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GENERAL ABSTRACT 

The demand for soybean production has increased in recent years, due to its multipurpose 

use for human food, livestock feed and industrial purposes. The soybean crop is one of the 

important source of oil and protein of the world, and is used as a source of high quality edible 

oil and protein. For a quantitative trait, yield is known to be influenced by changes in the 

environment in which the crop is grown, suggesting the need to evaluate soybean lines in 

different growing regions to assess their adaptability and stability. In plant breeding, selection 

is one of the most important stages in the breeding cycle. Multi-location testing of soybean 

genotypes precedes selection while genetic characterisation of germplasm enhances selection 

due to the variation realised and it is the basis for genetic improvement. The objectives of the 

study were: 1) to determine yield stability and adaptability of elite soybean lines across six 

locations, 2) to study genotype by trait associations and multiple trait relationships among 

soybean elite lines across six locations and 3) to assess the level of genetic diversity among 

the soybean elite lines using single nucleotide polymorphisms (SNP) markers. 

The stability and adaptation study was carried out to investigate genotype by environment 

interaction (GEI) for grain yield of 26 elite soybean lines along with four checks grown in 6 

environments spreading across three countries (Zambia, Malawi and Mozambique) in a 6 x 5 

alpha lattice design. The additive main effect and multiplicative interaction model (AMMI) 

indicated that environments, genotypes and GEI significantly affected grain yield (P<0.001) 

and contributed 3.8%, 17% and 78%, respectively, to the total variation. Three AMMI 

interaction principal components (IPCA1, IPCA2 and IPCA3) were significant (P<0.01). 

Genotype plus GEI (GGE) biplots were created based on the first two principal components, 

PC1 and PC2, which accounted for 39.23% and 26.86% of genotype plus GEI variation, 

respectively. The GGE biplot analysis ranked the genotypes for yield and stability, and 

environments for representativeness and discriminativeness. The relationships between 

genotypes and environments were also demonstrated. Genotype TGX 2001-3FM was 

identified as the ideal genotype with high yield mean performance and high stability. Therefore, 

it could be recommended for cultivar release if the study can be repeated to verify these 

findings. Chitedze in Malawi was the most informative test environment hence it is ideal for 

selecting generally adapted genotypes. Genotypes TGX 2002-4FM and TGX 2001-15DM were 

low yielding but with high stability hence can be recommended for further improvements. 

For the second objective, a study was conducted using 30 genotypes to determine the 

correlation and path coefficient of secondary traits on yield. The genotype by trait biplot is a 

tool that graphically compares genotypes on the basis of multiple traits and graphically 
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visualises trait relationships, and genotype-trait associations. Trait profiling of genotypes 

through genotype-trait association analysis helps in making decisions on which genotypes to 

use as parents for a breeding programme. Significant differences among genotypes were 

observed for all studied traits. Correlation coefficient analysis presented that grain yield had a 

significant and negative correlation with days to 50% flowering. However, grain yield had a 

significant and positive correlation with plant height. Path coefficient analysis indicated that 

plant height and early vigour had a positive direct effect on yield while days to 50% flowering 

and days to 50% podding had negative indirect effects on yield via days to maturity. The 

genotype by trait biplot graphically showed consistent trait relationships and identified TGX 

2001-3FM, TGX 2001-26DM and TGX 2002-3DM as genotypes that can be used as parents 

in breeding programmes for yield improvement. 

Estimation of genetic diversity among 48 soybean lines from the International Institute for 

Tropical Agriculture (IITA) was conducted using 348 SNP markers. The average gene diversity 

and genetic distance ranged from 0.42 to 0.55 with an average of 0.47 and 0.61 to 0.87, 

respectively. The polymorphic information content ranged from 0.44 to 0.50 with a mean of 

0.48. Genotypes TGX 2002-3DM and TGX 2002-3FM had the highest genetic distance 

between them indicating that they were highly diverse. The AMOVA indicated highly significant 

differences at F=0.001 with among individuals, among populations and within individuals 

contributing 45%, 28% and 26%, respectively.  The 48 soybean lines were clustered in three 

main groups. The study indicated that genetic diversity exists among the IITA tested lines. The 

information obtained from the study, can be fully utilised in future soybean breeding 

programmes through crossing of diverse parents in order to incorporate new alleles to develop 

improved cultivars.  

In general, the study showed the existence of genotype by environment of soybean grain yield 

across the selected locations in southern Africa. Based on the SNP markers, the study 

confirmed the existence of wide genetic diversity among the soybean lines. The lines with 

superior performances can be used for future breeding programmes or recommended for 

cultivar release.  
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INTRODUCTION  

1 Background/ Justification 

Soybean (Glycine max L.), is one of the most important protein and oil seed crops throughout 

the world. It is a leguminous crop that belongs to the Fabacae family and subfamily 

Papilionoidae.  Soybean is believed to have been first domesticated in China around the 11th 

century and later spread to America and Africa.  The world’s leading soybean producers are 

the United States of America, which produces 32% of the total world’s soybean followed by 

Brazil contributing 28%. Argentina, China and India contribute 21%, 7% and 4%, respectively, 

to the total global production. Africa contributes 1.3% of the total world production, with South 

Africa as the leading soybean producer followed by Nigeria and then Uganda (Figure 1). South 

Africa is the largest producer in the southern part of Africa dominating in both demand and 

production. Zambia is the second largest producer and exporter to countries such as 

Zimbabwe and Botswana (Abate et al., 2012). Over the years, from 2010 to 2014 (Table 1), 

there has been an increased production in Zambia and Malawi implying that more farmers are 

investing in soybean production. With the involvement of International NGOs and the 

government, Malawi and Mozambique have rapidly increased their soybean production. 

 

Source: Data from FAOSTAT, (2016) and calculations by author 

Figure 1.1 Soybean production in Africa 
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Table 1 Soybean production from 2010 to 2014 in Malawi and Zambia 

Country Year 
Harvested area 

(ha) 
Quantity 
(tonnes) Yield (t/ha) 

Malawi 2010 75186 73356 0.98 

 2011 75839 75665 1.00 

 2012 102167 106592 1.04 

 2013 114369 111977 0.98 

 2014 139005 120903 0.87 

Zambia 2010 60777 111887 1.84 

 2011 59988 116539 1.94 

 2012 84809 203038 2.39 

 2013 124858 261063 2.09 

 2014 113759 214179 1.88 

Source: (FAOSTAT, 2016) 

Soybean has multiple uses and benefits. It is the world’s second leading source of oil and 

proteins (Gurmu et al., 2009). The seed contains about 40% protein, 20% oil and a high calorie 

value (Singh and Shivakumar, 2010) making it an essential source of food and livestock feed. 

The soybean meal is rich in phosphorus, iron and calcium, making it perfect for animal feed. 

Additionally, it can be used as a raw material for industrial uses. It is the most common legume 

crop with other agronomic importance besides grain production. It helps in improving the soil 

fertility by capturing atmospheric nitrogen and fix it in the soil through symbiosis with rhizobia 

bacteria (Kumudini, 2010). When intercropped with other crops such as cereals and cassava, 

it has the potential to disturb life cycles of several pests, diseases and weeds like Striga 

hermonthica. 

Soybean production is affected by various biotic and abiotic factors that lead to low yields of 

<1 t/ha in Africa (FAOSTAT, 2016). Among the biotic factors, diseases such as rust, bacterial 

blight, and pests including armyworm and beetles significantly reduce yield. Abiotic factors 

include drought and poor soil fertility. Varieties that are adapted to abiotic and biotic stresses 

in the soybean growing areas of the southern part of Africa are not known. Hence, evaluation 

of genetic diversity in soybean lines is essential for improvement of both yield and quality. 

Plants are grown in areas that have different climatic and environmental attributes that 

includes temperature, rainfall, soil type, soil nutrients and cultural practices. Most soybean 

cultivars that are being produced have been genetically improved intensely for high grain yield 

(Das, 2005). For these cultivars to fully express their genetic potential for grain yield they 

require specific environmental conditions, hence the performance of these cultivars are 
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different depending on the area they are being produced. This relative change in performance 

of cultivars across various environments is termed genotype by environment interaction (GEI). 

The concept of global climatic change that is going on over the years is somehow responsible 

for altering the crop production environment (Acquaah, 2007). The problems that climate 

change will influence agriculture can be mitigated through the intervention by agricultural 

scientists developing ways to alleviate the impacts.  Hence, plant breeding programmes need 

to engage in strategies that can help to adopt environment specific approaches to crop 

improvement (Reynolds et al., 2001). 

Stability is a concept that in most cases is a challenge in breeding programmes. Breeders are 

interested in good performing cultivars over a range of environments. However, there are GEI 

effects making cultivars have a high mean yield in other environments and a low mean yield 

in other environments, or showing better mean performance across environments. However, 

few genotypes may have average yield that is stable over wider environments (Cooper et al., 

2006). Knowledge of the pattern and magnitude of GEI and stability analysis is important for 

understanding the response of different genotypes to varying environments. Secondly, 

knowing the magnitude and patterns of GEI can be used in identifying superior soybean 

genotypes under the target environment and agronomic conditions. This will help to maximize 

specific adaptation and reducing the time to transfer new cultivars to growers from breeders 

(Cooper and Hammer, 1996). In plant breeding programmes, the common goal is also to 

identify traits that positively contribute to high yield.  Therefore, it is critical to study traits in a 

crop and identify those that contribute to the trait of interest (Kinfe et al., 2015). These trait 

profiles and associations identify their strengths and weaknesses and can be used in selection 

of parents in a breeding programme (Yan and Frégeau-Reid, 2008).   

Soybean genotypes have been released from breeding programmes under different agro-

climatic conditions by selection, hybridisation, introduction and mutation of soybean elite lines 

through systematic breeding programmes and evaluations.  Genetic diversity among the 

cultivars is crucial to breeding programmes in germplasm enhancement and cultivar 

development (Dong et al.,, 2004). Several methods have been used to assess diversity in 

crops; this includes morphological, pedigree and biochemical markers. Molecular markers; 

simple sequence repeats (SSR), amplified fragment length polymorphisms (AFLP), random 

amplification of polymorphic DNA (RAPD) have also been used in quantifying the diversity in 

soybean but there is little information on studies which used single nucleotide polymorphisms 

(SNPs). Therefore, the knowledge gained from a genetic diversity in soybean elite lines can 

be used in future breeding programmes through selection of diverse genotypes as parents for 

soybean improvement. 
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In order to fully utilise the soybean elite lines bred by the International Institute of Tropical 

Agriculture (IITA), evaluations on yield stability and characterisation of lines using molecular 

markers can help to realise the potential in the lines that can used as a starting point for 

germplasm improvement and enhancement. Hence, the study was designed to assess the 

yield stability, multi-trait relationships and define the level of genetic diversity in the elite 

soybean lines from IITA. 

2 Objectives 

The overall goal of the study is to generate information that is crucial for soybean breeding 

programmes through identification of high yielding and stable cultivars and defining the level 

of diversity among the tested lines. The specific objectives were: 

i. To determine yield stability and adaptability of elite soybean lines across six 

locations 

ii. To understand the genotype by trait associations and multiple trait relationships 

among the soybean elite lines across six locations 

iii. To assess the level of genetic diversity among the soybean elite lines using SNP 

markers 

3 Research hypothesis 

i. There is considerable genetic variability among soybean accessions based on 

molecular markers  

ii. The performance, yield stability of the soybean elite lines are affected by genotype x 

environment interaction 

iii. Genotype by trait associations and multiple trait relationships affect the performance 

of soybean elite lines 

4 Dissertation outline 

The dissertation is organised into five chapters following a journal paper format. As a result, 

there is some unavoidable repetition in the references and some overlaps in the introductory 

information between chapters. The referencing format is based on the Crop Science journal 

style. The outline of the dissertation is as shown below:  
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Introduction to thesis 

Chapter 1: Literature Review 

Chapter 2: Yield stability and adaptation analysis of elite soybean lines across diverse     

environments in Southern Africa 

Chapter 3: Assessment of genetic diversity in tropical soybean lines using single nucleotide 

polymorphisms 

Chapter 4: Analysis of soybean elite lines using genotype by trait, correlation and path 

coefficient 

Chapter 5: General overview of the study 
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CHAPTER 1  

LITERATURE REVIEW 

1.1 Origin and distribution 

Soybean (Glycine max L) is a self-pollinating leguminous crop, that has <1% outcrossing. It is 

diploid with 20 chromosome pairs (2n=40). The genus Glycine has two subgenera, Soja and 

Glycine, the sub genus Soja has two species namely Glycine max and Soja seib. Soybean is 

believed to have been derived from two wild progenitors G. ussuriensis and usd that are 

commonly found in East Asia. The crop was domesticated around 11th century in China, and 

later spread to neighbouring countries such as Mongolia and Japan 3000 years ago (Singh, 

1991). China is known to be the centre of origin and diversity.  

In most countries, soybean is grown as a commercial crop. The United States is the largest 

producer in the world, producing 38% of the soybean globally. It is followed by Brazil (26%), 

Argentina (21%), China (7%), India (4%) and Africa covers 1% of the global production 

(FAOSTAT, 2016). In Africa, the Chinese missionaries introduced soybean in the 19th century. 

Currently, the leading producer in Africa is South Africa (617 000 tons) which is followed by 

Nigeria (430 000 tons) (Abate et al., 2012). 

1.2 Botany  

Soybean is an erect, annual plant that has dense green leaves covered with fine hairs. The 

first leaves are simple and grow opposite each other on the stem while the leaves that form 

subsequently are trifoliate. They have small flowers that consist of five separate; unequal 

petals that can vary in colour but are commonly violet or white. However, the morphology is 

diverse depending on the cultivar (Johnson and Bernard, 1962). The flowers and lateral 

branches form at the auxiliary buds at the point of contact between the leaf petiole and the 

main stem. The height of the plants can range from about 0.3 to 3.0 m. 

 

The seed is made up of two parts, the seed coat, which covers and protects the embryo and 

two cotyledons that form part of the embryo region. The bean is attached to the pod at the 

hilum (Kumudini, 2010). Soybean seeds occur in various sizes, and in many seed coat colours, 

including black, brown, blue, yellow, green and mottled. Varieties differ in hilum colour and 

can be yellow, imperfect yellow, grey, buff, brown, black or imperfect black. Yellow hilum/ clear 

hilum soybeans with large seed size and thin but strong seed coat that is free from cracking 

and discoloration are preferred (Gandhi, 2009). However, the yellow and green seeds are 

more common.  
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Soybean pods are straight and sometimes slightly curved, reaching 20-70 mm long depending 

on the cultivar and environment, and they form in clusters of 1 - 9. Young pods are green in 

colour, covered in fine transparent hairs and when they mature, they are also hairy and range 

in colours such as brown or tan, black and yellow. This colour change happens as the plant’s 

leaves turn yellow and fall off. The pods may contain 1-4 seeds depending on the cultivar 

(Krisnawati and Adie, 2015). 

