
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

Compressing Massive Sequencing Data with Multiple Attribute Tree

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

Dorian Selimovic

Norman, Oklahoma

2019

Compressing Massive Sequencing Data with Multiple Attribute Tree

A THESIS APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Sridhar Radhakrishnan, Chair

Dr. Christan Grant

Dr. Changwook Kim

© Copyright by Dorian Selimovic 2019

All Rights Reserved.

Abstract

The significant drop in DNA Sequencing costs caused by Next-Generation Se-

quencing has led to the production of massive amounts of raw sequencing data.

This data is stored in FASTQ files, which are text files containing a large number

of reads, each composed of a short DNA sequence and its associated identifier and

quality score. The DNA sequence is a string of fixed length over the alphabet Σ =

{A, C, T, G, N}, the identifier is an arbitrary string that is sequencer-dependent,

and the quality score is a string of the same length as the DNA sequence, indicat-

ing for each base how confident the sequencer was when determining it. These files

can range from a few gigabytes to hundreds of gigabytes, which poses a Big Data

challenge, as the growth of generated sequencing data now exceeds the decrease

of storage hardware price. Therefore, storing and transmitting such data requires

more performant compression algorithms than general purpose compressors such

as gzip, the de facto standard. Many different specialized compressors have been

proposed to tackle this problem.

In this thesis, we review currently existing compressors for FASTQ files and we

propose a novel compression algorithm for DNA sequences, MATC, for Multiple

Attribute Tree Compression. Our algorithm divides DNA sequences into k-mers,

i.e., substrings of length k, and performs column-wise compression using a multiple

attribute tree. In our case the multiple attribute tree is a complete tree where each

node is a k-mer and each leaf represents the sequence formed by the concatenation

of its parent k-mers. The tree is then stored using level-order traversal and k-mers

are compressed using Huffman encoding.

We show that our algorithm offers compression ratios comparable to the current

specialized compressors. Moreover, we propose a distributed version of our algo-

rithm, allowing the compression of larger files across a cluster of machines. This

allows compression to be processed in the cloud, rather than on commodity hard-

ware, which will become less and less suited to handle the growing size of generated

sequencing data.

iv

Acknowledgements

My first thanks go to my advisor and mentor Dr. Sridhar Radhakrishnan, for

his continuous support and guidance throughout my research at the University of

Oklahoma.

Then, I would like to thank my fellow students in Dr. Sridhar’s research group,

Addison Womack, Aditya Narasimhan, Sudhindra Gopal, Michael Nelson, Aaron

Morris, Dwaine Kenney, and Jonathan Leslie, for their rich insights and feedback

on this research.

Additionally, I would like to thank my professors from ISIMA, Eva Hassinger

and Dr. Hervé Kerivin, for their help during my time as an international student

here at OU.

Finally, I would like to thank my family for their unwavering support.

v

Contents

1 Introduction 1

1.1 DNA Sequencing . 1

1.1.1 DNA . 1

1.1.2 Sequencing . 1

1.1.3 FASTA and FASTQ File Formats 3

1.2 Compression . 4

1.2.1 Definitions . 4

1.2.2 Huffman Coding . 6

1.3 Contributions . 8

2 Previous Work 9

2.1 FaStore . 9

2.1.1 Minimizers and Signatures 9

2.1.2 Binning and Compression 10

2.2 CIGARCoil . 12

2.2.1 CIGAR . 13

2.2.2 Wagner-Fischer Algorithm 14

2.2.3 Similarity Graph . 16

2.2.4 Hash-Buckets Heuristic . 17

2.2.5 Decompression . 18

3 Multiple Attribute Tree Compression 20

3.1 K-mer Huffman Compression . 20

3.2 Multiple Attribute Tree . 23

vi

3.3 Complexity Analysis . 27

3.4 Decompression . 28

3.5 Implementation . 29

4 Distributed Multiple Attribute Tree Compression 31

4.1 Master-Worker Paradigm . 31

4.2 Algorithms . 33

4.2.1 Speedup . 34

4.3 Implementation . 35

5 Results 37

5.1 Datasets . 37

5.1.1 CE Dataset . 37

5.1.2 WEX Dataset . 38

5.1.3 GG Dataset . 38

5.1.4 WGS-14 Dataset . 39

5.1.5 Summary . 39

5.2 Compression Ratio and Speed Evolution 39

5.2.1 Non-distributed MATC . 39

5.2.2 Distributed MATC . 40

5.3 Comparison with other DNA Compressors 43

5.3.1 Experimental Setup . 43

5.3.2 Compression Ratio . 44

5.3.3 Compression Speed . 46

5.3.4 Decompression Speed . 46

6 Conclusion 48

A Source code 51

A.1 MATC library . 51

A.1.1 letter.go . 51

A.1.2 kmer.go . 54

A.1.3 file io.go . 58

vii

A.1.4 huffman tree.go . 61

A.1.5 var uint64.go . 67

A.1.6 mat.go . 69

A.2 Executable . 73

A.2.1 main.go . 73

A.2.2 run compress.go . 78

A.2.3 run uncompress.go . 82

A.2.4 run master.go . 85

A.2.5 run worker.go . 94

viii

Chapter 1

Introduction

In this chapter, we introduce the concepts of DNA sequencing and data compression,

as well as our contributions.

1.1 DNA Sequencing

1.1.1 DNA

DNA (DeoxyriboNucleic Acid) is the molecule encoding genetic information. It is

composed of elementary bricks, called nucleotides, which contain a unique nucle-

obase that can be of 4 types : Adenine, Cytosine, Guanine and Thymine. These

nucleobases (or bases for short) are usually referred to by the first letter of their

names (A, C, G and T). Therefore a fragment of DNA can be written as a string

on the alphabet A, C, T, G.

1.1.2 Sequencing

DNA Sequencing is a technique consisting in determining the sequence of nucleotides

composing a given DNA sample. The DNA sample is fed to a machine, called DNA

sequencer, such as the Illumina MiSeq illustrated in Figure 1.1. The sequencer will

then produce a FASTA or FASTQ file, containing the genetic data. These files

contain a high number of small fragments of sequences called reads, and can range

from a few gigabytes to hundreds of gigabytes for a single sequencing experiment.

1

Figure 1.1: Illumina MiSeq DNA sequencer at the University of Oklahoma

Figure 1.2: Evolution of DNA sequencing price

2

Figure 1.3: Evolution of DNA sequencing data

Since the advent of Next-Generation Sequencing, the cost of sequencing has

drastically dropped, passing from a hundred million dollars for the first sequencing

to only a thousand in less than twenty years (cf Figure 1.2). This technological

revolution has led to an explosion of the amount of DNA sequencing data generated

worldwide (cf Figure 1.3), which poses a new kind of Big Data challenge. According

to Deorowicz et al. [9], this challenge is highlighted by the fact that the storage cost

per byte is shrinking about three times slower than the current genomic data is

growing.

This problem highly motivates research for better, specialized compressors for

sequencing data. Many specialized compression algorithms have been developed

and proven to be more efficient than existing, general purpose compressors such as

gzip of bzip2.

1.1.3 FASTA and FASTQ File Formats

FASTA and FASTQ files are text files that contain a large number of short sequences

of some fixed length, sampled randomly from the genome, called reads. In a FASTA

3

file, each read is represented in two lines, the first line being the identifier of the read,

and the second line the sequence itself. The sequence is a string over the alphabet

Σ = {A, C, G, T, N} where symbols A, C, G and T represent their respective

bases and symbol ‘N’ represents a base that the sequencing machine was unable

to identify. FASTQ files add a third line to each read, called the quality score,

indicating for each base in the sequence, the confidence with which the machine

determined it. This line is also preceded by the identifier. The identifier for the

sequence is usually prefixed with a ‘@’ character, while the same identifier for the

quality score is prefixed with a ‘+’ character. An example of a few FASTQ reads :

@SRR566546 .970 HWUSI -EAS1673_11067_FC7070M :4:1:2299:1109 length =50

TTGCCTGCCTATCATTTTAGTGCCTGTGAGGTGGAGATGTGAGGATCAGT

+SRR566546 .970 HWUSI -EAS1673_11067_FC7070M :4:1:2299:1109 length =50

hhhhhhhhhhghhghhhhhfhhhhhfffffe ‘ee[‘X]b[d[ed ‘[Y[^Y

@SRR566546 .971 HWUSI -EAS1673_11067_FC7070M :4:1:2374:1108 length =50

GATTTGTATGAAAGTATACAACTAAAACTGCAGGTGGATCAGAGTAAGTC

+SRR566546 .971 HWUSI -EAS1673_11067_FC7070M :4:1:2374:1108 length =50

hhhhgfhhcghghggfcffdhfehhhhcehdchhdhahehffffde ‘bVd

@SRR566546 .972 HWUSI -EAS1673_11067_FC7070M :4:1:2438:1109 length =50

TGCATGATCTTCAGTGCCAGGACCTTATCAAGCGGTTTGGTCCCTTTGTT

+SRR566546 .972 HWUSI -EAS1673_11067_FC7070M :4:1:2438:1109 length =50

dhhhgchhhghhhfhhhhhdhhhhehhghfhhhchfddffcffafhfghe

k-mers: A k-mer is a sequence substring of length k. A DNA sequence of length

m has therefore (m - k + 1) k-mers. k-mers are heavily used in bioinformatics, as

well as by many DNA compressors, including the algorithm we propose here.

1.2 Compression

1.2.1 Definitions

Data compression consists in, given some data, finding an encoding for that data

that is more memory-efficient, i.e., that can be stored with fewer bits, while still

4

being able to retrieve part or all of the original data. Its main idea is to eliminate

redundancy of information in the original data. Its counter-part, decompression,

consists in retrieving the original data from the compressed one. The compression

and decompression algorithms respectively converts the original data to its encoded

version and vice versa. The term compressor is often used to refer to a compression

algorithm (and, implicitly, its corresponding decompression algorithm).

Compression can either be lossless or lossy. With lossless compression, the ex-

act original data can be retrieved from the compressed data, whereas with lossy

compression, parts of the information is lost during the compression process. Lossy

compression is mostly used in applications where a good enough approximation of

the original data is sufficient, such as in image, audio and video compression. Ex-

amples of lossy compressors include JPEG (image), MP3 (audio) and MP4 (video).

Examples of general-purpose, lossless compressors include gzip and bzip2.

There are three main aspects to consider when evaluating the performance of a

compression algorithm.

Compression ratio: It is the ratio between the size of the compressed data and

the size of the original data, usually expressed in percentage. In the case of DNA

compression, it may also be expressed in bits per base (bpb), i.e., the ratio between

the number of bits of the compressed file, and the number of nucleobases of the

original file. It represents how much space is saved when compressing, the smaller

the compression ratio, the better the compression is. It is important to note that

the compression ratio may vary with the size of the original data. Its variation with

respect to the size of the different datasets should therefore be studied.

Compression speed: Usually expressed in megabytes per second, it is the ratio

between the size of the original file and the time it takes to compress it. The higher

the compression speed, the faster the compression is. It is harder to compare

algorithms with respect to their compression speed, since fair comparison implies

running the algorithm with the same hardware. Also, as some algorithms may offer

parallel or distributed implementations, this factor must also be taken into account.

5

Decompression speed: Same as for compression speed, but for decompression.

It is the ratio between the size of the original, or uncompressed, file and the time

it takes to uncompress it. Decompression speed is usually much higher than com-

pression speed.

Most often, there is a tradeoff between compression ratio and compression speed.

Faster algorithms are more likely to have a worse compression ratio, while algo-

rithms with a good compression ratio are more likely to be slower. Algorithms

may also offer control over this tradeoff via a parameter. The two aforementioned

general-purpose compressors, gzip and bzip2, both offer nine different levels of com-

pression in this regard.

