor 

applications, the results reported by different groups vary significantly, as shown in Table 

4.1. In addition to inconsistent processing conditions, the heterogeneity in structure and 

composition of lignin precursors will contribute to the discrepancy in the supercapacitance 

performances.  

           Properties of lignin, including composition, structure and reactivity, vary 

significantly depending on the source of biomass feedstocks. Lignin is composed of three 

major monomer units, namely guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) [244]. 
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Different types of biomass would have different specific ratios of G/S/H. For instance, 

softwood is composed of nearly 100% G lignin, while hardwood contains approximately 

equal percentages of G and S lignins [12]. The high ratio of S-units impedes the formation 

of β-5’and/or 5-5 linkages among lignin monomers (i.e., fewer branches) due to structural 

hindrance.  As a result,  hardwood lignin has more linear polymer chains than softwood 

lignin [245]. The softwood lignins with relatively high numbers of C-C linkages compared 

to ether linkages are often referred to as condensed lignins. Condensed lignins are typically 

more rigid and less prone to degradation, since the bond dissociation energy [246] required 

to break C-C linkages such as β-5’ is higher than that to break ether linkages such as β-O-

4 [247]. Furthermore, the chemical reactivities of lignin linkages are different. It was found 

that the cleavage of β-O-4 linkage within H and S lignin was easier than G lignin; while 

the reactivities (as calculated by electrophilicity) of the linkages between H and S unit are 

higher than those of G lignin [248].  

           In addition to the lignin sources, biomass pretreatment, during which lignin was 

fractionated from biomass feedstocks, influences the properties of the extracted lignin. A 

number of pretreatment methods have been developed, such as acids, alkali, organic 

solvents, and ionic liquids, all proven to overcome or reduce the natural recalcitrance of 

lignocellulosic biomass thus improving sugar yield from enzymatic hydrolysis. Due to the 

differences in pretreatment chemistry and processing condition, various pretreatment 

approaches remarkably affect the structure and composition properties of the extracted 

lignin. Acid pretreatment method will generally eliminate hemicellulose, while leaving 

cellulose fraction unaffected. Although little lignin is dissolved, the rearrangement of the 

lignin structure has been suggested with dilute acid pretreatment [15]. Alkaline-based 
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pretreatments, which include ammonia and lime pretreatment, can effectively remove 

lignin in biomass by hydrolyzing the ether bonds [249]. Compared to NaOH, the lignin 

isolated from ammonia pretreatment has led to a lower oxygen and higher aromatic content 

[250]. The organosolv pretreatment removes and modifies lignin via organic solvents, such 

as methanol, ethanol and acetone, with either acid or base catalysts. The organosolv 

pretreatment resulted in a significant deconstruction of lignin by the cleavage of inter-unit 

linkages and condensation of S and G units in comparison with dilute acid and ammonia 

pretreatment [17]. During organosolv pretreatment, Liriodendron tulipifera lignins were 

isolated, migrated and redistributed and the structural reformed droplets were found on the 

surface of pretreated biomass [251].  

           Based on the above discussion, there is a gap in our understanding of the 

determining factors of lignin source, structure and composition on the electrochemical 

properties of the derived activated carbons. The non-uniformity in lignin structure, 

composition and reactivity of linkages of diverse lignin sources could lead to different 

activated carbon materials and thus influence the supercapacitor behavior. In the present 

study, lignin-derived activated carbon (AC) materials were prepared under identical 

conditions from three different lignin sources: poplar, pine, and commercial kraft lignin. 

Electrochemical properties and capacitance behavior of the derived ACs were examined 

for supercapacitor application to better understand the impact of lignin source. A possible 

process mechanism was also proposed to explain the effects of lignin structure and 

composition on lignin-derived AC pore structure during thermochemical conversion. 
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Table 4.1 Supercapacitor performance of various lignin-derived carbons reported in the representative literatures 

Feedstock Target 
materials Carbonization Activation SSA (m2/g) Electrolyte Capacitance (F/g) Reference 

Kraft lignin AC Pyrolysis (1000 °C, 15 min) KOH (1000 °C, 35 min) 1148 6 M KOH 91.7 @ 2 mV/s Saha et al., 
2014[71] 

Hardwood lignin AC Pyrolysis KOH (700 °C, 2h) 907 1 M H2SO4 165@ 50 mV/s Zhang et al., 
2015[77] 

Corn stover lignin AC Hydrothermal (180 °C, 18h) KOH (800 °C, 3h) 1660 6 M KOH 420 @ 0.1 A/g Guo et al., 
2017[79] 

Alkali lignin ACF  KOH (850 °C, 0.5h)  6 M KOH 344 @ 10 mV/s Hu et al., 
2014[89] 

Poplar lignin AC Hydrothermal (200 °C, 24h) KOH (800 °C, 1h) 2218 6 M KOH 312 @ 1 A/g Zhang et al., 
2016[91] 

Acid washed lignin AC Pyrolysis (900 °C, 15 min) Template 803 6 M KOH 152.5 @ 1 mV/s Li et al., 
2016[84] 

Black liquor lignin AC Pyrolysis (900 °C, 2h) KOH (900 °C, 2h) 1406 1.5 M 
NEt4BF4/ACN 87 @ 5 mV/s Adriana et 

al., 2014[80] 

Alkali lignin AC Pyrolysis (500 °C, 1h) KOH (800 °C, 1h) 3775 6 M KOH 286.7 @ 0.2 A/g Zhang et al., 
2015[81] 

Alkali lignin ECNF mats Pyrolysis (1200, 1h)  583 6 M KOH 64 @ 0.4 A/g Lai et al., 
2014[88] 

Kraft lignin,  
ethanol extracted 
lignin, alkali lignin 

AC   
1092, 
519, 
126 

1 M H2SO4 
91, 
35, 
53 @ 0.5 A/g 

Jeon et al., 
2015 [82] 

Softwood kraft lignin AC  KOH (800 °C, 1h) 1800 EMIBF4 200 @ 10 A/g Klose et al., 
2017 [83] 
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Experimental Section 

Materials 

           All biomass feedstocks, including hybrid poplar and lodge pole pine, were obtained 

from the Idaho National Laboratory. The raw biomass was grounded by a Thomas Model 

4 Wiley® Mill (Thomas Scientific, NJ, USA) to 1 mm particles. Then the grounded 

biomass was sieved via a Ro-Tap® testing sieve shaker (Model B, W. S. Tyler Industrial 

Group, Mentor, OH, USA) to acquire a particle size range of 0.25 to 0.425 mm for lignin 

isolation. Kraft lignin and KOH were purchased from Sigma-Aldrich (St. Louis, MO, 

USA); while NaOH and HCl were purchased from Fisher Scientific (City, State, USA). 

Hemicellulase enzyme mixture Cellic HTec2 was provided by Novozymes North America 

(Franklinton, NC, USA).  

Lignin isolation  

           Biomass samples were pretreated in NaOH at 140 °C for 60 min in a 500 ml Parr 

reactor. Specifically, 40 g of biomass was mixed with 360 ml of 2 wt. % NaOH to obtain a 

10 wt.% biomass loading. A 300 mesh nylon filter was used to separate the solid and liquid 

phases in the pretreated biomass slurry. The solid fraction was kept and stored at 4 °C for 

composition analysis. Lignin was precipitated from the liquid fraction by adjusting the pH 

value to 1.5 – 2.0 with 1M HCl. The recovered lignin was washed 4 times with hot water 

to reach neutral pH.  To remove carbohydrate impurities from isolated lignin, a dose of 

hemicellulose enzymes (Cellic HTec2 loading of 0.34 mg protein / g starting biomass) was 

added to the recovered lignin and incubated at 50 °C in a pH 4.8, 0.05 M citrate buffer 

solution for 72 hours on an orbital shaker (Forma 435, Thermo Fisher Scientific Inc., 
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Waltham, MA, USA). The purified lignin was washed 4 times with 35 ml of hot DI water 

and then freeze-dried (Freezone Model 77530, Labconco, Kansas City, MO, USA) and 

collected for carbonization.  

Preparation of mesoporous activated carbons 

           Lignin derived activated carbon was prepared in an alumina crucible for 

carbonization in a tube furnace (GSL-1500X-OTF, MTI Corporation, Richmond, CA, 

USA). The lignin sample was heated under an argon environment from room temperature 

to 700 °C ramping at 2 °C / min and held for 1 hour at 700 °C before cooling down to room 

temperature. Then the collected biochar was activated in a KOH agent. Typically, biochar 

was dispersed in the KOH solution with a biochar to KOH mass ratio of 1:3 to form a 

slurry. The slurry was placed on a hot plate at 80 °C and was stirred by a magnetic stirrer 

during drying. The dried biochar KOH composite was transferred to a crucible and put into 

a tube furnace for activation. The furnace temperature was set to 700 °C and held for 1 

hour. After activation, the activated carbon was neutralized with 0.1 M HCl and then 

washed with deionized water until its pH becomes 7.0. Finally, the activated carbon was 

collected and dried in a convection oven (Heratherm, Fisher Scientific Inc., Waltham, MA, 

USA) at 80 °C. 

Lignin characterization  

Fourier Transfer Infrared Spectrometry (FTIR):  

           FTIR characterization was carried out with a Thermo Nicolet Nexus 870 ESP ATR-

FTIR spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, US). For the 

measurement, lignin samples (around 5 mg) were pressed to 12 psi using a spring loading 
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jack onto the ATR crystal. FTIR spectra were acquired in the range between 400 and 4000 

cm−1 with a spectral resolution of 1.928 cm−1. The raw FTIR spectra were baseline 

corrected and normalized using the Omnic 6.1a software and compared in the range of 700-

2000 cm−1. 

Gel Permeation Chromatography (GPC):  

           For molecular weight measurement, lignin samples were treated by the acetylation 

method [252]. Typically, 10 mg of isolated lignin was dissolved in 2.5 ml 92:8 (v/v) 

anhydrous acetic acid and acetyl bromide mixture and stirred at 50 °C for 2 h. The acetic 

acid and excess acetyl bromide solvent were dried in N2. The acetylated lignin was 

immediately dissolved in tetrahydrofuran (THF). The molecular weight distribution of the 

lignin samples was determined by an HPLC system (Ultimate 3000, Dionex Corporation, 

Sunnyvale, CA, USA) equipped with an ultraviolet detector and an Agilent Mixed-D PLgel 

5 μm 300 × 7.5 mm column (Agilent Technologies, Santa Clara, CA, USA) using THF as 

mobile phase at a flow rate of 0.5 ml/min. The materials eluting from the column was 

monitored by recording absorbance at 290 nm. The chromatography was calibrated using 

low molecular weight polystyrene standards (Product No. 48937, Sigma-Aldrich). 

Lignin composition analysis:  

           The percentage of structural carbohydrates (glucan and xylan) and lignin, including 

both acid-soluble lignin and acid insoluble lignin, was determined in duplicates according 

to a NREL laboratory analytical procedure [179]. After two-stage acid hydrolysis, 

monomeric sugars were measured by HPLC (Ultimate 3000, Dionex Corporation, 

Sunnyvale, CA, USA) via a refractive index detector and an Aminex HPX-87H column 

and guard column assembly. A 5mM H2SO4 was served as the mobile phase at a flow rate 
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of 0.4 ml/min with a column temperature set at 50 °C. The quantity of acid soluble lignin 

was determined by the absorbance at 205 nm. 

NMR spectroscopic analysis:  

           Nuclear magnetic resonance (NMR) spectra of lignin samples were acquired in a 

Bruker Avance III HD 500-MHz spectrometer and spectral processing was carried out 

using a Bruker Topspin 3.5 (Mac) software. Isolated lignins (~10 mg) were dissolved in 

110 mg DMSO-d6 in a micro-NMR tube independently. Heteronuclear single quantum 

coherence (HSQC) experiments were carried out with a Bruker pulse sequence 

(hsqcetgpspsi2.2) on a N2 cryoprobe (BBO 1H & 19F-5mm) with the following acquisition 

parameters: spectra width 12 ppm in F2 (1H) dimension with 1024 data points (acquisition 

time 85.2 ms), 166 ppm in F1 (13C) dimension with 256 increments (acquisition time 6.1 

ms), a 1.0-s delay, a 1JC–H of 145 Hz, and 128 scans. The central DMSO-d6 solvent peak 

(δC/δH at 39.5/2.49) was used for chemical shifts calibration. Assignment and the relative 

abundance of lignin compositional subunits and interunit linkages were estimated using 

volume integration of contours in HSQC spectra according to published literature [183, 

185]. For volume integration of monolignol compositions of syringyl (S), guaiacyl (G), 

and p-hydroxyphenyl (H), the cross peaks of S2/6, G2, and H2/6 contours were used with G2 

integrals doubled. In poplar lignin, p-hydroxybenzoate [253] with the cross peaks of PB2/6 

was used for integration and quantitation. The Cα signals were used for volume integration 

for inter-unit linkages estimation. The abundances of aromatics and side-chain linkages 

were presented as percentage of total aromatic SGH units. 
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Physical and chemical properties characterization  

Brunauer-Emmett-Teller (BET):  

           BET surface area was determined using a Micromeritics TRISTAR 3000 gas 

adsorption analyzer (Micromeritics Instruments, Norcross, GA, USA).  In each test, 

approximately 100 mg of sample was used.  The adsorption gas was nitrogen and the 

analysis was performed at the boiling temperature of liquid nitrogen. Samples were 

degassed under vacuum at 160oC overnight before conducting the BET measurements to 

obtain the specific surface areas. The Horvaih-Kawazoe (HK) method was used to analyze 

the pore size distribution of micropores, and the Barrett-Joyner-Halenda (BJH) method was 

used to analyze the pore size distribution of mesopores. 

Microscopic and spectrometric analysis:  

           Scanning electron microscopy (SEM) images of lignin, biochar, and activated 

carbon materials were taken in a FEI Quanta SEM system (Thermo Fisher Scientific Inc., 

Waltham, MA, US). X-ray diffraction (XRD) spectra of activated carbon materials were 

obtained using a Bruker-AXS D8 Diffractometer (Bruker Corporation, Billerica, MA, US) 

with Cu Kα radiation (Kα = 0.15405 nm), scanning rate of 1.0° / min, and voltage of 40 

kV and current of 200 mA. X-ray photoelectron spectroscopy (K-Alpha XPS, Thermo 

Fisher Scientific Inc., Waltham, MA, US) was used to determine the surface functional 

groups of lignin derived carbon materials. 

Electrochemical properties characterization 

           Electrochemical characterization of all lignin-derived carbon materials carried out 

using a three-electrode system. A platinum wire was used as the counter electrode, a 
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commercial Ag/AgCl electrode as the reference electrode, and the lignin-derived carbon as 

the working electrode. The electrolyte was 1 M H2SO4 in an aqueous solution. Cyclic 

voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance 

spectroscopy (EIS) were recorded with a potentiostat (CHI 760, CH Instruments, Austin, 

TX, US).  

Results and Discussion 

Lignin isolation and characterization 

           Alkaline treatment using dilute NaOH or lime is a common biomass delignification 

method [254]. During an alkaline treatment process, the ester bonds between lignin and 

xylan are typically cleaved along with the breakdown of the β-O-4 lignin interunit linkages, 

leading to dissollution of lignin fragments in the liquid phase and generation of a cellulose 

and hemicullose enriched solid suitable for biofuel production [152]. The dissolved lignin 

can then be precipitated from the alkaline solution by adjusting the pH to acidic. Since 

hemicellulose will bind and precipitate with lignin, the main impurities of the isolated 

lignin are the 5-carbon sugars. To remove xylan, the pretreated lignin samples were subject 

to enzymatic hydrolysis [180]. The purities of pine, poplar, and Kraft lignin samples were 

determined using the two-step acid hydrolysis procedure [179].  As shown in Table 4.2, 

most of xylan was eliminated and high purity lignin (94-98%) was acquired after enzymatic 

saccharification. The ash content is the measure of the mineral content and other inorganic 

matter in biomasses [255], and the isolated lignin also contains a small amounts of ash, 

depending on the biomass feedstock, pretreatment, and isolation method used [120]. As 

compared to Kraft lignin, isolated lignin samples exhibited the lower content of ash. The 
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low ash content of the isolated lignins, shown in Table 4.2, may be attributed to the acid 

adjustment, enzymatic hydrolysis and multiple hot water washing, which removed most of 

ash within lignin.  

Table 4.2 Composition and GPC analysis of Kraft lignin and lignins extracted from poplar 
and pine. 

Lignin 
sources Glucan Xylan Purity (%) Ash (%) Mw (Da) Mn (Da) PDI 

Kraft lignin 0.11 ± 0.01 0.96 ± 0.03 95.99 ± 0.03 2.95 ± 0.01 5736.11 3056.34 1.88 

Pine lignin 0.76 ± 0.05 1.18 ± 0.02 97.56 ± 0.08 0.50 ± 0.05 2847.73 1671.53 1.70 

Poplar lignin 1.08 ± 0.01 4.95 ± 0.08 93.78 ± 0.13 0.19 ± 0.05 2799.78 1656.28 1.69 

 

           The weight average molecular weight [175], number average molecular weight (Mn) 

and polydispersity index (PDI) of pine, poplar, and Kraft lignin are shown in Table 4.2. 

The Mw of pine and poplar were 2847.73 and 2799.78 Dalton, respectively, which are 

much lower than the Mw of Kraft lignin. The lower molecular weight might result from 

the depolymerization of native plant lignin during alkaline pretreatment [91]. The PDI 

value was acquired from the ratio of Mw/Mn, which represents the heterogeneity of the 

size distribution of the isolated lignin samples. The PDI values were below 2 for both 

poplar and pine derived lignin samples, which is slightly lower than that of Kraft lignin, 

indicating increased uniformity of molecular weight distribution.  

           FT-IR spectra of the three lignin are shown in Figure S1. All lignin samples 

exhibited a broad absorption band at 3400 cm-1, which corresponds to the O-H stretching 

vibrations in phenolic and aliphatic O-H groups [170]. The bands between 2920 and 2840 

cm-1 represent C-H vibrations of CH2 and CH3 groups [256]. All lignin samples have a 

peak at 1740 cm-1, representing a stretching of carbonyl groups (C=O) in carboxylic acid 

or ester group [257]. The bands at 1600 cm-1 and 1510 cm-1 are attributed to aromatic ring 
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stretch vibrations (C=C) [173]. The broad bands ranged from 1470 to 1330 cm-1 are 

assigned to C-H aromatic ring vibrations and the deformation vibration of O-H in CH2 and 

CH3 groups [173]. The bands at 1220, 1110 cm-1 are believed to associated with guaiacyl 

(G) and syringyl (S) units of lignin respectively [173, 174]. Compared to poplar lignin, 

pine lignin has an intense peak at the band of 1220 cm-1, indicating C-C, C-O, and C=O 

stretching (G), at expense of a moderate peak at the band of 1110 cm-1, corresponding to 

aromatic C-H in plane deformation (S), which agrees with an earlier report [12].  

           To examine the lignin chemistry and chemical structure change of lignins through 

alkaline pretreatment, 2D 13C-1H HSQC NMR was applied to characterize the pine and 

poplar extracted lignins. The spectra of the aromatic region between 6.0-8.0/100-150 ppm 

of the lignins, revealing the lignin structural subunits, were shown in Figure 4.S2. 2D NMR 

spectra of aromatic regions revealed that both extracted lignins are SGH type lignin. On a 

basis of total SGH amount, pine lignin was absolutely dominated by G unit, while poplar 

was composed of S and G unit. The aliphatic region between 2.5-6.0/50-90 ppm of the 

lignins, revealing the lignin inter-units and side chains, can be seen in the Figure 4.S3. 

Both pine and poplar lignins were found to be dominated by β-O-4’ accompanying with a 

small amount of  β-5’ and β-β’ linkages. The HSQC NMR data acquired from extracted 

lignin were in agreement with their untreated native structure [12], indicating the original 

structural subunits and side chains of the extracted lignins were not significantly 

transformed during alkaline pretreatment. Furthermore, the poplar lignin contained more 

oxygen-containing functionalities than pine due to significantly higher S-unit, which 

contributed to more pore structures after carbonization, and thus result in a higher 

capacitance.  
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Lignin carbonization and biochar activation 

           The weight loss of lignin samples after carbonization is attributed to the loss of 

moisture, CO, CO2, methane, and phenolic volatiles depolymerized during pyrolysis [167]. 