 

The root system of soybean consists of a taproot, which can grow up to 1.2 m into the soil. 

Furthermore, there is a proliferation of secondary roots that are arranged in four rows along 

the taproot. Most of the effective roots are found in the top 600 mm of soil; therefore, the 

soybean plant is a shallow feeder (Kumudini, 2010). 

1.3 Importance of soybean 

Soybean is an economically important leguminous crop that is grown for its oil and protein 

products (Tefera et al., 2009). The soybean seed contains an average of 40% protein and 

20% oil that is used for producing food products such as soymilk, soy flour, soy sauce and 

tofu (Fabiyi, 2006). It is also an important source of proteins in feed supplements for livestock. 

Besides its nutritive value, soybean has medicinal properties due to high iso-flavones content 

that reduce blood cancer, osteoporosis, blood cholesterol and heart diseases in human beings 

(Pathan and Sleper, 2008). 

The crop also helps to improve soil fertility through biological nitrogen fixation, thus reducing 

the cost of purchasing inorganic fertilizers by resource constrained farmers (Misiko et al., 

2008). Soybean dual-purpose varieties have revealed its potential in reducing the levels of 

Striga hermonthica infestations when they are in rotational system with cereals (Chianu et al., 

2006). Furthermore, soybean is used as a raw material in industries for production of biodiesel, 

cosmetics, pesticides, hydraulic fluids, lubricants, paint removers and plastics; hence, 

smallholder farmers can utilize it as a beneficial crop for income generation (Pathan and 

Sleper, 2008). 

Soybeans contain three lipoxynase isozymes that play a role in the development of beany off-

flavour in food containing soy-protein that is unpleasant to some consumers. The off-flavour 

is caused by oxidation of polyunsaturated fatty acids (Wilson, 1996). The poor stability and 

off-flavours of soybean oil and protein products can be reduced by eliminating lipoxygenases 

from soybean seed (Reinprecht et al., 2011). Some varieties that are lipoxygenase free have 

been developed and are referred to as “triple null” soybeans. These are highly preferred and 
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normally used for edible soy-products such as soymilk and tofu because of less saturated fat 

resulting in healthier oil that is used for salad dressing and other food products. 

1.4 Selection in soybean and important traits 

Soybean is primarily bred for improved yield, high oil and protein content, pests and disease 

resistance, lodging resistance, drought tolerance, resistance to pod shattering and degree of 

biological nitrogen fixation (Tefera, 2011). Over the past 30 years, the role of soybean in 

industry as a source of protein and oil has developed significantly leading to the production of 

complex products (Cianzio et al., 2007). Therefore, yield as well as protein and oil content are 

important to food and oil industries. Soybean varieties are distinguishable by various 

characteristics such as flower colour, pubescence colour, pod colour, seed colour, leaf shape 

and stem type among others. In the breeding process, these traits are selected at the target 

environments. Maturity is another important trait when selecting a soybean cultivar; however, 

most farmers prefer early maturing varieties (Duxburg et al., 1990). 

Soybean is self-pollinating with a 1% chance of outcrossing. Due to this state, breeding 

methods such as pedigree breeding, single seed descent, bulk breeding and backcrosses 

have been used to develop new varieties (Miladinović et al., 2015). These methods involve 

making crosses by hand pollination to produce hybrids, selection follows and ultimately the 

release of a superior cultivar (Burton and Miranda, 2013). 

Of all soybean traits, 100-seed weight, protein content, and oil content are the most valuable 

phenotypic characteristics related to soybean seed quality (Borrás et al., 2004). These 

soybean traits have variations that are genetically controlled; however, they are largely 

influenced by climatic and environmental conditions (Burton et al., 2006). Soybean traits could 

vary greatly with geographical locations. For example, in the north western area of the United 

States, soybeans have higher seed oil content and lower seed protein content than those 

found in the south eastern states (Breene et al., 1988) 

Seed weight, plant height, protein content, and oil content could vary largely with variations in 

temperature. For example, in a controlled environment, 100-seed weight increased with 

increasing temperature to an optimum level (Sionit et al., 1987) and then dropped (Baker et 

al., 1989). Gibson and Mullen (1996) reported a similar temperature impact on seed oil content 

that was positively correlated with temperature until the higher end of the optimum range, 

whereas, the protein content indicated a negative response (Dornbos and Mullen, 1992). 
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1.5 Production constraints 

A number of biotic and abiotic factors affects soybean production. The average grain yield in 

Africa is still low (<1 t/ha) (FAOSTAT, 2016) mostly because many growers have not accessed 

the improved varieties and some have no interest in soybean production because they are not 

aware of how to prepare it for consumption and postharvest handling techniques (IITA, 2009.) 

Soybean production is also constrained by a number of biotic stresses, which include; soybean 

rust (Phakopsora pachyrhizi L), bacterial pustule (Xanthomonas campestris pv. glycines L), 

bacterial blight (Pseudomonas amygdali pv. glycinea L), frogeye leaf spot (Cercospora sojina 

L), red leaf blotch (Phoma glycinicola L) and soybean mosaic virus disease. The major insect 

pests affecting soybeans are armyworm (Pseudaletia unipuncta L), saltmarsh caterpillar 

(Estigmene acrea L), soybean looper (Pseudoplusia includes L), bean leaf beetle (Cerotoma 

trifurcate L), blister beetles (Epicauta funebris, Epicauta vittata L) and velvet bean caterpillar 

(Anticarsia gemma L) (Catchot, 2010). 

Abiotic stresses include drought, flooding, salinity and nutrient deficient soils. Kehlenbeck et 

al. (1994) reported that annually, crop losses reach 42% due to abiotic stresses and crops 

resistant to these stresses are needed. 

1.6 Genotype by environment interaction and stability 

Several crops have been widely exposed to the genotype by environment interactions (GEI) 

studies (Alberts, 2004; Cooper et al., 2006; Gurmu et al., 2009).  Genotype by environment 

interaction occurs when a few or more genotypes are tested across various environments and 

they have different responses to the environmental conditions. Thus, GEI is the differential 

response of genotypes to changes in the environment (Matter and Caligari, 1976). The 

consequence of the phenotypic variation depends largely on the environment. The variation 

is further complicated by the fact that not all the genotypes react in a similar way to changes 

in environment and no two environments are the same.  Genotype by environment interaction 

is an important concept in plant breeding programmes because it delays progress from 

selection in any given environment (Yau, 1995). The phenotype of an individual is determined 

by the effect of the genotype and the environment surrounding it. Therefore an understanding 

of the genotypic and  environmental causes of GEI is important at all stages of plant breeding, 

including the design of ideotypes, selection of parents based on traits and selection based on 

yield (Yan and Hunt, 1998). 

The understanding of GEI in plant breeding programmes is important for improving the 

genotypes for higher yields (Alberts, 2004). The occurrence of GEI in multi-location evaluation 
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trials leads to the selection of genotypes that perform among the best in one environment 

while they perform poorly in another test environment (Bekheit, 2000). This is the main 

hindering factor in selecting genotypes with a wide adaptability. GEI could be detected through 

a simple joint analysis of variance among trials repeated in more than one location and correct 

information about each location variation and genotype performance can be obtained (Crossa, 

1990). 

Soybean production increase is guaranteed when high yielding and early maturing cultivars 

across a wide range of different environments are developed. A knowledge of the genetic 

variability present in the germplasm is most important in plant improvement programmes for 

selection of parents. Alghamdi (2004) explained that the estimation of heritability and 

prediction of genetic advance becomes prejudiced when there is no information on the 

genotype by environment interactions. Allard and Bradshaw (1964) indicated that the best 

genotype is the one that has a consistent high performance over a wide range of 

environments. Genotype x environment interaction highly affects the phenotypic performance 

of any genotype. Therefore, it plays a significant role in the success of any breeding 

programme or the development of genetic material, adapted to several environments.  

Beaver and Johnson (1981) stated that most soybean breeders give emphasis to wide 

adaptation rather than specific adaptation in their breeding programmes and select genotypes 

that perform well over a wide range of environments.  Bekheit (2000) performed an experiment 

where 15 soybean genotypes were evaluated under three sowing dates during three seasons. 

The data established that low yielding genotypes tend to have high stability in different 

environments, and vice versa; high yielding genotypes were more likely to have lower stability. 

According to Gebeyehu and Assefa (2003), selection of genotypes based on the highest 

yielding, seemed less stable than the average of all genotypes, and selection exclusively for 

grain yield could result in disposing several stable genotypes. In soybean, yield differences of 

genotypes across environments and years has been linked with changes in number of seeds 

per unit area and this yield component is highly determined during a period from  flowering to 

pod setting. 

The performance of a crop in an environment is influenced by weather conditions, thus 

cultivars are vulnerable to environmental variation that in turn is a barrier to improving yield 

potential in the cultivars. Therefore, in any breeding programme the goal should be to create 

lines that are adapted to a wide range of environments. The other way would be to consider 

the test environment. It should at least include those representing yearly weather fluctuations 

as well as those imposed by different farmers’ practices. Alghamdi, (2004) stated that for 



 

 12 

soybean yield potential to meet the future demands, research should focus on understanding 

the physiological causes of genotype x environment interactions for genetic improvement.  

1.7 Methods for analysing GEI and stability 

There are many different ways of estimating phenotypic stability of genotypes. For example, 

Finlay and Wilkinson (1963) stated that the regression coefficient of varietal means on 

environmental means could be used as an indicator for phenotypic stability. Eberhart and 

Russell (1966) noted that regression techniques allow the genotype x environment 

interactions of each genotype to be partitioned into two parts; firstly, the portion of GEI due to 

the response in performance of the genotype to environments of varying levels of productivity, 

and secondly the portion due to deviations from regression. 

Analysis of variance of multi-location trials is important for estimating variance components 

related to different sources of variation. These include genotypes and genotype by 

environment interaction (Crossa, 1990). The variance component analysis is crucial as it 

measures the errors that result from genotype by environment interaction in measuring traits 

such as yield. Hence, the knowledge of the magnitude of the interaction helps in estimating 

the genotypic effects and determining the optimum resource allocations in terms of number of 

sites and plots to be included in the next trial (Crossa, 1990). However, Romagosa et al. (1993) 

reported that when dealing with a large number of genotypes, estimating GEI using ANOVA 

is demanding and it fails to show the pattern of the GEI variance components. 

Additive main effects and multiplicative interactions (AMMI) and genotype plus genotype by 

environment interaction (GGE) models effectively capture the additive (linear) and 

multiplicative (bilinear) components of GEI interaction and provides useful interpretation of 

multi-environment data in breeding programmes (Saini and Chetan, 2007). AMMI combines 

the additive components in a single model for the main effects of genotype, environment and 

multiplicative components for the interaction effect (Mitrovia et al., 2012). Genotypic 

performances and phenotypic stability of the cultivars are best expressed by their graphic 

analyses (Miranda et al., 2009) and it is useful in summarizing and emulating the response 

patterns that originally existed in the raw data. The GGE biplot analysis is another method that 

incorporates the genotype and GEI effects in the evaluation of cultivars and it uses graphic 

axes to identify best performing cultivars in the mega-environments (Akcura et al., 2011). 

Secondly, this model provides genotype estimates in different locations. The other strength of 

this model is that it also combines ANOVA and PCA by separating sum of squares of 

genotypes and GEI together using the PCA method (Abay and Bjornstad, 2009). AMMI and 
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GGE statistical tools have huge importance and relevance to agricultural scientists because 

they deal with data that come from various types of experiments (Rad et al., 2013).  

1.8 Multi-trait relationships 

GGE biplots have been used for analysing multi environment trials and the concept can be 

used to analyse data for multiple traits across locations. When performing multi-trait analyses, 

the genotypes are used as entries instead of using environments and traits are used as testers 

to construct genotype by trait (GT) biplots. This is an effective tool that graphically summarizes 

the genotype by trait data, visualises relationships among the measured traits and visualises 

the performance of genotypes based on the traits that influence selection of potential parents 

(Yan and Tinker, 2005). In addition, it helps identify less important traits that do not contribute 

directly to the trait of interest. Genotype by trait has been used in soybean yield analysis by 

Yan and Kang (2002) who reported that one genotype performed the best across all locations.  

Most of the main breeding traits have negative correlations existing among them hence 

selection for a single trait is very difficult (Arshad et al., 2004). Correlation coefficients are 

useful in quantifying the trait associations in terms of size and magnitude. However, they might 

be misleading if there is a large correlation that is a result of indirect effect of a trait. In soybean, 

scientists have used path analysis to partition correlations into direct and indirect traits (Haghi 

et al., 2012). 

1.9 Genetic diversity analysis in soybean 

Genetic diversity analysis is of great importance to plant breeders as it helps selection of good 

parents for hybridisation for a successful breeding programme.  Genetically diverse parents 

are useful to create variation for selection of useful recombinants with a high probability of 

high heterotic effects (Carpentieri-Pípolo et al., 2003). Utilization of genetic diversity for any of 

the economically important traits present in landraces, cultivars and wild relatives aims at 

pyramiding of genes for better quality, higher productivity, and resistance to biotic and abiotic 

stresses (Dong et al., 2001). This diversity is brought out through mutations or migration. In 

populations, genetic distances and number of alleles per locus among populations can be 

estimated using molecular markers (Nkongolo and Nsapato, 2003). Soybean, being a self-

pollinated crop with limited outcrossing, has a narrow genetic base. However, it is believed 

that there is untapped diversity that is to be fully utilised for soybean improvement to broaden 

the genetic base (Dong et al., 2004). Therefore, assessing the genetic diversity in soybean is 

the first step to achieving the goal of broad genetic diversity. This can only be achieved with 

accuracy by using molecular markers that are more reliable, stable and informative as 

compared to morphological diversity and pedigree analysis (Kumawat et al., 2015). 
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1.10 Molecular marker characterisation  

Since the late 19th century, plant breeders relied on phenotypic selection to improve plant 

varieties to achieve breeding progress through the assessment of external and internal traits 

such as disease resistance, yield, or quality traits (Bernardo, 2008). The selection of new, 

improved varieties that were developed was done by merely choosing genotypes with the 

desired phenotypes. The process of developing a new improved variety through phenotypic 

selection is time demanding and can take up to more than 10 years. Plant breeding using 

molecular techniques is becoming more popular and their role in genetic improvement of 

soybean germplasm is more important. Nevertheless, molecular technologies on themselves, 

can never replace conventional plant breeding research, but they will increase and improve 

the efficiency of plant breeding. 