1.2.2 Huffman Coding

Huffman coding is a type of general-purpose lossless compression encoding and

algorithm. Given an alphabet (e.g., the ASCII table) and the occurrence frequency

of each letter of the alphabet in the input data, the Huffman algorithm finds a

binary coding table to assign to each letter a variable-length binary string, such

that more frequent letters have a smaller binary representation. More precisely,

the algorithm builds a binary tree, called a Huffman Tree, where each leaf node

represents a letter in the alphabet, and where a bit is associated with each edge

(e.g., zero for left-edges, one for right-edges). Then, the binary code for each letter

corresponds to the sequences of bits formed by the path between the root node and

the corresponding leaf node. An example of Huffman Tree and associated coding

table is given in Figure 1.4.

The algorithm for building the Huffman tree consists of the following steps:

1. A minimum priority queue is created and initialized with a leaf node for each

letter, where the weight of the node in the priority queue corresponds to the

number of occurrences of this letter.

2. The two lowest-weight nodes are removed from the queue, a new internal node

is created with them as children and put back in the queue, its weight is the

6

Figure 1.4: Example of a Huffman Tree and its associated coding table

sum of the weights of its children.

3. Repeat the previous step until the queue only contains a single node, which

is then the root node of the so-constructed Huffman tree.

The complexity of this algorithm depends on the data structure used for the priority

queue. Using a heap data structure such as a binary heap can give us at most

O(log n) time complexity for inserting and removing the minimum element of the

priority queue. As this operation must be repeated n times, where n is the number

of letters, the construction of the Huffman tree has a time complexity of O(n log n).

The basic Huffman compression algorithm is therefore composed of four steps:

1. Count the number of occurrences of each letter in the input data.

2. Build the Huffman tree.

3. Build the coding table by applying a depth-first search algorithm on the tree.

4. Replace each letter in the input data by its corresponding bit code in the

coding table.

7

1.3 Contributions

In this thesis we make the following contributions :

1. We present a novel compression algorithm for DNA sequencing data based on

multiple attribute trees.

2. We provide an open-source, cross-platform implementation of our algorithm.

3. We also provide a distributed implementation of our algorithm, based on the

master-worker paradigm.

4. We show that our distributed algorithm as an ideal linear speedup.

8

Chapter 2

Previous Work

In this chapter, we review two existing compressors for DNA sequencing data,

namely FaStore [9] and CIGARCoil [10].

2.1 FaStore

FaStore is an algorithm proposed by Roguski et al. [9] for FASTQ file compression,

i.e., it can compress both DNA sequences along with their identifiers and quality

score. Here, we will only focus on its DNA sequence compression mechanism, which

is based on the ORCOM [4] (for Overlapping Reads COmpression with Minimizers)

algorithm with some improvements.

2.1.1 Minimizers and Signatures

ORCOM is an external memory algorithm that will first iterate through all the

sequences in the input file, and dispatch them into bins so they can be compressed

independently in parallel. It introduces the idea of minimizers and signatures to be

able to cluster similar sequences together so they can be compressed more efficiently.

The minimizer for a sequence of length m is the lexicographically smallest of its

k-mers. For example, the sequence GTAACGTT has five 4-mers: GTAA, TAAC,

AACG, ACGT and CGTT. Among these, the lexicographically smallest one – as-

suming we use alphabetic order on the nucleobases – is AACG. It is therefore the

9

minimizer for this sequence. As the letter N is way less frequent than the others,

all sequences that have a minimizer containing at least one N letter are clustered

together. This helps reduce the total number of possible minimizers from 5k to

4k + 1. Additionally, a ”skip zone” is introduced, which consists in ignoring the

sequence suffixes of length z when looking for the minimizers (by default z = 12).

As DNA sequences can also be read backwards with their nucleotides comple-

ments – A becomes T, C becomes G and vice versa – each sequence is processed

twice when searching for its minimizers.

This means that the minimizer is sought over 2(m − z − k + 1) k-mers for a

given sequence of length m. These minimizers are called canonical minimizers.

Even distribution of sequences in bins is critical for compression, for both mem-

ory usage and efficient parallelization. In order to cluster sequences more evenly, in

ORCOM, canonical minimizers are restricted by excluding those containing any of

the triplets AAA, CCC, GGG, and TTT. FaStore goes one step further by enforc-

ing neither to start with ACA and neither to contain AA anywhere except at the

beginning of the minimizer. Such restricted minimizers are further called signatures.

2.1.2 Binning and Compression

The algorithm clusters sequences into bins, grouping them by their signatures. An

extra sequence reordering step is applied independently for each bin. In order to

move overlapping sequences close to each other, all sequences s in the bin are sorted

according to the lexicographic order of the string s[i : m] ◦ s[1 : i − 1], where i is

the position of the signature in the sequence, m is the length of the sequence and ◦

is the concatenation operator.

Compression is then processed on a per-bin basis. Several interleaving data

streams are produced, and then compressed with a general purpose compressor.

The goal is, for each bin, to construct a forest where each node corresponds to a

sequence. Only root sequences will be hard coded, as the others will be encoded as

the operations to be applied on their parent to reconstruct them.

While iterating through the sequences in a bin, a buffer – or sliding window – of

n previous sequences is maintained. For each sequence, we look for the sequence in

10

the buffer which maximizes the overlap. Both sequences are conceptually aligned

on their signatures, and a distance measure is introduced, which consists of the

weighted sum of the offset and the number of mismatches. For example, given

sequences TTGCCTxxxxATAATTT and CATxxxxATGGTTTTAG where xxxx is

their signature, by aligning them :

TTGCCTxxxxATATTT

CATxxxxATGTTTTAG

we can see that they have an offset of three letters, and two mismatches (letter C

becomes A before the signature and letter A becomes G after). Their distance is

therefore 3 × ci + 2 × cm where ci is the insertion cost (for the offset) and cm is

the mismatch cost. These values have been chosen experimentally to ci = 1 and

cm = 2. For a given sequence, we search in the sliding window for the reference

sequence that minimizes this distance.

Then, the compressed data is encoded into different data streams :

• Flags contains one of the following values for each sequence :

– fcopy if the current sequence is identical to the previous one,

– fdiss if the current sequence has no reference sequence because its simi-

larity distance exceeds a specified threshold max dist with all sequences

in the sliding window,

– fex if the current sequence has a reference sequence with no mismatch

(only offset letters must be encoded),

– fmis if the current sequence has a reference sequence with exactly one

mismatch at its last position,

– foth if the current sequence has a reference sequence with one mismatch

(not at its last position) or more.

• Lengths used to encode the sequence lengths if they are variables.

• LettersX for X ∈ {A,C,G, T,N} (used for flags fex, fmis, and foth) :

11

– stores the mismatch in the current sequence, where the corresponding

letter in the reference sequence is X (the alphabet size for these letters

is 4 as it is {A,C,G, T,N} \ {X}),

– if X = N , also store the trailing letters after the match

• Prev (used for flags fex, fmis, and foth), stores the id of the reference sequence

for the current one.

• Shift stores the offset of the current sequence against the reference (may be

negative).

• Matches (used for flag foth) stores the mismatch positions. The signature is

ignored as its position can be retrieved from Shift. The data is encoded as a

form of run-length encoding, by storing a list of matching lengths.

• HReads (used for flag fdiss) stores the hard-coded sequences with no reference

sequence, the signature is replaced with a special character to save more space.

• Rev indicates whether the current read is processed reverse-complemented.

As mentioned above, these stream are then compressed using a general purpose

compressor. Decompression then consists in reading the Flags stream, taking from

other streams depending on the flags read for each sequence. The advantage here

is that decompression is a streaming operation, which is an important feature as

data can be processed while it is being uncompressed.

2.2 CIGARCoil

CIGARCoil is an algorithm proposed by Womack et al. [10]. It is based on the idea

of CIGAR strings [3], the representation of a DNA sequence as the operations needed

to be applied on another sequence to reconstruct it, and the ReCoil compressor [11],

which constructs a similarity graph between sequences. Its distinctive feature is to

provide random-access to the DNA sequences directly from the compressed data.

12

2.2.1 CIGAR

The concept of CIGAR was first introduced by Fritz et al. [3]. It can be viewed

as a list of operations to be applied on a sequence – or more formally, on a string

defined on the alphabet Σ = {A, C, T, G, N} – to construct a new one. There are

four types of operations :

• M for match

• D for deletion

• I for insertion

• S for substitution

Operation M and D have an associated strictly positive integer value, corresponding

to the length of the match or deletion. Operations I and S have an associated word

defined on Σ, corresponding to the letters to be inserted or substituted.

Given a CIGAR string and a source sequence, the reconstruction process consists

in iterating through the CIGAR operations and :

• if operation is M of length n, copy n letters from the source sequence to the

output sequence,

• if operation is D of length n, move forward n letters in source sequence,

• if operation is I with word w, concatenate w to output sequence,

• if operation is S with word w, concatenate w to output sequence and move

forward |w| letters in source sequence.

For example, given the sequence AAACCTGGG and CIGAR D[3]M[2]I[AA]S[G]M[3],

the reconstruction process will consist of the following steps :

13

step source sequence CIGAR output sequence

0 AAACCTGGG D[3]M[2]I[AA]S[G]M[3]

1 CCTGGG M[2]I[AA]S[G]M[3]

2 TGGG I[AA]S[G]M[3] CC

3 TGGG S[G]M[3] CCAA

4 GGG M[3] CCAAG

5 CCAAGGGG

which produces sequence CCAAGGGG.

In their original implementation, Womack et al. use two bytes – i.e., 16 bits –

to encode a single CIGAR operation. The first bit is reserved, the next three bits

indicate the type of operation, and the remaining twelve bits encode either up to

four letters (three bits per letter) for operations S and I or an unsigned integer value

for operations M and D.

CIGARCoil uses a modified version of the Wagner-Fischer algorithm to find the

CIGAR string of minimal length between two sequences.

2.2.2 Wagner-Fischer Algorithm

The original Wagner-Fischer algorithm is a dynamic programming algorithm to

compute the edit distance between two strings, i.e., the minimum number of single-

character deletion, insertion or substitution operations to be applied on one string

to obtain the other. More precisely, weights can be associated with each of these

operations when computing the distance.

Let u and v be two words defined on a given alphabet. Let u[: i] represent the

substring formed by the i first letters of u. The Wagner-Fischer algorithm builds a

matrix of size |u|+1 by |v|+1 where each cell di,j will contain the distance between

words u[: i − 1] and v[: j − 1]. The cell d1,1 is initialized to zero, and each cell is

14

computed with respect to its upper-left neighbors according to the following rule :

di,j =

di−1,j−1 if u[i− 1] = v[j − 1]

min

di−1,j + Cd

di,j−1 + Ci

di−1,j−1 + Cs

otherwise

where Cd, Ci, and Cs, respectively correspond to the cost of a deletion, insertion

and substitution operation. Once every cell in the matrix has been computed, the

lower-right cell, d|u|+1,|v|+1, contains the edit distance between u and v.

CIGARCoil uses a modified version of the Wagner-Fischer algorithm to com-

pute the CIGAR string between two sequences. The notion of edit distance now

corresponds to the length of the CIGAR string, i.e., the total number of operations

including matches. Moreover, as operations in a CIGAR string can span across

more than one letter, the algorithm is modified accordingly.

Concretely, the computation of cell di,j depends on two cases :

• if letters u[i] and v[j] are equal, the CIGAR string in cell di−1,j−1 is copied

and we look at its last operation :

– if it’s a match, then its value is incremented,

– otherwise, a new match operation of value 1 is added,

• if letters u[i] and v[j] are different, we look at the new size of CIGAR strings in

cells di−1,j−1, di,j−1 and di−1,j if we add to them, respectively, a substitution,

insertion or deletion operation (incrementing the operation when possible),

and choose the smallest one.

For example, applying the modified Wagner-Fischer algorithm to find the mini-

mal CIGAR string from sequence AAGGACCC to sequence GAAAACCCC would

produce the matrix illustrated in Figure 2.1, and the final CIGAR string S[GAAA]M[4]I[C].