The reaction between carbon and KOH and a series of intermediate products contribute to 

the weight loss during the activation process[34]. The mass yield during carbonization and 

activation is summarized in Table 4.S1 [258]. For the 100 g of lignin sample, pine and 

poplar lignin yielded 41.3 g and 29.4 g of biochar, respectively, although their yields of 

activated carbon yield are similar, 22.2 g for pine lignin and 23.2 g for poplar. It is possible 

that pine lignin requires a more severe condition to reach full carbonization than poplar 

lignin as the result of different inter-lignin linkages for pine and poplar. Softwood lignin is 

predominately made of G lignin, while hardwood lignin contains an equal amount of both 

G and S lignin. The less amount of methoxy group in softwood lignin favors a highly 

branched and condensed structure [259], and thus has more C-C bond and less ether bond 

than hardwood lignin. Since C-C bond has stronger bond dissociation energy than ether 

bond, softwood lignin requires more energy to be carbonized. On the other hand, more 

methoxy groups mean higher oxygen content in lignin. Oxygen will be eliminated during 

carbonization and leave many active sites ready to be activated.  

           The pine lignin contains over two times as many G-lignin unit as the poplar lignin 

[12]. Since the reactivity of the linkage between H and S unit is stronger than G lignin, the 

reaction rate for poplar lignin is much higher than pine lignin [248]. The biochar may 

significantly affect subsequent activation due to fewer active sites generated during 

carbonization which can affect pore structure and specific surface area (SSA) that are of an 

importance for supercapacitor performance.  
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           Since more branched hardwood lignin resulted from high S/G ratio it is easier to 

generate a less dense network in comparison with softwood, which favors the formation of 

the 3-dimensional structure after carbonization and activation[17]. 

Morphology, pore structure of carbon materials 

           Figure 4.1 shows the SEM images of the pine, poplar and Kraft lignins, the 

carbonized biochar and the KOH activated carbon from those lignin samples. As can be 

seen in Figure 4.1a-c, the raw lignin samples are 20-40 𝜇𝜇𝜇𝜇 particles with high surface 

roughness. During pyrolysis, lignin starts to melt at approximately 200 oC [260]; from that 

moment, melting and crosslinking between lignin particles occur simultaneously, forming 

a 3-dimentional biochar structure after carbonization, as shown in Figure 4.1d-f.  KOH 

chemical activation of these biochars resulted in the lignin-derived activated carbon (AC) 

samples.  These AC samples exhibited a 3D structure with a large number of pores in 

different sizes, as shown in Figure 4.1g-i. The pores connected through channels have 

important roles in promoting electrode surface areas available for the adsorption of ions 

and electrolytes and thus enhancing electrochemical capacitance in the supercapacitors.  
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Figure 4.1 SEM images of lignin, biochar and activated carbon samples: a) Kraft lignin, 
b) Pine lignin, c) Poplar lignin, d) Kraft lignin-derived biochar, e) Pine lignin-derived 
biochar, f) Poplar lignin-derived biochar, g) Kraft lignin-derived activated carbon (AC), h) 
Pine lignin-derived AC, i) Poplar lignin-derived AC. 

           XRD spectra of lignin-derived ACs are shown in Figure 4.S4. All three lignin-

derived ACs exhibited similar features with two broad peaks at approximately 20 and 40 

degree, which correspond to (002) and (100) crystalline planes of graphite. The XRD 

results show that the derived ACs have a turbostratic structure (between graphite and 

amorphous carbon) [234]. 

           To examine the pore structure of lignin-derived ACs, the BET specific surface areas 

and pore size distributions were determined by N2 adsorption and desorption analyses. The 
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adsorption isotherm plots are shown in Figure 4.2a. All ACs revealed the mixed character 

of types I and IV. Such a behavior reflects the coexistence of micropores, mesopores, and 

macropores [77, 81]. However, the pine lignin-derived AC represented a very low N2 

adsorption volume and a flat adsorption curve, indicating the low content of porosity.  

Table 4.3 Pore parameters of pine, poplar and Kraft lignin-derived activated carbons 

Lignin  SBET (m2/g) Vmicro (cm3/g) Vmeso (cm3/g) Vtotal (cm3/g) Vmeso/Vmicro (%) 

Kraft  981.38 0.38 0.07 0.45 19.7 

Pine  314.95 0.12 0.02 0.14 20.6 

Poplar  621.25 0.18 0.08 0.27 46.0 

 

           BET specific surface area (SSA) and the volume of micropores and mesopores of 

the lignin-derived ACs were shown in Table 4.3. Compared with the low SSA of 314.95 

m2/g for pine derived lignin-derived AC, poplar and Kraft lignin derived lignin-derived 

ACs had much higher SSA of 621.25 and 981.38 m2/g, respectively. The high SSA of Kraft 

lignin-derived AC mainly benefited from its significantly large micropores volume of 0.38 

cm3/g. In contrast, poplar lignin-derived AC had relatively lower micropores volume as 

compared with its mesopore volume, likely attributing to the structurally fragmented lignin 

when going through alkali extraction and reprecipitation. In addition to lower SSABET, 

mesopore volume of pine lignin-derived AC was also significantly lower than that of the 

poplar and Kraft lignin-derived ACs. Although the total pore volume of poplar lignin-

derived AC was lower than Kraft lignin-derived AC, it exhibited a larger mesopore volume 

and in turn a very high mesopore ratio of 46%. The pore size distribution, which was 

calculated by BHJ method, is shown in Figure 4.2b. The results of SSA and pore size 

distribution further illustrate that the source lignin structure, composition, and linkage 

reactivity greatly influence the porosity and structure of lignin-derived ACs.  
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Figure 4.2 a) N2 adsorption-desorption isotherms and b) calculated pore size distribution 
of pine, poplar and Kraft lignin derived activated carbons (LAC). 
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Figure 4.3 Fitted results of XPS spectra: a) C1s of Kraft; b) C1s of poplar; c) C1s of pine; 
d) O1s of Kraft; e) O1s of poplar; f) O1s of pine lignin-derived ACs. 

Surface chemistry property of carbon materials 

           X-ray photoelectron spectroscopy (XPS) was applied to analyze the surface 

chemistry of the lignin-derived ACs. The high resolution XPS C1s and O1s spectra of the 

(a) (b) 

(c) (d) 

(e) (f) 
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lignin-derived ACs are shown in Figure 4.3. The deconvolution of the original C1s peaks 

revealed four individual component peaks at 284.7, 285.2, 286.2 and 288.3 eV including 

C-sp2, C-sp3, C-O and C=O, respectively. The O1s XPS spectrum exhibits three individual 

peaks representing quinone or keto groups (531.1 eV), ether or phenol groups (532.9 eV), 

carboxylic groups (534.0 eV) [77, 79, 261]. The content of each functional group in the 

AC samples are summarized in Table 4.4. Compared to pine lignin-derived AC of 7.6 atom % 

surface oxygen content, both Kraft and poplar lignin-derived ACs had higher surface 

oxygen content as indicated by the atomic percentage of 10.7% and 11.5%, respectively. 

The higher surface oxygen contents of Kraft and poplar lignin-derived ACs are likely 

caused by the greater extent of activation occurring during carbonization and KOH 

activation processes than pine lignin-derived AC [77]. Oxygen–containing functional 

groups can improve hydrophilicity and provide an additional pseudocapacitive current  

through reversible faradaic reactions [79].  

Table 4.4 Oxygen-containing functional group comparison between pine, poplar and Kraft 
lignin-derived activated carbons 

Lignin  C=O -O- COOH 
Kraft (10.7 at %) 2.76 6.98 0.96 
Pine (7.6 at %) 0.90 5.73 0.98 
Poplar (11.5 at %)  1.74 8.31 1.45 

Electrochemical characterization 

           The electrochemical behaviors of the lignin-derived ACs were examined in a single-

compartment electrochemical cell in the potential window from -0.6 to 0.6V in 1 M H2SO4. 

The cyclic voltammetry (CV) curves are shown in Figure 4.4a-c. The quasi-rectangular 

shape CV curves, representing a double layer capacitor character, were observed for all the 

lignin-derived ACs. In addition, peaks at 0.2 to 0.4 V indicated pseudo-capacitance, which 
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was caused by redox reactions of surface oxygen containing functional groups as depicted 

by the XPS results (Table 4.4)  [77]. The specific capacitances of the lignin-derived ACs 

were determined at different sweep rates from CV curves as shown in Figure 4.4d. 

Compared with pine, poplar lignin-derived AC showed a better current response at each 

scan rate, which is attributed to the significantly larger SSA and mesopore volume. With 

high micropore volume and SSA, Kraft lignin-derived AC showed a better capacitive 

performance than poplar lignin-derived AC though the latter had a larger mesopore volume 

than Kraft lignin-derived AC.  
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Figure 4.4 Cyclic voltammetry (CV) curves of a) Kraft lignin-derived activated carbon 
(AC), b) poplar lignin-derived AC, c) pine lignin-derived AC at scan rates ranging from 10 
to 50 mV/s, and d) Capacitive performance of lignin-derived ACs in 1 M H2SO4 at scan 
rates ranging from 10 to 50 mV/s. 
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Figure 4.5 Galvanostatic charge-discharge (GCD) curves of a) Kraft lignin-derived 
activated carbon (AC), b) poplar lignin-derived AC, c) pine lignin-derived AC at current 
density ranging from 0.5 to 2 A/g, and d) Comparative GCD curves of pine, poplar and 
Kraft lignin-derived ACs at a current density of 0.5 A/g. 

 

           Compared to the literature data shown in Table 4.1, both SSA and supercapacitor 

capacitance presented herein are on the same order of magnitude. The difference may come 

from dissimilar lignin feedstocks and process conditions. It is worth noting that the main 

goal of this study is to understand the impact of lignin sources on lignin-derived AC pore 

structure and thus supercapacitor capacitance from a perspective of lignin composition and 

structure rather than synthesis a new material with super high performance. Therefore, the 

process conditions of both carbonization and activation are not optimized [81] and no other 

(a) (b) 

(c) (d) 
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additives, such as carbon black, and binder were blended during lignin-derived ACs 

synthesis so as to enhance conductivity, as reported elsewhere [71, 77, 79]. 

           To further investigate the electrochemical properties of lignin-derived ACs, 

galvanostatic charge-discharge (GCD) curves were recorded. Figure 4.5 gives the GCD 

character of the lignin-derived ACs at current densities range from 0.5 to 2 A/g and all of 

the GCD curves exhibits a typical triangular shape. As expected, Kraft lignin-derived AC 

showed the longest charging and discharging time at each current density, while pine 

lignin-derived AC represented the shortest one, which demonstrate the same capacitive 

performance trend as the specific capacitance evaluated from CV curves, seen in Figure 

4.5a-c. At current density of 0.5 A/g, the specific capacitance of pine lignin-derived AC is 

48.3 F/g, while poplar and Kraft lignin-derived ACs can achieve 86.7 and 133.3 F/g 

respectively, as shown in Figure 4.5d.    

Possible mechanisms of the formation pathway of lignin-derived ACs 

           Reaction mechanism of lignin pyrolysis was only partly understood due to the 

complex product composition and possible multiple reaction phases involving complicit 

prime and secondary reactions [34, 38]. Based on the results from the present study and 

other literature, a possible pathway for generating the lignin-derived ACs was proposed, 

which may help understand the different lignin-derived AC’s pore structure between 

hardwood and softwood lignin, as shown in Scheme 1. During pyrolysis, the 

depolymerization of lignin starts with the cleavage of ether bonds, such as β-O-4 linkages 

at low temperature and produce primarily guaiacol – type and syringol – type and a variety 

of other monomers [42, 43]. It is believed that the prime reaction of lignin pyrolysis 

involves free radical reactions and the monomer products are presented as free radicals 
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[38]. Since free radical reaction is a chain reaction, it would not terminate as long as the 

free radicals are present. Hence, the originally volatilized guaiacol and syringol – typed 

free radicals formed from ether linkages cleavage would subsequently go through 

repolymerization and condensation into oligomers and finally form solid fractions, namely 

char and coke. A portion of the monomers capture hydrogen from other compounds, 

entering into liquid fraction [38]; while the other portion of monomers further decompose 

into gases, such as CH4, CO, CO2 and H2 [43]. As the reactions continue, the free radicals 

chain reaction within char and coke was forced to terminate after devolatilization and 

depletion of hydrogen, leaving some free radicals to serve as active sites for the activation 

of lignin-derived ACs. As discussed previously, softwood lignin, such as pine lignin, is 

dominated by G lignin, while hardwood lignin has an almost equal amount of G and S 

lignin unit. It is a crucial difference to the free radical reaction of lignin pyrolysis, since 

hardwood lignin would have significantly more free radicals acquiring from ether linkages 

cleavage which serve as precursors to propagate the chain reactions and eventually have 

more change to maintain free-radicals reactive site available for activation. This hypothesis 

is supported by more efficient devolatilization of hardwood lignin pyrolysis than softwood 

[42, 43]. Under the presence of a chemical agent, such as KOH, and pyrolysis, the free 

radicals chain reactions are able to resume and release vapors, such as K, H2, CO and H2O, 

which contribute to the growth of porosity of carbon materials [34].  
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Scheme 4.1 A schematic of possible mechanisms diagram of the formation pathway of lignin-derived AC 
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Conclusions 

           In conclusion, lignin-derived activated carbon materials from alkali pretreated 

hardwood and softwood were synthesized and characterized. Each lignin-derived AC 

exhibited a three-dimensional pore structure with numerous micro-, meso- and macro-

porous channels. Compared to pine (softwood) lignin-derived AC, poplar (hardwood) 

lignin-derived AC showed a higher level of specific surface area and volume of both 

mesopores and micropores. When applied as supercapacitor electrodes, the poplar lignin-

derived AC had a higher value of specific capacitance at each current scan rate than the 

softwood lignin-derived AC. X-ray photoelectron spectroscopic (XPS) revealed the 

presence of oxygen-containing functional groups in all lignin-derived ACs, which 

contributed additional pseudo-capacitance to the total capacitance. Finally, a possible 

process mechanism was proposed to help understand the effects of lignin structure and 

composition on lignin-derived AC pore structure during thermochemical conversion.  
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Figure 4.S1 FTIR spectra of pine, poplar and Kraft lignin. 
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Figure 4.S2 13C-1H (HSQC) spectra of aromatic regions of alkaline lignin from (a) pine 
(PI), (b) poplar [262]. The structures of lignin compositional units were coded with colors 
corresponding to the cross peaks in the spectra. 
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Figure 4.S3. 2D HSQC NMR spectra of alkyl regions of alkaline lignin from (a) pine (PI), 
(b) poplar [262]. The structures of side-chain linkages were coded with colors 
corresponding to the cross peaks in the spectra.  
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Figure 4.S4 XRD spectra of pine, poplar, and Kraft lignin derived activated carbons. 

 

 

Table 4.S1 Mass balance for lignin carbonization & activation  

Lignin Feedstock Biochar yield (g/100g lignin) AC yield (g/100g lignin) 
Pine 41.3 ± 3.9 22.2 ± 1.4 
Poplar 29.4 ± 0.3 23.2 ± 0.95 
Kraft lignin 20.7 ± 2.4 13.4 ± 0.2 

 

 

 

 

 

 

 



 

132 
 

CHAPTER 5. ENGINEERING LIGNIN DERIVED CARBON-SILICON 

NANOCOMPOSITES THROUGH CO-PYROLYSIS AS AN ANODE MATERIAL 

FOR RECHARGEABLE LITHIUM-ION BATTERIES 
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ABSTRACT 

           Converting lignin to high-value chemicals and products along with biofuel 

production will substantially enhance the economic viability thus contributing to the 

success of a biorefinery. Silicon has gained increasing attention because of its high specific 

capacity compared to the commonly used graphite negative electrode in lithium-ion 

batteries (LIBs). However, the process of lithiation and delithiation inevitably leads to 

volume expansion of silicon, which causes rapid capacity fading and electrode cracking. 

In this study, a 3-dimensional, interconnected carbon/silicon composite synthesized from 

kraft lignin (KL) and silicon nanoparticles (Si NPs) is shown to have a high starting specific 

capacity of 2932 mAh/g and a retaining capacity of 1760 mAh/g after 100 cycles at 0.72 

A/g as negative electrode in a half-cell LIB test. In order to obtain a mechanistic 

understanding of the effect of lignin properties and processing conditions on the 

mechanical and electrochemical properties of the lignin-derived electrode materials, the 

synthesis process of Si/C nanocomposites was investigated using an analytical 

micropyrolyzer–GC/MS in combination with other analyses. The effect of heating rates, 

ratio of KL/Si NPs and types of NPs on the volatile products of slow pyrolysis were 

examined via evolved gas analysis-mass spectrometer (EGA-MS) analysis. The product 

distributions, including gas, liquid, and solid residue, were tracked during the pyrolysis 

process under two temperature regions. The morphology, interfacial chemistry, mechanical 

behavior of the Si/C nanocomposites were further characterized by SEM/in-situ TEM, 

XRD, Raman, FT-IR, XPS and scratch test. This study establishes a link between synthesis 

condition, properties of Si/C nanocomposite materials and their electrochemical 

performance and durability as electrodes in the next generation LIBs.  
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Introduction 

           Energy is the driving force of economic development and social prosperity and a 

near-global effort has taken this seriously to fulfill the increasing demands. Accounting for 

over 80% of today’s energy consumption [263], there are increasing concerns about the 

environmental and societal problems caused by burning fossil fuels, especially the 

alarming greenhouse gas emissions due to human activities [186]. The biorefinery concept 

has been put forward, which offers the potential to replace a large fraction of fossil 

resources in plant-based feedstocks to address demands for energy, chemicals and materials 

[264]. However, the production costs of lignocellulosic ethanol are not unconditionally as 

low as that of fossil fuels if not take the hide costs of non-sustainable consumption into 

consideration, despite various attempts which have been made to improve the viability of 

lignocellulosic biofuels by increasing enzyme efficiency [265], more efficient pretreatment 

technologies [4, 266] and gene-modified feedstock.  

           Lignin is the second most abundant aromatic polymer on earth [238]. As projected 

by the 2009 Renewable Fuel Standard (RFS2) on the basis of the Energy Independence and 

Security Act of 2007, approximately 60 million dry tons of lignin annually will be 

generated as a byproduct from the lignocellulosic biorefineries of the US alone by year 

2022 [16]. This will add to the existing ~100 million tons of lignin from paper and pulping 

industry [239]. Despite its great potential as a feedstock for various high-value chemicals, 

valorization of lignin is still challenging due to the complex structure and compositional 

heterogeneity of lignin [16]. Therefore, to unlock the full potential of lignin and enhance 

lignocellulosic biorefineries’ economic viability, other application are being explored [16]. 

Recently, lignin-derived carbon materials as energy storage materials for electronic 
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devices, such as supercapacitors [241] and batteries have received an increasing interest.  

           Silicon, because of its high theoretical specific capacity (3600 mAh/g) compared to 

conventional (and widely-used) graphite (372 mAh/g) [267], has been considered as one 

of the most promising negative electrode materials for next-generation lithium-ion batteries 

[268]. However, recent studies have shown that mechanical degradation is responsible for 

irreversible capacity loss of the Si composite electrodes [118]. Due to irreversible volume 

change, delamination, and fracture of the Si particles, and loss of mechanical contacts 

caused by the relentless volume expansion/shrinkage during insertion/extraction of Li ions, 

the capacity and electronic and ionic conductivity of Si composite electrode degrade 

quickly [118, 119]. Additionally, development of the solid electrolyte interphase [120] on 

the freshly damaged Si NPs surface lead to continuous loss of lithium ions and electrolytes, 

which further contribute to capacity fading of lithium-ion batteries [121]. Therefore, 

considerable effort has been devoted to improve the electrochemical performance of Si-

based lithium-ion batteries through various approaches [122], including structurally 

engineered Si (e.g. nanostructured Si [123], 3D porous Si particles [124], coating [125] 

etc.), flexible current collector [126], pre-lithiation [127], electrolyte additives [128], 

improved binder materials [129-131]. 

           Among these approaches, composite material combining nanostructured Si core 

with a protecting shell has been considered a promising strategy [132, 133]. Extensive 

studies have been made to synthesize and examine numerous innovative designs, e.g. 

carbon-coated Si NPs [134], porous Si nanowires [269] and Si nanotubes [270], graphene 

and its chemical modified derivative, reduced graphene oxide encapsulated Si NPs [271-

274]. Most recently, a lignin-derived C/Si NPs composite prepared via a one-pot, binder-
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free thermochemical conversion process showed great electrochemical performance as 

potential application as LIB’s negative electrode [136]. Lignin-derived C/Si NPs composite 

material offers many advantages such as simple synthesis, template and binder free and no 

toxic solvent required. More importantly, the high-value functional material represents a 

promising valorization pathway for lignin, which can greatly improve the profitability of a 

biorefinery using lignocellulosic biomass feedstocks.   