Molecular markers are DNA sequences with a precise defined nucleotide distribution and 

order, strictly specific for different organisms. Cost of development, reliability, level of 

polymorphism, informativeness and the number of samples to be used are some of the vital 

factors to consider when selecting markers for different applications (Sudarić et al., 2010). In 

soybean breeding, molecular marker applications are currently focused in four main areas: 

germplasm characterization, marker-assisted selection (MAS), marker-assisted backcrossing 

and gene discovery. Marker-assisted selection is one of the applications that is used more 

readily than the usual techniques to screen single traits, such as resistance or restorer genes; 

insect resistance (Zhu et al., 2003), nematode resistance (Meksem et al., 2001; Kim et al., 

2010), and pathogen resistance (Shi et al., 2009).  

1.10.1 Types of molecular markers 

In general, the ability to apply molecular markers to recognize the genomic position of a 

particular plant gene of interest has played a vital role in modernising the science of plant 

breeding and genetics. In soybean, amplified fragment length polymorphisms (AFLP), 

restriction fragment length polymorphism (RFLP), single nucleotide polymorphisms (SNP) and 

simple sequence repeats (SSR) have been used comprehensively to study genetic diversity 

and map genomic location of quantitative trait loci for many agronomic, physiological and seed 

composition traits. Shi et al. (2015) did a study based on the genomic DNA sequences of 27 

soybean lines with known soybean cyst nematode (SCN) phenotypes, Kompetitive Allele 

Specific PCR (KASP) assays were developed for two single nucleotide polymorphisms (SNPs) 

from Glyma08g11490 for the selection of the Rhg4 resistance allele.  
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1.10.2 Single nucleotide polymorphism (SNP) as markers for genetic diversity studies 

Single-nucleotide polymorphism (SNP) are referred to as the alterations in single DNA bases 

between homologous DNA fragments along with small deletions and insertions. Deulvot et al. 

(2010) defined the single nucleotide polymorphism (SNP) as the single DNA base differences 

between DNA fragments including insertions and deletion. Because the SNP represents 

nucleotide variation (for example sequence ACGTATA instead of ACTTATA), they are 

potentially useful as genetic markers as they are able to distinguish one haplotype from 

another. SNP markers have been proven to be the most abundant sources of DNA 

polymorphisms (Vignal et al., 2002). With these properties, they can be easily used for genetic 

diversity studies, genetic and association mapping, and genome wide selection. SNP 

genotyping has been conducted in other studies such as maize (Yan et al., 2009) and pea 

(Deulvot et al., 2010). However, there is not much information on SNP markers in soybean. 

Therefore, it is important to assess the genetic diversity of tropical soybean lines using the 

SNP markers. 

1.11 Conclusion 

From the review, it can be concluded that soybean is one of the most important legume crops 

that contributes to both food and livestock feed. The review revealed that: 

Although genotype by environment interaction has been extensively conducted in most crops 

soybean inclusive, there is still a need to conduct multi location testing of lines that have just 

been developed from breeding programmes to help in selection for adaptability and stability. 

Conventional breeding alone has been used but it has shortfalls. Molecular markers could fill 

the gap, as they are able to detect variation at gene level.  

There is little work on genetic diversity of soybean for future breeding programmes, hence the 

focus of this study.  
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CHAPTER 2 

YIELD STABILITY AND ADAPTATION ANALYSIS OF ELITE SOYBEAN 

LINES ACROSS DIVERSE ENVIRONMENTS IN SOUTHERN AFRICA 

ABSTRACT 

Soybean is an important legume crop that is a source of essential amino acids for human 

consumption and livestock. The multi-location testing of soybean genotypes precedes 

selection in plant breeding programmes. The study was carried out to investigate genotype by 

environment interaction (GEI) for grain yield in 26 elite soybean lines along with four checks 

in six environments spreading over three countries (Malawi, Mozambique and Zambia) in a 6 

x 5 alpha lattice design. The additive main effect and multiplicative interaction model (AMMI) 

indicated that environment, genotypes and genotype by environment interaction significantly 

affected grain yield (P<0.001) and contributed 3.8%, 17% and 78%, respectively, to the total 

variation. Three AMMI interaction principal components (IPCA1, IPCA2 and IPCA3) were 

significant (P<0.01). The genotype, genotype x environment interaction (GGE) biplots were 

created based on the first two principal components PC1 and PC2 that accounted for 39.23 

and 26.86% of genotype plus GEI variation, respectively. The GGE biplot analysis ranked the 

genotypes for yield and stability, and environments for representativeness and 

discriminativeness. The relationships between genotypes and environments were also 

demonstrated. Genotype G4 (TGX 2001-3FM) was identified as the ideal genotype with high 

grain yield mean performance and high stability. Therefore, it could be recommended for 

cultivar release if the study can be repeated to verify these findings. The environment E6 

(Nampula, Mozambique) was the most informative test environment, hence it is ideal for 

selecting generally adapted genotypes. Genotypes G11 (TGX 2002-4FM) and G22 (TGX 

2001-15DM) were low yielding but with high stability hence can be recommended for further 

yield improvement. 

Key words: AMMI, GGE biplot, G X E interaction, Soybean [Glycine max (L.) Merrill] 
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2.1 Introduction 

Soybean (Glycine max (L.) Merrill) is one of the world’s leading legume crops that is a 

source of oil (20%) and protein (40%). It is used for human diet, animal feed, improving 

soil fertility and as a raw material in several manufacturing industries. Soybean demand in 

Africa is more than the supply, as such, its production has increased and this trend is growing 

exponentially. In Africa, South Africa is the leading producer contributing 35% of the total 

production seconded by Nigeria (27%) and Uganda (8.5%) (Murithi et al., 2015). Currently, 

Zambia, Malawi and Zimbabwe still contribute a significant amount of 1.5 million tonnes in 

total to production in sub Saharan Africa (Abate et al., 2012). Soybean production in Zambia, 

Malawi and Zimbabwe is still projected to grow to 2 million tonnes by 2020 to meet the 

demand.  

The soybean crop is grown in areas that have different climatic conditions such as 

temperature, rainfall and soil characteristics (Branquinho et al., 2014). As a result, the cultivars 

perform differently in the different environments resulting in genotype x environment 

interaction (GEI). This concept of GEI is common in multi environment yield trials making 

selection of superior, stable cultivars in a growing region very difficult. The limitations 

presented on variety selection can be evaded through selection of genotypes for a specific 

environment or widely adapted and stable genotypes across environments (Ceccarelli, 1989). 

Yield stability of genotypes across environments is an important phenomenon in plant 

breeding, as it helps to make recommendations as to whether that genotype is best for wide 

or specific production in the environments. A stable genotype is the one that has the ability of 

using all the resources in high yielding environments and has its overall mean performance 

above average in all environments (Allard and Bradshaw, 1964). Eberhart and Russell (1966) 

added that, the candidate genotypes, that are ideal for stability testing, should have the genetic 

potential for best performance under the targeted environments. Plant breeders mostly use 

genotype by environment interaction stability statistics to assess the performance of their 

genotypes across various environments established from the information acquired from the 

evaluation of cultivars grown in a sample of growing environments. 

Several statistical methodologies have been used to evaluate and analyse the performance 

of soybean lines for selecting the most stable and productive line(s) for locations and regions. 

The additive main effect and multiplicative interaction (AMMI) analysis is a statistical tool used 

to evaluate the effects of GEI (Gauch, 2006). In addition, the genotype plus genotype x 

environment interaction (GGE) models proposed by Yan and Kang (2002) have been 

emphasized for multi environment trial data. Several researchers have used these models in 
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their soybean studies (Oliveira et al., 2016; Atnaf et al., 2013). GGE biplots best fit for mega-

environment analysis involve the ‘which-won-where’ pattern; for genotype evaluation, the 

mean vs. stability; and for test environment evaluation, for discriminating power vs. 

representativeness of the test environments (Yan and Kang, 2002). This tool estimates the 

effects of genotypes along with the GEI and it has been known as a useful method to visualize 

and analyse the pattern of GEI in multi environment evaluation of different crops such as 

soybean, maize, wheat and oilseeds (Asfaw et al., 2009; Mohammadi et al., 2010; Nzuve et 

al., 2013). 

Soybean yield and other agronomic traits are strongly affected by GEI (Alghamdi, 2004). 

Individual genotypes of soybean are adapted to regions differently since their phenotypes are 

highly influenced by the genotype and environments that they are grown in. This has also 

been observed in other studies including maize (Sibiya et al., 2012), wheat (Mohammadi et 

al., 2017) and cassava (Chipeta et al., 2017). Therefore, there is a need to evaluate soybean 

genotypes in order to understand and visualise their performance across the growing locations 

in some southern parts of Africa. The objective of this study was, therefore, to determine the 

adaptability and stability of grain yield of elite soybean lines using AMMI and GGE biplot 

analyses methods. 

2.2 Materials and methods 

2.2.1 Genotypes and evaluation environments 

Twenty-six elite soybean lines along with four checks were used to generate data used in this 

analysis during the 2016/2017 growing season in three countries (Malawi, Mozambique and 

Zambia) and six locations. The list of genotypes used and the geographical information of 

each location (environment) are shown in Tables 2.1 and 2.2, respectively. Of the 30 

genotypes evaluated, one (TGX 2002-3DM) was early maturing and determinate in growth 

habit while the rest were medium maturing and indeterminate in growth habit. 

2.2.2 Design of trials and agronomic management 

The soybean genotypes were planted in a 6 x 5 alpha lattice design with three replications. 

Each genotype occupied a plot comprising of four rows of 4 m in length, 0.5 m between rows 

and 0.05 m intra-row spacing. At maturity, grain yield was estimated from the two middle rows, 

which was considered as a net plot, leaving one row at 0.5 m on either sides as borders. 

Manual and chemical weeding was done to mitigate weeds and inorganic fertilizers were 

applied at planting at all locations depending on the results from soil analysis.  
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2.2.3 Data collection and analysis 

Grain yield data was collected for each genotype at all evaluation environments. The data 

were subjected to analysis of variance (ANOVA) across locations and at each location, AMMI 

ANOVA across locations, and GGE biplot analysis.  

The model (equation 2.1) for the combined ANOVA of multi-environment trials was used in 

GenStat 17th
 edition (Payne et al., 2014). The model includes additive terms for main effects 

of genotype and environment, as well as the genotype by environment interaction term. 

 
ijijjiij )(   .................................................................... Equation 2.1 

 

Where 𝑌𝑖𝑗 is the yield of the genotype 𝑖 in environment 𝑗  and kth replication;, 𝜇 is overall yield 

mean, α𝑖 and β𝑗 are genotypic and environmental effect, (αβ)𝑖𝑗 is the effect of interaction 

between the 𝑖𝑡ℎ genotype and 𝑗𝑡ℎ environment, ∈𝑖𝑗 is the mean random error of the 𝑖𝑡ℎ 

genotype and 𝑒𝑗 environment. 

The AMMI model used was adopted from Gauch and Zobel (1989) using the model in 

Equation 2.2 below 

 
ijijjninnnjiij  ……………………………………Equation 2.3 

In this model, the ith is the genotype effect in jth environment and kth replication; and the 

additive components of the model which are 𝜇 is the grand mean, the ith genotype effect (α𝑖), 

and the jth environment effect (β𝑗). The terms 𝜆n δ𝑖n 𝛾𝑗n and ƿij constitute the multiplicative 

component, where 𝜆n, is the interaction principal component, 𝛼𝑖n, is the eigen vector for the 

genotypic principal component, 𝛾𝑗n is the environmental principal component. Only the first or 

second interaction principal components (IPCAs) are retained for analysis and the rest of the 

interaction variation is explained by the residual ƿij. The last component in the model is 𝜖𝑖𝑗, 

which is the random error. The contribution of each interaction principal component to the total 

genotype x environment interaction sum of squares was determined.  

Biplots were plotted using the first two IPCAs to depict the relative performance of genotypes 

for yielding and stability. 

The GGE model in Equation 2.3 below was used as adopted from (Yan and Kang, 2002) 

 
ijjijijij 
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 ………………………………...Equation 2.4 
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GGE biplots were constructed using least squares means for grain yield from each 

environment. 

Where: 𝑌𝑖𝑗 is the mean of ith genotype in the jth environment, 𝜇 is the grand mean, βj is the jth 

environment main effect, and 𝜇 +βj  is the mean of all genotypes in jth environment. The terms 

λ1 and λ2 are the singular values for the first (PC1) and second (PC2) principal components, 

respectively; γi1 and γi2 are eigenvectors of the ith genotype for PC1 and PC2, respectively. 

The components δj1 and δj2 are eigenvectors of the jth environment for the principal 

components PC1 and PC2, respectively; and ∈𝑖𝑗 is the residual associated with the ith 

genotype in the jth environment. 