We can note that due to the asymmetry between deletion and insertion oper-

ations, the distance is not symmetric anymore – and therefore cannot be called a

distance in the mathematical sense – so the CIGAR string from u to v can be of

15

ε A A G G A C C C

ε 0 1 1 1 1 2 2 2 2

G 1 1 2 2 2 2 3 3 3

A 1 2 1 2 2 3 2 3 3

A 1 2 2 1 2 3 3 2 3

A 1 2 2 2 1 2 2 2 2

A 1 2 2 2 2 2 3 3 3

C 1 2 2 2 2 3 2 3 3

C 1 2 2 2 2 3 3 2 3

C 1 2 2 2 2 3 3 3 2

C 1 2 2 2 2 3 3 3 3

Figure 2.1: Example of a modified Wagner-Fischer matrix

different length than the CIGAR string from v to u. However, in practice, the vast

majority of minimal CIGAR strings have the same length from one sequence to the

other and vice versa.

We can clearly see that the more similar two sequences are, the shorter the

CIGAR string will be to express one against the other. It is with this idea in mind

that, in CIGARCoil, a similarity graph is constructed between all the sequences

from the input data.

2.2.3 Similarity Graph

The similarity graph idea consists in considering the sequences from the input data

as nodes in an undirected graph where edges correspond to the length of the CIGAR

string between two sequences.

From this graph, we compute a Minimum Spanning Tree (MST), to have a tree

where the sum of the edge weights is minimal. As edge weights correspond to the

length of the CIGAR strings, computing the MST minimizes the size of storing

those, which is what we want to achieve in the context of compression.

This tree is then encoded and stored as the output data. Each internal node is

16

stored as the CIGAR string to reconstruct it from the parent, and only the root

node is stored as a plain sequence. Each sequence can then be reconstructed by

successively applying CIGAR reconstruction on the path from the root of the tree

to its corresponding node.

Yet, the question remains as to how to construct the graph from which we will

produce the MST. A first naive approach would be to take the complete graph of all

the sequences. However, since a complete graph with n nodes has n(n−1)/2 edges,

and since the number of nodes here is the number of sequences, which is very large,

this approach is not sustainable. That is why CIGARCoil introduces a heuristic to

find a graph with limited number of edges, based on a ad hoc ”hash-buckets” data

structure.

2.2.4 Hash-Buckets Heuristic

This heuristic consists in constructing the n nodes graph by adding promising edges,

that are likely to produce short CIGAR strings, i.e., between similar sequences. To

this end, CIGARCoil introduces a ”hash-buckets” data structure. The idea is to

count the number of bases in each k-mer of a sequence (Womack et al. use the

term ”partition”). Given a sequence of length m and a number of partitions Δ, we

count the number of letters A, C, G and T (letter N is rare enough to be ignored),

in each partition of length bm
∆
c. An example is illustrated in Figure 2.2.

Sequence Hash (#A,#C,#G,#T)

AAACTGGCCT [(3,1,0,1), (0,2,2,1)]

ACGTACGTAC [(2,1,1,1), (1,2,1,1)]

TTTTTCCCCC [(0,0,0,5), (0,5,0,0)]

Figure 2.2: Example of hash values for Δ=5

A three-dimensional array of buckets H is then constructed where H[p][l][δ] is

the bucket that contains the list of all sequences that have δ letters l in partition p.

An illustration of this data structure is provided in Figure 2.3.

Once all buckets are filled, for each sequence, we take the intersection of all

17

Figure 2.3: Illustration of the hash buckets data structure

buckets it is in. This gives us a list of sequences that share the same number of

letters in each partition. We then add the edges between each of the sequences to

form the graph. If at some point in the intersection process, we have an empty set,

we take the last non-empty intersection.

The hypothesis made here is that sequences that share the same number of let-

ters in their partitions are more likely to be similar, and thus produce a smaller

CIGAR string. This hypothesis is supported by the fact that, in modern DNA

sequencing – so called ”next-generation sequencing” – sequences are randomly sam-

pled from the input genome, and consequently share a lot of substrings with other

sequences.

This hash-buckets heuristic allows us to construct a graph which can then be

used to compute the MST as mentioned above.

2.2.5 Decompression

As the compressed data is stored as a CIGAR tree with only the root node being

stored as a plain sequence, decompressing simply consists of a traversal of the tree,

18

reconstructing the sequence one after the other along the way. As the reconstruction

process can be done in linear time with respect to the size of the sequence, the

overall time complexity of decompression is O(nm) where n is the total number of

sequences and m is the length of a sequence.

Moreover, this structure provides us with partial decompression. CIGARCoil

introduces a query operator to reconstruct a single sequence, by simply traversing

the path from the root node to the sequence node, and applying the CIGAR recon-

struction. It also offers a caching mechanism to be used for a repeated use of the

query operator, and goes even one step further by using Q-learning for predictive

caching. This offers significant improvement for working directly on the compressed

file, and is a distinctive feature of the CIGARCoil algorithm.

19

Chapter 3

Multiple Attribute Tree

Compression

In this chapter, we present our algorithm, MATC (for Multiple Attribute Tree

Compression).

3.1 K-mer Huffman Compression

The first concept we introduce is the idea of per-k-mer Huffman compression. We

split each sequence of length m in the input data in m
k
k-mers. If m is not divisible

by k, we take its first bm
k
c k-mers, and its last (m mod k)-mer. Then, we apply a

basic Huffman compression algorithm on a per-k-mer basis.

We count the number of occurrences of each k-mer to construct a Huffman tree.

This gives us a coding table to associate each k-mer with a bit string. Then, we

write in the output file the Huffman tree encoded via a pre-order traversal, detailed

in Algorithm 1, as well as each sequence as the concatenation of the Huffman codes

for each of its k-mers.

20

Algorithm 1: Encode Huffman Tree

Input : T a Huffman tree

Output: Bit string encoding of T

if T is a leaf node then

Write bit 1;

Write k-mer of T;

else

Write bit 0;

Encode left child of T;

Encode right child of T;

end

The idea of using Huffman compression on k-mers is to capture in the k-mers

the overlaps of the sequences. As the sequences are randomly sampled from the

same DNA fragment, the share common substrings that correspond to the areas in

the reference genome where they overlap. The choice of the value of k – i.e. the

length of the k-mers – is key, because if k is too small, k-mers will not be large

enough to capture repeating substrings, but if k is too large, the variance of k-mers

occurrence will plummet and the Huffman compression will not be efficient.

We made some experimental investigations to determine the best value of k. We

tested this basic k-mer compression idea on two small datasets. The first one con-

tained 1 million sequences of length 151, the second contained 8.2 million sequences

of length 36. Compression size for different values of k for both are reported in

Figures 3.1 and 3.2.

21

Figure 3.1: Evolution of compression size with respect to k for basic k-mer com-

pression on a dataset of 1 million sequences of length 151. In red the total size of

Huffman-encoded sequences, in blue the size of the Huffman tree.

Figure 3.2: Evolution of compression size with respect to k for basic k-mer com-

pression on a dataset of 8.2 million sequences of length 36. In red the total size of

Huffman-encoded sequences, in blue the size of the Huffman tree.

These results show that the best value for k is between 6 and 10. We clearly see

22

that after 10, the size of the Huffman tree grows rapidly, and causes the compression

ratio to deteriorate.

Interestingly, with this simple idea alone, we achieve compression ratios compa-

rable to those obtained with general purpose compressors such as gzip or bzip2 (i.e.

around 30% of the original file size). This supports the argument that specialized

compressors are much more suited for this kind of data.

3.2 Multiple Attribute Tree

We build upon the concept of k-mer Huffman compression by using a Multiple At-

tribute Tree (MAT) to represent the sequences. The idea is to construct a complete

tree where each node represents a k-mer – except the root node – and each path

from the root node to any leaf node represent the sequence formed by the concate-

nation of the k-mers of each node in the path. For example, let us consider the

following sequences :

TTTTAGGATTTT

TTTTAGGACCAA

TTTTAGGAGGTC

AGGATTTTAGGA

AGGACCAATTTT

AGGACCAAAGGA

GGTCTTTTAGGA

Let k = 4, we obtain four different k-mers : K1=TTTT, K2=AGGA, K3=CCAA,

and K4=GGTC. We can represent those sequences as the following list of k-mers :

• K1K2K1

• K1K2K3

• K1K2K4

• K2K1K2

• K2K3K1

23

• K2K3K2

• K4K1K2

Then, we can construct the multiple attribute tree illustrated in Figure 3.2.

K1

K2

K1 K3 K4

K2

K1

K1

K3

K1 K2

K4

K1

K2

Figure 3.3: Example of a Multiple Attribute Tree

We construct the tree by inserting sequences one by one. The method for in-

serting a sequence – i.e. an array of k-mers – is detailed in Algorithm 2. The

principle is, for each k-mer, to search in the current node’s children for the current

k-mer, and insert a new node if it was not found, while updating the current node

to advance in the tree.

Algorithm 2: Insert k-mers in multiple attribute tree

Input : T a multiple attribute tree root node

Input : kmers an array of k-mers representing a sequence

for each kmer in kmers do

use binary search to find kmer in T.children

if kmer was not found then

insert new node in T.children for kmer

end

T ← child node of kmer

end

24

As we create the tree, we count the number of occurrences of each k-mer for

Huffman encoding. We then build the Huffman tree and corresponding k-mer coding

table.

The output data consists of the encoded Huffman tree and multiple attribute

tree. For example, the multiple attribute tree illustrated above in Figure 3.2 would

produce the following k-mer frequencies :

• K1 → 6

• K2 → 4

• K3 → 2

• K4 → 2

which produces the Huffman tree and coding table in Figure 3.4.

Figure 3.4: Huffman tree produced by k-mer frequencies in Figure 3.2.

The depth-first traversal encoding of this Huffman tree would be: 01K101K201K31K4,

where Ki is replaced by its hard-coded sequence (3 bits per base).

Then, to encode the multiple attribute tree, we use a depth-first traversal where

we encode each node’s k-mer with the Huffman coding table, followed by its number

of children. We detail this process in Algorithm 3.

25

Algorithm 3: Encode multiple attribute tree

Input : T a multiple attribute tree root node

Input : Huffman coding table

Encode size(T.children)

S ← new stack initialized with nodes of T.children

for size(S) > 0 do

T ← S.pop()

Encode T.kmer with coding table

if size(T.children) > 0 then

Encode size(T.children)

for child in T.children do

S.push(child)

end

end

end

The number of children of each node is encoded using a variable-width scheme.

We noticed that single-child nodes are extremely frequent, while nodes with a large

number of children are rare. More specifically, the deeper the node is in the tree,

the less children it has. This can be explained by the fact that the children of a

given node in the tree represent all the sequences that have all k-mers from the

root node to this node. Therefore, we encode the number of children n of a given

internal node with the following rule :

• if n = 1, then write 0,

• if log n < 4, then write 10, and n encoded on 4 bits,

• if log n < 8, then write 110, and n encoded on 8 bits,

• etc.

The number of ones before the first zero tells us on how many chunks of 4 bits is the

number encoded, with a special case for 1. This method has significantly reduced

26

the size taken by the number of children – i.e. the multiple attribute tree structure

– in the output file.

For example, given the multiple attribute tree in Figure 3.2, its depth-first traver-

sal encoding would produce the following output:

3K11K23K1K3K4K22K11K1K32K1K2K41K11K2. Using the Huffman coding table

in Figure 3.4, and our children number encoding scheme, the resulting bits would

be (with spaces between each number and k-mer):

100011 0 0 10 100011 0 110 111 10 100010 0 0 0 110 100010 0 10

111 0 0 0 10

3.3 Complexity Analysis

We can see that the time complexity for compression depends on three steps :

• multiple attribute tree construction

• Huffman tree construction

• multiple attribute tree encoding

Let n be the number of sequences in the input file, m the length of those se-

quences, and k the length of the k-mers. To construct the multiple attribute tree,

we need to insert each sequence in the tree. Each insertion takes constant time, as

it is linear with respect to the height of the tree m
k

, which is constant. As we need

to do n insertions, multiple attribute tree construction can be done in O(n) time.

Huffman tree construction complexity depends on the number of different k-

mers in the file. This number nk−mers is bounded by 5k because the alphabet size is

5. As this number is constant, Huffman tree construction can be done in constant

time (more precisely in O(nk−mers log nk−mers) time which is constant).