           In order to ensure electrochemical and mechanical performance of the lignin-

derived C/Si NPs composite, a systematic and in-depth understanding of the formation 

mechanisms of composite material is needed. However, very limited information is 

available in literature. First, the interaction between the Si NPs and C in the composite is 

not fully understood. It is important to investigate if there is any chemical bond (and what 

type) is formed between C and Si NPs and how does it correlate to the rigidity or elasticity 

of the resulting material. Second, what is the structure of C/Si composite and the correlation 

between the structural, chemical, mechanical and electromechanical properties? In addition, 

the thermochemical conversion process, namely co-pyrolysis of lignin and Si NPs, is the 

essential synthesis step for lignin-derived C/Si composites. Previous studies have focused 

on properties of the prepared material and its electrochemical performances, while the 

pyrolysis process itself was overlooked and generally treated as a black box. It is critical 

to link thermochemical conversion conditions to the characteristics of C/Si composite.  

In this study, a commercial pyrolyzer-GC/MS system was used, to our best knowledge for 

the first time to, mechanistically investigate the formation process of a C/Si composite 

through co-pyrolysis of lignin and Si NPs. Comprehensive analytical tools were then used 

to investigate morphological, physical and chemical structure of the synthesized materials. 
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Based on those, the impact of the co-pyrolysis to the mechanical and electrochemical 

performance of the C/Si NPs composite was studied. This study is the first step to 

understand the processing-structure-property relations and provides a basis to advancing 

the development of lignin-derived C/Si NP composite anode material.  

Experimental 

Materials 

           Kraft lignin (KL) and anhydrous N, N-dimethylformamide (DMF) were purchased 

from Sigma-Aldrich. Silicon nanoparticles (Si NPs) with a diameter of 30-50 nm were 

purchased from Nanostructured & Amorphous Materials (Katy, TX). Lithium foil with 

thickness of 0.75mm was purchased from Alfa Aesar. The electrolyte was 1M LiPF6 in a 

mixture solution of ethylene carbonate (EC), diethyl carbonate (DEC) and fluoroethylene 

(FEC) with a ratio of 9:9:2; EC, DEC and FEC were purchased from Gotion (Fremont, 

CA). A monolayer polypropylene membrane separator (Celgard 2400) was provided by 

Celgard as a gift. Electrodeposited copper (Cu) foil (thickness, 18 μm; density, 17.48 mg 

cm-2) was purchased from Pred Materials (New York, NY).  

Preparation of lignin-derived C/Si NPs composite  

           KL was dissolved in DMF to make an 18.5 wt% solution at 60 ℃. Afterwards, Si 

NPs were gradually added into the solution at a 1:1 wt. ratio to lignin with continuous 

stirring until the Si NPs uniformly dispersed in the solution. The prepared slurry was coated 

onto the Cu foil using a Doctor blade with a fixed gap of 127 μm and then air-dried at room 

temperature before vacuum oven drying at 120 °C overnight. After drying, the composite 

coated Cu foil was transferred into a tube furnace. Under constant argon flow of 0.4 L/min, 
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the furnace was programed to heat from room temperature to 600 °C ramping at 2 °C/min 

and holding for 2h at the target temperature before cooling down to room temperature. 

Morphology and structure characterizations 

           Images of the kraft lignin (KL) and lignin-derived C/Si NPs composite were 

obtained using a scanning electron microscopy (SEM, Quanta 250 FEG, Thermo Fisher 

Scientific) and a transmission electron microscopy (TEM, Talos F200X, Thermo Fisher 

Scientific). X-ray powder diffraction (XRD) spectra were acquired through X-ray 

diffractometer with graphite monochromatized Cu-Kα (Kα = 0.15406 nm) radiation (D8, 

Bruker). Raman spectra of the samples were recorded with a Raman microscope (DXR, 

Thermo Scientific). Chemical structure of the KL and C/Si NPs composite analysis of the 

samples were carried out with a Fourier Transform Infrared Spectrometer (FTIR, Nicolet 

iS50, Thermo Fisher Scientific), at a resolution of 4 cm-1 for 32 scans in the range of 450 

to 3000 cm-1. Surface chemistry of the samples were examined by an X-ray Photoelectron 

Spectrometer (XPS) system (K-Alpha, Thermo Fisher Scientific) by irradiating 

monochromatic Al Kα x-rays (energy of 1486.6 eV) onto a 400 µm diameter focused spot 

on the sample. 

Mechanical property characterization  

           The mechanical properties were determined through a scratch test using a 

nanomechanical test system (NanoTest Vantage, Micro Materials), which equipped with a 

conical diamond stylus (tip radius, 10 μm; cone angle, 60º). In a typical test, a 12 mm 

diameter electrode disc was glued to a flat sample stage. The applied load was from 0.1 to 

40 mN, which was applied after 50 μm and the scratch distance was set to 2500 μm. For 
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each sample, scratch tests were conducted six times to guarantee reproducibility. 

Electrochemical performance characterization 

           The electrochemical performance was determined in CR2025 type half-cell 

configuration coin cells, which were assembled in an argon-filled glovebox. 

Electrochemical tests were performed using a multi-channel potentiostat (VMP-3, Bio-

Logic Science, Knoxville, TN) at room temperature. The electrochemical properties of the 

electrodes were measured within a voltage range of 0.01−1.0 V. The Si NPs content of the 

C/Si NPs composite was calculated by determining the weight change of the electrodes 

before and after carbonization, while assuming that the weight of Si NPs and Cu foil remain 

constant. Electrodes were punched into discs with a diameter of 12mm for electrochemical 

tests and the loading of C/Si NPs was 1.0-1.2 mg cm-2, while the loading of Si NPs was 

0.63−0.76 mg cm−2 (Si NPs content of the C/Si NPs was around 63%). 

Evolved gas analysis-mass spectrometer (EGA-MS) analysis 

           EGA-MS analysis was performed in a micro-pyrolyzer (EGA/PY-3030D, Frontier 

Lab, Fukushima, Japan), of which the reactor temperature can be precisely controlled from 

40 to 900 ℃ with 1 ℃ intervals. At the EGA-MS mode, the micro-pyrolyzer was directly 

connected to a MS detector (5977A, Agilent, Santa Clara, CA) via a deactivated metal tube 

(UA-DTM-2.5 N, Frontier Lab) using helium was carrier gas. For a typical EGA-MS 

analysis, 200 ± 10 µg of the KL or 400 ± 20 µg of KL/Si NPs was placed in a deactivated 

stainless-steel cup. The reactor temperature of the pyrolyzer was programed to increase 

from 100 °C to 800 °C with a 2 ℃/min ramp. The EGA-MS profiles were displayed by 

recording total ion intensity of the MS versus the programmed temperature. 
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Analytical pyrolysis-GC/MS (PY-GC/MS)  

           For analytical pyrolysis, the micro-pyrolyzer was connected to a GC/MS 

(7890B/5977A, Agilent, Santa Clara, CA). The volatiles from the pyrolyzer were separated 

via a capillary GC column (Ultra Alloy-5, Frontier Lab, Fukushima, Japan) using helium 

as the carrier gas. The GC was equipped with a two-way splitter which directed the gas 

stream into both MS and flame ionization detector (FID). The MS was used for compound 

identification and the FID detector was used for compound quantification. The calibration 

curves of the products were created using five different concentrations of acetic acid 

(carbohydrates), toluene (aromatic hydrocarbons), phenol (H type substances, C6 and 

C6C1), 4-propylphenol (H type substances, C6C2), guaiacol (G type substances, C6C1), 

vanillin (G type substances, other than C6C1), syringaldehyde (S type substances, PAHs, 

and long chain fatty acid). The GC oven was programed to start by holding at 40 °C for 2 

min and then heated to 320 °C at a heating rate of 20 °C/ min before holding at 320 °C for 

an additional 10 min.  

           At the fast pyrolysis, the pyrolyzer were preset at the desired temperature before 

sending the sample cup into reactor. For a typical analysis, 200 ± 10 µg of the KL or 400 ± 

20 µg of KL/Si NPs was placed in the deactivated stainless-steel cup. Slow pyrolysis tests 

were carried out in HC-GC/MS mode. The micro-pyrolyzer system was also equipped with 

a system (MicroJet Cryo-Trap-1030Ex, Frontier Lab) at the head of the GC column to 

selectively trap volatiles generated from a desired temperature region with liquid nitrogen 

before transferring to GC-MS for detailed composition analysis, which is referred as heart-

cutting (HC) mode in the present study.   
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Results and discussion 

Morphology and structure  

           The chemical structure of KL was characterized via 13C−1H HSQC NMR, as shown 

in Figure 5.S1. The KL was dominated by G-unit (96.4%) with a slight amount of S-unit 

(3.6%) suggesting a softwood origin. Since kraft lignin is isolated from biomass through 

kraft process, there are a small amount of polysaccharides, (glucan and xylan, of 0.11% 

and 0.96%, respectively) (Table 5.S1), which remained from the kraft process and ash, 

mainly composed of inorganic minerals (Al, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P and S) 

[275]. GPC analysis showed that the KL has a relatively low molecular weight [175] of 

5736.11g/mol and PDI of 1.88 (Table 5.S1). Due to the strong correlation between the 

molecular weight distribution of lignin and its thermal proprieties, it is believed that the 

low molecular weight corresponds to a better thermal fusibility [276]. In addition, the 

polydispersity index (PDI) represents the heterogeneity of the molecular size distribution 

of lignin. A relatively low PDI [175] suggest the KL has good uniformity in its molecular 

weight distribution. FTIR characterization, as shown in Figure 5.S2, indicates that the KL 

contains several oxygen-containing functionalities, such as C-OH, C=O, COOH etc.  

           Figure 5.1a illustrates synthesis processes of the lignin-derived C/Si composite 

material, including preparation of KL/Si NPs mixture and carbonization process to form 

C/Si NPs composite.  The TEM and SEM images of the Si NPs can be seen in Figure 5.1b 

- d. TEM images reveal that the Si NPs is round crystalline particles with a diameter of 30 

– 50 nm. It is noted that there is a very thin silicon oxide layer (around 1 nm) on the surface 

of the Si NP, because pristine silicon is naturally prone to oxidation [277]. The raw KL 

powders are fine particles with high surface roughness as shown by the SEM image (Figure 
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5.1e) [4]. The solubility of lignin in different solvents is depending on solvent properties 

(pH, polarity, hydrophilicity etc.), monomer composition and functional groups of the 

lignin and the fractionation technologies to produce lignin [278]. The KL used in this study 

was fully dissolved in DMF at room temperature. It is believed that the hydroxyl groups 

on the lignin structure can form interactions with H bonds of Si NPs [279] when lignin is 

well dispersed in DMF solution. After the carbonization, the C/Si NPs composite with 

tunnels and pores in different sizes was formed as shown in Figure 5.1f. 

 

 
Figure 5.1 a) Schematic illustration of the synthesis of the C/Si NPs composite electrode; 
TEM images of b) a close view of a Si NP; and c) a cluster of Si NPs; SEM images of d) 
Si NPs; e) KL and f) the resulting C/Si NPs composite material obtained via pyrolysis at 
600 ℃. 

 

           Figure 5.2a shows XRD patterns of the Si NPs and the lignin-derived C/Si 

composite obtained from pyrolysis at 600 ℃. The characteristic diffraction peaks at 2-theta 

of 28.47, 47.35, 56.17, 69.20, 76.45, 88.12 degree represent the lattice planes of (111), 

(220), (311), (400), (331), (422) in silicon, respectively[280]. A previous study has shown 

(b) 

(c) (d) (e) (f) 

(a) 
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a layer of silicon carbide (SiC) coated on the surface of silicon through pyrolysis [281]. 

However, in this study, no sign of SiC was observed in the XRD spectrum, probably 

because the formation of silicon carbide requires a higher temperature between 700-1400 ℃ 

[281]. Silicon carbide is unfavorable since it has a low electronic conductivity, thus leading 

to a low high electrochemical performance. The overlapping peaks among Si NPs and C/Si 

NPs composite suggest that Si NPs didn’t subject to significant phase change during 

formation of the C/Si NPs composite [282]. The broad peak appeared around 2-theta of 22 

degree after carbonization, corresponds to (002) lattice plane due to the formation of 

amorphous carbon [283].  

           Figure 5.2b shows the Raman spectra of Si NPs and the lignin-derived C/Si 

composite obtained from pyrolysis at 600 ℃. Pristine Si NPs exhibited a sharp peak at 520 

cm-1 with a barely identifiable shoulder at 480 cm-1 (representing the amorphous portion 

of Si), confirming the crystalline nature of Si NPs [284]. With carbon coated on Si NPs, 

the C/Si composite displayed two major peaks in addition to the peaks of Si NPs: the 

disordered carbon (D band) at 1360 cm-1 and the graphite band (G band) at 1580 cm-1 [285, 

286]. The ratio of the D and G band intensities (ID/IG) is 1.7, which is in agreement with 

XRD data, suggesting that the coating of Si NPs was poorly organized amorphous carbon 

[285]. 
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Figure 5.2 a) XRD and b) Raman spectrum of Si NPs and C/Si NPs composite electrode 
obtained via pyrolysis at 600 ℃. 
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           In order to investigate the interactions between C and Si NPs within the C/Si NPs 

composite, the chemical structure of the C/Si NPs composite were investigated using FTIR 

and XPS, as shown in Figure 5.3 Several signature bands were identified in FTIR spectra 

of the Si NPs and lignin-derived C/Si composite obtained from pyrolysis at 600 ℃. The 

absorbance bands at 2160 and 2254 cm-1 correspond to the various SiHx stretching modes 

[287]. The broad bands covering from 950 to 1250 cm-1 represent Si-O-Si bond, 

corresponding to the amorphous silicon oxide [287]. The band at 450 cm-1  is attributed to 

Si-O rocking vibration [288]. The presence of amorphous silicon oxide in the Si NPs 

spectrum is consisted to the native oxide layer surrounding the pristine Si NPs as observed 

in Figure 5.1b. Interestingly, the bands representing Si-O-Si bond and Si-O rocking 

vibration were significantly increased in C/Si NPs composite. Given the fact that Si-O bond 

was increased while the Si-C bond is absent, the C and Si NP in the composite were most 

likely bonded via oxygen (R1-Si-O-C-R2), instead of direct Si-C. While the absence of the 

SiHx band in the C/Si composite can be explained by hydrogen desorption from silicon at 

elevated temperature where the exposed dangling Si–H bond bonds were subsequently 

taken by oxygen [287]. 

           Figure 5.3b shows the Si 2p spectra of Si NPs and the lignin-derived C/Si NPs 

composite obtained from pyrolysis at 400, 600 and 800 ℃. Generally, the Si 2p XPS 

spectrum has two distinct binding energy regions. The region centered at 99.4eV 

corresponds to the elemental Si; while the region centered at 103.5eV represents the native 

oxide layer around Si NPs. The Si 2p peak of the elemental Si region displays two closely 

spaced spin-orbit components, namely Si 2p1/2 and Si 2p3/2. The splitting can be normally 

ignored, and the two components just need to be considered as elemental Si. However, it 
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is noted that the spectral resolution of the two spin-orbit component is affected by the 

amorphous/crystallinity nature of the Si element and better resolution of spin-orbit 

components usually corresponds to more crystalline Si [289]. So, the satisfying Si 2p 

spectral resolution of the spin-orbit components displayed in Figure 5.3b self-explains the 

crystalline nature of the Si NPs, which is agreed with results from the Raman spectrum. As 

carbon coated around Si NPs via carbonization, the intense of elemental Si peak decreases 

while SiOx peak increases. The trend gets more pronounced with increasing pyrolysis 

temperature from 400 to 800 ℃. At 800 ℃, there was no elemental Si peak at all, indicating 

that the whole Si NPs were covered by a carbon layer. 
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Figure 5.3 a) FTIR and b) XPS spectrum of Si NPs and C/Si NPs composite electrode 
obtained via pyrolysis at 600 ℃. 
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           TEM images of the Si NPs and lignin-derived C/Si composite obtained from 

pyrolysis at 600 ℃ provide more direct visual evidences that support the spectrometric 

results.  As can be seen from Figure 5.4a, the round crystalline Si NPs with a diameter in 

range of 30 – 50 nm were coated by a thin layer (around 1nm), representing the amorphous 

silicon oxide layer that covers the surface of native Si NPs. The coating layer grew 

significantly to around 5-10 nm on the particles of C/Si NPs composite after carbonization, 

as shown in Figure 5.4b. Surprisingly, the layer was not elementally dominated by C, 

instead, a mixture of C and O (Figure 5.4c, elemental mapping of C, O and Si) and the 

elemental O was evenly dispersed in the coating layer, as shown in Figure. 4d (elemental 

mapping of just O and Si). This observation corroborates the FTIR and XPS results that Si-

O-C and/or Si-O bonds became bountiful in C/Si NPs composite. Interestingly, Figure 5.4c 

also shows that the elemental C in the composite is not evenly dispersed after carbonization. 

Although the C seems evenly dispersed in the porous carbonaceous layer coated on the 

surface of Si NPs, there are spots of enriched C between Si NPs (Figure 5.4c). Since the 

intrinsic electrical conductivity of Si is low, conductive additive is usually introduced in 

Si-based composite anode to satisfy the conductivity requirement and carbonaceous 

materials are well known for its good electrical conductivity [290]. Those C-rich spots 

likely serve as bridges linking Si NPs into a network in the C/Si NP composite. The cross-

linked network could offer enhanced electrical conductivity as compared to the aggregates 

of loosely packed C and Si NP particles.    



 

149 
 

 
 

Figure 5.4 TEM images of a) Si NPs and b) C/Si NPs composite and elemental mapping 
of c) C, O and Si and d) O and Si of the C/Si NPs composite. 

 

Mechanical property  

           It is believed that the pulverization and delamination of electrode layer caused by 

the unbounded volume change of Si particles impair the mechanical contact between the 

active material and the current collector, and thus undermine the electrical conducting 

(a) (b) 

(c) (d) 



 

150 
 

network [291]. Therefore, to ensure sufficient mechanical integrity and electronic 

conductivity of electrode material, a number of polymeric binders have been investigated, 

such as polyvinylidene fluoride (PVDF), Nafion, sodium alginate (SA) and carboxymethyl 

cellulose (CMC) [118, 292, 293]. However, the correlation between binder properties and 

electromechanical stability has not been fully understood. Some believe that a highly 

extensible elastomeric composite tolerant of huge volumetric changes serves better in 

maintaining the mechanical integrity and electronic conductivity [294]; while other studies 

suggested that stiffer binders actually work better in Si-based composite electrodes than 

those elastomeric alternatives [118, 293]. A recent study demonstrated that when used as a 

binder in Si-based composite electrodes both the stiffer SA and the more flexible Nafion 

demonstrated better electrochemical performance than PVDF did [295], despite the fact 

that both elastic modulus and hardness of PVDF are in between those of SA and Nafion. 

Adhesion property of electrode to current collector is also believed critical to 

electrochemical performance of Si-based composite electrodes [296]. PVDF-Cu interface 

exhibited a much stronger adhesion than SA-Cu, but only demonstrated an inferior 

electrochemical performance [297]. It is proposed that it is not the mechanical property 

(elastic modulus and hardness) of the binder material itself, nor the adhesive strength 

between electrode laminate and current collector, but the cohesive strength between the 

binder and Si particles which most affects the electrochemical performance of anode 

material [297].  Therefore, scratch tests were performed to determine the cohesive 

properties of the C/Si NPs composite in this study.  