 Biplots were plotted for comparing genotypes in regard to mean performance and stability 

across environments, compare environments to determine if there is similarities or differences 

in expression of grain yield among them, determine which genotypes were best yielders in 

particular environments, and to determine which genotypes and environments were best for 

expression of particular traits. 
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Table 2.1 Genotypes evaluated and their characteristics 

Genotype  Genotype code Source Maturity Growth habit 

TGx 2001-12FM G1 IITA  M I 

TGx 2001-16FM G2 IITA  M I 

TGx 2001-24DM G3 IITA  M I 

TGx 2001-3FM G4 IITA  M I 

TGx 2001-4FM G5 IITA  M I 

TGx 2001-5FM G6 IITA  M I 

TGx 2002-12FM G7 IITA  M I 

TGx 2002-1FM G8 IITA  M I 

TGx 2002-3DM G9 IITA  E D 

TGx 2002-3FM G10 IITA  M I 

TGx 2002-4FM G11 IITA  M I 

TGx 2002-9FM G12 IITA  M I 

TGx 2001-19FM G13 IITA  M I 

TGx 2001-7FM G14 IITA  M I 

TGx 2002-10FM G15 IITA  M I 

TGx 2001-14FM G16 IITA  M I 

TGx 2001-27DM G17 IITA  M I 

TGx 2001-6DM G18 IITA  M I 

TGx 2002-6DM G19 IITA  M I 

TGx 2001-13FM G20 IITA  M I 

TGx 2001-14DM G21 IITA  M I 

TGx 2001-15DM G22 IITA  M I 

TGx 2001-21DM G23 IITA  M I 

TGx 2001-21FM G24 IITA  M I 

TGx 2002-11FM G25 IITA  M I 

TGx 2001-1FM G26 IITA  M I 

TGx 2001-26DM G27 IITA  M I 

Tikolore C1 IITA  M I 

NASOKO C2 IITA  M I 

SC SERENADI C3 IITA  M I 

IITA = International institute for tropical agriculture, M = medium, E = early, I = 

intermediate, D = Determinant 
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Table 2.2 Trial locations and their geographical information 

Country 

Location 

And Environment 

Code 

Altitude Latitude Longitude 
Min 

Temp 

Max 

Temp 

m 0S 0E 0C 0C 

Malawi Chitedze  E6 1149 13.9815 33.6372 18 29 

 Bvumbwe  E2 1146 15.917 35.067 14 25 

Zambia IITA SARAH  E4 1199 15.302 27.574 15 30 

 Kabwe  E5 1182 14.4285 28.4514 17 28 

Mozambique Nampula  E1 360 15.1266 39.2687 19 34 

  Gurue  E3 788 15.4914 37.0125 19 29 

 

2.3 Results 

2.3.1 Combined analysis of variance 

The analysis of variance for grain yield showed significant differences (P<0.001) for the 

genotype, environment and the interaction between genotype and environment. The 

combined analysis of variance (Table 2.3) revealed that grain yield was affected significantly 

by environment, genotype and genotype by environment interaction that explained 3.2%, 10%, 

and 55% of the total variation, respectively. The coefficient of variation was 17.9% for the 

combined analysis for all trials in 6 sites with a grand mean yield of 1699 kg/ha. 

Table 2.3 Analysis of variance for grain yield across six environments 

Source DF SS MS 

SITE 5 5907786.94 1181557.39*** 

REP(SITE) 12 977691.47 81474.29ns 

BLOCK(SITE*REP) 72 6302792.6 87538.79ns 

ENTRY 29 19591813.02 675579.76*** 

SITE*ENTRY 145 96890342.83 668209.26*** 

Error 276 25709349.9 93149.8 

Total 539 184498654.1  

Yield mean 1699 kg/ha   
CV 17.90%   

***Significant at P<0.001, ns = not significant, DF = Degrees of freedom, CV = Coefficient of variation, 

SS = Sum of squares,     MS = Mean square 

 

The soybean genotypes had different mean perfomances across the locations. 

Environments E4 and E6 had the highest mean perfomance and E1 had the lowest 

mean perfomance (Table 2.4). Genotypes  G10 and G24 had the lowest mean 
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performance across environments while G4, G13 and G22 had the highest perfomance 

across environments.  

Table 2.4 Genotype mean perfomance across all six locations 

Genotype 

code 
E1 E2 E3 E4 E5 E6 Mean yield (t/ha) 

G1 1.25 1.37 0.98 2.06 1.33 1.97 1.49 

G2 2.44 2.07 1.90 1.64 2.45 1.59 2.01 

G3 0.62 1.43 2.25 2.22 1.54 1.34 1.57 

G4 1.67 2.53 1.34 1.29 2.64 3.04 2.08 

G5 1.51 1.47 1.24 2.05 2.20 2.15 1.77 

G6 1.14 2.74 1.39 2.82 1.19 1.44 1.79 

G7 1.63 1.11 1.55 1.51 1.72 1.38 1.48 

G8 2.00 2.62 1.57 2.45 1.39 1.65 1.95 

G9 1.73 1.63 1.60 2.34 1.25 2.06 1.77 

G10 0.73 0.86 2.13 1.28 1.49 1.43 1.32 

G11 2.05 0.89 1.94 0.94 2.65 2.12 1.76 

G12 1.76 1.64 1.32 0.78 1.13 2.47 1.52 

G13 2.12 1.33 1.89 2.89 2.02 2.08 2.06 

G14 1.11 1.26 2.38 2.18 1.45 1.41 1.63 

G15 1.23 1.72 1.19 1.30 1.76 1.73 1.49 

G16 2.14 2.18 1.46 2.03 1.74 2.13 1.95 

G17 2.54 1.83 0.88 2.67 1.19 1.55 1.78 

G18 1.42 1.52 2.52 2.72 0.85 1.68 1.78 

G19 1.50 1.56 1.64 2.20 1.35 1.58 1.64 

G20 0.47 1.32 2.15 2.44 2.12 2.46 1.83 

G21 1.55 1.40 1.82 2.21 1.22 2.77 1.83 

G22 2.02 1.33 3.22 1.63 2.04 2.13 2.06 

G23 1.66 1.86 0.91 1.25 1.24 1.75 1.45 

G24 1.44 1.41 1.21 1.42 1.35 0.99 1.30 

G25 2.23 1.16 1.14 1.61 1.62 1.20 1.49 

G26 1.52 1.81 2.05 1.83 2.18 1.52 1.82 

G27 1.43 2.56 2.11 1.69 1.66 1.57 1.84 

G28 1.14 1.78 2.43 1.48 1.91 1.37 1.68 

G29 0.73 1.19 0.99 1.45 1.89 2.32 1.43 

G30 1.13 2.73 1.46 0.93 0.84 1.43 1.42 

Mean Yield 

(t/ha ) 1.53 1.68 1.69 1.84 1.65 1.81 1.70 

 

2.3.2 AMMI analysis 

The additive main effect and multiplicative interaction (AMMI) analysis of variance showed 

significant effects for all genotypes, environment and the genotype by environment interaction 

(GEI) (Table 2.5). The partitioning of the variance components also showed that 3.8% of the 

total variation was contributed by the environment, 17.5% was due to the genotypes, and GEI 
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were associated with 78% of the total variation, respectively. The three interaction principal 

components (IPCA1, IPCA2 and IPCA3) were significant (p<0.001). These IPCA’s contributed 

29.20%, 28.43% and 17.47%, respectively to the total interaction sum of squares and 

cumulatively they contributed 75.10% of the total genotype by environment interaction sum of 

squares. 

Table 2.5 AMMI analysis for grain yield from across six locations 

Source of 

variations 
DF SS MS 

Total 

variatio

n (%) 

GE 

explained 

(%) 

GE 

cumulative 

(%) 

Total 539 184506352 342312 
 - - 

Block (Env) 12 978137 81511    

Treatments 179 151518215 846470***  - - 

Genotypes 29 26626275 918147*** 17.50 - - 

Environment 5 5907680 1181536*** 3.80 - - 

GE 145 118984260 820581*** 78.00   

IPCA 1 33 34775458 1053802*** - 29.20 29.20 

IPCA 2 31 33832432 1091369*** - 28.43 57.63 

IPCA 3 29 20783117 716659***  17.47 75.10 

 Residuals  52 29593254 569101*** 
 

24.87 - 

Error 348 32010000 91983   - - 

*** Significant at P<0.001, DF = Degrees of freedom, SS = Sum of squares, MS = Mean sum of squares, 
GE = Genotype x Environment interaction, IPCA 1 = Interaction principal component axis 1, IPCA 2 = 
Interaction principal component axis 2, IPCA 3 = Interaction principal component 3 

2.3.3 Mean grain yield and IPCA scores of genotypes 

 
For the 30 genotypes evaluated, the mean yield ranged from 1.30 t/ha to 2.08 t/ha (Table 

2.4). Among these genotypes, G24 had the lowest mean yield and cultivar G4 had the 

highest mean yield. Fifty-three percent of the genotypes in the study (G2, G4, G5, G6, G8, 

G9, G11, G13, G16, G17 G20, G21, G22, G18, G26 and G27) performed above the grand 

mean of 1.7 t/ha. 
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Table 2.6 Mean yield first, second and third IPCA scores of genotypes 

Genotype code Mean GY (t/ha) IPCAg[1] IPCAg[2] IPCAg[3] 

G1 1.49 -0.07 -0.21 0.21 

G2 2.01 0.11 -0.08 -0.61 

G3 1.57 0.49 0.04 0.11 

G4 2.08 -0.69 0.15 -0.25 

G5 1.77 -0.07 -0.02 -0.05 

G6 1.79 0.19 -0.41 0.25 

G7 1.48 0.21 0.06 -0.28 

G8 1.95 0.07 -0.58 0.08 

G9 1.77 0.07 -0.23 0.21 

G10 1.32 0.3 0.6 -0.05 

G11 1.76 -0.01 0.53 -0.71 

G12 1.52 -0.54 0.04 -0.22 

G13 2.06 0.37 -0.17 0.06 

G14 1.63 0.49 0.19 0.27 

G15 1.49 -0.17 0 -0.16 

G16 1.95 -0.14 -0.32 -0.15 

G17 1.78 0.16 -0.86 -0.12 

G18 1.78 0.51 -0.01 0.43 

G19 1.64 0.21 -0.2 0.15 

G20 1.83 0.13 0.46 0.6 

G21 1.83 -0.14 0.11 0.52 

G22 2.06 0.33 0.61 -0.21 

G23 1.45 -0.29 -0.31 -0.22 

G24 1.30 -0.37 -0.01 0.05 

G25 1.49 0.22 -0.29 -0.52 

G26 1.82 0.23 0.11 -0.17 

G27 1.84 -0.46 0.15 0.26 

C1 1.68 0.24 0.35 -0.06 

C2 1.43 -0.52 0.33 0.27 

C3 1.42 -0.85 -0.01 0.29 

 

The mean yield for the environments (Table 2.7) ranged from 1.5 t/ha to 2.1 t/ha. Two of the 

environments (E4 and E6) had their performance above the grand mean of 1.7t/ha. E1 had 

the lowest mean yield and E4 was recorded as the highest yielding environment. 
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Table 2.7 Mean yield first, second and third IPCA scores of environments 

Environment Code Mean GY (t/ha) IPCAe[1] IPCAe[2] IPCAe[3] 

Nampula E1 1.5 0.1 -0.72 -1.09 

Bvumbwe E2 1.7 -0.71 -0.66 0.15 

Gurue E3 1.7 0.81 1.03 0.2 

IITASARAH E4 1.8 0.92 -0.77 0.91 

Kabwe E5 1.7 0.17 0.65 -0.69 

Chitedze E6 2.0 -1.29 0.48 0.52 

 

2.3.4 Best four selections per environment 

 
The best four genotypes per environment were identified using the AMMI analysis (Table 

2.8). G4 was the best in one environment and ranked second and third in two other 

environments followed by G22, which was also best in one environment and ranked third 

and fourth in two other environments. Genotypes G11, G17, G18, and G30 performed best 

in one environment each, and G11 was second in another environment. 

Table 2.8 First four selections per environment 

  Ranking per environment 

Environment Mean (t/ha) 1 2 3 4 

E5 1.7 G11 G4 G22 G2 

E3 1.7 G22 G20 G3 C1 

E6 2.0 G4 G11 G2 G22 

E1 1.5 G17 G13 G4 G16 

E4 1.8 G18 G13 G17 G6 

E2 1.7 C3 G6 G8 G27 

        

2.3.4 AMMI biplot: IPCA1 vs IPCA2 

The AMMI biplot analysis (Figure 2.1) revealed that environment E6, E3 and E4 had the 

longest vectors compared to E2, E5 and E1. Genotype G17 had specific adaptation with high 

yielding environments. Cultivars G12, G4, G27, G29 and G21 had a positive interaction with 

environment E6, hence were specifically adapted to E6. The following cultivars; G2, G5, G15, 

and G21 were all close to the centre of the biplot. Two sets of environments (E1 and E4, plus 

E3 and E5) had acute angles in between them. The biplot analysis of GE based on the AMMI2 

model for the first two interaction principal component scores, namely IPCA1 and IPCA2, 

revealed that the two IPCAs cumulatively contributed 66.09% of the GE. 
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Figure 2.1 AMMI biplot analysis based on the first two interaction principal components 

 

2.3.6 GGE Analysis 

Results of the GGE biplots as presented in figs 2.2-2.6, shows that the first and second 

principal components explained a total variation of 65.71%.  

2.3.6.1 Relationship among environments 

The lines drawn from the origin of the biplot connecting to the environment markers are called 

environment vectors (Figure 2.2). The angles between these vectors indicate the correlation 

between the environments. Angles between vectors that are less than 900 shows that there is 
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a high correlation between the environments as observed among E3 and E2, E6 and E5, E1 

and E6, E5 and E3. Vectors for E4 and E1 were at right angles and the angle between E4 and 

E5 and E3 was more than 900. Both the angle and length of the environment vectors indicate 

the similarity between the test environments. Among the test locations E1, E6, E5 and E3 had 

the longest vectors and environments E2 and E4 had shorter vectors. Genotypes such as G15 

and G27 were clustered closer to the point of origin of the biplot. (Figure 2.2). G4 had the 

highest mean followed by G2, G11 and G16. 

2.3.6.2 “Which-won-where” polygon view 

The polygon was formed by connecting the genotypes G4, G10, G22, G3, G17 and G6 farthest 

from the point of origin of the biplot (Figure 2.3). The genotypes on the vertices performed 

either the best or poorly in one or more of the test environments. The highest performing 

genotype in environments E6 and E1 was G4; while in E5 and E2, the best performing 

genotypes were G11 and G17 respectively. C3 and G6 were the highest performing in 

environment E4. However, genotypes G8, G18 and G10 performed poorly in the test 

environments. There were seven rays that divided the biplot into 7 sectors. Rays are the 

perpendicular lines to the sides of the polygon formed in the plot (Kaya et al., 2006). The 

environments fell into different sectors except for E1 and E6, which fell into the same sector.  

2.3.6.3 Genotype and environment comparisons 

The grain yield performance of genotypes (Figure 2.4) showed that G2, G4 and G12 had the 

highest mean yield. E6 was in the first concentric circle closer to the centre of the ideal 

environment (Figure 2.5) and E3 was the furthest from the centre of the concentric circles.  

2.3.6.4 Mean versus stability 

Genotypes such as G2, G24 G19 and G4 had short vectors running from the AEC while 

genotypes G22, G11, G10, G17 and G6 had the longest vectors. The AEC ordinate divided 

the genotypes into two groups those above it; from G4 to G17 had high mean performance 

and those below it, from G7 to G3 had low mean performance (Figure 2.6) 
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Figure 2.2 Environment vector view to show relationships among test environments 
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Figure 2.3 The "which won where" view of the GGE biplot 
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Figure 2.4 Genotype comparison with the ideal genotype 
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Figure 2.5 Environment ranking and comparison with the ideal environment 
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Figure 2.6 Ranking of genotypes based on mean perfomance and stability 

 

2.4 Discussion 

The study showed significant main effects for genotypes and environments indicating variation 

among the genotypes and test environments.  The genotype × environment interaction (GEI) 

was also significant indicating differential ranking of genotypes across the environments. This 

GEI may confound the process of selecting superior genotypes, recommendation of a 

genotype for a target environment and reduce the selection efficiency in different breeding 

programmes (Gauch, 2006). 