Finally, multiple attribute tree encoding can be done inO(n) as it simply consists

of a depth-first traversal of the tree, and each k-mer encoding can be done in

constant time if we store the coding table as a hash table.

27

In summary, the time complexity of our algorithm is O(n), i.e., linear with

respect to the number of sequences.

In terms of space complexity, our algorithm is particularly memory-intensive, as

it needs to store the whole multiple attribute tree in memory. This gives us a space

complexity of O(n), as it is equivalent to storing all sequences in memory. One way

to address this is to use an external memory approach. However we rather decided

to opt for a distributed approach, as we will see in the following chapter.

3.4 Decompression

Decompression consists of the following steps. First, we read and decode the Huff-

man tree, which allows us to decode the k-mers. Then we decode the multiple

attribute tree by decoding the number of children of each node, followed by its

k-mer, except for leaf nodes which we know do not have any children. As a multiple

attribute tree is a complete tree, we can know that we have reached a leaf node by

keeping track of the depth. The recursive process is detailed in Algorithm 4.

Algorithm 4: Decompression

Input : HT, a Huffman tree

Input : height, the height of the multiple attribute tree

Input : depth, the current depth, initially 0

Input : kmers, the current array of k-mers, initially empty

Output: stream of sequences

n← Decode number of children;

for i from 1 to n do

kmer ← Decode k-mer with HT;

kmers.append(kmer);

if depth < height then

Decompression(HT, height, depth+1, kmers);

else

construct sequence from kmers and write it to output;

28

We note that decompression is a streaming operation, meaning that sequences

can be processed as they are decompressed. We do not need to reconstruct the

whole multiple attribute tree, as we just need to follow the depth-first traversal of

the tree. We believe it is an important feature of our algorithm.

3.5 Implementation

Our algorithm was implemented using the Go programming language.

Go (or golang) is a programming language developed at Google by Robert

Griesemer, Rob Pike, and Ken Thompson in 2007. The initial motivation was

to create a language in-between systems and application programming, for highly

concurrent and scalable software. Performance and developer-productivity are core

concerns of the language.

Although Go does not seem to be highly adopted by the research community,

its expressiveness and simplicity – allowing fast source code iterations, which are

very common in research – encourage us to advocate for its broader adoption.

Go is a compiled, statically typed, and garbage collected language, with a C-

inspired syntax. It also offers a CSP-style concurrent paradigm, via green threads

called ”goroutines”.

Green threads are lightweight threads handled one abstraction layer above oper-

ation system threads. They are usually created and managed by a virtual machine

– such as the Java Virtual Machine (JVM) or the Erlang virtual machine (BEAM)

– or, in the case of Go, a runtime, whereas standard threads are handled by the op-

erating system. Each Go program, when compiled, ships with a small runtime that

handles garbage collection and goroutines management. The advantage of green

threads over operation system threads is that they have a much smaller footprint,

especially memory-wise (a goroutine initially starts with a stack size of only 2kB),

which means that many of them can be heavily created and destroyed without

affecting performances.

For example, in our implementation, a goroutine is responsible for reading the

sequences in the input file, and sends them via a channel – a first-class value in

29

Go which allows goroutine memory communication – to the main goroutine which

processes them. This means that our program does not wait for I/O operations

as it handles sequences asynchronously. Moreover, we found out that adding an

additional goroutine in the middle, that converts lines from the input file to arrays

of k-mers, further improved performances.

Implementation of multiple attribute tree construction was done using a ded-

icated data structure. Inserting k-mers in the multiple attribute tree was done

recursively using binary search on each node’s children. However, we found out

that splitting the top level k-mers in a hash table improved performances. The

hash table associates to each top k-mer (i.e. first k-mer of each sequence) a multi-

ple attribute tree. When encoding the whole multiple attribute tree, we first encode

the number of top k-mers, and each k-mer in the hash table followed by its encoded

tree.

As we needed to read and write at the bit level, we used an open-source li-

brary called go-bitstream (https://github.com/dgryski/go-bitstream). More

precisely, we forked this Go package to modify it to better suit our needs. We

namely added a bit buffer data structure based on the bit stream reader and writer

provided by this package. We also added buffered versions of these bit stream reader

and writer.

30

https://github.com/dgryski/go-bitstream

Chapter 4

Distributed Multiple Attribute

Tree Compression

In this chapter, we present a distributed implementation for our algorithm.

4.1 Master-Worker Paradigm

Our distributed implementation follows the well-known master-worker paradigm.

A single master process reads the input file, and distributes the compression work

to several worker processes. These processes can run on the same machine, or on a

cluster of machines communicating over the network.

We note that the construction of the multiple attribute tree can actually be

viewed as the construction of a forest, as the root node does not store any k-

mer. Therefore, our idea consists in dispatching the sequences among the workers

depending on the first k-mer of each sequence. When a sequence is read, the master

assigns its first k-mer to a specific worker so that all other sequences with the same

first k-mer will be sent to this worker.

The question that arises from this idea is how to ensure an even distribution of

the sequences. To solve this problem, we assign to each worker a workload variable

that corresponds to the number of sequences previously sent to this worker. This

variable is initialized to zero and incremented each time a sequence is sent to this

worker. Then, if the first k-mer of a newly read sequence as no assigned worker, we

31

assign it to the worker for which the workload value is minimal.

Each worker will receive the sequences sent by the master and build its own

attribute tree. By design, as no worker share the same k-mer at the first level of the

tree, the concatenation of all the trees stored by each worker forms the complete

multiple attribute tree for the entire input file.

However, the Huffman tree for k-mer encoding cannot be constructed by a single

worker, as it depends on the frequency of k-mers in all trees. A synchronisation

step is thus necessary. After dispatching the sequences to the workers, the master

process receives the k-mer frequencies from all workers, construct the Huffman tree

by merging them, and sends it back to all workers. Each worker then encodes its

multiple attribute tree and sends it to the master, which writes them to the output

file.

This communication protocol is illustrated in Figure 4.1.

Figure 4.1: Master-worker protocol for distributed MATC

32

4.2 Algorithms

We detail algorithms for the master and worker processes in Algorithms 5 and 6.

Algorithm 5: Master

workers ← connect to each worker;

workloads ← new array of size of size(workers);

dispatchedKmers ← new hash table (kmer → worker);

for sequence in inpute file do

kmer ← first kmer in sequence;

if kmer is in dispatchedKmers then

send sequence to worker dispatchedKmers[kmer];

else

worker ← workers[min(workloads)];

send sequence to worker;

dispatchedKmers[kmer] ← worker;

end

end

kmerFreq ← receive k-mer frequencies;

huffmanTree ← build Huffman tree from kmerFreq;

for worker in workers do

send huffmanTree to worker;

end

write number of top k-mers in output file;

for worker in workers do

mat ← receive multiple attribute tree from worker;

write mat to output file;

end

33

Algorithm 6: Worker

master ← listen for incoming connection;

mat ← initialize multiple attribute tree;

kmerFreq ← new hash table (kmer → unsigned integer);

for each sequence from master do

insert sequence in mat and update kmerFreq;

end

send kmerFreq to master;

huffmanTree ← receive Huffman tree from master;

encode mat with huffmanTree and send it to master;

4.2.1 Speedup

In parallel computing, speedup is defined as the ratio of the sequential execution

time to the parallel execution time. It is usually expressed as Sp = T (n,1)
T (n,p)

. We saw

in the previous chapter that our sequential algorithm runs in O(n). Our parallel

algorithm distributes the multiple attribute tree construction and encoding to all

workers. The only sequential part is the Huffman tree construction, which, as we

saw, can be done in constant time (as it only depends on the number of different

k-mers, which is bounded by the constant 5k) i.e., the sequential part that needs

to be synchronised is in O(5k). Therefore, the parallel execution time is T (n, p) =

O(n
p
), which gives us an ideal linear speedup Sp = p. Our algorithm is thus highly

parallelizable.

Naturally, in practice, the number of different k-mers does grow with the number

of sequences. We investigated this growth experimentally, by counting the number

of different k-mers (with k = 10) for a number of sequences between 10 and 60

million (with sequences of length 100). Results are shown in Figure 4.2. We can see

that doubling the number of sequences in the input data only increases the number

of different k-mers by a factor of around 8%.

34

Figure 4.2: Evolution of the number of different k-mers with respect to the number

of sequences on the CE dataset (sequence length = 100; k = 10).

4.3 Implementation

In our implementation, the worker process is a TCP server waiting for a connection

from a master process. The master process acts as a TCP client and connects to

the different worker processes.

Interestingly, an important feature of the Go programming language, interfaces,

has greatly facilitated our implementation of a distributed version of MATC. In

Go, a file structure implements the io.Reader and io.Writer interfaces from the

standard library, which means that we can read and write bytes from/to a file. As

we have previously mentioned, in our implementation, we use a modified version of

an open-source library for manipulating bit streams. These streams are based on

the io.Reader and io.Writer interfaces to read from/to a file.

In Go, a TCP connection also implements these interfaces, and can therefore be

used, as is, as a bit stream. For example, when the master sends the Huffman tree

to the worker, we use the exact same code for encoding the Huffman tree to the

35

output file, except that we encode it to the TCP connection. Each worker can then

decode the Huffman tree as it would from a compressed file. Another interesting

application is when workers send their multiple attribute trees. The master simply

redirects this bit stream to the output file.

36

Chapter 5

Results

In this chapter, we detail our experimental results on several datasets.

5.1 Datasets

In our experiments, we used a subset of the datasets used by FaStore [9], as in

their paper, they provide results for all major DNA compressors, which we used to

compare with our algorithm.

These datasets consists of gzipped FASTQ files, which were extracted and con-

catenated. We then removed identifiers and quality scores from the resulting files,

to only keep DNA sequences.

5.1.1 CE Dataset

This dataset consists of two FASTQ files, which can be downloaded from :

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR065/SRR065390/SRR065390_1.

fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR065/SRR065390/SRR065390_2.

fastq.gz

37

5.1.2 WEX Dataset

This dataset consists of a single BAM file, which can be downloaded from :

ftp://ftp -trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/

HG002_NA24385_son/OsloUniversityHospital_Exome /151002

_7001448_0359_AC7F6GANXX_Sample_HG002 -EEogPU_v02 -KIT -

Av5_AGATGTAC_L008.posiSrt.markDup.bam

We then used SAMTools [7] to convert it to a FASTQ file.

5.1.3 GG Dataset

This dataset consists of twelve FASTQ files, which can be downloaded from :

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030308/

SRX043656/SRR105788_1.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030308/

SRX043656/SRR105788_2.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030309/

SRX043656/SRR105789_1.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030309/

SRX043656/SRR105789_2.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030312/

SRX043656/SRR105792_1.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030312/

SRX043656/SRR105792_2.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030314/

SRX043656/SRR105794_1.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030314/

SRX043656/SRR105794_2.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036382/

SRX043656/SRR197985_1.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036382/

SRX043656/SRR197985_2.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036383/

SRX043656/SRR197986_1.fastq.bz2

38

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036383/

SRX043656/SRR197986_2.fastq.bz2

5.1.4 WGS-14 Dataset

This dataset is a subset of a larger dataset called WGS-235x. It consists of its first

two FASTQ files which can be downloaded from :

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR174/ERR174324/ERR174324_1.

fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR174/ERR174324/ERR174324_2.

fastq.gz

5.1.5 Summary

We provide in Table 5.1 a detailed summary of the datasets we used, including se-

quence length, number of sequences, and the raw size of the resulting file containing

only the DNA sequences.

Dataset Organism Seq. length Seq. count Raw size

CE C. Elegans 100 67.62 M 6.83 GB

WEX H. Sapiens 126 151.80 M 19.28 GB

GG G. Gallus 100 347.74 M 35.12 GB

WGS-14 H. Sapiens 101 447.14 M 45.61 GB

Table 5.1: Summary of the datasets used in our experiments

5.2 Compression Ratio and Speed Evolution

5.2.1 Non-distributed MATC

We studied the evolution of compression ratio and speed with respect to the number

of sequences in the input file. Our approach was to randomly sample sequences from

39

the CE dataset to produce artificial files with different number of sequences. We

produced 6 files containing between 10 and 60 million sequences. We then ran our

algorithm on a single machine for each file. Results are reported in Figure 5.1.