           Scratch tests provide a better understanding of the cohesive properties of different 

anode materials prepared with PVDF/Si NPs composite and C/Si NPs composite obtained 
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from co-pyrolysis (shown in Figure. 5.5). Such cohesive property reflects the interactions 

among the composite components; for PVDF/Si NPs composite the interaction between 

PVDF and Si NPs while in case of the C/Si NP composite the interactions between Si NP, 

O and C. At the same normal load, the scratch depth on the PVDF/Si composite is 

obviously wider than that of C/Si NPs composite. As indicated by the extent of 

delamination (Figure 5.5b-g), the C/Si NPs composite gained a better scratch resistance as 

compared to the PVDF/Si NP composite, possibly due to the superior interaction among 

Si, O and C (R1-Si-O-C-R2). The fluctuations in the scratch depth versus the scratch 

distance profiles (S-D profiles) shown in Figure 5a suggest that mechanical degradations 

occurred [298]. A giant peak (fluctuation) appeared on the scratch depth profile of PVDF/Si 

NPs composite in the beginning of the test, suggesting severe failure under a normal 

loading as low as around 10 mN. In comparison, no obvious fracture was observed on the 

C/Si NPs composite under a normal loading up to 40 mN (maximum normal loading). The 

scratch test results indicate that there was an enhanced cohesion strength between Si NPs 

and C likely due to the bonds formed among Si and C through O during pyrolysis, which 

in turn significantly improved the mechanical properties of the C/Si composites.  
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Figure 5.5 Scratch test results of the PVDF and KL electrodes a) Scratch depth profiles of 
the PVDF and KL binders as a function of scratch distance; SEM images of the b) overall, 
c) beginning and d) end of micro-scratch tracks for the electrode with PVDF binder and d) 
overall, e) beginning and f) end of micro-scratch tracks for the electrode with KL binder.  

 

           Pyrolysis temperature needs to be well controlled to ensure the quality of the C/Si 

NPs composite material. As shown in Figure 5.S3, the electrode Cu sheet was severely 

curled and tore as the pyrolysis temperature further increased from 600 to 800 ℃. Since 
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(e) (f) (g) 
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Si-O bond (452kJ/mol) has a stronger bond energy than C-O bond (358kJ/mol), the C-O 

bond will break before Si-O bond at high temperature of 800 ℃ [299].  As a result, the 

dangling O will couple with Si to form more stable O-Si-O [287], which explains the 

decreasing Si but increasing SiOx peak with respect of temperature observed in XPS spectra. 

The increasing bond energy of O-Si-O will give rise to the growth of surface and interface 

stress [300], which cause  the failure of electrode as pyrolysis temperature increased from 

600 to 800 ℃. Therefore, it suggests that there might be a fine balance between bonding 

Si and C via O, which can be tailored by controlling thermal conversion conditions.  

Electrochemical performance 

           Figure 5.6 demonstrates the electrochemical behavior of the lignin-derived C/Si 

NPs composite as compared with currently popular LIB’s anode materials at 0.2C (1 

C=3579 mAh g−1), including PVDF, Nafion, sodium alginate (SA) and carboxymethyl 

cellulose (CMC). The discharging capacity of PVDF/Si electrodes degrades severely from 

3533 to 882 mAh g−1 in the first 4 cycles, which followed by a continuously falling to 510 

mAh g−1 until finally arriving at 334 mAh g−1 at 100 cycles. CMC/Si, SA/Si and Nafion/Si 

significantly improved cycling performance of Si composite anode, retaining capability of 

1295, 1680, and 1984 mAh g−1, respectively, after 100 cycles. Comparing to the four 

popular binders, the C/Si NPs composite exhibited a comparable cycling performance to 

CMC/Si, SA/Si but was better than Nafion/Si. The C/Si NPs composite achieved a 

reversible capacity of 2932 mAh g−1, at the first cycle and maintained capacity over 2500 

mAh g−1 until the 73 cycles before retaining at 1760 mAh g−1 after 100 cycles.  



 

154 
 

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

 C/Si
 CMC/Si
 SA/Si
 Nafion/Si
 PVDF/Si

Di
sc

ha
rg

e 
Ca

pa
ci

ty
 (m

Ah
/g

)

Cycle number

0

20

40

60

80

100

Co
ul

um
bi

c 
Ef

fic
ie

nc
y 

(%
)

 
Figure 5.6 Electrochemical performance of C/Si NPs composite electrodes compared with 
currently popular Si-based anode electrode materials [119]. 

 

           Recent studies have shown that the rapid capacity loss of Si NPs composite 

electrodes is caused by mechanical degradations as a result of severe volume change during 

charge and discharge [118]. The good electrochemical performance of a C/Si composite-

based anode demonstrates that the enhanced cohesion strength between Si NPs and lignin-

derived carbonaceous material significantly improved the cycling stability of the C/Si 

composites electrode, which can be attribute to the following aspects. First, the coating 

layer is able to mitigate the mechanical degradation through either restricting excessive 

volume change during electrochemical cycling with chemical bond among Si, O, and C, or 

form a shell to protect the Si NP core from redundant lithiation. Second, the aggregated 

carbon framework bridges the Si NPs to assure a sound electronic conductivity; while the 

porous carbonaceous layer surrounding the Si NPs allows Li ions to permeate the coating 

layer thus provide excellent ionic conductivity of the C/Si composite electrode.  
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EGA-MS and HC-GC/MS 

           Knowing that the physical, mechanical and electrochemical performance of the C/Si 

NP composite materials are dependent on pyrolysis conditions such as temperature and 

heating rate, it is critical to understand the chemical aspect of the pyrolysis process to 

correlate the pyrolysis chemistry with the material property. Such knowledge can help to 

guide the synthesis process and ensure the quality control of the mechanical and 

electrochemical performance of the prepared materials. However, this knowledge is 

currently missing. To better understanding the formation mechanisms of the C/Si NPs 

composite, EGA-MS and HC-GC/MS analysis were carried out as discussed in the 

following section.  

           Figure 5.7a compared the GC/MS chromatograms acquired from fast pyrolysis of 

KL and KL/Si NPs (1: 1 wt. ratio). The temperature ramp of fast pyrolysis was as fast as a 

few hundred degrees Celsius per second. No differences on either products distribution or 

yields can be observed from the chromatograms, which indicates that Si NP did not cause 

significant change to the thermochemical reactions of KL during fast pyrolysis. However, 

the effect of Si NP on the KL depolymerization became obvious during slow pyrolysis as 

temperature ramp decreases to 2 ℃/min.  As shown in Figure 5.7b, two continuous peaks 

can be seen on the EGA-MS profile during slow pyrolysis of KL at 2 ℃/min. The first 

started at ~120 ℃ and peaked at ~220 ℃, followed by a broad second peak at ~334 ℃ 

before it became flat at 500 ℃. The profile indicates the thermal decomposition of KL 

started at temperature as low as 120 ℃, while most volatiles evolved at around 334 ℃ and 

the reaction terminated at around 500 ℃. In comparison, when KL and Si NPs was co-

pyrolyzed (at 1:1 ratio) at 2 ℃/min ramp, besides the large peaks, there was an additional 
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volatile peak appeared between 500 to 700 ℃, where the pyrolysis of just KL had 

completed at this temperature. The peak at 500-700 ℃ increased accordingly when KL to 

Si NPs ratio was reduced to 1:2. However, no such peak can be spotted during co-pyrolysis 

of KL and SiOx NPs regardless the mixture ratios (Figure 5.7c). This observation points 

to possible interactions or even reactions between KL to Si NPs during slow pyrolysis. The 

EGA-MS profile only offers a rough snapshot about the KL decomposition with or without 

the presence of Si NPs during temperature from 100 to 800 ℃.  To gain more insights about 

the product evolving profile, volatiles collected from two temperature regions, 100-500 ℃ 

and 500-800 ℃, respectively, were further analyzed by GC/MS using the heart-cut (HC) 

mode.  
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Figure 5.7 a) Fast pyrolysis of KL and KL/Si NPs (1:1) at 600 ℃; EGA-MS profiles for 
pyrolysis of b) KL/Si NPs and c) KL/SiO NPs from 100 to 800 ℃ with a 2 ℃/min ramp. 

           Table 5.S2 shows the yields of GC/MS detectable volatile compounds and solid 

residues from co-pyrolysis of KL and Si NPs at 2 ℃/min ramp in the temperature regions 

of 100-500 ℃ and 500-800 ℃, respectively, of which 40 compounds were identified and 

quantified. For comparison, as shown in Table 5.1, the 40 compounds evolved through 

pyrolysis of KL and KL/Si NPs from 100 to 800 ℃ at 2 ℃/min were classified into seven 

categories and detailed formation mechanisms of each category from slow pyrolysis 

according to a previous study [37]. No noticeable difference in either composition or yield 

can be observed between pyrolysis of KL and KL/Si NPs in the temperature region of 100-

500 ℃, suggesting that the reactions was more related to lignin pyrolysis despite the 

interactions between Si NPs and C may have started playing a role. However, significant 

change in product distribution was observed in temperature region of 500-800 ℃. The 

volatiles yield was 0.23 g/100g when just KL was pyrolyzed as compared to a yield of 2.5 

g/100g when KL was co-pyrolyzed with Si NPs. The significant increase in volatiles yield 

in temperature region of 500-800 ℃ suggests possible interactions or even reactions 

between KL and Si NPs during co-pyrolysis. Among the volatiles, there are about 0.68 

g/100g H and G-type compounds, such as phenol, methylphenol and 2-methoxy-4-

(b) 
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vinylphenol. Vinylphenols are believed to be the primary products of β-O-4 cleavage of 

lignin, while phenol and methylphenol are involved with the secondary reactions of 

vinylphenols via demothoxylation and demethylation reactions [37, 38]. The light phenolic 

compounds are probably derived from dimers, trimers or small oligomers which originally 

generated from lignin decomposition during pyrolysis at low temperature. Upon generation, 

the dimer, trimer or oligomers might be subject to interactions with Si NPs thus give rise 

to the R1-Si-O-C-R2. Due to the higher bond energy of Si-O, the R1-Si-O-C-R2 may not 

be depolymerized at temperatures under 500 ℃; however, as temperature increases, the 

relatively weaker C-O bond starts to break. In addition to the phenolic compounds, around 

1.69 g/100g hydrocarbon (mostly benzene, toluene and xylene) was produced during co-

pyrolysis of KL/Si NPs at 500-800 ℃, accounting for 66.27% of total phenolic compounds 

at this temperature region. The aromatic hydrocarbons could be formed either through 

dehydration of the phenolic compounds or via Diels–Alder reaction with light olefins, such 

as  ethylene and propylene, at high temperature (above 700 ℃) [218]. 

Table 5.1 Product distribution of KL and KL/Si NPs slow pyrolysis at two temperature 
regions 

Compound name 
100-500 °C  500-800 °C 

KL, g/100g KL KL/Si NPs, g/100g KL KL, g/100g KL KL/Si NPs, g/100g KL 

Hydrocarbons 2.09 ± 0.15 1.85 ± 0.15 0.23 ± 0.16 1.69 ± 0.40  

Carbohydrates 1.43 ± 0.51 1.58 ± 0.42 - - 

H-type substances 4.54 ± 0.14 4.74 ± 0.11 - 0.48 ± 0.16 

G-type substances 12.05 ± 0.39 12.26 ± 0.69 - 0.20 ± 0.15 

S-type substances 0.59 ± 0.05 0.64 ± 0.22 - - 

PAHs 1.54 ± 0.09 1.53 ± 0.12 - 0.18 ± 0.00 

Others 1.65 ± 0.24 1.35 ± 0.32 - - 

Total volatiles yield 23.89 ± 1.57 23.95 ± 2.03 0.23 ± 0.16 2.55 ± 0.71 p = 0.0053 

 

           The EGA-MS and HC-GC/MS analyses further confirm that the previous 
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assumption - that adding Si NPs to KL affected the slow pyrolysis of KL by building up 

bonds between Si and C via O around the surface of the Si NPs. Thermal conversion 

temperature needs to be controlled to ensure a balanced ratio between Si-O and Si-C When 

KL/Si NPs (1 to 1) is pyrolyzed with a 2 ℃/min ramp, the formation of prepared C/Si 

composite can be divided into several phases in respect to temperature. At pyrolysis 

temperature far below 500 ℃, the reactions are primarily related to KL pyrolysis, which is 

followed by or coincides the formation of partially pyrolyzed lignin coating on the surface 

of Si NPs. When the temperature further increases to ~500 ℃, lignin was carbonized and 

the bonds between Si NPs and C via O were formed. As temperature increases to 500-

800 ℃, more stable SiO2 will gradually form on the surface of Si NPs at the expense of Si-

O-C bond, which cause increase in the surface and interface stress of C/Si composite. The 

intense stress negatively affects both quality and uniformity of the lignin-derived C/Si 

composite electrode thus leads to reduced electrochemical performance [133]. 
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Conclusions 

           In this study, a three-dimensional, interconnected C/Si composite was synthesized 

from kraft lignin and silicon nanoparticles through a one-pot pyrolysis process. It was 

found the elemental Si and C of the C/Si NPs were most likely linked via O rather than 

direct Si-C bond. The formed coating layer on the surface of Si NPs may serve to alleviate 

the mechanical degradation through either restricting excessive volume change during 

electrochemical cycling with chemical bond among Si, O, and C, or form a shell to protect 

the Si NP core from redundant lithiation. Additionally, the enriched carbon framework 

bridges the Si NPs to assure a sound electronic conductivity; while the porous 

carbonaceous layer surrounding the Si NPs allows Li ions to permeate the coating layer 

thus provides excellent ionic conductivity of the C/Si composite electrode. All of those 

contribute to an enhanced electronic performance. When examined as anode of LIBs, the 

lignin-derived C/Si NPs composite delivered a high initial specific capacity of 2932 mAh/g 

and a retaining capacity of 1760 mAh/g after 100 cycles at 0.72 A/g. EGA-MS and HC-

GC/MS analysis suggest that the interaction of the Si, O and C can be tailored by 

controlling pyrolysis conditions. 
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Kraft lignin characterization 

Gel Permeation Chromatography (GPC) 

           For molecular weight measurement, KL was treated by the acetylation method[252]. 

Typically, 10 mg of KL was dissolved in 2.5 ml 92:8 (v/v) anhydrous acetic acid and acetyl 

bromide mixture with continuous stirring at 50 °C for 2 h. The acetic acid and excess acetyl 

bromide solvent were dried in N2 before dissolved in tetrahydrofuran (THF). The molecular 

weight distribution of the lignin samples was determined by an HPLC system (Ultimate 

3000, Dionex Corporation, Sunnyvale, CA, USA) equipped with an ultraviolet detector 

and an organic GPC column (PLgel 5 μm Mixed-D, Agilent Technologies, Santa Clara, 

CA, USA) using THF as mobile phase at a flow rate of 0.5 ml/min. The materials eluting 

from the column was monitored by recording absorbance at 290 nm. The chromatography 

was calibrated using low molecular weight polystyrene standards (Product No. 48937, 

Sigma-Aldrich). 

2D 13C−1H HSQC NMR spectroscopic analysis 

           Nuclear magnetic resonance (NMR) spectra of lignin samples were acquired in a 

Bruker Avance III HD 500-MHz spectrometer. KL (~10 mg) were dissolved in 110 mg 

DMSO-d6 before transferring to the micro-NMR tube. Heteronuclear single quantum 

coherence (HSQC) tests were carried out with a Bruker pulse sequence (hsqcetgpspsi2.2) 
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on a N2 cryoprobe (BBO 1H & 19F-5mm) with the following acquisition parameters: 

spectra width 12 ppm in F2 (1H) dimension with 1024 data points (acquisition time 85.2 

ms), 166 ppm in F1 (13C) dimension with 256 increments (acquisition time 6.1 ms), a 1.0-

s delay, a 1JC–H of 145 Hz, and 128 scans. The central DMSO-d6 solvent peak (δC/δH at 

39.5/2.49) was used for chemical shifts calibration. Assignment and the relative abundance 

of lignin compositional subunits and interunit linkage were estimated using volume 

integration of contours in HSQC spectra according to published literature [183, 185]. For 

volume integration of monolignol compositions of syringyl (S), guaiacyl (G), and p-

hydroxyphenyl (H), the cross peaks of S2/6, G2, and H2/6 contours were used with G2 

integrals doubled. The abundances of aromatics and side-chain linkages were presented as 

percentage of total aromatic SGH units. 
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Figure 5.S1 13C-1H (HSQC) spectra of aromatic (top) and aliphatic (bottom) regions of 
kraft lignin.  
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Figure 5.S2 FTIR spectra of kraft lignin.  
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Figure 5.S3 Image of the C/Si NPs composite electrode from pyrolysis at 600 and 800 ℃.  

800 ℃ 
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Table 5.S1 Molecular weight and composition analysis of kraft lignin 

 Mw (g/mol) Mn (g/mol) PDI Glucan (g/100g KL) Xylan (g/100g KL) Purity (%) 

KL 5736.11 3056.34 1.88 0.11 ± 0.01 0.96 ± 0.03 98.94 ± 0.03 
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Table 5.S2 Product distribution of kraft lignin slow pyrolysis at multiple temperature 
regions 

 
Compound name 

100-500 °C (g/100g KL) 500-800 °C (g/100g KL) 

 KL KL/Si NPs KL KL/Si NPs 

1 2-butene 0.69 ± 0.10 0.66 ± 0.04 0.01 ± 0.01 0.06 ± 0.02 
2 acetone 0.07 ± 0.02 0.06 ± 0.02 - - 
3 benzene 0.37 ± 0.00 0.27 ± 0.01 0.14 ± 0.10 0.54 ± 0.11 
4 acetic acid 0.47 ± 0.02 0.26 ± 0.01 - - 
5 toluene 0.65 ± 0.02 0.47 ± 0.03 0.07 ± 0.04 0.77 ± 0.17 
6 3-furaldehyde 0.08 ± 0.00 0.08 ± 0.01 - - 
7 ethylbenzene 0.01 ± 0.00 0.01 ± 0.00 - - 
8 xylenes 0.32 ± 0.02 0.27 ± 0.05 0.01 ± 0.01 0.32 ± 0.10 
9 phenol 1.61 ± 0.05 1.30 ± 0.06 - 0.21 ± 0.05 
10 methylphenols 1.59 ± 0.02 1.71 ± 0.01 - 0.27 ± 0.11 
11 guaiacol 1.11 ± 0.03 0.86 ± 0.03 - - 
12 dimethylphenols 1.08 ± 0.06 1.19 ± 0.06 - - 
13 creosol 2.09 ± 0.02 2019 ± 0.05  0.02 ± 0.02 
14 3,4-dimethoxytoluene 0.12 ± 0.00 0.49 ± 0.02 - - 
15 1,2-bizenediol,3-methyl 0.46 ± 0.06 0.47 ± 0.06 - - 
16 4-ethyl-2-methoxyphenol 0.58 ± 0.05 0.33 ± 0.02 - - 
17 2-methoxy-4-vinylphenol 5.92 ± 0.15 6.73 ± 0.15 - 0.16 ± 0.12 
18 2,6-dimethoxyphenol 0.34 ± 0.03 0.26 ± 0.17 - - 
19 trans-isoeugenol - 0.10 ± 0.06 - - 
20 2-methoxy-4-propylphenol 0.07 ± 0.01 0.03 ± 0.01 - - 
21 4-Ethylcatechol 0.13 ± 0.02 0.08 ± 0.01 - 0.01 ± 0.00 
22 vanillin 0.25 ± 0.04 0.30 ± 0.16 - - 
23 isoeugenol 0.76 ± 0.01 0.56 ± 0.02  0.01 ± 0.00 
24 apocynin 0.22 ± 0.01 0.17 ± 0.01 - - 
25 benzene, 1,2,3-trimethoxy-5-methyl- 0.41 ± 0.06 0.45 ± 0.26 - - 

26 2-Propanone, 1-(4-hydroxy-3-
methoxyphenyl)- 0.17 ± 0.02 0.16 ± 0.02 - - 

27 3,5-dimethoxyacetophenone 0.14 ± 0.02 0.07 ± 0.01 - - 
28 methyl homovanillate 0.03 ± 0.02 0.06 ± 0.04 - - 
29 3-Ethoxy-4-methoxybenzaldehyde 0.48 ± 0.08 0.40 ± 0.17 - - 
30 homovanillic acid 0.48 ± 0.02 0.49 ± 0.25 - 0.01 ± 0.01 
31 2 6-dimethoxy-4-(2-propenyl)-phenol 0.23 ± 0.02 0.18 ± 0.02 - - 

32 Acetophenone, 4'-hydroxy-3,5-
dimethoxyphenhl - 0.11 ± 0.04 - - 

33 hexadecanoic acid 0.30 ± 0.11 0.26 ± 0.03 - - 
34 oleic acid 0.25 ± 0.21 0.34 ± 0.05 - - 
35 octadecanoic acid 0.21 ± 0.12 0.27 ± 0.02 - - 

36 2,3,8-thihydroxy-4-isopropyl-6-
methyl-1-naphthaldehyde 0.15 ± 0.01 0.19 ± 0.06 - - 

37 6- methoxyhemigossypol 0.14 ± 0.02 0.15 ± 0.02 - 0.01 ± 0.00 

38 5-methoxy-7-
methylbenz(a)anthracene 0.59 ± 0.04 0.92 ± 0.45 - - 

39 secoisolariciresinol - 0.33 ± 0.24 - 0.12 ± 0.00 
40 benzo[vwx]hexaphene 0.59 ± 0.03 0.46 ± 0.09 - 0.05 ± 0.00  
 Volatiles yield 23.18 ± 1.52 23.66 ± 2.85 0.23 ± 0.16 2.55 ± 0.71 
 Char weight N/A N/A 48.72 ± 1.72 49.18 ± 2.49 
 Total yield   72.13 ± 3.56 75.39 ± 5.34 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 
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Conclusions  

           Aiming to unlock the full potential of lignin and fulfill lignocellulosic 

biorefineries’ economic viability, in the present study, a practical strategy that convert 

lignin from the remaining by-product of biofuel production into energy storage material 

was mechanistically investigated. First of all, a novel lignin fractionation method to 

extract lignin from various biomass feedstocks was developed. Additionally, based on 

a fundamental investigation of slow pyrolysis, further investigations were performed 

on 1) the effect of lignin sources on the pore structure formation of lignin-derived ACs; 

and 2) the lignin-nanoparticle interactions during thermal processing and characterize 

the chemical, structural, mechanical and electrochemical proprieties of the derived 

nanocomposite materials. The knowledge acquired can be applied to improve 

electrochemical performance of lignin-derived activate carbon and nanocomposite 

materials for energy storage purpose and establishing processing-structure-function 

relationships to provide critical knowledge and guidance on designing lignin-based 

carbon materials for electrochemical energy storage applications. 