The ANOVA for grain yield using the AMMI method showed that environments (E), genotypes 

(G) and genotype × environment (GEI) interaction significantly affected the soybean grain 

yield.  As per AMMI analysis, environment and genotype accounted for 17.5% and 3.8% of 

the total variation, respectively. The significant G×E interaction explained 78% of the variation 

that was almost triple that of the genotypic effects and ten times more of the environmental 

effect. Genotype and genotype by environment interaction are relevant to cultivar evaluation, 

especially when G×E interaction is determined as repeatable (Cooper and Hammer, 1996). 
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This also agrees with the findings of Bhartiya et al. (2017) who indicated that the GEI explained 

more variation compared to genotypes and environments. The performance of the soybean 

was different at different locations hence the large GEI effects realised in this study (Atnaf et 

al., 2013). 

Romagosa et al. (1993) stated that specific adaptation is connected with large genotypic PCA1 

scores to environments with PCA1 scores of the same sign. For example, G14, which had a 

positive IPCA1 score of 0.49, was specifically adapted to E4 with a positive IPCA1 score of 

0.92. This is also true with negative IPCA1 scores and many genotypes in this study 

demonstrated the same relationship. Environments E6, E4 and E3 had the highest effect on 

GEI. Genotypes that were clustered on the centre of origin such as G15 and G2 had their 

mean performance closer to the grand mean hence revealing general adaptation to the testing 

environments. Genotype G27 was specifically adapted to E6 and G23 similarly was adapted 

to E2. This is so because they had acute angles to the test environments in context. Fox et al. 

(1997) explained that the smaller the angle between the genotypes and respective 

environments the more the genotypes are specifically adapted to that particular environment. 

Environments E1, E6, E5 and E3 were the most informative since their GEI variation was 

larger as depicted by the length of their vectors. GEI indicates differences in adaptation and it 

can be exploited by selecting for specific adaption if the study is repeated over years (Yan et 

al., 2007) hence in this study broad adapted genotypes G4, G2 and G11 can be recommended 

for cultivar release and minimize specific adaptation selection since the study was not 

repeated over years. 

The “which won where” pattern helps in visualising the possible existence of mega 

environments in multi environmental trials and shows the best performing genotype in each 

environment (Kaya et al., 2006). Either the genotypes on the vertex of the polygon formed 

were the best or poorest in the sectors and designated environments they fell in (Yan et al., 

2007). Genotype G11 won in environment E5, for environments E3, E2, E6, E4 and E1 the 

winners were G22, G17, G4, G6 and G4, respectively. For G3 and G10 vertex lines had no 

environment in their sector implying that they performed poorly across all locations as also 

illustrated by a study conducted by Asfaw et al. (2009). G15 and the others close to the point 

of origin of the biplot had their mean performance close to the grand mean, which means their 

performance across the locations had the same response.  

An ideal genotype is defined as having the highest mean performance and is stable even 

though such type of genotypes may not exist but in ranking and evaluation of genotypes, they 

can be used as a reference.  Genotype G4 was almost closer to the ideal genotype hence it 
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is the best performer in terms of high yield and stability. This concept is also applicable to 

environments; the environment in a concentric ring closer to the ideal environment is ideal 

among the test environments. In this case, environment E6 had the most representative and 

discriminating ability since it had an acute angle to the average environment axes (AEA) and 

it is suitable for selection of generally adapted genotypes. Environments E3 and E1 had larger 

angles between their vectors and the AEA hence these environments were suitable for 

selection of specifically adapted genotypes.  From the test environments, no genotype was 

the best in all environments indicating a crossover GEI. This situation could also have been 

influenced by the climatic conditions of the environments since they had different temperature, 

rainfall and soil conditions.  

Yield performance and stability was defined using the first and second interaction principal 

component axis scores of all test locations symbolised by a small circle. Two lines pass 

through the origin of the biplot, the first one is the average environment axis, and this has an 

arrow pointing to greater GEI effect and reduced stability. The second one, the ordinate of the 

AEC runs perpendicular to the AEC (Kaya et al., 2006). Genotypes G4, G11 to G17 had their 

performances above average hence can be recommended for all test locations provided that 

there is optimal climatic conditions and improved management practices. The AEC ordinate 

separates genotypes with below average yields to those with above average yields. For 

selection, genotypes with above average means could be selected, that is, from G4 to G17 

and discard the others such as G10 which had low yields (non-adaptable) and unstable. 

Stability should be considered during selection even among the genotypes with performances 

above average. For example, G4, G2 and G12 were high yielding and more stable since their 

vectors where closer to the AEC while G17, G22 and G11 were high yielding but more variable 

across the test environments.  

 E2 had the lowest IPCA value of -30.31, which symbolised low interaction with the climatic 

condition, and E5 had the highest IPCA score. G14 had the highest IPCA score of 0.49 while 

C3 had the lowest value of -0.85 indicating that it was more stable across locations. This is in 

contrast with GGE analysis, which indicates G2 was the most stable because it had the 

shortest vector from the AEC. 

 

2.5 Conclusion 

The present study revealed that soybean yield was significantly affected by genotype, 

environment and genotype by environment as revealed through the AMMI analysis. GGE 

analysis using the “which won where” pattern identified genotypes with specific adaptation 
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such as G11 to environment E5. It also identified genotypes G4, G2 and G11 as having 

general adaptation and high yielding. For the ideal genotype, G4 was identified since it had 

the longest vector hence it was high yielding and highly stable hence it can be recommended 

for cultivar release in the tested environments. E1 and E6 were both in the same sector hence 

one environment could be used for selection of the other environment to reduce the cost of 

the breeding trials. G22 and G11 had low yield mean performance but stable hence they can 

be further improved by using them as parents in another breeding pipeline by crossing to high 

yielding genotypes. 
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CHAPTER 3 

CORRELATION, PATH COEFFICIENT AND GENOTYPE BY TRAIT 

ASSOCIATION ANALYSIS AMONG ELITE SOYBEAN LINES ACROSS 

ENVIRONMENTS 

ABSTRACT 

Grain yield in general is a complex trait with low heritability and is dependent upon different 

variables hence indirect selection through other component traits would be an essential 

strategy to improve the efficiency of selection. It is important to measure the contribution of 

each trait to grain yield through partitioning them into direct and indirect effects and graphically 

show interrelationships among the traits. The study was conducted on 30 genotypes to 

determine the correlation, and path analyses of grain yield and graphically visualise trait 

relationships. Significant differences at P<0.001among genotypes were observed for all traits 

studied. Correlation coefficient between grain yield with early vigour and plant height illustrated 

a strong positive relationship. Days to 50% flowering, days to 50% podding days to maturity 

hundred seed weight and had a negative correlation coefficient with grain yield. Path analysis 

indicated that plant height had a positive direct effect on yield while early vigour and days to 

50% flowering had negative indirect effects on yield. The genotype by trait (GT) biplot 

graphically showed consistent trait relationships and identified G4 (TGX 2001-3FM), G27 

(TGX 2001-26DM) and G9 (TGX 2002-3DM) as genotypes that can be used as parents in 

breeding programmes for yield improvement. 

Key words: Soybean, trait profiles, correlation, path coefficient analysis 
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3.1 Introduction 

Soybean is an economically important leguminous crop that is grown for its oil and protein 

products (Tefera et al., 2009). It also has medicinal properties and is a source of raw material 

for industries. Grain yield is a quantitative trait, which is dependent on a number of other 

characters. For yield improvement in breeding programmes, the study of direct and indirect 

effects of yield and its attributing components can be used as a baseline for selection for grain 

yield through the closely associated characters (Malik et al., 2007). 

In plant breeding programmes, there is a common goal to identify traits that positively 

contribute to high yield, therefore, it is critical to study traits in a crop and identify those that 

contribute to the trait of interest (Kinfe et al., 2015). Various statistical methodologies have 

been employed to understand genotype and trait interactions, which leads to having the same 

or similar output (Akcura, 2011). 

Genotype plus genotype by environment (GGE) biplots have been used for analysing multi 

environment trials. This concept can be extended to analyse data for multiple traits across 

locations. The genotypes are used in the place of environments and the multiple traits are 

used as testers. With this data, the genotype by trait (GT) biplot is constructed, which presents 

a visual display showing association of traits and genotypes. This is an effective tool that 

graphically summarizes the genotype by trait data, visualises relationships among the 

measured traits and visualise the performance of genotypes based on the traits, which 

influence selection of potential parents (Yan and Tinker, 2005). In addition, it helps to identify 

less important traits that do not contribute directly to the trait of interest. Genotype by trait 

association has been used in soybean yield analysis by Yan and Kang (2002) who reported 

that one genotype performed the best across all locations.  

Agrama (1996) stated that the proficiency of any breeding programme relies on how large the 

association is between yield and its components. Most of the main breeding traits have 

negative correlations existing among them hence selection for a single trait is very difficult. 

Correlation coefficients are useful in quantifying the trait associations in terms of size and 

magnitude. However, they might be misleading if there is a large correlation that is a result of 

indirect effect of a trait. In soybean, scientists have used path analysis to partition correlations 

into direct and indirect traits (Malik et al., 2007). The objectives of this study were to determine 

genotype by trait associations and multiple trait relationships across six locations. 
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3.2. Materials and methods 

3.2.1. Genotypes and evaluation environments 

Twenty-six elite soybean lines along with four checks were used to generate data used in this 

analysis during the 2016/2017 growing season at six locations spread over three countries 

(Malawi, Mozambique and Zambia). The list of genotypes used and the geographical 

information of each location (environment) are shown in Tables 3.1 and 3.2, respectively. Of 

the 30 genotypes evaluated, TGX 2002-3DM was early maturing and determinate in growth 

habit while the rest were medium maturing and indeterminate in growth habit. 

Table 3.1 Genotypes evaluated and their agronomic characteristics 

Genotype  Genotype code Source Maturity Growth habit 

TGx 2001-12FM G1 IITA  M I 

TGx 2001-16FM G2 IITA  M I 

TGx 2001-24DM G3 IITA  M I 

TGx 2001-3FM G4 IITA  M I 

TGx 2001-4FM G5 IITA  M I 

TGx 2001-5FM G6 IITA  M I 

TGx 2002-12FM G7 IITA  M I 

TGx 2002-1FM G8 IITA  M I 

TGx 2002-3DM G9 IITA  E D 

TGx 2002-3FM G10 IITA  M I 

TGx 2002-4FM G11 IITA  M I 

TGx 2002-9FM G12 IITA  M I 

TGx 2001-19FM G13 IITA  M I 

TGx 2001-7FM G14 IITA  M I 

TGx 2002-10FM G15 IITA  M I 

TGx 2001-14FM G16 IITA  M I 

TGx 2001-27DM G17 IITA  M I 

TGx 2001-6DM G18 IITA  M I 

TGx 2002-6DM G19 IITA  M I 

TGx 2001-13FM G20 IITA  M I 

TGx 2001-14DM G21 IITA  M I 

TGx 2001-15DM G22 IITA  M I 

TGx 2001-21DM G23 IITA  M I 

TGx 2001-21FM G24 IITA  M I 

TGx 2002-11FM G25 IITA  M I 

TGx 2001-1FM G26 IITA  M I 

TGx 2001-26DM G27 IITA  M I 

Tikolore G28 IITA  M I 

NASOKO G29 IITA  M I 

SC SERENADI G30 IITA  M I 
IITA = International institute for tropical agriculture, M = medium, E = early, I = intermediate, D = Determinant 
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Table 3.2 Trial locations and their geographical information 

Country 

Location 

and Environment 

Code 

Altitude Latitude Longitude 
Min 

Temp 

Max 

Temp 

m.asl 0S 0E 0C 0C 

Malawi Chitedze E6 1149 13.9815 33.6372 18 29 

 Bvumbwe E2 1146 15.917 35.067 14 25 

Zambia IITA SARAH E4 1199 15.302 27.574 15 30 

 Kabwe E5 1182 14.4285 28.4514 17 28 

Mozambique Nampula E1 360 15.1266 39.2687 19 34 

  Gurue E3 788 15.4914 37.0125 19 29 

m. asl = metres above sea level 

 

3.2.2. Design of trials and agronomic management 

The soybean genotypes were planted in a 6 x 5 alpha lattice design with three replications. 

The plots comprised of four rows of 4 m in length, 0.5 m between rows and 0.05 m intra-row 

spacing. Data were collected from the two middle rows, which were considered as a net plot 

leaving one row and 0.5 m on either sides as borders. Manual and chemical weeding was 

done to mitigate weeds and inorganic fertilizers were applied at all locations depending on the 

results of soil analysis.  

3.2.3. Data collection and analysis 

Data on plant characteristics listed in Table 3.3 were collected for all genotypes at all 

evaluation sites. 

Table 3.3 Agronomic traits and their description 

Trait Acronym Description 

Early Vigor EV Visual assessment at seedling stage, Scoring 1-good, 3-Intermediate, 5-poor 

Days to flowering DFFL Count number days after sowing to 50% flowering of plants in a plot 

Days to podding DPD Count days after sowing to 50% podding of plants in a plot 

Days to maturity DM Count days after sowing to full maturity 

Hundred seed 

weight HSW 100 seeds were counted and weighed 

Grain yield GY Dry and weight of total grains per plot 

Plant height PLHT The average height of 5 plants from soil level to shoot tip at maturity 
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Pearson correlation and path coefficient analysis 

The Pearson correlation coefficient was computed using the formula in SAS 9.4 software as 

indicated in Equation 3.5.  
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r




 …………………………….Equation 3.1 

Where; r is the Pearson coefficient correlation, x is the dependent variable, y is the 

independent variable while n is the sample size 

For path coefficient analysis, PROC CALIS was implemented using SAS 9.4. This analysis 

revealed direct and indirect effects on the primary trait that was grain yield. The model used 

as suggested by Akintunde (2012) and is indicated in Equation 3.2 

UXbXbXbay  332211  ………………………………………………Equation 3.6 

Where: y is the dependable variable (GY) while UXbXbXba  332211 are the 

correlation variables with the assumption that each variable is independently contributing to 

the dependent variable y 

Analysis of Variance 

The data were subjected to analysis of variance (ANOVA) across locations. 