Figure 5.1: Evolution of the compression ratio and speed with respect to the number

of sequences randomly sampled from the CE dataset

We can clearly see that compression ratio decreases as the number of sequences

– i.e., improves, as lower is better. Likewise, the compression speed increases with

the number of sequences.

This results suggest that the bigger the input file, the more efficient our algo-

rithm will be both in terms of compression ratio and speed.

5.2.2 Distributed MATC

We also studied how our distributed algorithm behaves with respect to the number

of workers. We ran our algorithm on the full CE dataset with between 2 and 10

workers, each running in a single machine on a cluster of 10 machines with each 16

GB of RAM and 1 vCPU. The evolution of compression speed is reported in Figure

5.2.

40

Figure 5.2: Evolution of the compression time with respect to the number of workers

for our distributed algorithm on the CE dataset. [6.83GB; 67.62M sequences]

Doubling the number of workers seems to increase the compression speed by

around 15%. However we can see that as the number of workers grow, the im-

provement diminishes. This can be explained by the growing number of different

k-mers, which increases the time taken by the Huffman tree construction, as we

saw in Section 4.2.1, and by the increasing cost of network communication. We also

studied the evolution of network communication cost, results are shown in Figures

5.3 and 5.4. We can see that these variations are quite small, representing less

than 1% of the total data transfer. They are actually only due to the Huffman

tree synchronisation step. Indeed, the master needs to receive k-mer frequencies

and send the Huffman tree to all workers, hence more workers means more network

load. However, since the size of the k-mer frequencies and Huffman tree is quite

small, the does not induce excessive growth of network communication costs.

41

Figure 5.3: Evolution of the network load from master to workers with respect to

the number of workers for our distributed algorithm on the CE dataset. [6.83GB;

67.62M sequences]

42

Figure 5.4: Evolution of the network load from workers to master with respect to

the number of workers for our distributed algorithm on the CE dataset. [6.83GB;

67.62M sequences]

5.3 Comparison with other DNA Compressors

5.3.1 Experimental Setup

We ran our distributed implementation of MATC on all datasets, in the cloud, on a

cluster of 10 machines with each 16 GB of RAM and 1 vCPU of an Intel® Xeon®

Gold 6140 @2.30GHz processor, which can be considered as commodity hardware

as they are single-core machines.

We set k = 10 for all datasets, except for the WEX dataset for which k = 9

(because the sequences length, 126, was divisible by 9).

The detailed results, including compression ratio – i.e., the size of the output file

divided by the size of the input file, in percentage – and compression speed – i.e.,

the size of the input file divided by the compression time – are provided in Table

5.2.

43

Dataset In. size Out. size Time (sec) Comp. Ratio Speed (MB/sec)

CE 6.83 GB 1.23 GB 237.69 17.97% 28.44

WEX 19.28 GB 2.98 GB 530.01 15.44% 35.75

GG 35.12 GB 6.68 GB 1614.17 19.01% 21.51

WGS-14 45.61 GB 9.15 GB 2014.20 20.07% 22.42

Table 5.2: MATC compression ratio and speed for all datasets

5.3.2 Compression Ratio

We compare our compression ratio for each dataset with other compressors in Table

5.3 and Figure 5.5. Namely, we compare compression ratio with the following DNA

compressors :

• FaStore [9]

• Scalce [5]

• LEON [1]

• Fqzcomp [2]

• Quip [6]

• DSRC 2 [8]

as well as the general purpose compressors bzip2 and gzip.

Results for those DNA compressors were taken from the FaStore paper supple-

mentary materials. Results for bzip2 and gzip were run by us.

44

Compressors

Datasets

CE WEX GG WGS-14

MATC 17.97% 15.44% 19.01% 20.07%

FaStore 6.34% 5.38% 8.41% 10.28%

Scalce 7.94% 6.81% 10.30% 11.98%

LEON 8.31% 9.04% 12.21% 15.93%

Fqzcomp 13.19% 11.01% 17.74% 18.74%

Quip 21.37% 22.14% 21.69% 21.70%

DSRC 2 23.03% 23.93% 22.75% 22.76%

bzip2 27.61% 28.04% 26.98% 27.40%

gzip 29.88% 30.17% 29.31% 29.90%

Table 5.3: Comparison of compression ratio with several other compressors for all

datasets

Figure 5.5: Comparison of compression ratio with several other compressors for all

datasets

These results show that, in terms of compression ratio, our algorithm performs

45

worse than FaStore, Scalce, LEON and Fqzcomp. However, our algorithm also

performs better than Quip and DSRC 2, as well as bzip2 and gzip.

5.3.3 Compression Speed

Compression speed is harder to compare for two reasons. First, it depends on

the hardware on which the algorithm is executed. Secondly, as our algorithm is

distributed, comparing its speed with non-distributed algorithm is less legitimate.

We report the compression speeds provided in the FaStore paper for the afore-

mentioned algorithms in Table 5.4.

Compressors

Datasets

CE WEX GG WGS-14

FaStore 6.0 8.4 8.3 7.6

Scalce 39.4 42.8 49.0 43.2

LEON 18.1 16.3 19.7 15.6

Fqzcomp 13.9 18.0 24.3 14.0

Quip 46.2 50.6 60.2 41.9

DSRC 2 127.8 159.2 169.6 124.3

Table 5.4: Compression speed of other compressors for all datasets (in MB/sec)

According to the FaStore paper, these compression speeds were obtained on an

8-core machine. This type of setup is comparable to our cluster of 10 machine with

1 vCPU each. As we report compression speeds in Table 5.2 between 21.51 and

35.75 MB/sec, it is reasonable to believe that our algorithm performs on par with

these other compressors, if not faster than those which have better compression

ratio.

5.3.4 Decompression Speed

Likewise, decompression speed is reported in Table 5.5. These results were obtained

on a single machine from our cluster of single-core workstations.

46

Dataset Decompression speed (MB/sec)

CE 24.92

WEX 32.58

GG 23.74

WGS-14 22.66

Table 5.5: MATC decompression speed for all datasets

47

Chapter 6

Conclusion

In this thesis, we proposed MATC, a novel compression algorithm for DNA se-

quencing data based on multiple attribute trees. Our algorithm offers streaming

decompression, which allows programs to start processing sequences as they are

uncompressed.

We provided both local and distributed implementation for this algorithm, al-

lowing compression to happen in the cloud on a cluster of machines. We have shown

that our algorithm perform moderately well in terms of compression ratio, around

18%, while other specialized compressors perform between 6% and 24%, but with

fairly good compression speed thanks to its distributed implementation.

We believe that there are still rooms for improvements for our algorithm. No-

tably, we tackled its high memory complexity with a distributed approach, but we

believe an external memory approach would also be worth considering.

48

Bibliography

[1] Gaëtan Benoit, Claire Lemaitre, Dominique Lavenier, Erwan Drezen, Thibault

Dayris, Raluca Uricaru, and Guillaume Rizk. Reference-free compression of

high throughput sequencing data with a probabilistic de bruijn graph. BMC

bioinformatics, 16(1):288, 2015.

[2] James K Bonfield and Matthew V Mahoney. Compression of fastq and sam

format sequencing data. PloS one, 8(3):e59190, 2013.

[3] Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney.

Efficient storage of high throughput dna sequencing data using reference-based

compression. Genome research, 21(5):734–740, 2011.

[4] Szymon Grabowski, Sebastian Deorowicz, and Lukasz Roguski. Disk-based

compression of data from genome sequencing. Bioinformatics, 31(9):1389–

1395, 12 2014.

[5] Faraz Hach, Ibrahim Numanagić, Can Alkan, and S Cenk Sahinalp. Scalce:

boosting sequence compression algorithms using locally consistent encoding.

Bioinformatics, 28(23):3051–3057, 2012.

[6] Daniel C Jones, Walter L Ruzzo, Xinxia Peng, and Michael G Katze. Com-

pression of next-generation sequencing reads aided by highly efficient de novo

assembly. Nucleic acids research, 40(22):e171–e171, 2012.

[7] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,

Gabor Marth, Goncalo Abecasis, and Richard Durbin. The sequence align-

ment/map format and samtools. Bioinformatics, 25(16):2078–2079, 2009.

49

[8] Lukasz Roguski and Sebastian Deorowicz. DSRC 2—Industry-oriented com-

pression of FASTQ files. Bioinformatics, 30(15):2213–2215, 04 2014.

[9] Lukasz Roguski, Idoia Ochoa, Mikel Hernaez, and Sebastian Deorowicz. Fa-

Store: a space-saving solution for raw sequencing data. Bioinformatics,

34(16):2748–2756, 03 2018.

[10] Addison Womack. Cigarcoil: A new algorithm for the compression of dna

sequencing data. Master’s thesis, University of Oklahoma, Norman, Oklahoma,

2019.

[11] Vladimir Yanovsky. Recoil-an algorithm for compression of extremely large

datasets of dna data. Algorithms for Molecular Biology, 6(1):23, 2011.

50

Appendix A

Source code

Source code for MATC was written in the Go programming language. It mainly

consists of two Go packages : the matc library and the executable. Each is composed

of several ”.go” files.

A.1 MATC library

A.1.1 letter.go

package matc

import "fmt"

const (

// LetterBitSize correspond to the number of bits

// required to encode a single letter

LetterBitSize = 3

// LetterMask has its LetterBitSize least -significant

// bits set to ones

LetterMask = 0x7

// these are the DNA sequencing letters from the

// alphabet {A, C, G, T, N}

LetterN uint8 = iota

LetterA

51

LetterC

LetterG

LetterT

)

// LetterFromRune converts a rune (character) to its letter value

func LetterFromRune(r rune) (l uint8 , ok bool) {

switch r {

case ’N’:

return LetterN , true

case ’A’:

return LetterA , true

case ’C’:

return LetterC , true

case ’G’:

return LetterG , true

case ’T’:

return LetterT , true

}

return 0, false

}

// LetterFromRune converts a letter value to a rune (character)

func LetterToRune(l uint8) rune {

switch l {

case LetterN:

return ’N’

case LetterA:

return ’A’

case LetterC:

return ’C’

case LetterG:

return ’G’

case LetterT:

return ’T’

}

52

panic(fmt.Sprintf (" cannot convert letter to rune: invalid letter

value ‘%02x‘", l))

}

53

A.1.2 kmer.go

package matc

import (

"bufio"

"github.com/dselim/go-bit"

)

// Kmer represents a k-mer encoded on a uint32

// each letter is encoded on LetterBitSize bits

type Kmer uint32

// maxK represents the maximum value of k (10)

const maxK = 32 / LetterBitSize

// KmersFromString converts a sequences string

// to a slice of k-mers

func KmersFromString(str string , k int) (kmers []Kmer , ok bool) {

n := len(str)

nk := n / k

kr := n % k

if kr > 0 {

kmers = make ([]Kmer , nk+1)

} else {

kmers = make ([]Kmer , nk)

}

for i := 0; i < nk; i++ {

kmers[i], ok = KmerFromString(str[i*k : (i+1)*k])

if !ok {

return nil , false

}

}

if kr > 0 {

kmers[nk], ok = KmerFromString(str[nk*k:])

if !ok {

return nil , false

54

}

}

return

}

// KmerFromString converts a sequences to a single k-mer

func KmerFromString(str string) (Kmer , bool) {

var kmer Kmer

for _, r := range str {

kmer <<= LetterBitSize

l, ok := LetterFromRune(r)

if !ok {

return 0, false

}

kmer += Kmer(l)

}

return kmer , true

}

// Len returns the number of letters in this k-mer

func (kmer Kmer) Len() (n int) {

for ; kmer != 0; kmer >>= LetterBitSize {

n++

}

return

}

// EncodeBits writes the k-mer to the provided bit.Writer

func (kmer Kmer) EncodeBits(w bit.Writer , k int) (n int , err error)