           Walnut and peach endocarps have high lignin content, bulk density, and energy 

density compared to other common biomass feedstocks due to the unique plant cell wall 

structures. DES pretreatment was shown to be an effective method to fractionate 

endocarps by  depolymerizing the native lignin while at the same time keeping thermal 

stability. Over 90% sugar yields were achieved during enzymatic hydrolysis of DES 

pretreated peach and walnut endocarps while lignins were extracted at high yields and 

purity. The native walnut and peach CELs are SGH type lignin with dominant G units. 
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The DES pretreatment significantly removes the S and H unit while condenses the G 

unit. Meanwhile, nearly all β-O-4’ and a large portion of β-5’ linkages were removed; 

the relative abundance of β-β’ linkages in DES extracted lignin increased during DES 

pretreatment.   

           As for slow pyrolysis of lignin, vinylphenols are the primary products 

corresponding to cleavage of the β-O-4 linkages while the primary products underwent 

a series of secondary reactions and produce a variety of H, G and S type compounds. 

As heating rate increases, the volatile yield increased while solid residues yield 

decreased. With increasing pyrolysis temperature, specific surface areas of the lignin-

derived solid residues increased. Pyrolysis breaks the primary ether linkages of lignin 

units and side chains, which contribute to the decrease of relative degree of aromaticity 

and polarity as pyrolysis temperature increases. Although elemental C increases and O 

reduces in respect to temperature, the oxygen-containing functional groups on the 

surface of solids increased significantly when pyrolysis temperature is higher than 

600 °C. 

           When applied to electrode material of supercapacitors, lignin-derived AC 

exhibited a three-dimensional pore structure with numerous micro-, meso- and macro-

porous channels. Comparing with pine (softwood) lignin-derived AC, poplar 

(hardwood) lignin-derived AC showed a higher level of specific surface area and 

volume of both mesopores and micropores, which contribute to a higher value of 

specific capacitance obtained from the poplar lignin-derived AC than the softwood 

lignin-derived AC.  
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           Through slow pyrolysis, a 3-dimensional, interconnected C/Si composite can be 

synthesized from lignin and silicon nanoparticles. It was found the elemental Si and C 

of the C/Si NPs were most likely linked via O rather than direct Si-C bond. The formed 

coating layer on the surface of Si NPs may serve to alleviate the mechanical degradation 

through either restricting excessive volume change during electrochemical cycling with 

chemical bond among Si, O, and C, or form a shell to protect the Si NP core from 

redundant lithiation. In addition, the enriched carbon framework bridges the Si NPs to 

assure a sound electronic conductivity; while the porous carbonaceous layer 

surrounding the Si NPs allows Li ions to permeate the coating layer thus provides 

excellent ionic conductivity of the C/Si composite electrode. All of those contribute to 

an enhanced electronic performance. EGA-MS and HC-GC/MS analyses suggest that 

the interaction of the Si, O and C can be tailored by controlling pyrolysis conditions. 

Future work 

           Although DES pretreatment was demonstrated to be an effective method to 

fractionate biomass for biorefineries to produce both biofuels and high-quality lignin 

streams, the cost is still too high. Therefore, reducing costs of DES pretreatment are 

critical for industrial application. Such efforts include finding low-cost and 

biocompatible precursors, pretreatment at high biomass loadings, process integration 

and intensification.  Furthermore, the properties of the DES extract lignin need to be 

linked to performance of the carbon materials for electrochemical energy storage 

applications. 
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           The effect of lignin pyrolysis on the resulting carbon material was investigated 

in this study. However, the connections between operation condition of activation 

process and lignin-derived AC as well as the possible interactions between 

carbonization and activation are not yet clear. Additionally, the variation of pyrolytic 

biochar and hydrothermal biochar to the functional material application has not been 

touched. Therefore, future work is needed to link the synthesis condition, properties 

and performance of functional materials.  

           This study points to several promising directions about tailoring the properties 

of synthesized C/Si composite for LIBs negative electrode or even lignin-derived 

carbon fibers via tuning pyrolysis condition. Since elemental O plays a significant role 

when synthesis C/Si composite for LIBs application, it will be interesting to study 

oxygen containing additives, such as PEO into the co-pyrolysis process. Instead of 

using inert carrier gas (argon), it might be possible to introduce partial oxygen or air 

into the atmosphere during pyrolysis. Additionally, systematical optimization of 

operation conditions will help to obtain improved electrochemical performance.   

           Finally, it is worthwhile evaluating feedstock logistics and economic potential 

of the developed lignin valorization strategy to aid the process design and optimization 

through coproducing lignin-derived carbon materials in a biorefinery. Simulation 

software such as Aspen Plus can be used for modeling the whole process with unit 

operations such as feedstock preprocessing, biomass fractionation, carbon material 

preparation, chemical recycling, and waste handling to calculate the energy and mass 

balances. The results will allow an assessment of the technical maturity and cost of the 
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individual steps and overall process.    



 

174 
 

REFERENCES 

1. Vincent, J., From cellulose to cell. Journal of Experimental Biology, 1999. 202(23): 
p. 3263-3268. 

2. Boerjan, W., J. Ralph, and M. Baucher, Lignin biosynthesis. Annual review of plant 
biology, 2003. 54(1): p. 519-546. 

3. Mansfield, S.D., et al., Whole plant cell wall characterization using solution-state 
2D NMR. 2012. 7(9): p. 1579. 

4. Li, W., et al., Fractionation and characterization of lignin streams from unique 
high-lignin content endocarp feedstocks. 2018. 11(1): p. 304. 

5. Azadi, P., et al., Liquid fuels, hydrogen and chemicals from lignin: A critical review. 
Renewable and Sustainable Energy Reviews, 2013. 21: p. 506-523. 

6. Hatakeyama, H. and T. Hatakeyama, Lignin structure, properties, and applications, 
in Biopolymers. 2009, Springer. p. 1-63. 

7. Li, C., et al., Catalytic Transformation of Lignin for the Production of Chemicals 
and Fuels. Chem Rev, 2015. 115(21): p. 11559-624. 

8. Chen, F. and R.A. Dixon, Lignin modification improves fermentable sugar yields 
for biofuel production. Nature biotechnology, 2007. 25(7): p. 759-761. 

9. Stevens, J.C. and J. Shi, Biocatalysis in ionic liquids for lignin valorization: 
Opportunities and recent developments. Biotechnology advances, 2019: p. 107418. 

10. Grabber, J.H., How do lignin composition, structure, and cross-linking affect 
degradability? A review of cell wall model studies. Crop Science, 2005. 45(3): p. 
820-831. 

11. Calvo‐Flores, F.G. and J.A. Dobado, Lignin as renewable raw material. 
ChemSusChem, 2010. 3(11): p. 1227-1235. 

12. U.S. Department of Energy, I.N.L., Bioenergy Feedstock Library. 2016. 
13. Menind, A., et al., Pretreatment and usage of pulp and paper industry residues for 

fuels production and their energetic potential. Estonian Research Institute of 
Agriculture, 2012. 10: p. 149-155. 

14. Wyman, C.E., et al., Comparative data on effects of leading pretreatments and 
enzyme loadings and formulations on sugar yields from different switchgrass 
sources. Bioresource Technology, 2011. 102(24): p. 11052-11062. 

15. Yang, B. and C.E. Wyman, Effect of xylan and lignin removal by batch and 
flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. 
Biotechnology and bioengineering, 2004. 86(1): p. 88-98. 

16. Ragauskas, A.J., et al., Lignin Valorization: Improving Lignin Processing in the 
Biorefinery. Science, 2014. 344(6185): p. 709-+. 

17. Yoo, C.G., et al., Effects of organosolv and ammonia pretreatments on lignin 
properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 2017. 
19(8): p. 2006-2016. 

18. Rogers, R.D. and G.A. Voth, Guest editorial-Ionic liquids. 2007, AMER 
CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA. 

19. Plechkova, N.V. and K.R. Seddon, Ionic liquids:“designer” solvents for green 



 

175 
 

chemistry. Vol. 105. 2007: Wiley: New York. 
20. George, A., et al., The effect of ionic liquid cation and anion combinations on the 

macromolecular structure of lignins. Green chemistry, 2011. 13(12): p. 3375-3385. 
21. Alvira, P., et al., Pretreatment technologies for an efficient bioethanol production 

process based on enzymatic hydrolysis: a review. Bioresource technology, 2010. 
101(13): p. 4851-4861. 

22. Humbird, D., et al., Process design and economics for biochemical conversion of 
lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic 
hydrolysis of corn stover. 2011, National Renewable Energy Laboratory (NREL), 
Golden, CO. 

23. Tao, L., et al., Process and technoeconomic analysis of leading pretreatment 
technologies for lignocellulosic ethanol production using switchgrass. Bioresource 
technology, 2011. 102(24): p. 11105-11114. 

24. Zhang, Q., et al., Deep eutectic solvents: syntheses, properties and applications. 
Chemical Society Reviews, 2012. 41(21): p. 7108-7146. 

25. Francisco, M., A. van den Bruinhorst, and M.C. Kroon, New natural and renewable 
low transition temperature mixtures (LTTMs): screening as solvents for 
lignocellulosic biomass processing. Green Chemistry, 2012. 14(8): p. 2153-2157. 

26. Abbott, A.P., et al., Deep eutectic solvents formed between choline chloride and 
carboxylic acids: versatile alternatives to ionic liquids. Journal of the American 
Chemical Society, 2004. 126(29): p. 9142-9147. 

27. Florindo, C., et al., Insights into the synthesis and properties of deep eutectic 
solvents based on cholinium chloride and carboxylic acids. ACS Sustainable 
Chemistry & Engineering, 2014. 2(10): p. 2416-2425. 

28. Alvarez-Vasco, C., et al., Unique low-molecular-weight lignin with high purity 
extracted from wood by deep eutectic solvents (DES): a source of lignin for 
valorization. Green Chemistry, 2016. 18(19): p. 5133-5141. 

29. Behling, R., S. Valange, and G. Chatel, Heterogeneous catalytic oxidation for 
lignin valorization into valuable chemicals: what results? What limitations? What 
trends? Green Chemistry, 2016. 18(7): p. 1839-1854. 

30. Yang, B. and C.E. Wyman, Pretreatment: the key to unlocking low‐cost cellulosic 
ethanol. Biofuels, Bioproducts and Biorefining, 2008. 2(1): p. 26-40. 

31. Hashimoto, A., et al., Direct evidence for atomic defects in graphene layers. Nature, 
2004. 430(7002): p. 870. 

32. Ebbesen, T. and P. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 
1992. 358(6383): p. 220. 

33. Kroto, H.W., et al., C60: Buckminsterfullerene. nature, 1985. 318(6042): p. 162-
163. 

34. Liu, W.J., H. Jiang, and H.Q. Yu, Thermochemical conversion of lignin to 
functional materials: a review and future directions. Green Chemistry, 2015. 
17(11): p. 4888-4907. 

35. Zhu, J., et al., A sustainable platform of lignin: From bioresources to materials and 
their applications in rechargeable batteries and supercapacitors. Progress in 
Energy and Combustion Science, 2020. 76: p. 100788. 



 

176 
 

36. Sen, S., S. Patil, and D.S. Argyropoulos, Thermal properties of lignin in 
copolymers, blends, and composites: a review. Green Chemistry, 2015. 17(11): p. 
4862-4887. 

37. Wenqi Li, N.W., Xin Gao, Doo Young Kim, Jian Shi, Understanding slow pyrolysis 
of lignin by linking the pyrolysis chemistry and material properties. 2020. 

38. Li, W., et al., Understanding Low-pressure Hydropyrolysis of Lignin using 
Deuterated Sodium Formate. ACS Sustainable Chemistry & Engineering, 2017. 

39. Ferdous, D., et al., Pyrolysis of lignins: experimental and kinetics studies. Energy 
& Fuels, 2002. 16(6): p. 1405-1412. 

40. Yang, H., et al., Characteristics of hemicellulose, cellulose and lignin pyrolysis. 
Fuel, 2007. 86(12-13): p. 1781-1788. 

41. Patwardhan, P.R., Understanding the Product Distribution from Biomass Fast 
Pyrolysis. 2010. 

42. Zhao, J., et al., Thermal degradation of softwood lignin and hardwood lignin by 
TG-FTIR and Py-GC/MS. Polymer degradation and stability, 2014. 108: p. 133-
138. 

43. Asmadi, M., H. Kawamoto, and S. Saka, Gas- and solid/liquid-phase reactions 
during pyrolysis of softwood and hardwood lignins. Journal of Analytical and 
Applied Pyrolysis, 2011. 92(2): p. 417-425. 

44. Li, W., et al., Linking lignin source with structural and electrochemical properties 
of lignin-derived carbon materials. 2018. 8(68): p. 38721-38732. 

45. Sugimoto, Y. and Y. Miki. Chemical structure of artificial coals obtained from 
cellulose, wood and peat. in Proceedings of the 9th International Conference on 
Coal Science ICCS. 1997. 

46. Van Krevelen, D.W., Coal: typology, physics, chemistry, constitution. 1993: 
Elsevier Amsterdam. 

47. Pandey, A., et al., Recent advances in thermochemical conversion of biomass. 2015: 
Elsevier. 

48. Funke, A. and F. Ziegler, Hydrothermal carbonization of biomass: a summary and 
discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts 
and Biorefining, 2010. 4(2): p. 160-177. 

49. Kuster, B., 5‐Hydroxymethylfurfural (HMF). A review focussing on its 
manufacture. Starch‐Stärke, 1990. 42(8): p. 314-321. 

50. Bergius, F., Beiträge zur Theorie der Kohleentstehung. Naturwissenschaften, 1928. 
16(1): p. 1-10. 

51. Lau, F.S., et al., Peat beneficiation by wet carbonization. International journal of 
coal geology, 1987. 8(1-2): p. 111-121. 

52. Blazsó, M., et al., The effect of hydrothermal treatment on a Merseburg lignite. 
Fuel, 1986. 65(3): p. 337-341. 

53. Murray, J.a. and D. Evans, The brown-coal/water system: Part 3. Thermal 
dewatering of brown coal. Fuel, 1972. 51(4): p. 290-296. 

54. Terres, E., Uber die Entwgsserung und Veredlung von Rohtorf und Rohbraumkohle. 
Brennstoff-Chemie, 1952. 2: p. 1-12. 

55. Molton, P.M. and T. Demmitt, Reaction mechanisms in cellulose pyrolysis: a 



 

177 
 

literature review. 1977, Battelle Pacific Northwest Labs., Richland, WA (USA). 
56. Knezevic, D., W.P.M. van Swaaij, and S.R. Kersten, Hydrothermal conversion of 

biomass: I, glucose conversion in hot compressed water. Industrial & Engineering 
Chemistry Research, 2009. 48(10): p. 4731-4743. 

57. Nelson, D.A., et al., Application of direct thermal liquefaction for the conversion 
of cellulosic biomass. Industrial & engineering chemistry product research and 
development, 1984. 23(3): p. 471-475. 

58. Boehm, H., Some aspects of the surface chemistry of carbon blacks and other 
carbons. Carbon, 1994. 32(5): p. 759-769. 

59. Kinoshita, K., Carbon: electrochemical and physicochemical properties. 1988. 
60. Pandolfo, A. and A. Hollenkamp, Carbon properties and their role in 

supercapacitors. Journal of power sources, 2006. 157(1): p. 11-27. 
61. Bimer, J., et al., Modified active carbons from precursors enriched with nitrogen 

functions: sulfur removal capabilities. Fuel, 1998. 77(6): p. 519-525. 
62. Jurewicz, K., et al., Ammoxidation of brown coals for supercapacitors. Fuel 

Processing Technology, 2002. 77-78: p. 191-198. 
63. Jurewicz, K., et al., Ammoxidation of active carbons for improvement of 

supercapacitor characteristics. Electrochimica Acta, 2003. 48(11): p. 1491-1498. 
64. Cagniant, D., et al., Structural characterization of nitrogen-enriched coals. Energy 

& fuels, 1998. 12(4): p. 672-681. 
65. Carrott, P.J.M., et al., Reactivity and porosity development during pyrolysis and 

physical activation in CO2 or steam of kraft and hydrolytic lignins. Journal of 
Analytical and Applied Pyrolysis, 2008. 82(2): p. 264-271. 

66. Suhas, P.J.M. Carrott, and M.M.L.R. Carrott, Using alkali metals to control 
reactivity and porosity during physical activation of demineralised kraft lignin. 
Carbon, 2009. 47(4): p. 1012-1017. 

67. Liu, J., et al., Three-dimensional hierarchical and interconnected honeycomb-like 
porous carbon derived from pomelo peel for high performance supercapacitors. 
Journal of Solid State Chemistry, 2018. 257: p. 64-71. 

68. Wang, J. and S. Kaskel, KOH activation of carbon-based materials for energy 
storage. Journal of Materials Chemistry, 2012. 22(45): p. 23710-23725. 

69. Montané, D., V. Torné-Fernández, and V. Fierro, Activated carbons from lignin: 
kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. 
Chemical Engineering Journal, 2005. 106(1): p. 1-12. 

70. Gonzalez-Serrano, E., et al., Development of porosity upon chemical activation of 
kraft lignin with ZnCl2. Industrial & engineering chemistry research, 1997. 36(11): 
p. 4832-4838. 

71. Saha, D., et al., Studies on Supercapacitor Electrode Material from Activated 
Lignin-Derived Mesoporous Carbon. Langmuir, 2014. 30(3): p. 900-910. 

72. Fierro, C.M., et al., Colloidal templating synthesis and adsorption characteristics 
of microporous–mesoporous carbons from Kraft lignin. Carbon, 2013. 62: p. 233-
239. 

73. Gu, W. and G. Yushin, Review of nanostructured carbon materials for 
electrochemical capacitor applications: advantages and limitations of activated 



 

178 
 

carbon, carbide‐derived carbon, zeolite‐templated carbon, carbon aerogels, 
carbon nanotubes, onion‐like carbon, and graphene. Wiley Interdisciplinary 
Reviews: Energy and Environment, 2014. 3(5): p. 424-473. 

74. Winter, M. and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? 
Chemical reviews, 2004. 104(10): p. 4245-4270. 

75. Tutorials, E., Ultracapacitors. 2019. 
76. Zhai, Y.P., et al., Carbon Materials for Chemical Capacitive Energy Storage. 

Advanced Materials, 2011. 23(42): p. 4828-4850. 
77. C-Zhang, W.L., et al., 3D Hierarchical Porous Carbon for Supercapacitors 

Prepared from Lignin through a Facile Template-Free Method. Chemsuschem, 
2015. 8(12): p. 2114-2122. 