The model (equation 3.3) for the combined ANOVA of multi-environment trials was used in 

GenStat 17th
 edition (Payne et al., 2014). The model includes additive terms for main effects 

of genotype and environment, as well as the genotype by environment interaction term. 

 
ijijjiij )(  …………………………………………………Equation 3.3 

Where: 𝑌𝑖𝑗 is the yield of the genotype 𝑖 in environment 𝑗 and kth replication; 𝜇 is overall yield 

mean, α𝑖 and β𝑗 are genotypic and environmental effect, (αβ)𝑖𝑗 is the effect of interaction 

between the 𝑖𝑡ℎ genotype and 𝑗𝑡ℎ environment, ∈𝑖𝑗 is the mean random error of the 𝑖𝑡ℎ 

genotype and 𝑒𝑗 environment. 

Genotype by trait analysis 

The genotype by trait model used was adopted from Yan and Rajcan (2002) and is presented 

in Equation 3.4 as follows: 
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Where: 

Tij = The mean value of genotype i for trait j 

βj = The average value of all genotypes for trait j 

Sj = The standard deviation of trait j among genotype means 

λn = The singular value for Principal Component (PCn) 

ξin = The PCn score for genotype i 

ηjn = The PCn score for trait j 

εij = The residual associated with genotype i in trait j 

To achieve symmetric scaling between the genotype scores and the trait scores the singular 

value λn has to be absorbed by the singular vector for genotypes ξin and that for traits ηjn. That 

is, ξ*
in = λ0.5

n ξin and η*
jn = λ0.5

n ηjn. Only PC1 and PC2, are retained in the model because such 

a model tends to be the best for extracting pattern and rejecting noise from the data. The GT 

biplot is generated by plotting ξ*
i1 and ξ*

i2 against η*
j1 and η*

j2, respectively, so that each 

genotype or trait is represented by a marker in the biplot. In the GT biplot, a vector is drawn 

from the biplot origin to each marker of the traits to facilitate visualization of the relationships 

between and among the traits. 

3.3. Results 

3.3.1. Combined analysis of variance and agronomic performance of genotypes 

The results of the combined ANOVA for each agronomic trait were highly significant at 

P<0.001 (Table 3. 3) for genotype, site and site by genotype interaction.  
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Table 3.4 Analysis of variance for seven traits across six locations 

Source DF EV DFFL DM PHLT SWT GY DPD 

Site 5 3.58*** 22.56*** 117.32*** 428.83*** 56.1*** 1181557.39*** 118.72*** 

Rep(Site) 12 0.4 ns 2.63ns 4.54ns 36.59ns 6.21ns 81474.29ns 12.52** 

Block(Site*Rep) 72 0.4ns 4.07** 4.67ns 23.82ns 5.21*** 87538.79ns 9.04** 

Genotype 29 2.57*** 82.31*** 263.93*** 678.26*** 7.69*** 675579.76*** 90.22*** 

Site*Genotype 145 1.77*** 54.54*** 212.17*** 377.53*** 10.06*** 668209.26*** 82.79*** 

Error 276 0.37 2.38 3.49 21.34 2.6 93149.8 5.71 

***Significant at P<0.001, **Significant at P<0.01, ns = not significant, DF = Degrees of freedom, EV = 

early vigour, DFFL = days to 50% flowering, DM = days to maturity, PHLT= plant height, SWT= 100 

seed weight, GY= grain yield, DPD= Days to 50% podding 

 

3.3.2. Mean comparisons for the evaluated genotypes 

None of the genotypes was best for all the traits. Table 3.4 presents a comparison of genotype 

mean for each trait across the locations using Tukey test at 5% probability level. Plant height 

ranged from 45.185 cm to 69.56 cm with genotype G10 having the lowest value and G27 

having the highest value. Days to maturity ranged from 88.8 days to 104.8 days with G5 

recording the longest time to maturity and G9 recording the shortest time to maturity. For 

hundred seed weight, the range was 16.23 g to 19.02 g with G3 as the highest and C3 as the 

lowest. The highest number of days to podding recorded was 56.57 days and the lowest being 

45.56; G4 had the lowest number of days and G23 was the highest. G2 had the lowest score 

of 2.1 for early vigour and G17 had the highest score of 3.81. Grain yield ranged from 1309.7 

kg/ha to 2080.5 kg/ha with G4 as the best and G24 as the lowest yielding genotype.



 

 51 

Table 3.5. Mean comparisons of the evaluated genotypes based on seven agronomic 

traits 

Genotype EV DFFL DM PHLT HSW GY DPD 

G1 2.58cdefghi  39.07bcd 100.80bcd 47.13hi 16.60bc 1501.1defghi 52.44bcdef 

G2 2.1i 37.32cdefgh 95.19ghi 52.489efgh 16.91abc 1991.2ab 50.8bcdefgh 

G3 2.27fghi 36.85efghi 97.39fg 53.42defgh 19.02a 1605.7bcdefghi 51.04bcdefg 

G4 2.43efghi 34.01klmn 91.13klm 63.98ab 17.24abc 2080.5a 45.56l 

G5 2.9bcdefghi 37.16cdefgh 104.88a 50.56efghi 17.61abc 1833.8abcdef 53.78abc 

G6 2.98abcdefgh 36.63efghi 98.84cdef 60.03bc 17.18abc 1748.9abcdefgh 49.15fghijk 

G7 3.36abc 38.06cdefg 98.53def 49.82efghi 17.75abc 1447.6efghi 51.41bcdefg 

G8 3.25abcdef 37.07defgh 97.23fgh 49.72efghi 16.73bc 1942.7abc 51.49bcdefg 

G9 3.26abcde 33.11mn 88.86m 65.41ab 17.563abc 1775.7abcdefgh 46.37kl 

G10 2.97bcdefgh 36.06ghij 99.74bcde 45.19i 17.35abc 1369.5hi 50.15defghij 

G11 3.3abcd 36.18fghij 93.69ijk 47.46hi 16.99abc 1774.5abcdefgh 49.84efghij 

G12 2.52cdefghi 38.17cdefg 94.74hij 47.69fghi 17.21abc 1524.3cdefghi 52.33bcdef 

G13 2.73bcdefghi 33.44lmn 93.63ijkl 53.76cdefg 16.98abc 2041.4a 47.67hijkl 

G14 2.92bcdefghi 41.43a 107.23a 51.43efghi 18.35abc 1606.8bcdefghi 53.47abcd 

G15 3.08abcdefg 41.09ab 92.98ijkl 50.35efghi 18.45abc 1472.3efghi 52.35bcdef 

G16 3.43ab 39.30abc 99.17cdef 63.14ab 17.94abc 1906.6abcd 53.81ab 

G17 3.81a 38.95cd 101.34bc 59.55bcd 18.26abc 1735.7abcdefghi 52.58bcde 

G18 3.07abcdefg 37.13defgh 94.86ghij 54.00cdef 16.89abc 1734.6abcdefghi 50.47cdefghi 

G19 2.41fghi 32.58n 93.75ij 68.85a 17.99abc 1660abcdefghi 47.49ijkl 

G20 2.52cdefghi 38.20cdefg 98.76cdef 48.31fghi 18.73ab 1830.3abcdef 50.05efghij 

G21 2.42efghi 35.30hijkl 92.46jkl 47.46ghi 17.37abc 1872.3abcde 47.6hijkl 

G22 2.48defghi 34.20jklmn 92.42jkl 55.64cde 17.63abc 2030ab 49.97efghij 

G23 2.73bcdefghi 41.09ab 98.74def 59.71bcd 18.54ab 1398.8ghi 56.57a 

G24 3.01abcdefgh 38.22cdef 100.51bcde 49.96efghi 17.29abc 1309.7i 51.52bcdefg 

G25 2.69bcdefghi 38.57cde 102.19b 51.29efghi 17.79abc 1550.7cdefghi 52.77bcde 

G26 2.2fhi 33.35lmn 92.37jkl 54.91cde 16.88abc 1835.5abcdef 48.97ghijk 

G27 2.4ghi 34.83ijklm 91.02lm 69.57a 16.62bc 1811.2abcdefg 46.98jkl 

C1 2.53cdefghi 37.73cdefg 98.14ef 52.06efgh 17.42abc 1653.4abcdefghi 52.1bcdefg 

C2 2.64bcdefghi 37.00defgh 95.40ghi 53.84cdefg 18.69ab 1489.7defghi 52.23bcdefg 

C3 2.61bcdefghi 37.21cdefgh 93.68ijk 48.27fghi 16.232c 1439.2fghi 52.04bcdefg 

Mean 2.78 36.9 96 54.16 17.5 1699 50 

Range 2.1 - 3.8 32.5 - 41.4 
88.8 - 

107.2 
45.1 - 69.6 

16.2 - 

19.1 
1309.6 - 2080.4 45.5 - 56.5 

SE 0.6 1.5 1.8 4.6 1.6 305.2 2.3 

P-Value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

CV% 21.8 4 1.9 8.5 9.1 17.9 4.7 

EV = Early vigour, DFFL = days to flowering, DM = days to maturity, PHLT = plant height, HSW, = 

hundred seed weight, GY = grain yield, DPD = days to podding. Means followed by the same letter in 

columns indicate that they do not differ at 5% probability by Tukey test 
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3.3.3. Correlation analysis 

Plant height, early vigour and days to 50% flowering were highly significant and correlated 

with grain yield. Plant height had a weak, positive and significant correlation (r =0.27) with 

yield. Hundred seed weight, days to maturity and days to podding had negative non-significant 

correlations with yield (Table 3.6). 

Table 3.6 Pearson's correlation coefficient between the agronomic traits 

 EV DFFL DPD DM PLHT HSW GY 

EV 1 -0.32*** -0.21*** -0.17*** 0.12** 0.08 0.13** 

DFFL  1 0.73*** 0.59*** -0.28*** -0.07 -0.30*** 

DPD   1 0.57*** -0.29*** -0.11* -0.31 

DM    1 -0.2*** -0.001 -0.23 

PLHT     1 0.13** 0.27*** 

HSW      1 -0.02 

GY       1 

EV = Early vigour, DFFL = days to flowering, DM = days to maturity, PHLT = plant height, HSW, = 

hundred seed weight, GY = grain yield, DPD = days to podding. 

3.3.4. Path coefficient analysis 

From the path analysis results for grain yield (Table 3.7), the coefficients were partitioned into 

direct and indirect effects through different characters affecting the grain yield component. The 

direct effects of plant height and early vigour were positive while for days to flowering, days to 

podding, days to maturity and hundred seed weight had negative effects. The highest direct 

effect was observed on plant height followed by early vigour. The lowest direct effect was 

through days to podding. It was also noted that high indirect effects were observed in early 

vigour while the other traits including days to flowering and days to podding had negative 

indirect effects on yield via days to maturity.   
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Table 3.7 Path analysis illustrating direct and indirect effects on grain yield 

Effects on GY 

  
Total Direct Indirect 

EV 
0.1284** 0.0353 0.0932*** 

DFFL 
-0.2847*** -0.0979 -0.1868*** 

DPD 
-0.2013** -0.1614** -0.0399 

DM 
-0.0367 -0.0344 -0.00232** 

PHLT 
0.191*** 0.1985*** -0.00745 

HSW 
-0.0685 -0.0685 0.0000 

Effects on DM 

EV 
-0.18*** 0.000617 0.1794*** 

DFFL 
0.5871*** 0.3533*** 0.2338*** 

DPD 
0.3155*** 0.3155*** 0.0000 

 

3.3.5. Genotype by trait analysis 

The genotype by trait biplot has an ability to visually show comparisons of genotypes for 

multiple traits and their associations. 

3.3.5.1. Identification of the best genotypes based on multiple traits 

The GT biplot was constructed using data from 7 agronomic traits of 30 genotypes across six 

environments. Eighty percent of the total variation was explained by the biplot from the 

standardised mean data with PC1 contributing 66.12% and PC2 accounting for 14.48%. The 

polygon view was divided into eight sectors with the traits falling in four of the sectors. The 

traits days to maturity, days to flowering, days to podding fell in the same sector, hundred seed 

weight and early vigour fell in the same sector while PHLT and GY each fell in its own sector. 

G14, G9, G4, G26 and G21 were on the vertex of the polygon view in the GT biplot (Figure 

3.1). The genotypes on the vertices performed either the best or poorly in one or more of the 

traits.  G4 was the highest performing genotype for grain yield while G9 was the highest 

recorded for plant height. G17 and G23 were found to be highly associated with hundred seed 

weight and early vigour. G14 was observed to be highly associated with days to flowering, 

days to maturity and days to podding. Genotypes G1, G30 and G26 exhibited low associations 

with all the traits used in the study. 
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Figure 3.1 "Which is best for what" plot. PHLT = plant height GY =grain yield. DFFL = 

days to flowering, DPD= days to podding, EV= early vigour, DM= days to 

maturity, SWT= hundred seed weight 

3.3.5.2. Relationships among traits 

Figure 3.2 illustrates trait relationships. PHLT and DM had the longest vectors compared to 

the EV and SWT, which had the shortest vectors. Traits GY and PHLT, DPD and DFFL, EV 

and DM had acute angles between their vectors. The angles between these vectors indicate 

the correlation between the test traits. Angles between vectors that are less than 900 shows 

that there is a high correlation between the traits as observed among: grain yield and plant 

height, days to podding and days to flowering; days to maturity, early vigour and days to 

maturity, hundred seed weight and early vigour. Vectors for early vigour and plant height were 

at right angles indicating that they were independent of each other. The angle between grain 

yield and days to maturity and between days to podding and days to flowering was more than 

900 illustrating a negative correlation among the traits. Both the angle and length of the trait 

vectors indicate the similarity between the test traits. 
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Figure 3.2 Trait relationships among genotypes 

 

3.3.5.3. Comparison of trait profiles of two specific genotypes 

Trait profiles of two genotypes can be easily compared on the GT biplot. Two genotypes, G4 

(the highest yielding genotype) and G24 (the lowest yielding genotype) are compared in Figure 

3.3. G4, the highest yielding genotype, had a higher association with traits such as grain yield, 

plant height while for genotype G24, the lowest yielding, had a close association with days to 

podding and early vigour.  
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Figure 3.3 Genotype comparisons based on trait profiles 
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3.4. Discussion  

From the evaluation of the genotypes across the environments, the genotype by trait biplots 

illustrated visual comparisons of genotypes and relationships among the traits. The biplot 

explained 80% of the total variation. These high percentages of variation indicate accuracy 

among the measured entities (Badu-Apraku and Akinwale, 2011). G4 had the highest value 

for grain yield and G19 for plant height hence these genotypes can be used as parents if these 

traits are to be improved in other cultivars such as G21 and G1 that were observed to be poor. 