{

n = LetterBitSize * k

err = w.WriteBits(uint64(kmer), n)

return

}

// EncodeBits decodes the k-mer from the provided bit.Writer

func (kmer *Kmer) DecodeBits(r bit.Reader , k int) (err error) {

55

if k > maxK {

panic ("k too large for storing kmer in uint32 ")

}

var v uint64

v, err = r.ReadBits(LetterBitSize * k)

if err != nil {

return

}

*kmer = Kmer(uint32(v))

return

}

var bytebuf = make ([]byte , 0, 10)

// WriteToBuffer writes the k-mer as a plain string

// to the provided buffered writer

func (kmer Kmer) WriteToBuffer(w *bufio.Writer) error {

bytebuf = bytebuf [:0]

for l := kmer & LetterMask; l != 0; l = kmer & LetterMask {

bytebuf = append(bytebuf , byte(l))

kmer >>= LetterBitSize

}

for i := len(bytebuf) - 1; i >= 0; i-- {

_, err := w.WriteRune(LetterToRune(bytebuf[i]))

if err != nil {

return err

}

}

return nil

}

// String converts the k-mer to a plain string

func (kmer Kmer) String () string {

s := ""

for ; kmer != 0; kmer >>= LetterBitSize {

s = s + string(LetterToRune(uint8(kmer&LetterMask)))

}

56

return s

}

57

A.1.3 file io.go

package matc

import (

"bufio"

"errors"

"os"

"runtime"

)

// ScanFileFirst reads the first sequence in the input file

// and returns its k-mers as well as its length

func ScanFileFirst(filepath string , k int) ([]Kmer , int , error) {

f, err := os.Open(filepath)

if err != nil {

return nil , 0, err

}

defer f.Close ()

scanner := bufio.NewScanner(f)

for scanner.Scan() {

kmers , ok := KmersFromString(scanner.Text(), k)

if !ok {

continue

}

return kmers , len(scanner.Text()), nil

}

return nil , 0, errors.New("no valid sequence in input stream ")

}

// ScanFileFirst reads all sequences in the input file

// and returns a channel in which it will send batches

// of the k-mers for each sequence

func ScanFileKmers(filepath string , batchSize , k int) <-chan [][]

Kmer {

resc := make(chan [][]Kmer , runtime.NumCPU ())

linec := scanLines(filepath , batchSize)

58

go func() {

defer close(resc)

batch := make ([][] Kmer , 0, batchSize)

seqLen := -1

for lines := range linec {

for _, line := range lines {

kmers , ok := KmersFromString(line , k)

if !ok {

continue

}

if seqLen == -1 {

seqLen = len(line)

} else if len(line) != seqLen {

panic ("found sequences of different lengths ")

}

batch = append(batch , kmers)

if len(batch) >= batchSize {

resc <- batch

batch = make ([][] Kmer , 0, batchSize)

}

}

}

if len(batch) > 0 {

resc <- batch

}

}()

return resc

}

// scanLines reads all lines in the input file

// and sends them by batch of batchSize in

// the channel it returns

func scanLines(filepath string , batchSize int) <-chan [] string {

linec := make(chan []string , runtime.NumCPU ())

go func() {

defer close(linec)

59

f, err := os.Open(filepath)

if err != nil {

panic(err)

}

defer f.Close ()

scanner := bufio.NewScanner(f)

lines := make ([]string , 0, batchSize)

for scanner.Scan() {

lines = append(lines , scanner.Text())

if len(lines) >= batchSize {

linec <- lines

lines = make ([]string , 0, batchSize)

}

}

if len(lines) > 0 {

linec <- lines

}

err = scanner.Err()

if err != nil {

panic(err)

}

}()

return linec

}

60

A.1.4 huffman tree.go

package matc

import (

"errors"

"github.com/dgryski/go-bitstream"

"github.com/dselim/go-bit"

go_heaps "github.com/theodesp/go-heaps"

"github.com/theodesp/go-heaps/fibonacci"

)

// HuffmanTree represents a Huffman tree node

// for internal nodes: kmer == 0 and left and right are defined

// for leaf nodes: kmer != 0 and left and right are nil

type HuffmanTree struct {

kmer Kmer

left *HuffmanTree

right *HuffmanTree

}

// heapElem encapsulates a Huffman tree node

// for priority queue

type heapElem struct {

priority int

tree *HuffmanTree

}

// Compare implements the go_heaps.Item interface

func (e heapElem) Compare(other go_heaps.Item) int {

return e.priority - other.(heapElem).priority

}

// BuildHuffmanTree builds a Huffman tree from

// k-mer frequencies (or occurences) using a

// fibonacci heap as a priority queue data structure

func BuildHuffmanTree(kmers map[Kmer]int) *HuffmanTree {

61

queue := fibonacci.New()

n := len(kmers)

for kmer , occ := range kmers {

queue.Insert(heapElem{

occ ,

&HuffmanTree{kmer: kmer},

})

}

for n > 1 {

n--

e1 := queue.DeleteMin ().(heapElem)

e2 := queue.DeleteMin ().(heapElem)

queue.Insert(heapElem{

e1.priority + e2.priority ,

&HuffmanTree{

left: e1.tree ,

right: e2.tree ,

},

})

}

return queue.DeleteMin ().(heapElem).tree

}

// Bits represent a bitstring of at most 64 bits

type Bits struct {

n int

v uint64

}

// Size returns the length of the bitstring

func (b Bits) Size() int {

return b.n

}

// AddBit adds a bit to the bitstring and returns

// its new value

func (b Bits) AddBit(bit bitstream.Bit) (bits Bits) {

62

v := b.v << 1

if bit == bitstream.One {

v++

}

return Bits{

n: b.n + 1,

v: v,

}

}

// EncodeBits writes the bitstring to a bit.Writer

// it returns the number of bits written

func (b Bits) EncodeBits(w bit.Writer) (n int , err error) {

n = b.n

err = w.WriteBits(b.v, b.n)

return

}

// CodingTable associate with each k-mer in the

// Huffman tree its corresponding bitstring

type CodingTable map[Kmer]Bits

// CodingTable computes the coding table for

// a Huffman tree

func (t *HuffmanTree) CodingTable () CodingTable {

type stackElem struct {

t *HuffmanTree

b Bits

}

stack := [] stackElem{stackElem{t: t}}

table := make(CodingTable)

for len(stack) > 0 {

elem := stack[len(stack) -1]

stack = stack [:len(stack) -1]

if elem.t.kmer != 0 {

63

table[elem.t.kmer] = elem.b

} else {

stack = append(stack , stackElem{

t: elem.t.right ,

b: elem.b.AddBit(bitstream.One),

}, stackElem{

t: elem.t.left ,

b: elem.b.AddBit(bitstream.Zero),

})

}

}

return table

}

// EncodeKmer writes the Huffman code for the

// provided k-mer to a bit.Writer

// it returns the number of bits written

// and throws an error if the k-mer is not

// in the coding table

func (t CodingTable) EncodeKmer(w bit.Writer , kmer Kmer) (int ,

error) {

bits , ok := t[kmer]

if !ok {

return 0, errors.New(" encode kmer: coding table does not

contain kmer")

}

return bits.n, w.WriteBits(bits.v, bits.n)

}

// DecodeKmer uses the Huffman tree to read

// a k-mer from the provided bit.Reader

func (t *HuffmanTree) DecodeKmer(r bit.Reader) (Kmer , error) {

cur := t

for cur.kmer == 0 {

b, err := r.ReadBit ()

if err != nil {

64

return 0, err

}

if b == bit.Zero {

cur = cur.left

} else {

cur = cur.right

}

}

return cur.kmer , nil

}

// EncodeBits encodes the Huffman tree using a

// depth -first traversal encoding

func (t *HuffmanTree) EncodeBits(w bit.Writer , k int) (n int , err

error) {

var m int

stack := []* HuffmanTree{t}

for len(stack) > 0 {

tree := stack[len(stack) -1]

stack = stack [:len(stack) -1]

if tree.kmer != 0 {

err = w.WriteBit(bit.One)

if err != nil {

return

}

n++

m, err = tree.kmer.EncodeBits(w, k)

if err != nil {

return

}

n += m

} else {

err = w.WriteBit(bit.Zero)

if err != nil {

return

}

n++

65

stack = append(stack , tree.right , tree.left)

}

}

return

}

// DecodeBits decodes a Huffman tree from the

// provided bit.Reader

func (t *HuffmanTree) DecodeBits(r bit.Reader , k int) (err error) {

stack := []* HuffmanTree{t}

for len(stack) > 0 {

tree := stack[len(stack) -1]

stack = stack [:len(stack) -1]

var b bit.Bit

b, err = r.ReadBit ()

if err != nil {

return

}

if b == bit.One {

err = tree.kmer.DecodeBits(r, k)

if err != nil {

return

}

} else {

tree.right = new(HuffmanTree)

tree.left = new(HuffmanTree)

stack = append(stack , tree.right , tree.left)

}

}

return

}

66

A.1.5 var uint64.go

package matc

import (

"github.com/dselim/go-bit"

)

// pow2 return 2^p

func pow2(p uint64) (v uint64) {

v = 1

for p > 0 {

v *= 2

p--

}

return

}

const widthPerOne = 4

// EncodeVarWidthUint64 encodes v in the provided bit.Writer

// as a variable width unsigned integer such that :

// - if n = 1, then write 0

// - if logn < widthPerOne , then write 10, and v encoded on

widthPerOne bits

// - if logn < 2* widthPerOne , then write 10, and v encoded on 2*

widthPerOne bits

// - etc.

func EncodeVarWidthUint64(w bit.Writer , v uint64) (n int , err error

) {

if v == 0 {

n, err = 1, w.WriteBit(bit.Zero)

return

}

ones := 1

for v >= pow2(uint64(ones*widthPerOne)) {

ones++

}

67

err = w.WriteBits (^ uint64 (0), ones)

if err != nil {

return 0, err

}

err = w.WriteBit(bit.Zero)

if err != nil {

return 0, err

}

n = ones + 1 + ones*widthPerOne

err = w.WriteBits(v, ones*widthPerOne)

return

}

// DecodeVarWidthUint64 decodes from the provided bit.Reader

// a variable width unsigned integer encoded with

EncodeVarWidthUint64

func DecodeVarWidthUint64(r bit.Reader) (uint64 , error) {

ones := 0

b, err := r.ReadBit ()

if err != nil {

return 0, err

}

for b == bit.One {

ones++

b, err = r.ReadBit ()

if err != nil {

return 0, err

}

}

if ones == 0 {

return 0, nil

}

return r.ReadBits(ones * widthPerOne)

}

68

A.1.6 mat.go

package matc

import (

"sort"

"github.com/dselim/go-bit"

)

// MAT represents a multiple attribute tree

type MAT struct {

Kmer

Children []MAT

}

// AddLeaf adds the provided k-mers to the multiple

// attribute tree , and updates the provided k-mer

// frequency hash -maps

func (t *MAT) AddLeaf(kmers []Kmer , kmerOcc , trailKmerOcc map[Kmer]

int) {

if len(kmers) == 0 {

return

}

i, found := t.SearchChild(kmers [0])

if !found {

// insert

t.Children = append(t.Children , MAT{})

copy(t.Children[i+1:], t.Children[i:])

t.Children[i] = MAT{Kmer: kmers [0]}

if len(kmers) == 1 && trailKmerOcc != nil {

trailKmerOcc[kmers [0]]++

} else {

kmerOcc[kmers [0]]++

}

}

t.Children[i]. AddLeaf(kmers [1:], kmerOcc , trailKmerOcc)

69

return

}

// SearchChild searches in the MAT node ’s children

// for a provided k-mer using binary search

// it returns the index at which the k-mer was

// found or should be inserted

func (t MAT) SearchChild(kmer Kmer) (int , bool) {

if len(t.Children) < 8 {

for i, child := range t.Children {

if child.Kmer >= kmer {

return i, child.Kmer == kmer

}

}

return len(t.Children), false

}

i := sort.Search(len(t.Children), func(i int) bool { return t.