78. Wu, Y., et al., One-step Preparation of Alkaline Lignin-based Activated Carbons 
with Different Activating Agents for Electric Double Layer Capacitor. Int. J. 
Electrochem. Sci, 2017. 12: p. 7227-7239. 

79. Guo, N., et al., Enzymatic hydrolysis lignin derived hierarchical porous carbon for 
supercapacitors in ionic liquids with high power and energy densities. Green 
Chemistry, 2017. 19(11): p. 2595-2602. 

80. Navarro-Suárez, A.M., et al., Nanoporous carbons from natural lignin: study of 
structural–textural properties and application to organic-based supercapacitors. 
RSC Advances, 2014. 4(89): p. 48336-48343. 

81. Zhang, W., et al., Hierarchical porous carbon derived from lignin for high 
performance supercapacitor. Colloids and Surfaces A: Physicochemical and 
Engineering Aspects, 2015. 484: p. 518-527. 

82. Jeon, J.W., et al., Controlling Porosity in Lignin‐Derived Nanoporous Carbon for 
Supercapacitor Applications. ChemSusChem, 2015. 8(3): p. 428-432. 

83. Klose, M., et al., Softwood lignin as a sustainable feedstock for porous carbons as 
active material for supercapacitors using an ionic liquid electrolyte. ACS 
Sustainable Chemistry & Engineering, 2017. 5(5): p. 4094-4102. 

84. Li, H., et al., Lignin-derived interconnected hierarchical porous carbon monolith 
with large areal/volumetric capacitances for supercapacitor. Carbon, 2016. 100: p. 
151-157. 

85. Ruiz‐Rosas, R., et al., Electrochemical performance of hierarchical porous 
carbon materials obtained from the infiltration of lignin into zeolite templates. 
ChemSusChem, 2014. 7(5): p. 1458-1467. 

86. Salinas-Torres, D., et al., Asymmetric capacitors using lignin-based hierarchical 
porous carbons. Journal of Power Sources, 2016. 326: p. 641-651. 

87. Ago, M., et al., Mesoporous carbon soft-templated from lignin nanofiber networks: 
microphase separation boosts supercapacitance in conductive electrodes. RSC 
Advances, 2016. 6(89): p. 85802-85810. 

88. Lai, C., et al., Free-standing and mechanically flexible mats consisting of 
electrospun carbon nanofibers made from a natural product of alkali lignin as 
binder-free electrodes for high-performance supercapacitors. Journal of Power 
Sources, 2014. 247: p. 134-141. 

89. Hu, S., et al., High energy density supercapacitors from lignin derived submicron 



 

179 
 

activated carbon fibers in aqueous electrolytes. Journal of Power Sources, 2014. 
270: p. 106-112. 

90. Yang, J., et al., Facile Preparation of Self-Standing Hierarchical Porous Nitrogen-
Doped Carbon Fibers for Supercapacitors from Plant Protein–Lignin Electrospun 
Fibers. ACS Omega, 2018. 3(4): p. 4647-4656. 

91. Zhang, L., et al., Interconnected hierarchical porous carbon from lignin-derived 
byproducts of bioethanol production for ultra-high performance supercapacitors. 
ACS applied materials & interfaces, 2016. 8(22): p. 13918-13925. 

92. Tian, J., et al., Hierarchical S-doped porous carbon derived from by-product lignin 
for high-performance supercapacitors. RSC Advances, 2017. 7(20): p. 12089-
12097. 

93. Youe, W.-J., et al., MnO2-deposited lignin-based carbon nanofiber mats for 
application as electrodes in symmetric pseudocapacitors. International journal of 
biological macromolecules, 2018. 112: p. 943-950. 

94. Yu, B., A. Gele, and L. Wang, Iron oxide/lignin-based hollow carbon nanofibers 
nanocomposite as an application electrode materials for supercapacitors. 
International journal of biological macromolecules, 2018. 118: p. 478-484. 

95. Chen, F., et al., Self-assembly of NiO nanoparticles in lignin-derived mesoporous 
carbons for supercapacitor applications. Green Chemistry, 2013. 15(11): p. 3057-
3063. 

96. Ye, W., et al., Lignin as a green reductant and morphology directing agent in the 
fabrication of 3D graphene-based composites for high-performance 
supercapacitors. Industrial crops and products, 2017. 109: p. 410-419. 

97. Peng, Z., et al., High-performance biomass-based flexible solid-state 
supercapacitor constructed of pressure-sensitive lignin-based and cellulose 
hydrogels. ACS applied materials & interfaces, 2018. 10(26): p. 22190-22200. 

98. Fang, W., et al., Manufacture and application of lignin-based carbon fibers (LCFs) 
and lignin-based carbon nanofibers (LCNFs). Green Chemistry, 2017. 19(8): p. 
1794-1827. 

99. Cheng, Q., et al., Graphene and nanostructured MnO2 composite electrodes for 
supercapacitors. Carbon, 2011. 49(9): p. 2917-2925. 

100. Hadjipaschalis, I., A. Poullikkas, and V. Efthimiou, Overview of current and 
future energy storage technologies for electric power applications. Renewable and 
sustainable energy reviews, 2009. 13(6-7): p. 1513-1522. 

101. Musolino, V. and E. Tironi. A comparison of supercapacitor and high-power 
lithium batteries. in Electrical Systems for Aircraft, Railway and Ship Propulsion 
(ESARS), 2010. 2010. IEEE. 

102. Evans, J.W.J.T.o.t.P.S., V.—THE MEANINGS AND SYNONYMS OF 
PLUMBAGO. 1908. 26(2): p. 133-179. 

103. Nitta, N., et al., Li-ion battery materials: present and future. 2015. 18(5): p. 252-
264. 

104. Jian, Z., et al., Insights on the mechanism of Na-ion storage in soft carbon anode. 
Chemistry of Materials, 2017. 29(5): p. 2314-2320. 

105. Irisarri, E., A. Ponrouch, and M. Palacin, Review—hard carbon negative 



 

180 
 

electrode materials for sodium-ion batteries. Journal of The Electrochemical 
Society, 2015. 162(14): p. A2476-A2482. 

106. Franklin, R.E.J.P.o.t.R.S.o.L.S.A.M. and P. Sciences, Crystallite growth in 
graphitizing and non-graphitizing carbons. 1951. 209(1097): p. 196-218. 

107. Dahn, J.R., et al., Mechanisms for lithium insertion in carbonaceous materials. 
Science, 1995. 270(5236): p. 590-593. 

108. Gupta, A. and I.R. Harrison, Small-angle X-ray scattering (SAXS) in carbonized 
phenolic resins. Carbon, 1994. 32(5): p. 953-960. 

109. Flandrois, S. and B. Simon, Carbon materials for lithium-ion rechargeable 
batteries. Carbon, 1999. 37(2): p. 165-180. 

110. Stevens, D. and J.J.J.o.t.E.S. Dahn, High capacity anode materials for 
rechargeable sodium‐ion batteries. 2000. 147(4): p. 1271-1273. 

111. Lu, H., X.J.S.E. Zhao, and Fuels, Biomass-derived carbon electrode materials for 
supercapacitors. 2017. 1(6): p. 1265-1281. 

112.Hayashi, H. and M. Satoh, Secondary battery or cell with improved rechargeability. 
1986, Google Patents. 

113. Xing, W., et al., Correlation between lithium intercalation capacity and 
microstructure in hard carbons. 1996. 143(11): p. 3482-3491. 

114. Wang, S.-X., et al., Lignin-derived fused electrospun carbon fibrous mats as high 
performance anode materials for lithium ion batteries. 2013. 5(23): p. 12275-
12282. 

115. Zhang, W., et al., Facile preparation of 3D hierarchical porous carbon from lignin 
for the anode material in lithium ion battery with high rate performance. 2015. 176: 
p. 1136-1142. 

116. Yi, X., et al., Graphene-like carbon sheet/Fe3O4 nanocomposites derived from 
soda papermaking black liquor for high performance lithium ion batteries. 2017. 
232: p. 550-560. 

117. Ma, D., Z. Cao, and A.J.N.-M.L. Hu, Si-based anode materials for Li-ion batteries: 
a mini review. 2014. 6(4): p. 347-358. 

118. Kovalenko, I., et al., A major constituent of brown algae for use in high-capacity 
Li-ion batteries. 2011. 334(6052): p. 75-79. 

119. Wang, Y., et al., Influence of polymeric binders on mechanical properties and 
microstructure evolution of silicon composite electrodes during electrochemical 
cycling. Journal of Power Sources, 2019. 425: p. 170-178. 

120. Nakagame, S., R.P. Chandra, and J.N. Saddler, The effect of isolated lignins, 
obtained from a range of pretreated lignocellulosic substrates, on enzymatic 
hydrolysis. Biotechnology and bioengineering, 2010. 105(5): p. 871-879. 

121. Pinson, M.B. and M.Z. Bazant, Theory of SEI formation in rechargeable 
batteries: capacity fade, accelerated aging and lifetime prediction. Journal of the 
Electrochemical Society, 2013. 160(2): p. A243-A250. 

122. Jin, Y., et al., Challenges and Recent Progress in the Development of Si Anodes 
for Lithium‐Ion Battery. Advanced Energy Materials, 2017. 7(23): p. 1700715. 

123. Szczech, J.R. and S. Jin, Nanostructured silicon for high capacity lithium 
battery anodes. Energy & Environmental Science, 2011. 4(1): p. 56-72. 



 

181 
 

124. Kim, H., et al., Three‐dimensional porous silicon particles for use in high‐
performance lithium secondary batteries. Angewandte Chemie International 
Edition, 2008. 47(52): p. 10151-10154. 

125. Shin, J. and E. Cho, Agglomeration mechanism and a protective role of Al2O3 
for prolonged cycle life of Si anode in lithium-ion batteries. Chemistry of Materials, 
2018. 30(10): p. 3233-3243. 

126. Choi, J.Y., et al., Silicon nanofibrils on a flexible current collector for bendable 
lithium‐ion battery anodes. Advanced Functional Materials, 2013. 23(17): p. 
2108-2114. 

127. Forney, M.W., et al., Prelithiation of silicon–carbon nanotube anodes for 
lithium ion batteries by stabilized lithium metal powder (SLMP). Nano letters, 2013. 
13(9): p. 4158-4163. 

128. Chen, X., et al., Reduction mechanism of fluoroethylene carbonate for stable 
solid–electrolyte interphase film on silicon anode. ChemSusChem, 2014. 7(2): p. 
549-554. 

129. Kovalenko, I., et al., A major constituent of brown algae for use in high-capacity 
Li-ion batteries. Science, 2011. 334(6052): p. 75-79. 

130. Bridel, J.-S., et al., Key parameters governing the reversibility of 
Si/carbon/CMC electrodes for Li-ion batteries. Chemistry of materials, 2009. 22(3): 
p. 1229-1241. 

131. Magasinski, A., et al., Toward efficient binders for Li-ion battery Si-based 
anodes: polyacrylic acid. ACS applied materials & interfaces, 2010. 2(11): p. 
3004-3010. 

132. Wang, B., et al., Adaptable silicon–carbon nanocables sandwiched between 
reduced graphene oxide sheets as lithium ion battery anodes. ACS nano, 2013. 7(2): 
p. 1437-1445. 

133. Chen, T., et al., Low-Temperature Treated Lignin as Both Binder and 
Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion 
Batteries. ACS applied materials & interfaces, 2016. 8(47): p. 32341-32348. 

134. Ng, S.H., et al., Highly reversible lithium storage in spheroidal carbon‐coated 
silicon nanocomposites as anodes for lithium‐ion batteries. Angewandte Chemie 
International Edition, 2006. 45(41): p. 6896-6899. 

135. Rios, O., et al., Monolithic Composite Electrodes Comprising Silicon 
Nanoparticles Embedded in Lignin‐derived Carbon Fibers for Lithium‐Ion 
Batteries. 2014. 2(9‐10): p. 773-777. 

136. Chen, T., et al., Binder-free lithium ion battery electrodes made of silicon and 
pyrolized lignin. Rsc Advances, 2016. 6(35): p. 29308-29313. 

137. Chen, T., et al., High performance binder-free SiOx/C composite LIB electrode 
made of SiOx and lignin. Journal of Power Sources, 2017. 362: p. 236-242. 

138. Obama, B., The irreversible momentum of clean energy. Science, 2017. 
139. Chu, S. and A. Majumdar, Opportunities and challenges for a sustainable 

energy future. nature, 2012. 488(7411): p. 294-303. 
140. Ragauskas, A.J., et al., Lignin Valorization: Improving Lignin Processing in the 

Biorefinery. Science, 2014. 344(6185). 



 

182 
 

141. Beckham, G.T., et al., Opportunities and challenges in biological lignin 
valorization. Current opinion in biotechnology, 2016. 42: p. 40-53. 

142. USDA. The Fruit and Tree Nuts Yearbook. 2016; Available from: 
https://www.ers.usda.gov/data-products/fruit-and-tree-nut-data/yearbook-tables/. 

143. Mendu, V., et al., Identification and thermochemical analysis of high-lignin 
feedstocks for biofuel and biochemical production. Biotechnology for biofuels, 
2011. 4(1): p. 43. 

144. Shi, J., et al., Impact of mixed feedstocks and feedstock densification on ionic 
liquid pretreatment efficiency. Biofuels, 2013. 4(1): p. 63-72. 

145. Shi, J., et al., Impact of pretreatment technologies on saccharification and 
isopentenol fermentation of mixed lignocellulosic feedstocks. BioEnergy Research, 
2015. 8(3): p. 1004-1013. 

146. Mosier, N., et al., Features of promising technologies for pretreatment of 
lignocellulosic biomass. Bioresource Technology, 2005. 96(6): p. 673-686. 

147. Li, M., et al., The effect of liquid hot water pretreatment on the chemical–
structural alteration and the reduced recalcitrance in poplar. Biotechnology for 
Biofuels, 2017. 10(1): p. 237. 

148. Esteghlalian, A., et al., Modeling and optimization of the dilute-sulfuric-acid 
pretreatment of corn stover, poplar and switchgrass. Bioresource Technology, 1997. 
59(2-3): p. 129-136. 

149. Shi, J., M.A. Ebrik, and C.E. Wyman, Sugar yields from dilute sulfuric acid and 
sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass. 
Bioresource technology, 2011. 102(19): p. 8930-8938. 

150. Cui, Z., et al., Comparison of alkaline- and fungi-assisted wet-storage of corn 
stover. Bioresource Technology, 2012. 109: p. 98-104. 

151. Xu, J., et al., Sodium hydroxide pretreatment of switchgrass for ethanol 
production. Energy & Fuels, 2010. 24(3): p. 2113-2119. 

152. Silverstein, R.A., et al., A comparison of chemical pretreatment methods for 
improving saccharification of cotton stalks. Bioresource technology, 2007. 98(16): 
p. 3000-3011. 

153. Sympson, W., S. Nokes, and A. Hickman, Recirculating calcium hydroxide 
solution: A practical choice for on-farm high solids lignocellulose pretreatment. 
Industrial crops and products, 2017. 97: p. 492-497. 

154. Kim, K.H., et al., Biomass Pretreatment using Deep Eutectic Solvent from 
Lignin derived Phenols. Green Chemistry, 2018. 

155. Kumar, A.K., B.S. Parikh, and M. Pravakar, Natural deep eutectic solvent 
mediated pretreatment of rice straw: bioanalytical characterization of lignin 
extract and enzymatic hydrolysis of pretreated biomass residue. Environmental 
Science and Pollution Research, 2016. 23(10): p. 9265-9275. 

156. Li, T., et al., Deep Eutectic Solvents (DESs) for the Isolation of Willow Lignin 
(Salix matsudana cv. Zhuliu). International journal of molecular sciences, 2017. 
18(11): p. 2266. 

157. Mitra, P.P. and D. Loqué, Histochemical staining of Arabidopsis thaliana 
secondary cell wall elements. Journal of visualized experiments: JoVE, 2014(87). 

https://www.ers.usda.gov/data-products/fruit-and-tree-nut-data/yearbook-tables/


 

183 
 

158. O'brien, T., N. Feder, and M.E. McCully, Polychromatic staining of plant cell 
walls by toluidine blue O. Protoplasma, 1964. 59(2): p. 368-373. 

159. Mori, B. and L.M. Bellani, Differential staining for cellulosic and modified 
plant cell walls. Biotechnic & histochemistry, 1996. 71(2): p. 71-72. 

160. Liljegren, S., Phloroglucinol stain for lignin. Cold Spring Harbor Protocols, 
2010. 2010(1): p. pdb. prot4954. 

161. Adler, E., Lignin chemistry—past, present and future. Wood science and 
technology, 1977. 11(3): p. 169-218. 

162. Rodrigues, P.R., et al., Evaluation of buriti endocarp as lignocellulosic 
substrate for second generation ethanol production. PeerJ PrePrints, 2018. 

163. Fernandez-Bolanos, J., et al., Steam-explosion of olive stones: hemicellulose 
solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresource 
Technology, 2001. 79(1): p. 53-61. 

164. da Costa Sousa, L., et al., ‘Cradle-to-grave’assessment of existing 
lignocellulose pretreatment technologies. Current opinion in biotechnology, 2009. 
20(3): p. 339-347. 

165. Wyman, C.E., Biomass ethanol: technical progress, opportunities, and 
commercial challenges. Annual review of energy and the environment, 1999. 24(1): 
p. 189. 

166. Procentese, A., et al., Deep eutectic solvent pretreatment and subsequent 
saccharification of corncob. Bioresource technology, 2015. 192: p. 31-36. 

167. Wang, S., et al., Comparison of the pyrolysis behavior of lignins from different 
tree species. Biotechnology Advances, 2009. 27(5): p. 562-567. 

168. Canetti, M., et al., Thermal degradation behaviour of isotactic polypropylene 
blended with lignin. Polymer Degradation and Stability, 2006. 91(3): p. 494-498. 

169. Burhenne, L., et al., The effect of the biomass components lignin, cellulose and 
hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied 
Pyrolysis, 2013. 101: p. 177-184. 

170. Faix, O., Classification of lignins from different botanical origins by FT-IR 
spectroscopy. Holzforschung-International Journal of the Biology, Chemistry, 
Physics and Technology of Wood, 1991. 45(s1): p. 21-28. 

171. Tejado, A., et al., Physico-chemical characterization of lignins from different 
sources for use in phenol–formaldehyde resin synthesis. Bioresource Technology, 
2007. 98(8): p. 1655-1663. 

172. Wen, J.-L., et al., Quantitative structures and thermal properties of birch lignins 
after ionic liquid pretreatment. Journal of agricultural and food chemistry, 2013. 
61(3): p. 635-645. 

173. Gordobil, O., et al., Assesment of technical lignins for uses in biofuels and 
biomaterials: Structure-related properties, proximate analysis and chemical 
modification. Industrial crops and products, 2016. 83: p. 155-165. 

174. García, A., et al., Effect of ultrasound treatment on the physicochemical 
properties of alkaline lignin. Chemical Engineering and Processing: Process 
Intensification, 2012. 62: p. 150-158. 

175. Song, Y., et al., Gold-catalyzed conversion of lignin to low molecular weight 



 

184 
 

aromatics. 2018. 9(42): p. 8127-8133. 
176. Lewandowski, A. and M. Galiński, Carbon–ionic liquid double-layer 

capacitors. Journal of Physics and Chemistry of Solids, 2004. 65(2-3): p. 281-286. 
177. Das, L.L., Mi; Stevens, Joseph; Li, Wenqi; Pu, Yunqiao; Ragauskas, Arthur; Shi, 

Jian, Characterization and catalytic transfer hydrogenolysis of deep eutectic 
solvent extracted sorghum lignin to phenolic compounds. ACS Sustainable 
Chemistry & Engineering, Forthcoming 2018. 

178. Carlos Alvarez-Vasco, R.M., Melissa Quintero, Mond Guo, Scott Geleynse, 
Karthikeyan K. Ramasamy, Michael Wolcottc and Xiao Zhang, Unique low-
molecular-weight lignin with high purity extracted from wood by deep eutectic 
solvents (DES): a source of lignin for valorization. Green Chemistry, 2016. 

179. Sluiter, A., et al., Determination of structural carbohydrates and lignin in 
biomass. Laboratory analytical procedure, 2008. 1617: p. 1-16. 

180. Selig, M., N. Weiss, and Y. Ji, Enzymatic Saccharification of Lignocellulosic 
Biomass: Laboratory Analytical Procedure (LAP): Issue Date, 3/21/2008. 2008: 
National Renewable Energy Laboratory. 