G4, G9, G27 and G19 had the highest values for both grain yield and plant height hence these 

genotypes can also be used for yield improvement and plant height can be used for indirect 

selection for yield. Across the diverse environments, genotypes (G4, G19, G19 and G22) 

which were associated with high grain yield and inherent traits could be used as parents in 

cultivar development programmes targeting stable and high yielding genotypes. 

Plant height and days to maturity had the largest effect on yield compared to the other traits 

these traits had the longest vector indicating that they have an ability to discriminate among 

the genotypes. Days to maturity had a negative effect on yield because of the obtuse angle 

between days to maturity and grain yield vectors while plant height had a positive correlation 

as illustrated by the acute angle between plant height and grain yield. Plant height and days 

to maturity were independent of each other because the angle between their vectors was 900. 

Agrama (1996) stated that the proficiency of any breeding programme relies on how large the 

association is between yield and its components. Most of the main breeding traits have 

negative correlations existing among them hence selection for a single trait is very difficult. 

The high correlations between plant height and grain yield implies that either grain yield or 

plant height can be used as a selection tool for the trait, this is in agreement with the Pearson’s 

correlation which also shows that plant height and grain yield had a highly significant positive 

correlation. This emphasizes the importance of GT identifying redundant traits. It reduces the 

cost of measuring the traits in experiments without compromising precision (Odewale et al., 

2013). The distance measured from the centre of origin of the biplot to a genotype marker, 

indicates the difference of the genotype from the averaged genotype of all traits that is 

hypothetically positioned at the centre of origin (Yan and Frégeau-Reid, 2008). Genotypes 

G14, G19, G21 and G6 had the longest vectors implying that they have large values for a 

particular trait. These may be best genotypes or not but can be used as parents for some 

traits. 

The path coefficient study revealed that plant height and early vigour had high and positive 

direct effects on grain yield and days to maturity had negative direct effect on grain yield. This 

result is consistent with Arshad et al. (2006). Days to podding had high negative indirect effects 

on yield via days to maturity. From the analysis, it is recommended that for yield improvement 
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selection can be based on plant height and number of days to maturity. This is also consistent 

with the results obtained from the GT biplot analysis. However, GT is more informative and 

interpretable due to the graphical presentation that enhances patterns among the traits. Days 

to 50% podding, days to 50% flowering and 100-seed weight had negative direct effects on 

yield via days to maturity. This implies that selection of yield based on these traits might lead 

to the loss of soybean yield.  

A study conducted at the National Agriculture Research center in Islamabad in summer by 

Anwarmalik et al. (2007) on 27 genotypes of soybean to define the correlation and path 

analysis of yield and its associated components, revealed that days to flowering, days to 

podding, and plant height had a maximum direct contribution to yield. However, this was the 

opposite of the findings in the study except for one trait; plant height, which also showed a 

direct contribution to grain yield. Hence, the traits with direct contribution in this study; plant 

height and early vigour can be utilised as a selection criteria in improving the soybean 

genotypes. 

3.5. Conclusion 

The GT biplot explained a high percentage of the total variation in the data set. It also 

described interactions among traits that gave similar results with Pearson’s correlations. PHLT 

had a positive direct effect to yield hence it can be used as a selection trait that contributes to 

yield that is, the more the values for plant height the higher the yield. It is more logical that the 

longer a plant takes to mature the more the yield, the opposite of this was observed in this 

study. G4, G9, and G19 can be recommended to be used as parents in other breeding 

programmes for yield improvement.  
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CHAPTER 4 

ASSESSMENT OF GENETIC DIVERSITY IN TROPICAL SOYBEAN 

LINES USING SINGLE NUCLEOTIDE POLYMORPHISMS 

ABSTRACT 

Genetic diversity is an important element in plant breeding and the basis for genetic 

improvement. Knowledge of how diverse the genotypes are genetically, is useful for the 

conservation, utilization and management of germplasm collections. This study was 

conducted to estimate the genetic diversity among 48 soybean lines from the International 

Institute for Tropical Agriculture (IITA). The lines were evaluated for genetic diversity using 

348 Kompetitive Allele Specific Polymerase Chain Reaction (KASP) genotyping assays based 

on competitive allele-specific PCR which enables bi-allelic scoring of single nucleotide 

polymorphism markers. The obtained bi-allelic data was analysed for diversity using GenAlex 

software version 6.5. The average gene diversity ranged from 0.42 to 0.55 with an average of 

0.47. The genetic distance ranged from 0.61 to 0.87. The polymorphic information content 

ranged from 0.44 to 0.50 with a mean of 0.48. Genotypes TGX 2002-3DM and TGX 2002-

3FM had the highest genetic distance between them indicating that they were highly diverse. 

The analysis of molecular variance indicated highly significant differences at F=0.001 with 

among individuals, among populations and within individuals contributing 45%, 28% and 26%, 

respectively, to the total variance.  The 48 soybean lines were clustered in three main groups. 

The study indicated that genetic diversity exists among the IITA tested lines. The information 

obtained from the study can be fully utilised in future soybean breeding programmes through 

crossing of diverse parents in order to introgress new alleles to develop improved cultivars. 

Key words: Single nucleotide polymorphisms, genetic diversity, soybean 
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4.1. Introduction 

Soybean (Glycine max L) is a self-pollinating crop that belongs to the Leguminosae family. It 

is believed that China is the center of origin and diversity. It was cultivated in China as early 

as the 11th century and probably domestication was done earlier before that time.  Sailors from 

the 17th century brought soybean to Europe then later it was introduced to Africa. Soybean, 

among the oil crops has gained popularity for oil and protein products and it is only second to 

groundnuts.  

Genetic diversity is an important element in plant breeding for genetic improvement. This 

concept is defined as biodiversity found within plant species that form the basis of plant 

breeding (Dong et al., 2001). Most plant breeding programmes aim at selecting genotypes 

that are superior within a diverse population hence the knowledge of genetic diversity among 

the soybean genotypes would play a vital role in selection. The genetically diverse genotypes 

can be selected as parents and are likely to give high heterotic effects and the segregating 

population would have high frequency of desirable genotypes to select from (Hipparagi et al., 

2017). 

Various methods have been implored to assess genetic variation including evaluating 

morphological traits (Oliveira and Valls, 2003), pedigree analysis (Sneller, 1994), biochemical 

analysis (Javaid et al., 2004), and DNA markers have been used recently (Feng et al., 2008). 

Morphological traits are somehow able to differentiate genotypes using conventional breeding 

methods. This, however, brings difficulties when selecting among cultivars that have the same 

parents since they are closely related, their morphological traits would probably be similar. 

Therefore, studying genetic diversity using molecular markers is the most effective way to 

distinguish these genotypes (Rodrigues et al., 2017). 

Several molecular markers have been used in soybean genetic diversity studies and they have 

proved to be effective in distinguishing cultivars (Doldi et al., 1997). Molecular markers are 

highly polymorphic and reproducible hence, they are the best technique to use in plants with 

narrow genetic variation. In addition, the advantage of molecular markers compared to 

morphological assessment, is that, they determine the extent of genetic relatedness among 

cultivars. Tan et al. (2012) stated that molecular markers offer an opportunity for direct 

selection at DNA level since these genetic markers are based on individual nucleotide 

sequence variation. Random Amplified Polymorphic DNA markers (RAPD) have been used in 

genetic diversity studies but their repeatability is low hence limiting their application. Simple 

sequence repeats (SSR) markers have also been widely used due to their large number of 

alleles per locus. However, SSR genotyping is expensive and time consuming when dealing 
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with large populations. Molecular markers used to study genetic diversity in soybean include 

SSRs (Priolli et al., 2002), RAPDs (Brown-Guedira et al., 2000), amplified fragment length 

polymorphisms (AFLPs) (Rocha et al., 2015), restriction fragment length polymorphisms 

RFLPs (Diers et al., 1992), and single nucleotide polymorphisms (SNPs) (Zhu et al., 2003). 

SNP markers have proved to be the most abundant sources of DNA polymorphisms. They are 

defined as the single DNA base differences between DNA fragments including insertions and 

deletion (Zhu et al., 2003). With these properties, they can be easily used for genetic and 

association mapping, genetic diversity studies and genome wide selection. SNP genotyping 

has been in several other studies such as cereals, cowpea and pea (Tan et al., 2012). 

However, there is not much information on SNP markers in soybean and therefore, the study 

was conducted to assess the genetic diversity of tropical soybean lines sourced from IITA 

using SNP markers. 

4.2. Materials and methods 

4.2.1. Experimental material 

Forty-six elite soybean lines along with two checks were used to generate data used in this 

analysis during the 2016/2017 growing season. The list of genotypes used and their 

agronomic characteristics are shown in Table 4.1 

  



 

 64 

Table 4.1 Genotype evaluated and their characteristics 

Genotype Genotype code Source Maturity Growth Habit 

TGX 2001-26DM G1 IITA M  I 

TGX 2001-3FM G2 IITA M  I 

 TGX 2001-19FM G3 IITA M  I 

TGX 2001-15DM G4 IITA M  I 

TGX 2002-1FM G5 IITA M  I 

TGX 2001-6DM G6 IITA M  I 

TGX 2001-4FM G7 IITA M  I 

NASOKO G8 IITA M  I 

TGX 2001-21FM G9 IITA M  I 

TGX 2001-5FM G10 IITA M  I 

TGX 2002-3DM G11 IITA M  I 

SC SERENADI G12 IITA M  I 

TIKOLORE G13 IITA M  I 

TGX 2001-7FM G14 IITA M  I 

TGX 2002-12FM G15 IITA M  I 

TGX 2002-11FM G16 IITA M  I 

TGX 2001-13FM G17 IITA M  I 

TGX 2002-3FM G18 IITA M  I 

TGX 2002-4FM G19 IITA M  I 

TGX 2001-24DM G20 IITA M  I 

TGX 2001-12FM G21 IITA M  I 

TGX 2002-10FM G22 IITA M  I 

TGX 2001-27DM G23 IITA M  I 

TGX 2001-14DM G24 IITA M  I 

TGX 2001-14FM G25 IITA M  I 

TGX 2001-1FM G26 IITA M  I 

TGX 2001-16FM G27 IITA M  I 

TGX 2001-21DM G28 IITA M  I 

TGX 2002-9FM G29 IITA M  I 

TGX 2002-6DM G30 IITA E D 

TGX 2014-24FM G31 IITA E D 

TGX 2014-32FM G32 IITA E D 

TGX 2001-11DM G33 IITA E D 

TGX 2014-33FM G34 IITA E D 

TGX 2002-14DM G35 IITA E D 

TGX 1991-22F G36 IITA E D 

TGX 2014-5GM G37 IITA E D 

TGX 2014-42FM G38 IITA E D 

TGX 2014-28FM G39 IITA E D 

TGX 2014-4FM G40 IITA E D 

TGX 2001-16DM G41 IITA E D 

TGX 2014-31FM G42 IITA E D 

TGX 2002-22DM G43 IITA E D 
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Genotype Genotype code Source Maturity Growth Habit 

TGTX 1989-60F G44 IITA E D 

TGX 2001-18DM G45 IITA E D 

TGX 2001-10DM G46 IITA E D 

TGX 2001-26FM G47 IITA E D 

TGX 2014-15FM G48 IITA E D 

M= medium, E= early, I= Indeterminate, D= Determinate 

4.2.2. Greenhouse nursery  

The 48 soybean lines were planted in a greenhouse at Chitedze (IITA-Malawi) in polythene 

tubes. Three seeds per genotype were planted per tube and replicated two times. Peat was 

used as the growth media. 

4.2.3. DNA sampling and isolation 

At four weeks after planting, eight leaf discs were harvested from three plants per polythene 

tube. These were used for the DNA extraction.  Sampling kit was obtained from LGC 

Genomics Laboratory, United Kingdom and it included a 96-well plate, cutting mat and leaf-

cutting tool. Leaf samples from the same genotype were placed in a specific well position of 

the plate, each strip was sealed using perforated trip cap. The desiccant sachet was placed 

directly on top of the strip cap-sealed tubes and the plastic lid was replaced on top. The storage 

rack was secured by using an elastic band and was placed inside a sealable plastic bag. The 

sealed bag was placed into the plant kit box and the samples were shipped to LGC Genomics 

Laboratory for genotyping in the United Kingdom. 

4.2.4. SNP selection and amplification 

In compliance with the protocol supplied by LGC Genomics Laboratory, Kompetitive Allele 

Specific Polymerase Chain Reaction (KASP) genotyping assays were used. These were 

based on competitive allele-specific PCR and enable bi-allelic scoring of single nucleotide 

polymorphisms (SNPs) and insertion and deletions (Indels) at specific loci.  

The SNP-specific KASP Assay mix and the universal KASP Master Mix (supplied at 2X 

concentration) were used. KASP Master Mix contains Taq polymerase enzyme and passive 

reference dye, 5-carboxy-X-rhodamine, succinimidyl ester (ROX) and MgCl2 in an optimized 

buffer solution. The two mix were added to DNA samples then a thermal cycling was 

performed, followed by an end-point fluorescent read. Allele-specific primers each harbouring 

a unique tall sequence that correspond with a universal fluorescence resonant energy transfer 

(FRET) cassette; one labelled with FAMTM dye and the other with HEXTM dye were used. 

During thermal cycling, the relevant allele-specific primer would bind to the template and 
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elongate, thus attaching the tail sequence to the newly synthesized strand. The complement 

of the allele-specific tail sequence was then generated during subsequent rounds of PCR, 

enabling the FRET cassette to bind to the DNA. Bi-allelic discrimination was achieved through 

the competitive binding of the two allele-specific forward primers. If the genotype was 

heterozygous, a mixed fluorescent was generated. If the genotype at a given SNP was 

homozygous, only one of the two possible fluorescent signal was generated (Figure 4.1). For 

the current study, 348 SNP markers were used. 