Children[i].Kmer >= kmer })

return i, i < len(t.Children) && t.Children[i].Kmer == kmer

}

// EncodeBits encodes the multiple attribute tree

// to the provided bit.Writer , using the provided

// coding tables to encode the k-mers

func (t MAT) EncodeBits(w bit.Writer , table , trailTable CodingTable

) (nkmers , nchildren int , err error) {

var m int

m, err = EncodeVarWidthUint64(w, uint64(len(t.Children) -1))

if err != nil {

return

}

nchildren += m

stack := t.Children

for len(stack) > 0 {

t = stack[len(stack) -1]

stack = stack [:len(stack) -1]

70

if len(t.Children) == 0 && trailTable != nil {

m, err = trailTable.EncodeKmer(w, t.Kmer)

} else {

m, err = table.EncodeKmer(w, t.Kmer)

}

if err != nil {

return

}

nkmers += m

if len(t.Children) > 0 {

m, err = EncodeVarWidthUint64(w, uint64(len(t.Children) -1))

if err != nil {

return

}

nchildren += m

stack = append(stack , t.Children ...)

}

}

return

}

// MATDecodeBits decodes a multiple attribute tree from the

// provided bit.Reader , using the provided Huffman trees

// calling fn for each decoded sequence

func MATDecodeBits(r bit.Reader , hft , trailHft *HuffmanTree , height

int , fn func ([] Kmer) error) error {

return matDecodeBitsRec(r, hft , trailHft , fn , make ([]Kmer , height

), 0)

}

// matDecodeBitsRec is the recursive function

// called by MATDecodeBits

func matDecodeBitsRec(r bit.Reader , hft , trailHft *HuffmanTree , fn

func ([] Kmer) error , kmers []Kmer , i int) error {

71

v, err := DecodeVarWidthUint64(r)

if err != nil {

return err

}

numChildren := int(v) + 1

for j := 0; j < numChildren; j++ {

if i == len(kmers)-1 && trailHft != nil {

kmers[i], err = trailHft.DecodeKmer(r)

} else {

kmers[i], err = hft.DecodeKmer(r)

}

if err != nil {

return err

}

if i < len(kmers)-1 {

err = matDecodeBitsRec(r, hft , trailHft , fn , kmers , i+1)

if err != nil {

return err

}

} else {

err = fn(kmers)

if err != nil {

return err

}

}

}

return nil

}

72

A.2 Executable

A.2.1 main.go

package main

import (

"fmt"

"log"

"os"

"time"

"github.com/spf13/pflag"

)

var (

k int

batchSize int

inFile string

outFile string

uncompress bool

workersAddr [] string

listenAddr string

)

func init() {

pflag.IntVarP (&k, "kmer -length", "k", 0, "length of K-mers")

pflag.IntVarP (&batchSize , "batch -size", "b", 10000 , "size of

batches for goroutine communication ")

pflag.StringVarP (&inFile , "in", "i", "", "input file")

pflag.StringVarP (&outFile , "out", "o", "", "output file")

pflag.BoolVarP (&uncompress , "uncompress", "x", false , "uncompress

mode")

pflag.StringArrayVarP (& workersAddr , "worker", "w", nil , "worker

addresses (distributed master mode)")

pflag.StringVarP (&listenAddr , "listen", "l", "", "address to

listen to (distributed worker mode)")

73

}

func main() {

pflag.Parse ()

if listenAddr != "" {

err := runWorker ()

if err != nil {

log.Fatalln(err)

}

return

}

if inFile == "" || outFile == "" {

pflag.Usage ()

return

}

if uncompress {

decompression(runUncompress)

return

}

if k == 0 {

pflag.Usage ()

return

}

if len(workersAddr) > 0 {

compression(runMaster)

} else {

compression(runCompress)

}

}

// compression runs the provided function

// and logs the compression size , ratio ,

// time , and speed

func compression(runFunc func() error) {

log.Println (" compressing file", inFile)

74

t := time.Now()

err := runFunc ()

if err != nil {

log.Fatalln(err)

}

dt := time.Since(t)

inSize , err := fileSize(inFile)

if err != nil {

log.Fatalln (" could not open input file")

}

outSize , err := fileSize(outFile)

if err != nil {

log.Fatalln (" could not open output file")

}

percent := float64(outSize) / float64(inSize) * 100

ratio := float64(inSize) / float64(outSize)

speed := (float64(inSize) / 1000000) / dt.Seconds ()

log.Println("---------- SUMMARY ----------")

log.Println (" compression time:", dt)

log.Println (" output file size:", outSize /1000000 , "MB")

log.Println (" compression speed:", speed , "MB/seconds ")

log.Println (" compression ratio:", ratio)

log.Println (" compression percent:", percent , "%")

}

// decompression runs the provided function

// and logs the decompression time and speed

func decompression(runFunc func() error) {

log.Println (" uncompressing file", inFile)

t := time.Now()

err := runFunc ()

if err != nil {

log.Fatalln(err)

}

75

dt := time.Since(t)

outSize , err := fileSize(outFile)

if err != nil {

panic(err)

}

outSizeMega := float64(outSize) / 1000000

speed := outSizeMega / dt.Seconds ()

log.Println("---------- SUMMARY ----------")

log.Println (" compression time:", dt.Seconds (), "seconds ")

log.Println (" decompression speed:", speed , "MB/seconds ")

}

// fileSize returns the size in bytes of

// the file at filepath

func fileSize(filepath string) (int64 , error) {

f, err := os.Open(filepath)

if err != nil {

return 0, err

}

stat , err := f.Stat()

if err != nil {

return 0, err

}

return stat.Size(), nil

}

// Clock is a utility for logging the time

// taken by some tasks

type Clock time.Time

func NewClock () *Clock {

clock := Clock(time.Now())

return &clock

}

func (c Clock) Logf(format string , v ... interface {}) {

76

log.Println(fmt.Sprintf(format , v...), "in:", time.Since(time.

Time(c)))

}

func (c *Clock) LogfReset(format string , v ... interface {}) {

c.Logf(format , v...)

*c = Clock(time.Now())

}

77

A.2.2 run compress.go

package main

import (

"fmt"

"log"

"os"

"github.com/dselim/cigarcoil/matc"

"github.com/dselim/go-bit"

)

// runCompress locally compresses a file with the

// MATC algorithm

func runCompress () error {

clock := NewClock ()

_, n, err := matc.ScanFileFirst(inFile , k)

if err != nil {

return err

}

nk := n / k

if nk < 2 {

panic(fmt.Sprintf ("nk is %v, should be at least 2", nk))

}

kr := n % k

log.Println ("n", n, "k", k, "nk", nk , "kr", kr)

numSeq := 0

kmerOcc := make(map[matc.Kmer]int)

var trailKmerOcc map[matc.Kmer]int

if kr > 0 {

trailKmerOcc = make(map[matc.Kmer]int)

}

mats := make(map[matc.Kmer]*matc.MAT)

for batch := range matc.ScanFileKmers(inFile , batchSize , k) {

78

for _, kmers := range batch {

numSeq ++

if numSeq == 1000000 || numSeq %10000000 == 0 {

clock.Logf("read %vM sequences", numSeq /1000000)

}

t, ok := mats[kmers [0]]

if !ok {

t = new(matc.MAT)

mats[kmers [0]] = t

kmerOcc[kmers [0]]++

}

t.AddLeaf(kmers [1:], kmerOcc , trailKmerOcc)

}

}

clock.LogfReset ("read all sequences ")

hft := matc.BuildHuffmanTree(kmerOcc)

var trailHft *matc.HuffmanTree

if kr > 0 {

trailHft = matc.BuildHuffmanTree(trailKmerOcc)

}

kmerOcc = nil

trailKmerOcc = nil

clock.LogfReset (" computed huffman tree(s)")

codingTable := hft.CodingTable ()

var trailCodingTable matc.CodingTable

if kr > 0 {

trailCodingTable = trailHft.CodingTable ()

}

clock.LogfReset (" computed coding table(s)")

// open ouput file for writing

// and create buffered bit writer

f, err := os.Create(outFile)

if err != nil {

79

return err

}

defer f.Close ()

bw := bit.NewBufWriter(f)

defer bw.Flush ()

// write headers to file

err = bw.WriteBits(uint64(n), 16)

if err != nil {

return err

}

err = bw.WriteBits(uint64(k), 8)

if err != nil {

return err

}

// write huffman trees

_, err = hft.EncodeBits(bw , k)

if err != nil {

return err

}

if kr > 0 {

_, err = trailHft.EncodeBits(bw , kr)

if err != nil {

return err

}

}

hft = nil

trailHft = nil

// write multiple attribute trees

_, err = matc.EncodeVarWidthUint64(bw , uint64(len(mats) -1))

if err != nil {

return err

}

matWritten := 0

for kmer , mat := range mats {

80

delete(mats , kmer)

_, err = codingTable.EncodeKmer(bw , kmer)

if err != nil {

return err

}

_, _, err = mat.EncodeBits(bw , codingTable , trailCodingTable)

if err != nil {

return err

}

matWritten ++

if matWritten %100000 == 0 {

clock.Logf("wrote %vk multiple attribute trees", matWritten

/1000)

}

mat = nil

}

clock.LogfReset ("wrote all multiple attribute trees ")

return nil

}

81

A.2.3 run uncompress.go

package main

import (

"bufio"

"os"

"github.com/dselim/cigarcoil/matc"

"github.com/dselim/go-bit"

)

// runUncompress locally decompresses a file with the

// MATC algorithm

func runUncompress () error {

clock := NewClock ()

f, err := os.Open(inFile)

if err != nil {

return err

}

defer f.Close ()

br := bit.NewBufReader(f)

v, err := br.ReadBits (16)

if err != nil {

return err

}

n := int(v)

v, err = br.ReadBits (8)

if err != nil {

return err

}

k := int(v)

clock.LogfReset ("read headers ")

nk := n / k

kr := n % k

82

height := nk

if kr > 0 {

height ++

}

hft := new(matc.HuffmanTree)

err = hft.DecodeBits(br , k)

if err != nil {

return err

}

var trailHft *matc.HuffmanTree

if kr > 0 {

trailHft = new(matc.HuffmanTree)

err = trailHft.DecodeBits(br , kr)

if err != nil {

return err

}

}

clock.LogfReset ("read huffman tree(s)")

f, err = os.Create(outFile)

if err != nil {

return err

}

defer f.Close ()

bw := bufio.NewWriter(f)

defer bw.Flush ()

matc.MATDecodeBits(br , hft , trailHft , height , func(kmers []matc.

Kmer) error {

for _, kmer := range kmers {

err := kmer.WriteToBuffer(bw)

if err != nil {

return err

}

}

return bw.WriteByte(’\n’)

83

})

clock.LogfReset (" decoded sequences ")

return nil

}

84

A.2.4 run master.go

package main

import (

"fmt"

"log"

"net"

"os"

"github.com/dselim/cigarcoil/matc"

"github.com/dselim/go-bit"

)

type Worker struct {

conn net.Conn

bit.ReadWriter

}

// runMaster compresses a file with the

// distributed MATC algorithm by connecting

// to worker processes over TCP

func runMaster () error {

clock := NewClock ()

var kmer matc.Kmer

_, n, err := matc.ScanFileFirst(inFile , k)

if err != nil {

return err

}

nk := n / k

if nk < 2 {

panic(fmt.Sprintf ("nk is %v, should be at least 2", nk))

}

kr := n % k

log.Println ("n", n, "k", k, "nk", nk , "kr", kr)

workers := make ([]* Worker , len(workersAddr))

85

for i, addr := range workersAddr {

conn , err := net.Dial("tcp", addr)

if err != nil {

return err

}

defer conn.Close ()

workers[i] = &Worker{

conn: conn ,

ReadWriter: bit.NewBufReadWriter(bit.NewBufReader(conn), bit.