181. Ragauskas, A., et al., Structural characterization of lignin in wild-type versus 
COMT down-regulated switchgrass. Frontiers in Energy Research, 2014. 1: p. 14. 

182. Duval, A. and M. Lawoko, A review on lignin-based polymeric, micro-and 
nano-structured materials. Reactive and Functional Polymers, 2014. 85: p. 78-96. 

183. Yoo, C.G., et al., Elucidating Structural Characteristics of Biomass using 
Solution‐State 2 D NMR with a Mixture of Deuterated Dimethylsulfoxide and 
Hexamethylphosphoramide. ChemSusChem, 2016. 9(10): p. 1090-1095. 

184. Hu, Z., et al., Elucidation of the structure of cellulolytic enzyme lignin. 
Holzforschung, 2006. 60(4): p. 389-397. 

185. Sun, S.-L., et al., Structural elucidation of sorghum lignins from an integrated 
biorefinery process based on hydrothermal and alkaline treatments. Journal of 
agricultural and food chemistry, 2014. 62(32): p. 8120-8128. 

186. IPCC, Special Report: Global Warming of 1.5 ℃. 
187. Administration, U.S.E.I., Energy and the environment explained where 

greenhouse gases come from. 2019, June 19. 
188. Panwar, N., S. Kaushik, and S. Kothari, Role of renewable energy sources in 

environmental protection: a review. Renewable and Sustainable Energy Reviews, 
2011. 15(3): p. 1513-1524. 

189. Sharma, R.K., et al., Characterization of chars from pyrolysis of lignin. 2004. 
83(11-12): p. 1469-1482. 

190. Reti, C., et al., Flammability properties of intumescent PLA including starch 
and lignin. Polymers for Advanced Technologies, 2008. 19(6): p. 628-635. 

191. Brown, R.C. and T.R. Brown, Biorenewable resources: engineering new 
products from agriculture. 2013: John Wiley & Sons. 

192. Peacocke, A.V.B.G.V.C., Fast pyrolysis processes for biomass. Renewable and 
Sustainable Energy Reviews, 2000. 4: p. 2000. 

193. Bridgewater, S.C.A.V., Overview of Applications of Biomass Fast Pyrolysis Oil. 
Energy & Fuels, 2004. 18: p. 590-598. 



 

185 
 

194. Jiang, G., et al., Effect of the temperature on the composition of lignin pyrolysis 
products. 2010. 24(8): p. 4470-4475. 

195. Iatridis, B., et al., Pyrolysis of a precipitated kraft lignin. 1979. 18(2): p. 127-
130. 

196. Hu, X., et al., Acid-catalysed reactions between methanol and the bio-oil from 
the fast pyrolysis of mallee bark. Fuel, 2012. 97: p. 512-522. 

197. Bai, X., et al., Formation of phenolic oligomers during fast pyrolysis of lignin. 
Fuel, 2014. 128: p. 170-179. 

198. Li, W., Improving bio-oil quality and stability based on capping reactions. 2016. 
199. Zhou, S., Understanding lignin pyrolysis reactions on the formation of mono-

phenols and pyrolytic lignin from lignocellulosic materials. 2013: Washington 
State University. 

200. Demirbaş, A., Mechanisms of liquefaction and pyrolysis reactions of biomass. 
Energy Conversion and Management, 2000. 41(6): p. 633-646. 

201. Branca, C., et al., GC/MS characterization of liquids generated from low-
temperature pyrolysis of wood. 2003. 42(14): p. 3190-3202. 

202. Murwanashyaka, J.N., H. Pakdel, and C. Roy, Step-wise and one-step vacuum 
pyrolysis of birch-derived biomass to monitor the evolution of phenols. Journal of 
Analytical and Applied Pyrolysis, 2001. 60(2): p. 219-231. 

203. Piskorz, J., P. Majerski, and D. Radlein. Pyrolysis of Biomass–Aerosol 
Generation: Properties, Applications, and Significance for Process Engineers. in 
Biomass Conference of the Americas, 4th. Biomass: A Growth Opportunity in 
Green Energy and Value-Added Products, Elsevier Science, Oxford, UK, Oakland 
California. 1999. 

204. Patwardhan, P.R., R.C. Brown, and B.H.J.C. Shanks, Understanding the fast 
pyrolysis of lignin. 2011. 4(11): p. 1629-1636. 

205. Carrott, P. and M.R.J.B.t. Carrott, Lignin–from natural adsorbent to activated 
carbon: a review. 2007. 98(12): p. 2301-2312. 

206. Lu, H., et al., Lignin as a binder material for eco-friendly Li-ion batteries. 
Materials, 2016. 9(3): p. 127. 

207. Ma, Y., et al., A biomass based free radical scavenger binder endowing a 
compatible cathode interface for 5 V lithium-ion batteries. Energy & 
Environmental Science, 2019. 12(1): p. 273-280. 

208. Guo, F., Z.-L. Xiu, and Z.-X. Liang, Synthesis of biodiesel from acidified 
soybean soapstock using a lignin-derived carbonaceous catalyst. Applied energy, 
2012. 98: p. 47-52. 

209. Zhao, X.-Y., et al., Electric double-layer capacitors from activated carbon 
derived from black liquor. Energy & Fuels, 2010. 24(3): p. 1889-1893. 

210. Sonibare, O.O., T. Haeger, and S.F. Foley, Structural characterization of 
Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy, 2010. 
35(12): p. 5347-5353. 

211. Zhou, S., et al., Lignin Valorization through Thermochemical Conversion: 
Comparison of Hardwood, Softwood and Herbaceous Lignin. ACS Sustainable 
Chemistry & Engineering, 2016. 4(12): p. 6608-6617. 



 

186 
 

212. Zhang, M., et al., Pyrolysis of lignin extracted from prairie cordgrass, aspen, 
and Kraft lignin by Py-GC/MS and TGA/FTIR. Journal of Analytical and Applied 
Pyrolysis, 2012. 98: p. 65-71. 

213. Demirbaş, A.J.E.c. and management, Mechanisms of liquefaction and pyrolysis 
reactions of biomass. 2000. 41(6): p. 633-646. 

214. Monteil-Rivera, F., et al., Isolation and characterization of herbaceous lignins 
for applications in biomaterials. Industrial Crops and Products, 2013. 41: p. 356-
364. 

215. Harman-Ware, A.E., et al., Pyrolysis–GC/MS of sinapyl and coniferyl alcohol. 
2013. 99: p. 161-169. 

216. Ledesma, E.B., et al., Lumped kinetics for biomass tar cracking using 4-
propylguaiacol as a model compound. Industrial & Engineering Chemistry 
Research, 2015. 54(21): p. 5613-5623. 

217. Hosoya, T., H. Kawamoto, and S. Saka, Role of methoxyl group in char 
formation from lignin-related compounds. Journal of Analytical and Applied 
Pyrolysis, 2009. 84(1): p. 79-83. 

218. Cypres, R., Aromatic hydrocarbons formation during coal pyrolysis. Fuel 
processing technology, 1987. 15: p. 1-15. 

219. Richter, H., J.B.J.P.i.E. Howard, and C. science, Formation of polycyclic 
aromatic hydrocarbons and their growth to soot—a review of chemical reaction 
pathways. 2000. 26(4-6): p. 565-608. 

220. Zhou, H., et al., Polycyclic aromatic hydrocarbon formation from the 
pyrolysis/gasification of lignin at different reaction conditions. 2014. 28(10): p. 
6371-6379. 

221. Ma, Z., E. Troussard, and J.A. van Bokhoven, Controlling the selectivity to 
chemicals from lignin via catalytic fast pyrolysis. Applied Catalysis A: General, 
2012. 423: p. 130-136. 

222. Li, J., G. Henriksson, and G. Gellerstedt, Lignin 
depolymerization/repolymerization and its critical role for delignification of aspen 
wood by steam explosion. Bioresource technology, 2007. 98(16): p. 3061-3068. 

223. Chu, S., A.V. Subrahmanyam, and G.W.J.G.c. Huber, The pyrolysis chemistry 
of a β-O-4 type oligomeric lignin model compound. 2013. 15(1): p. 125-136. 

224. Petrakis, L. and D. Grandy, Electron spin resonance spectrometric study of free 
radicals in coals. Analytical Chemistry, 1978. 50(2): p. 303-308. 

225. Pineda, A. and A.F. Lee, Heterogeneously catalyzed lignin depolymerization. 
Applied Petrochemical Research, 2016. 6(3): p. 243-256. 

226. Barreiro, D.L., et al., Molecular characterization and atomistic model of 
biocrude oils from hydrothermal liquefaction of microalgae. Algal research, 2018. 
35: p. 262-273. 

227. Reza, M.T., et al., Pelletization of biochar from hydrothermally carbonized 
wood. Environmental Progress & Sustainable Energy, 2012. 31(2): p. 225-234. 

228. Chen, B., et al., Sorption of polar and nonpolar aromatic organic contaminants 
by plant cuticular materials: role of polarity and accessibility. Environmental 
science & technology, 2005. 39(16): p. 6138-6146. 



 

187 
 

229. Zhang, X., et al., Carbon Nanostructure of Kraft Lignin Thermally Treated at 
500 to 1000 °C. Materials (Basel, Switzerland), 2017. 10(8): p. 975. 

230. Ferrari, A.C. and D.M. Basko, Raman spectroscopy as a versatile tool for 
studying the properties of graphene. Nature Nanotechnology, 2013. 8: p. 235. 

231. Wanninayake, N., et al., Understanding the effect of host structure of nitrogen 
doped ultrananocrystalline diamond electrode on electrochemical carbon dioxide 
reduction. Carbon, 2020. 157: p. 408-419. 

232. Wollbrink, A., et al., Amorphous, turbostratic and crystalline carbon 
membranes with hydrogen selectivity. Carbon, 2016. 106: p. 93-105. 

233. Li, Z., et al., X-ray diffraction patterns of graphite and turbostratic carbon. 
2007. 45(8): p. 1686-1695. 

234. Woo, S.-W., et al., Preparation of three dimensionally ordered macroporous 
carbon with mesoporous walls for electric double-layer capacitors. Journal of 
Materials Chemistry, 2008. 18(14): p. 1674-1680. 

235. Fukuhara, K., et al., Structure and catalysis of cellulose‐derived amorphous 
carbon bearing SO3H groups. ChemSusChem, 2011. 4(6): p. 778-784. 

236. Carrott, P. and M.R. Carrott, Lignin–from natural adsorbent to activated carbon: 
a review. Bioresource technology, 2007. 98(12): p. 2301-2312. 

237. McMichael, A.J., Global climate change and health: an old story writ large. 
Climate change and human health: Risks and responses. Geneva, Switzerland: 
World Health Organization, 2003. 

238. Thakur, V.K., et al., Progress in green polymer composites from lignin for 
multifunctional applications: a review. ACS Sustainable Chemistry & Engineering, 
2014. 2(5): p. 1072-1092. 

239. Chakar, F.S. and A.J. Ragauskas, Review of current and future softwood kraft 
lignin process chemistry. Industrial Crops and Products, 2004. 20(2): p. 131-141. 

240. Strassberger, Z., S. Tanase, and G. Rothenberg, The pros and cons of lignin 
valorisation in an integrated biorefinery. RSC Advances, 2014. 4(48): p. 25310-
25318. 

241. Tenhaeff, W.E., et al., Highly Robust Lithium Ion Battery Anodes from Lignin: 
An Abundant, Renewable, and Low‐Cost Material. Advanced Functional 
Materials, 2014. 24(1): p. 86-94. 

242. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature 
materials, 2008. 7(11): p. 845-854. 

243. Frackowiak, E., Carbon materials for supercapacitor application. Physical 
chemistry chemical physics, 2007. 9(15): p. 1774-1785. 

244. Brandt, A., et al., Structural changes in lignins isolated using an acidic ionic 
liquid water mixture. Green Chemistry, 2015. 17(11): p. 5019-5034. 

245. Liu, W.-J., H. Jiang, and H.-Q. Yu, Thermochemical conversion of lignin to 
functional materials: a review and future directions. Green Chemistry, 2015. 
17(11): p. 4888-4907. 

246. Elmouwahidi, A., et al., Activated carbons from KOH-activation of argan 
(Argania spinosa) seed shells as supercapacitor electrodes. Bioresource 
Technology, 2012. 111: p. 185-190. 



 

188 
 

247. Kubo, S. and J.F. Kadla, Hydrogen bonding in lignin: a Fourier transform 
infrared model compound study. Biomacromolecules, 2005. 6(5): p. 2815-2821. 

248. Shi, J., et al., Impact of engineered lignin composition on biomass recalcitrance 
and ionic liquid pretreatment efficiency. Green Chemistry, 2016. 18(18): p. 4884-
4895. 

249. Chaturvedi, V. and P. Verma, An overview of key pretreatment processes 
employed for bioconversion of lignocellulosic biomass into biofuels and value 
added products. 3 Biotech, 2013. 3(5): p. 415-431. 

250. Gupta, R. and Y.Y. Lee, Investigation of biomass degradation mechanism in 
pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. 
Bioresource Technology, 2010. 101(21): p. 8185-8191. 

251. Koo, B.-W., et al., Structural changes in lignin during organosolv pretreatment 
of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and 
Bioenergy, 2012. 42(Supplement C): p. 24-32. 

252. Lu, F. and J. Ralph, Derivatization followed by reductive cleavage (DFRC 
method), a new method for lignin analysis: protocol for analysis of DFRC 
monomers. Journal of Agricultural and Food Chemistry, 1997. 45(7): p. 2590-2592. 

253. Mendu, V., et al., Global bioenergy potential from high-lignin agricultural 
residue. Proceedings of the National Academy of Sciences, 2012. 109(10): p. 4014-
4019. 

254. Sun, Y. and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol 
production: a review. Bioresource technology, 2002. 83(1): p. 1-11. 

255. Sluiter, A., et al., Determination of ash in biomass: LAP-005 NREL analytical 
procedure. National Renewable Energy Laboratory, Golden, 2004. 

256. García, R., et al., Spanish biofuels heating value estimation. Part II: Proximate 
analysis data. Fuel, 2014. 117: p. 1139-1147. 

257. Nevárez, L.A.M., et al., Biopolymer-based nanocomposites: effect of lignin 
acetylation in cellulose triacetate films. Science and technology of advanced 
materials, 2011. 12(4): p. 045006. 

258. Mukkamala, S., et al., Formate-Assisted Fast Pyrolysis of Lignin. Energy & 
Fuels, 2012. 26(2): p. 1380-1384. 

259. Imel, A.E., A.K. Naskar, and M.D. Dadmun, Understanding the impact of poly 
(ethylene oxide) on the assembly of lignin in solution toward improved carbon fiber 
production. ACS applied materials & interfaces, 2016. 8(5): p. 3200-3207. 

260. Baker, D.A., N.C. Gallego, and F.S. Baker, On the characterization and 
spinning of an organic‐purified lignin toward the manufacture of low‐cost 
carbon fiber. Journal of Applied Polymer Science, 2012. 124(1): p. 227-234. 

261. Oh, Y.J., et al., Oxygen functional groups and electrochemical capacitive 
behavior of incompletely reduced graphene oxides as a thin-film electrode of 
supercapacitor. Electrochimica Acta, 2014. 116(Supplement C): p. 118-128. 

262. Pope, M.A., et al., Supercapacitor electrodes produced through evaporative 
consolidation of graphene oxide-water-ionic liquid gels. Journal of The 
Electrochemical Society, 2013. 160(10): p. A1653-A1660. 

263. Hosenuzzaman, M., et al., Global prospects, progress, policies, and 



 

189 
 

environmental impact of solar photovoltaic power generation. Renewable and 
Sustainable Energy Reviews, 2015. 41: p. 284-297. 

264. Cherubini, F., The biorefinery concept: using biomass instead of oil for 
producing energy and chemicals. Energy conversion and management, 2010. 51(7): 
p. 1412-1421. 

265. Hatakka, A., Lignin-modifying enzymes from selected white-rot fungi: 
production and role from in lignin degradation. FEMS microbiology reviews, 1994. 
13(2-3): p. 125-135. 

266. Socha, A.M., et al., Efficient biomass pretreatment using ionic liquids derived 
from lignin and hemicellulose. Proceedings of the National Academy of Sciences 
of the United States of America, 2014. 111(35): p. E3587-E3595. 

267. Teki, R., et al., Nanostructured silicon anodes for lithium ion rechargeable 
batteries. Small, 2009. 5(20): p. 2236-2242. 

268. Liang, B., Y. Liu, and Y. Xu, Silicon-based materials as high capacity anodes 
for next generation lithium ion batteries. Journal of Power sources, 2014. 267: p. 
469-490. 

269. Kim, H. and J. Cho, Superior lithium electroactive mesoporous Si@ Carbon 
core− shell nanowires for lithium battery anode material. Nano letters, 2008. 8(11): 
p. 3688-3691. 

270. Park, M.-H., et al., Silicon nanotube battery anodes. Nano letters, 2009. 9(11): 
p. 3844-3847. 

271. Tang, H., et al., Porous reduced graphene oxide sheet wrapped silicon 
composite fabricated by steam etching for lithium-ion battery application. Journal 
of Power Sources, 2015. 286: p. 431-437. 

272. Wang, J.-Z., et al., Flexible free-standing graphene-silicon composite film for 
lithium-ion batteries. Electrochemistry Communications, 2010. 12(11): p. 1467-
1470. 

273. Luo, J., et al., Crumpled graphene-encapsulated Si nanoparticles for lithium ion 
battery anodes. The journal of physical chemistry letters, 2012. 3(13): p. 1824-
1829. 

274. Wu, D., et al., Two‐Dimensional Nanocomposites Based on Chemically 
Modified Graphene. Chemistry–A European Journal, 2011. 17(39): p. 10804-
10812. 

275. Fahmi, R., et al., The effect of alkali metals on combustion and pyrolysis of 
Lolium and Festuca grasses, switchgrass and willow. Fuel, 2007. 86(10-11): p. 
1560-1569. 

276. Kubo, S., Y. Uraki, and Y. Sano, Thermomechanical analysis of isolated lignins. 
Holzforschung-International Journal of the Biology, Chemistry, Physics and 
Technology of Wood, 1996. 50(2): p. 144-150. 

277. Wright, J.T., et al., Thermal oxidation of silicon in a residual oxygen 
atmosphere—the RESOX process—for self-limiting growth of thin silicon dioxide 
films. Semiconductor Science and Technology, 2016. 31(10): p. 105007. 

278. Evstigneev, E., Factors affecting lignin solubility. Russian Journal of Applied 
Chemistry, 2011. 84(6): p. 1040-1045. 



 

190 
 

279. Xu, Y., Y. Zhu, and C. Wang, Mesoporous carbon/silicon composite anodes with 
enhanced performance for lithium-ion batteries. Journal of materials chemistry A, 
2014. 2(25): p. 9751-9757. 

280. Downs, R.T. and M. Hall-Wallace, The American Mineralogist crystal structure 
database. American Mineralogist, 2003. 88(1): p. 247-250. 

281. Endou, M., et al., Method for providing a coating layer of silicon carbide on 
substrate surface. 1985, Google Patents. 

282. Dong, H., et al., Structural and electrochemical characterization of Fe–Si/C 
composite anodes for Li-ion batteries synthesized by mechanical alloying. 
Electrochimica acta, 2004. 49(28): p. 5217-5222. 

283. Yang, X., et al., High-performance silicon/carbon/graphite composites as 
anode materials for lithium ion batteries. Journal of the Electrochemical Society, 
2006. 153(7): p. A1341-A1344. 

284. Voutsas, A., et al., Raman spectroscopy of amorphous and microcrystalline 
silicon films deposited by low‐pressure chemical vapor deposition. Journal of 
Applied Physics, 1995. 78(12): p. 6999-7006. 

285. Pimenta, M., et al., Studying disorder in graphite-based systems by Raman 
spectroscopy. Physical chemistry chemical physics, 2007. 9(11): p. 1276-1290. 

286. Santamaria, A., G. Falco, and M. De Commodo, Raman Features Between Two 
Clases of Carbon Nanoparticles Generated in Ethylene Flames. Meet. Ital. Sect. 
Combust. Inst, 2013: p. 2-7. 

287. Mawhinney, D.B., J.A. Glass, and J.T. Yates, FTIR study of the oxidation of 
porous silicon. The Journal of Physical Chemistry B, 1997. 101(7): p. 1202-1206. 