NewBufWriter(conn)),

}

}

for _, worker := range workers {

b, err := worker.ReadByte ()

if err != nil {

return err

}

if b == 0 {

return fmt.Errorf (" worker ‘%v‘ is already running", worker.

conn.RemoteAddr ())

}

err = worker.WriteBits(uint64(n), 16)

if err != nil {

return err

}

err = worker.WriteBits(uint64(k), 8)

if err != nil {

return err

}

if err != nil {

return err

}

err = worker.Flush()

if err != nil {

86

return err

}

}

clock.LogfReset (" established connections with workers ")

numSeq := 0

workerKmers := make(map[matc.Kmer]int)

workerLoads := make ([]int , len(workers))

kmers := make ([] matc.Kmer , nk)

if kr > 0 {

kmers = append(kmers , 0)

}

for batch := range matc.ScanFileKmers(inFile , batchSize , k) {

for _, kmers := range batch {

numSeq ++

if numSeq == 1000000 || numSeq %10000000 == 0 {

clock.Logf(" dispatched %vM sequences", numSeq /1000000)

}

i, hasAttrWorker := workerKmers[kmers [0]]

if !hasAttrWorker {

i, _ = minInt(workerLoads)

workerLoads[i]++

workerKmers[kmers [0]] = i

}

// send these kmers to worker i

for j := 0; j < nk; j++ {

_, err = kmers[j]. EncodeBits(workers[i], k)

if err != nil {

return err

}

}

if kr > 0 {

_, err = kmers[nk]. EncodeBits(workers[i], kr)

if err != nil {

return err

}

87

}

}

}

numTopKmers := len(workerKmers)

workerKmers = nil

workerLoads = nil

kmer = 0

for _, worker := range workers {

_, err = kmer.EncodeBits(worker , k)

if err != nil {

return err

}

err = worker.Flush()

if err != nil {

return err

}

}

clock.LogfReset (" dispatched kmers ")

log.Println (" number of top kmers:", numTopKmers)

kmerOcc := make(map[matc.Kmer]int)

var trailKmerOcc map[matc.Kmer]int

if kr > 0 {

trailKmerOcc = make(map[matc.Kmer]int)

}

for _, worker := range workers {

err = recvKmerOcc(worker , k, kmerOcc)

if err != nil {

return err

}

if kr > 0 {

err = recvKmerOcc(worker , kr , trailKmerOcc)

if err != nil {

return err

}

}

worker.Reset()

88

}

clock.LogfReset (" received kmer occurences ")

log.Println (" number of different kmers:", len(kmerOcc)+len(

trailKmerOcc))

hft := matc.BuildHuffmanTree(kmerOcc)

var trailHft *matc.HuffmanTree

if kr > 0 {

trailHft = matc.BuildHuffmanTree(trailKmerOcc)

}

codingTable := hft.CodingTable ()

for _, worker := range workers {

_, err = hft.EncodeBits(worker , k)

if err != nil {

return err

}

if kr > 0 {

_, err = trailHft.EncodeBits(worker , kr)

if err != nil {

return err

}

}

err = worker.Flush()

if err != nil {

return err

}

}

clock.LogfReset (" computed and sent huffman tree")

// open ouput file for writing

// and create buffered bit writer

f, err := os.Create(outFile)

if err != nil {

return err

}

defer f.Close ()

bw := bit.NewBufWriter(f)

89

defer bw.Flush ()

// write headers to file

err = bw.WriteBits(uint64(n), 16)

if err != nil {

return err

}

err = bw.WriteBits(uint64(k), 8)

if err != nil {

return err

}

// write huffman trees

_, err = hft.EncodeBits(bw , k)

if err != nil {

return err

}

if kr > 0 {

_, err = trailHft.EncodeBits(bw , kr)

if err != nil {

return err

}

}

hft = nil

trailHft = nil

// write multiple attribute trees

_, err = matc.EncodeVarWidthUint64(bw , uint64(numTopKmers -1))

if err != nil {

return err

}

matWritten := 0

bitbuf := bit.NewBuffer ()

for _, worker := range workers {

for {

err = kmer.DecodeBits(worker , k)

if err != nil {

90

return err

}

if kmer == 0 {

break

}

numTopKmers --

if numTopKmers < 0 {

panic (" numTopKmers < 0")

}

_, err = codingTable.EncodeKmer(bw , kmer)

if err != nil {

return err

}

m, err := worker.ReadBits (64)

if err != nil {

return err

}

// read mat from connection

err = bitbuf.ReadFrom(worker , int(m))

if err != nil {

return err

}

err = bitbuf.Flush()

if err != nil {

return err

}

// write mat to disk

err = bitbuf.WriteTo(bw , int(m))

if err != nil {

return err

}

bitbuf.Reset()

91

matWritten ++

if matWritten %100000 == 0 {

clock.Logf(" received %vk multiple attribute trees",

matWritten /1000)

}

}

clock.Logf(" received multiple attribute trees from worker %v",

worker.conn.RemoteAddr ())

}

bitbuf = nil

clock.LogfReset (" received multiple attribute trees and wrote them

to disk")

return nil

}

func recvKmerOcc(r bit.Reader , k int , kmerOcc map[matc.Kmer]int)

error {

var kmer matc.Kmer

for {

err := kmer.DecodeBits(r, k)

if err != nil {

return err

}

if kmer == 0 {

break

}

occ , err := r.ReadBits (32)

if err != nil {

return err

}

kmerOcc[kmer] += int(occ)

}

return nil

}

func minInt(values []int) (i, n int) {

92

for j, m := range values {

if j == 0 || m < n {

i = j

n = m

}

}

return

}

93

A.2.5 run worker.go

package main

import (

"errors"

"io"

"log"

"net"

"sync"

"github.com/dselim/cigarcoil/matc"

"github.com/dselim/go-bit"

)

var (

running bool

runningMux sync.Mutex

)

func isRunning () bool {

runningMux.Lock()

defer runningMux.Unlock ()

return running

}

func setRunning(value bool) {

runningMux.Lock()

defer runningMux.Unlock ()

running = value

}

// runWorker launches a TCP server

// and listens for the connection of

// a distributed MATC master

func runWorker () error {

l, err := net.Listen ("tcp", listenAddr)

if err != nil {

94

return err

}

log.Println (" listening at", listenAddr)

for {

conn , err := l.Accept ()

if err != nil {

return err

}

log.Println (" received connection from", conn.RemoteAddr ())

if isRunning () {

log.Println (" already running , terminating connection ")

conn.Write ([] byte {0})

conn.Close()

continue

}

setRunning(true)

conn.Write ([] byte {1})

go func(conn net.Conn) {

defer setRunning(false)

err := handleConnection(conn)

if err != nil {

if errors.Is(err , io.EOF) {

log.Println ("EOF while running:", err)

} else {

log.Println (" error while running:", err)

}

} else {

log.Println (" finished running ")

}

}(conn)

conn = nil

}

}

func handleConnection(conn net.Conn) error {

clock := NewClock ()

log.Println (" running for", conn.RemoteAddr ())

95

rw := bit.NewBufReadWriter(bit.NewBufReader(conn), bit.

NewBufWriter(conn))

// RECEIVE HEADERS

v, err := rw.ReadBits (16)

if err != nil {

return err

}

n := int(v)

v, err = rw.ReadBits (8)

if err != nil {

return err

}

k := int(v)

rw.Reset()

clock.LogfReset (" received parameters ")

nk := n / k

kr := n % k

log.Println ("n", n, "k", k, "nk", nk , "kr", kr)

// RECEIVE KMERS

kmerOcc := make(map[matc.Kmer]int)

var trailKmerOcc map[matc.Kmer]int

if kr > 0 {

trailKmerOcc = make(map[matc.Kmer]int)

}

mats := make(map[matc.Kmer]*matc.MAT)

kmers := make ([] matc.Kmer , nk)

if kr > 0 {

kmers = append(kmers , 0)

}

for {

err = kmers [0]. DecodeBits(rw , k)

if err != nil {

96

return err

}

if kmers [0] == 0 {

break

}

for i := 1; i < nk; i++ {

err = kmers[i]. DecodeBits(rw , k)

if err != nil {

return err

}

}

if kr > 0 {

err = kmers[nk]. DecodeBits(rw , kr)

if err != nil {

return err

}

}

kmerOcc[kmers [0]]++

t, ok := mats[kmers [0]]

if !ok {

t = new(matc.MAT)

mats[kmers [0]] = t

}

t.AddLeaf(kmers [1:], kmerOcc , trailKmerOcc)

}

rw.Reset()

kmers = nil

clock.LogfReset (" received all kmers ")

err = sendKmerOcc(rw , k, kmerOcc)

if err != nil {

return err

}

if kr > 0 {

err = sendKmerOcc(rw , kr , trailKmerOcc)

if err != nil {

return err

97

}

}

err = rw.Flush()

if err != nil {

return err

}

kmerOcc = nil

trailKmerOcc = nil

clock.LogfReset ("sent kmer occurences ")

hft := new(matc.HuffmanTree)

err = hft.DecodeBits(rw , k)

if err != nil {

return err

}

var trailHft *matc.HuffmanTree

if kr > 0 {

trailHft = new(matc.HuffmanTree)

err = trailHft.DecodeBits(rw , kr)

if err != nil {

return err

}

}

rw.Reset()

clock.LogfReset (" received huffman tree(s)")

codingTable := hft.CodingTable ()

var trailCodingTable matc.CodingTable

if kr > 0 {

trailCodingTable = trailHft.CodingTable ()

}

hft = nil

trailHft = nil

clock.LogfReset (" computed coding table(s)")

bitbuf := bit.NewBuffer ()

for kmer , mat := range mats {

98

delete(mats , kmer)

_, err = kmer.EncodeBits(rw , k)

if err != nil {

return err

}

// write mat in bit buffer

nkmers , nchildren , err := mat.EncodeBits(bitbuf , codingTable ,

trailCodingTable)

if err != nil {

return err

}

m := nkmers + nchildren

err = bitbuf.Flush()

if err != nil {

return err

}

// write bit buffer length and content

err = rw.WriteBits(uint64(m), 64)

if err != nil {

return err

}

err = bitbuf.WriteTo(rw.BitWriter , m)

if err != nil {

return err

}

bitbuf.Reset()

mat = nil

}

mats = nil

bitbuf = nil

var kmer matc.Kmer

_, err = kmer.EncodeBits(rw , k)

if err != nil {

99

return err

}

err = rw.Flush()

if err != nil {

return err

}

rw = nil

clock.LogfReset (" written multiple attribute trees ")

return nil

}

func sendKmerOcc(w bit.Writer , k int , kmerOcc map[matc.Kmer]int)

error {

var err error

for kmer , occ := range kmerOcc {

_, err = kmer.EncodeBits(w, k)

if err != nil {

return err

}

if int(uint32(occ)) != occ {

panic ("kmer occurences value cannot be converted to uint32 ")

}

err = w.WriteBits(uint64(occ), 32)

if err != nil {

return err

}

}

var kmer matc.Kmer

_, err = kmer.EncodeBits(w, k)

if err != nil {

return err

}

return nil

}

100

	Introduction
	DNA Sequencing
	DNA
	Sequencing
	FASTA and FASTQ File Formats

	Compression
	Definitions
	Huffman Coding

	Contributions

	Previous Work
	FaStore
	Minimizers and Signatures
	Binning and Compression

	CIGARCoil
	CIGAR
	Wagner-Fischer Algorithm
	Similarity Graph
	Hash-Buckets Heuristic
	Decompression

	Multiple Attribute Tree Compression
	K-mer Huffman Compression
	Multiple Attribute Tree
	Complexity Analysis
	Decompression
	Implementation

	Distributed Multiple Attribute Tree Compression
	Master-Worker Paradigm
	Algorithms
	Speedup

	Implementation

	Results
	Datasets
	CE Dataset
	WEX Dataset
	GG Dataset
	WGS-14 Dataset
	Summary

	Compression Ratio and Speed Evolution
	Non-distributed MATC
	Distributed MATC

	Comparison with other DNA Compressors
	Experimental Setup
	Compression Ratio
	Compression Speed
	Decompression Speed

	Conclusion
	Source code
	MATC library
	letter.go
	kmer.go
	file_io.go
	huffman_tree.go
	var_uint64.go
	mat.go

	Executable
	main.go
	run_compress.go
	run_uncompress.go
	run_master.go
	run_worker.go