288. Monsivais-Gámez, E., F. Ruiz, and J. Martínez, Four-membered rings family in 
the Si–O extended rocking IR band from quantum chemistry calculations. Journal 
of sol-gel science and technology, 2007. 43(1): p. 65-72. 

289. Scientific, T.F. XPS Interpretation of Silicon. 2019; Available from: 
https://xpssimplified.com/elements/silicon.php#appnotes. 

290. Ma, D., Z. Cao, and A. Hu, Si-based anode materials for Li-ion batteries: a mini 
review. Nano-Micro Letters, 2014. 6(4): p. 347-358. 

291. Ryu, J.H., et al., Failure modes of silicon powder negative electrode in lithium 
secondary batteries. Electrochemical and solid-state letters, 2004. 7(10): p. A306-
A309. 

292. Liang, H., et al., Study of lithiated Nafion ionomer for lithium batteries. Journal 
of applied electrochemistry, 2004. 34(12): p. 1211-1214. 

293. Li, J., R. Lewis, and J. Dahn, Sodium carboxymethyl cellulose a potential binder 
for Si negative electrodes for Li-ion batteries. Electrochemical and Solid-State 
Letters, 2007. 10(2): p. A17-A20. 

294. Chen, Z., L. Christensen, and J. Dahn, Comparison of PVDF and PVDF-TFE-
P as binders for electrode materials showing large volume changes in lithium-ion 
batteries. Journal of The Electrochemical Society, 2003. 150(8): p. A1073-A1078. 

295. Xu, J., et al., Unveiling the critical role of polymeric binders for silicon negative 
electrodes in lithium-ion full cells. ACS applied materials & interfaces, 2017. 9(4): 
p. 3562-3569. 

https://xpssimplified.com/elements/silicon.php#appnotes


 

191 
 

296. Chen, L., et al., Binder effect on cycling performance of silicon/carbon 
composite anodes for lithium ion batteries. Journal of applied electrochemistry, 
2006. 36(10): p. 1099-1104. 

297. Hu, J., et al., Effects of adhesion and cohesion on the electrochemical 
performance and durability of silicon composite electrodes. Journal of Power 
Sources, 2018. 397: p. 223-230. 

298. Riley, L.A., et al., Improved mechanical integrity of ALD-coated composite 
electrodes for Li-ion batteries. Electrochemical and Solid-State Letters, 2011. 
14(3): p. A29-A31. 

299. libraries, T.L., Bond Energies. 2019, Sep 29. 
300. Sun, C.Q., et al., Bond-order–bond-length–bond-strength (bond-OLS) 

correlation mechanism for the shape-and-size dependence of a nanosolid. Journal 
of Physics: Condensed Matter, 2002. 14(34): p. 7781. 

  



 

192 
 

VITA 

EDUCATION:  

M.S., Mechanical Engineering, Iowa State University, 2014 

M.S., Chemical Engineering, China University of Petroleum, Huadong, 2006 

B.E., Mechanical Engineering, China University of Petroleum, Huadong, 2003 

PROFESSIONAL EXPERIENCE: 

Process Engineer, Process Engineering Laboratory, Petroleum Research Institute, 

China National Petroleum Corporation, Beijing, China: August 2006 to July 2014 

AWARDS AND HONORS: 

1. Boyd-Scott Graduate Research Award, 2nd place, America Society of 

Agricultural and Biological Engineers, 2018 

2. Leading the Bioeconomy Graduate Fellowships, Iowa State University, 2014 

3. Science and Technology Award of Petrochemical Research Institute, 3rd place, 

China National Petroleum Corporation, 2009 

4. Science and Technology Award of Petrochemical Research Institute, 1st place, 

China National Petroleum Corporation, 2008 

PUBLICATIONS: 

1. Wenqi Li, Kirtley Amos, Mi Li, Yunqiao Pu, Seth Debolt, Yang-Tse Cheng, 

Arthur J Ragauskas, Jian Shi (2018), Fractionation and characterization of 

lignin streams from unique high-lignin content endocarp feedstocks, 

Biotechnology for Biofuels 

2. Wenqi Li, Mi Li, Yan Zhang, Lalitendu Das, Yikai Wang, Yunqiao Pu, Doo 

Young Kim, Yang-Tse Cheng, Arthur J Ragauskas, Jian Shi (2018), Effect of 

the Structure and Source of Lignin Precursors on Activated Carbon for Energy 

Storage Application, Bioresource Technology 

3. Lalitendu Das, Mi Li, Joseph Stevens, Wenqi Li, Yunqiao Pu, Arthur J. 

Ragauskas and Jian Shi (2018), Characterization and Catalytic Transfer 



 

193 
 

Hydrogenolysis of Deep Eutectic Solvent Extracted Sorghum Lignin to 

Phenolic Compounds, ACS Sustainable Chem. Eng. 

4. Siquan Xu, Donghui Pan, Yuanfeng Wu, Xianghai Song, Lijing Gao, Wenqi Li, 

Lalitendu Das, Guomin Xiao (2018), Efficient production of furfural from 

xylose and wheat straw by bifunctional chromium phosphate catalyst in 

biphasic systems, Fuel Processing Technology 

5. Wenqi Li, Shuai Zhou, Yuan Xue, Young-Jin Lee, Ryan Smith, and Xianglan 

Bai. (2017) Understanding Low-Pressure Hydropyrolysis of Lignin Using 

Deuterated Sodium Formate, ACS Sustainable Chem. Eng. 

6. Luyao Zhang, Xuejing Li, Ming Qiao and Wenqi Li. (2009) Progress in Algae 

Biofuel Research and Development. Sino-Global Energy, 14: 23-26 

7. Wenqi Li and Jianyi Chen. (2007) Experimental research of cyclone 

performance at high temperature, Frontiers of Mechanical Engineering in 

China, 2(3): 310-317 

PROFESSIONAL PRESENTATION: 

1. Wenqi Li, Yang-Tse Cheng, Jian Shi. (2019) Understanding co-pyrolysis of 

lignin with silicon nanoparticles, 2019 ASABE AIM, Jul 7-10, 2019 

2. Wenqi Li, Yang-Tse Cheng, Jian Shi. (2019) Lignin derived carbon-silicon 

nanocomposite materials for energy storage applications, ACS spring 2019 

National Meeting, March 31-Apr 4, 2019 

3. Wenqi Li, Jian Shi. (2018) Characterization of deep eutectic solvent extracted 

lignin streams from endocarp biomass, 2018 AIChE annual meeting, Oct 28-

Nov 2, 2018 

4. Wenqi Li, Jian Shi. (2018) Fractionation and characterization of lignin streams 

from unique high-lignin content endocarp feedstocks, 2018 ASABE AIM, Jul 

30-Aug 1, 2018 

5. Wenqi Li, Yang-Tse Cheng, Jian Shi. (2018) Lignin-derived carbon and 

nanocomposite materials for energy storage applications, 2018 ASABE AIM, 

Jul 30-Aug 1, 2018 



 

194 
 

6. Wenqi Li, Lalitendu Das, Doo Young Kim, Yang-Tse Cheng, Arthur J 

Ragauskas, Jian Shi. (2017) Effects of Structure and Composition of Lignin on 

the Derived Activated Carbon Materials for Supercapacitor Application, 2017 

ASABE AIM, Jul 16-19, 2017 

7. Wenqi Li, Shuai Zhou, Xianglan Bai. (2015) Lignin Pyrolysis with Sodium 

Formate for Stabilization of Pyrolytic Products, AIChE 2015 Spring Meeting, 

Apr 26-30,2015 
 


	LIGNIN-DERIVED CARBON AND NANOCOMPOSITE MATERIALS FOR ENERGY STORAGE APPLICATIONS
	Recommended Citation

	TITLE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	Figure 1.1 Three phenylpropanoid units in lignin structure 2
	Figure 1.2 The main inter-unit linkages in lignin structure [11] 3
	Figure 1.3 Configuration and working principle of an EDL supercapacitor [75] 17
	Figure 1.4 Configuration and working principle of LIBs 25
	Figure 2.1 Bulk density of endocarp biomass in flour form in comparison with switchgrass and lodge pole pine in flour and pellet forms [144]; 37
	Figure 2.2 Confocal microscopy of Calcoflour White stained raw biomass: A) switchgrass, B) pine, C) walnut endocarp and, D) peach endocarp. 41
	Figure 2.3 Histochemical evaluation of the lignified nature of peach and walnut endocarps. 42
	Figure 2.4 Effects of three pretreatment methods using deep eutectic solvent (DES), dilute acid (DA), and alkaline (AL) on lignin fractionation into pretreatment liquid and solid residue streams for peach (P) and walnut (W) endocarps; 44
	Figure 2.5 Enzymatic hydrolysis profiles of untreated and DES pretreated peach and walnut endocarps. 46
	Figure 2.6 Mass flow of lignin, glucan, and xylan during DES pretreatment and enzymatic saccharification of walnut and peach endocarps. ND: not detected. 48
	Figure 2.7 TG (solid lines) and DTG (dot lines) curves of Kraft lignin (KL), cellulolytic enzyme lignin (CEL), residue lignin (RL) and DES extracted lignin (DESL) from a) peach and b) walnut endocarps. 50
	Figure 2.8 13C-1H (HSQC) spectra of aromatic regions (a, top left) and aliphatic region (b, top right) of walnut CEL (WCEL), walnut DES extracted lignin (WDESL), peach CEL (PCEL) and peach DES extracted lignin (PDESL). The structures of lignin composi...
	Figure 2.S1 SEM images of raw biomass samples: a) switchgrass, b) pine wood, c) walnut endocarp, d) peach endocarp. 64
	Figure 2.S2 SEM images of unpretreated, DES pretreated and extracted lignin of walnut and peach endocarp: a) unpretreated walnut endocarp, b) and c) DES pretreated walnut solid, d) extracted walnut lignin, e) unpretreated peach endocarp, f) and g) DES...
	Figure 2.S3 FTIR spectra of Kraft lignin (KL) and cellulolytic enzyme lignin (CEL), residue lignin (RL) and DES extracted lignin (DESL) from a) peach and b) walnut endocarps. 65
	Figure 3.1 Total ion thermogram (TIT) of kraft lignin using EGA-MS analysis from 100 to 800 ℃ at a heating rate of 2 ℃/min, 20 ℃/min and 40 ℃/min. 77
	Figure 3.2 SEM images obtained from solid residues of pyrolysis of kraft lignin under heating rate of 2 ℃/min at multiple temperature regions: a) and b) 200 ℃; c) and d) 300 ℃; e) to h) 500 ℃; i) and j) 700 ℃; k) and l) 800 ℃ at different magnificatio...
	Figure 3.3 a) FTIR, b) Raman spectrums and c) La, 1 and La, A of kraft lignin slow pyrolysis at multiple temperature regions. La, 1 is lateral size of a domain based on peak height (nm); La, A is lateral size of a domain based on peak area (nm). 91
	Figure 3.4 a) XPS spectrums of kraft lignin slow pyrolytic solid residue at multiple temperature regions; b) C 1s peaks of lignin slow pyrolytic solid residue at multiple temperature regions. 93
	Figure 3.5 XRD spectrums of kraft lignin slow pyrolytic solid residue at multiple temperature regions. 95
	Figure 3.S1 13C-1H (HSQC) spectra of aromatic (top) and aliphatic (bottom) regions of kraft lignin. 98
	Figure 4.1 SEM images of lignin, biochar and activated carbon samples: a) Kraft lignin, b) Pine lignin, c) Poplar lignin, d) Kraft lignin-derived biochar, e) Pine lignin-derived biochar, f) Poplar lignin-derived biochar, g) Kraft lignin-derived activa...
	Figure 4.2 a) N2 adsorption-desorption isotherms and b) calculated pore size distribution of pine, poplar and Kraft lignin derived activated carbons (LAC). 119
	Figure 4.3 Fitted results of XPS spectra: a) C1s of Kraft; b) C1s of poplar; c) C1s of pine; d) O1s of Kraft; e) O1s of poplar; f) O1s of pine lignin-derived ACs. 120
	Figure 4.4 Cyclic voltammetry (CV) curves of a) Kraft lignin-derived activated carbon (AC), b) poplar lignin-derived AC, c) pine lignin-derived AC at scan rates ranging from 10 to 50 mV/s, and d) Capacitive performance of lignin-derived ACs in 1 M H2S...
	Figure 4.5 Galvanostatic charge-discharge (GCD) curves of a) Kraft lignin-derived activated carbon (AC), b) poplar lignin-derived AC, c) pine lignin-derived AC at current density ranging from 0.5 to 2 A/g, and d) Comparative GCD curves of pine, poplar...
	Figure 4.S1 FTIR spectra of pine, poplar and Kraft lignin. 128
	Figure 4.S2 13C-1H (HSQC) spectra of aromatic regions of alkaline lignin from (a) pine (PI), (b) poplar [262]. The structures of lignin compositional units were coded with colors corresponding to the cross peaks in the spectra. 129
	Figure 4.S3. 2D HSQC NMR spectra of alkyl regions of alkaline lignin from (a) pine (PI), (b) poplar [262]. The structures of side-chain linkages were coded with colors corresponding to the cross peaks in the spectra. 130
	Figure 4.S4 XRD spectra of pine, poplar, and Kraft lignin derived activated carbons. 131
	Figure 5.1 a) Schematic illustration of the synthesis of the C/Si NPs composite electrode; TEM images of b) a close view of a Si NP; and c) a cluster of Si NPs; SEM images of d) Si NPs; e) KL and f) the resulting C/Si NPs composite material obtained v...
	Figure 5.2 a) XRD and b) Raman spectrum of Si NPs and C/Si NPs composite electrode obtained via pyrolysis at 600 ℃. 145
	Figure 5.3 a) FTIR and b) XPS spectrum of Si NPs and C/Si NPs composite electrode obtained via pyrolysis at 600 ℃. 147
	Figure 5.4 TEM images of a) Si NPs and b) C/Si NPs composite and elemental mapping of c) C, O and Si and d) O and Si of the C/Si NPs composite. 149
	Figure 5.5 Scratch test results of the PVDF and KL electrodes a) Scratch depth profiles of the PVDF and KL binders as a function of scratch distance; SEM images of the b) overall, c) beginning and d) end of micro-scratch tracks for the electrode with ...
	Figure 5.6 Electrochemical performance of C/Si NPs composite electrodes compared with currently popular Si-based anode electrode materials [119]. 154
	Figure 5.7 a) Fast pyrolysis of KL and KL/Si NPs (1:1) at 600 ℃; EGA-MS profiles for pyrolysis of b) KL/Si NPs and c) KL/SiO NPs from 100 to 800 ℃ with a 2 ℃/min ramp. 157
	Figure 5.S1 13C-1H (HSQC) spectra of aromatic (top) and aliphatic (bottom) regions of kraft lignin. 163
	Figure 5.S2 FTIR spectra of kraft lignin. 164
	Figure 5.S3 Image of the C/Si NPs composite electrode from pyrolysis at 600 and 800 ℃. 165

	LIST OF TABLES
	Table 1.1 Proportions of types of linkages connecting the phenylpropane units in respective lignin sources [12] 3
	Table 1.2 Hydrogen bond donor and hydrogen bond acceptor combinations that create clear DES  [25] 6
	Table 1.3 Summary of lignin-derived carbon materials for supercapacitor application 19
	Table 2.1 Composition of raw endocarps and DES pretreated solids. 43
	Table 2.2 The number-average (Mn) and weight-average [175] molecular weights of Kraft lignin (KL) and cellulolytic enzyme lignin (CEL), residue lignin (RL) and DES extracted lignin (DESL) from peach and walnut endocarps. 53
	Table 2.S1 Composition analysis for DES pretreatment of xylan and liquid fraction of endocarps 66
	Table 3.1 Product distribution of kraft lignin slow pyrolysis at multiple temperature regions 79
	Table 3.2 Composition, physical properties and higher heating value (HHV) of solid residues from slow pyrolysis of kraft lignin at multiple temperature regions 88
	Table 3.3 Structural parameters calculated from Raman measurements 90
	Table 3.4 The summary of elemental composition and chemical states in each sample based on XPS 94
	Table 3.S1 Product distribution of kraft lignin slow pyrolysis at multiple temperature regions 99
	Table 4.1 Supercapacitor performance of various lignin-derived carbons reported in the representative literatures 106
	Table 4.2 Composition and GPC analysis of Kraft lignin and lignins extracted from poplar and pine. 113
	Table 4.3 Pore parameters of pine, poplar and Kraft lignin-derived activated carbons 118
	Table 4.4 Oxygen-containing functional group comparison between pine, poplar and Kraft lignin-derived activated carbons 121
	Table 4.S1 Mass balance for lignin carbonization & activation 131
	Table 5.1 Product distribution of KL and KL/Si NPs slow pyrolysis at two temperature regions 158
	Table 5.S1 Molecular weight and composition analysis of kraft lignin 166
	Table 5.S2 Product distribution of kraft lignin slow pyrolysis at multiple temperature regions 167

	CHAPTER 1. INTRODUCTION
	1.1 Lignin: nature, origin and chemistry
	1.1.1 Molecular structure of lignin
	1.1.2 Fractionation of lignin

	1.2 Functionalization synthesis processes of lignin-derived advanced materials
	1.2.1 Pyrolysis carbonization
	1.2.2 Hydrothermal carbonization (HTC)
	1.2.3 Functionalization of biochar

	1.3 Electrochemical energy storage application
	1.3.1 Supercapacitor
	1.3.2 Lithium-ion batteries

	1.4 Conclusion and research motivation
	1.5 Organization of Chapters

	CHAPTER 2. FRACTIONATION AND CHARACTERIZATION OF LIGNIN STREAMS FROM UNIQUE HIGH-LIGNIN CONTENT ENDOCARP FEEDSTOCKS
	Abstract
	Background
	Results and Discussion
	Structural and compositional analysis of raw endocarps
	DES pretreatment and enzymatic saccharification
	Thermogravimetric and spectrometric analysis of lignin streams
	Molecular weight distribution analysis of lignin streams
	NMR characterization of lignin streams

	Conclusions
	Methods
	Materials
	Compositional analysis
	Pretreatment
	Enzymatic hydrolysis and mass balance
	Characterization of lignin and untreated and treated endocarps

	Declarations
	Acknowledgements

	CHAPTER 3. UNDERSTANDING SLOW PYROLYSIS OF LIGNIN BY LINKING PYROLYSIS CHEMISTRY AND CARBON MATERIAL PROPERTIES
	Abstract
	Introduction
	Experimental
	Materials
	Evolved gas analysis-mass spectrometer (EGA-MS) analysis
	Slow pyrolysis and heart-cutting-GC/MS (HC-GC/MS)
	Characterization of lignin-derived solid residues

	Results and discussion
	EGA-MS analysis of lignin slow pyrolysis
	Products distribution of lignin slow pyrolysis at 2 ℃/min heating rate
	The effect of heating rate on lignin slow pyrolysis
	Characterization of lignin-derived solid residue
	Connecting pyrolysis chemistry with properties of the resulting carbon material

	Conclusions
	Acknowledgements

	CHAPTER 4. EFFECT OF THE STRUCTURE AND SOURCE OF LIGNIN PRECURSORS ON ACTIVATED CARBON FOR ENERGY STORAGE APPLICATION
	Abstract
	Introduction
	Experimental Section
	Materials
	Lignin isolation
	Preparation of mesoporous activated carbons
	Lignin characterization
	Physical and chemical properties characterization
	Electrochemical properties characterization

	Results and Discussion
	Lignin isolation and characterization
	Lignin carbonization and biochar activation
	Morphology, pore structure of carbon materials
	Surface chemistry property of carbon materials
	Electrochemical characterization
	Possible mechanisms of the formation pathway of lignin-derived ACs

	Conclusions
	Acknowledgements

	CHAPTER 5. ENGINEERING LIGNIN DERIVED CARBON-SILICON NANOCOMPOSITES THROUGH CO-PYROLYSIS AS AN ANODE MATERIAL FOR RECHARGEABLE LITHIUM-ION BATTERIES
	ABSTRACT
	Introduction
	Experimental
	Materials
	Preparation of lignin-derived C/Si NPs composite
	Morphology and structure characterizations
	Mechanical property characterization
	Electrochemical performance characterization
	Evolved gas analysis-mass spectrometer (EGA-MS) analysis
	Analytical pyrolysis-GC/MS (PY-GC/MS)

	Results and discussion
	Morphology and structure
	Mechanical property
	Electrochemical performance
	EGA-MS and HC-GC/MS

	Conclusions
	Acknowledgements

	CHAPTER 6. CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work

	REFERENCES
	Vita