 

Figure 4.1 KASP procedure (Protocol supplied by LGC Genomics Laboratory, UK) 
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4.2.5. Data Analysis 

The genotypic data were analysed using GenAlex software version 6.5 to obtain information 

of genetic diversity within and among populations. Genetic diversity parameters, such as 

number of alleles per locus (Na), number of effective alleles per locus (Ne), observed (Ho) and 

expected (He) heterozygosity, and Shannon's Information Index (I) were calculated using 

GenAlex version 6.5 Peakall and Smouse (2006) according to the protocol described by Nei 

and Li (1979). The number of polymorphic loci was estimated for each predetermined group 

based on the inferred population using Structure (Pritchard et al., 2000). Further, an indirect 

estimate of the level of gene flow (Nm) was calculated using the formula: Nm = 0.25 (1 – 

FST/FST) using GenAlex. The F-statistics such as genetic differentiation (FST), fixation index 

or inbreeding coefficient (FIS), and overall fixation index (FIT) were calculated according to 

Wright's original derivation (Wright, 1978). Polymorphic information content (PIC) was 

calculated using the formula: PIC =1 - ΣPij
2, where Pij is the frequency of jth allele of the ith 

locus. Nei’s unbiased genetic distance was also estimated to determine the degree of 

population differentiation among the study material. Nei’s unbiased genetic distance and 

identity were estimated according to Nei and Li (1979) using GenAlex. 

The genotypic data were used to obtain a dissimilarity matrix using the Jaccard index. The 

matrix was used to run a cluster analysis. Cluster analysis was done based on neighbour-

joining algorithm using the un-weighted pair group method using arithmetic average (UPGMA) 

in DARwin 5.0 software (Perrier and Jacquemoud-Collet, 2006). A dendrogram was then 

generated on the dissimilarity matrix. To investigate the genetic relationships among 

accessions, genetic distances between all pairs of individual accessions were estimated to 

draw a dendrogram. Bootstrap analysis was performed for node construction using 10,000 

bootstrap values.   

The Bayesian genotypic clustering approach of STRUCTURE 2.3.4 (Pritchard et al., 2000) 

was used to determine the population structure existed with the genotypes. An admixture 

model with independent allele frequencies, without prior population information, was used to 

simulate the population. Each individual was grouped in a given cluster using ‘membership 

coefficient’ for each cluster interpreted as a probability of membership. To assign individual 

genotypes to a given population and for optimal alignment of genotypes, 10 replicates 

structure analysis were conducted. The computer programme CLUMPP (Jakobsson and 

Rosenberg, 2007) was used to determine the genotype membership. The structure analysis 

result was visualized by the online genetic software STRUCTURE HARVESTER (Earl, 2012).  
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The number of genotypes that represented the populations were unbalanced; allelic richness 

was corrected for sample size differences and estimated by using the rarefaction method 

implemented in HP-Rare 1.0 (Kalinowski, 2005). 

4.3. Results  

From the data analysis, it showed that from the 348 SNP markers, 199 markers were observed 

to be polymorphic. The PIC ranged from 0.41 to 0.5 with an average of 0.48 (Table 4.2). 

Approximately more than 85% of the markers used had high PIC values of more than 0.42, 

which implies that they have a high ability to distinguish the variation in the genotypes using 

the SNP markers. The 48 genotypes used in the study were divided in to four populations as 

shown in Table 4.3. Population 3 had the highest number of genotypes of 17 followed by 

population 1 with 15 genotypes and populations 2 and 4 comprised of 9 and 7 genotypes 

respectively.  
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Table 4.2 Genetic diversity within and among 48 soybean genotypes based on 348 

SNPs markers  

Chromosome  

SNP 

marker 

used  

Polymorphic 

SNPs Ne Ho He FIS PIC 

1 6 3 1.88 0.15 0.47 0.69 0.466 

2 10 8 1.96 0.19 0.49 0.61 0.489 

3 31 19 1.91 0.12 0.47 0.75 0.475 

4 20 10 1.96 0.21 0.49 0.58 0.485 

5 17 12 1.84 0.14 0.45 0.69 0.447 

6 39 21 2.06 0.13 0.51 0.75 0.500 

7 19 10 2.04 0.15 0.50 0.68 0.498 

8 16 5 1.82 0.20 0.45 0.54 0.443 

9 12 10 2.10 0.21 0.53 0.60 0.500 

10 17 15 2.02 0.09 0.50 0.81 0.499 

11 14 5 2.08 0.13 0.52 0.75 0.500 

12 31 17 2.01 0.14 0.50 0.71 0.498 

13 7 6 2.12 0.11 0.53 0.78 0.500 

14 20 8 1.99 0.18 0.50 0.64 0.492 

15 13 7 1.96 0.15 0.49 0.68 0.484 

16 10 4 1.85 0.06 0.42 0.89 0.412 

17 3 3 2.21 0.13 0.55 0.77 0.500 

18 27 19 2.01 0.14 0.50 0.71 0.494 

19 12 6 1.82 0.10 0.45 0.77 0.445 

20 24 11 1.90 0.13 0.48 0.72 0.470 

Overall mean 348 199 1.68 0.12 0.37 0.65 0.480 

SE     0.02 0.01 0.01 0.02 0.005 

Ne= number of effective alleles per locus; Ho= observed gene diversity within genotypes; He= 

average gene diversity within genotypes; FIS= inbreeding coefficient; PIC= polymorphic 

information content; SE= standard deviation  
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Table 4.3 Population membership inferred by Structure 

Population 1 Population 2 Population 3 Population 4  

TGx 2001-6DM TGx 2002-1FM TGx 2001-26DM TGx 2001-4FM 

TGx 2002-12FM Tikolore TGx 2001-3FM NASOKO 

TGx 2002-11FM TGx 2001-13FM TGx 2001-19FM TGX 1991-22F 

TGx 2002-3FM TGx 2001-24DM TGx 2001-15DM TGX 2001-16DM 

TGx 2002-4FM TGx 2001-14DM TGx 2001-21FM TGX 2014-31FM 

TGx 2001-12FM TGx 2001-16FM TGx 2001-5FM TGTX 1989-60F 

TGx 2001-14FM TGx 2001-21DM TGx 2002-3DM TGX 2001-18DM 

TGX 2014-24FM TGx 2002-6DM SC SERENADI   

TGX 2014-32FM TGX 2014-42FM TGx 2001-7FM   

TGX 2001-11DM   TGx 2002-10FM   

TGX 2014-33FM   TGx 2001-27DM   

TGX 2014-5GM   TGx 2001-1FM   

TGX 2014-28FM   TGx 2002-9FM   

TGX 2002-22DM   TGX 2002-14DM   

TGX 2001-10DM   TGX 2014-4FM   

    TGX 2001-26FM   

    TGX 2014-15FM   

 

From the diversity data, the values ranged from 0.06 to 0.21 with an average of 0.12. 

Approximately 60% of the markers had values greater than 0.12. The highest number of the 

effective alleles per locus was 1.85 in population 4 and the lowest value observed was 1.56 in 

population 1 with an average of 1.69 (Table 4.4).  The highest inbreeding coefficient of 0.69 

was revealed in population 4 while the lowest of 0.33 was observed in population 2 with a 

mean of 0.56. The highest average gene diversity within genotypes per population was 0.43 

from population 4 while the lowest observed value of 0.33 from population 1.  
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Table 4.4 Genetic diversity within and among 48 soybean genotypes classified into four 

population based on structure analysis 

Pop N Na Ne I Ho He FIS Pa 

Population 1 14 2.30 1.56 0.52 0.09 0.33 0.67 12 

Population 2 9 2.26 1.67 0.59 0.24 0.40 0.33 9 

Population 3 17 2.25 1.68 0.57 0.15 0.37 0.56 13 

Population 4 8 2.33 1.85 0.65 0.10 0.43 0.69 24 

Overall mean 12 2.29 1.69 0.58 0.15 0.38 0.56 - 

SE 0.13 0.02 0.02 0.01 0.01 0.01 0.01 - 

N= number of genotypes within population; Na= number of alleles per locus Ne= number of effective 

alleles per locus; Ho= observed gene diversity within genotypes; He= average gene diversity within 

genotypes; FIS= inbreeding coefficient; Pa= number of private alleles; SE= standard deviation  

 

Table 4.5 showed that there was a significant genetic distance between the genotypes among 

the populations. The highest genetic distance was observed between populations 1 and 3 with 

a value of 0.48. The lowest recorded value was 0.14 that was between populations 2 and 3. 

The generated dendrogram (Figure 4.2) shows the genetic relationships among the 

genotypes. It also illustrated that the markers used in the study were effective in distinguishing 

the genotypes into three different clusters as indicated using three different colours: black, red 

and blue in the figure. 

The analysis of molecular variance showed that, among populations contributed 28% of the 

total variation. The variation among individuals of the total population was 45% indicating high 

differentiation among them and the variation accounted within individuals was 23% (Table 

4.6).  

Table 4.5 Pair-wise estimates of genetic differentiation (FST) (above diagonal off 

brackets), gene flow (Nm) (above diagonal within brackets); genetic distance GD (lower 

diagonal off brackets) and genetic identity (GI) (lower diagonal within brackets) 

  Population 1 Population 2 Population 3 Population 4 

Population 1   0.19 (1.07) 0.26 (0.70) 0.15 (1.43) 

Population 2 0.30 (0.74)   0.11 (2.14) 0.18 (1.17) 

Population 3 0.48 (0.61) 0.14 (0.87)   0.16 (1.30) 

Population 4 0.23 (0.80) 0.30 (0.74) 0.25 (0.78)   
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Figure 4.2 Dendrogram showing genetic relationship among 48 soybean genotypes tested using 

348 SNP markers. The different colours indicate the clustering patterns among the genotypes 
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Table 4.6 Analysis of molecular variance (AMOVA) among 48 soybean genotypes classified 

based on Structure analysis 

Source df SS MS Est. Var. Per. Var. F-Statistics  

Among populations 3 1234.57 411.52 15.02 28% FST = 0.001 

Among individuals 44 2739.87 62.27 24.10 45% FIS = 0.001 

Within individuals 48 675.50 14.07 14.07 26% FIT = 0.001 

Total 95 4649.94   53.19 100%   

DF= degree of freedom, SS= sum of squares, MS= mean sum of squares, Est. var. = 

estimated variance, Per. Var. = percentage variation 

4.4. Discussion 

Using the 348 SNP markers, the 48 soybean accessions where clustered into three main 

genetic groups. This entails that the markers were effective in discriminating the soybean lines. 

This clustering based on genetic similarity from this study would help in selection of genetically 

diverse genotypes to be used as parents for superior recombinants in soybean breeding 

programmes. 

The average gene diversity ranged from 0.42 to 0.55 and the polymorphic information content 

ranged from 0.44 to 0.5. From the previous genetic diversity studies, according to Mulato et 

al. (2010) a high PIC value of 0.92 indicates that there is great diversity between the 

accessions. Thus, the primers used were highly informative compared to the ones observed 

in this study. This might be due to the use of rare SNPs that are not present in our accessions. 

Botstein et al. (1980) indicated a scale of mean PIC value >0.5 is highly informative, 0.25-0.50 

reasonably informative and <0.25 is slightly informative, hence the set of SNPs used in this 

study were reasonably informative and reliable. 

A difference between the total number of alleles and the number of effective alleles for all the 

chromosomes among populations was observed. The total number of alleles was higher than 

the number of effective alleles. This was observed because the frequency of the alleles at a 

single locus were distributed differently among genotypes. The highest genetic distance was 

observed between population 2 and 3 with a value of 0.87 indicating that genotypes from these 

populations belong to different genetic clusters. The gene flow observed in population 3 and 

1 with a value of 0.70 was the lowest compared to the other estimates. This value is less than 

1 hence it has the potential to significantly reduce the loss of genetic diversity by preventing 
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the effect of genetic drift (Aguilar et al., 2008). Genotypes observed with high genetic distance 

can be used as potential parents in developing superior cultivars as they are expected to have 

greater genetic variations (Li et al., 2008). Generally, among soybean genotypes exists low 

genetic diversity, which is said to be because of gene flow as a result of seed exchange 

between farmers. 

The analysis of molecular variance (AMOVA) indicated highly significant differences from all 

sources of variation, and this implies that there were significant genetic differences among the 

genotypes subjected to this analysis. The variance among populations was significant and 

contributed 28% of the total variation, while the variance among individuals was significantly 

high contributing 45% of the total variation. The variance within individuals was significant and 

contributed 26% of the total variation. 

4.5. Conclusion  

Results of the genetic diversity analysis indicate that 199 polymorphic SNPs out of the 348 

SNP markers that were used genetically distinguished the genotypes. The set of SNP markers 

used have the ability to accurately estimate genetic diversity among soybean genotypes used. 

This study revealed wide genetic diversity among soybean genotypes; therefore, a breeding 

programme can be initiated between genotypes from different clusters to exploit available 

genetic diversity.  
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CHAPTER 5 

OVERVIEW OF THE STUDY 

5.1 Introduction 

Soybean is an important legume crop that is only ranked second to groundnuts as a reliable 

source of oil and protein. This crop is widely grown in different parts of southern Africa 

exhibiting different climatic conditions. Currently the main challenge of soybean crop is to 

develop improved varieties that will uniformly perform better than the available cultivars across 

their growing areas. Yield instability and lack of knowledge of genetic diversity are some of 

the factors contributing to the current low productivity. The objectives of the study were: 1) to 

determine yield stability and adaptability for elite soybean lines across six locations, 2) to 

understand genotype by trait associations of multiple trait relationships for the soybean elite 

lines across six locations and 3) to assess the level of genetic diversity among the elite 

soybean lines using molecular markers 

5.2 Summary of results 

5.2.1 Yield adaptation and stability analysis of tropical soybean 

 Twenty-six elite soybean lines along with four checks were used to generate data used 

in this analysis during the 2016/2017 growing season in three countries and six 

locations. The data was subjected to AMMI and GGE biplot analysis.  

 Soybean yield was significantly affected by genotype, environment and genotype by 

environment as revealed through the AMMI analysis.  

 GGE biplot analysis using the “which won where” pattern identified genotypes with 

specific adaptation such as TGX 2002-4FM to environment E5.  

 Genotypes TGX 2001-3FM and TGX 2001-16FM had general adaptation and high 

yield.  

 TGX 2001-3FM was identified as an ideal genotype with high yield and highly stable 

hence it can be recommended for cultivar release in the tested environments.   

 Environments E1 (Nampula) and E6 (Chitedze) were both in the same sector of the 

polygon view, hence one environment can be used for selection of the other 

environment to reduce the cost of the breeding trials.  

 TGX 2001-15DM and TGX 2002-4FM had low yield mean performance but stable 

hence they can be further improved by using them as parents in another breeding 

pipeline by crossing to high yielding genotypes. 
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5.2.2 Correlation, path coefficient and genotype by trait association analysis among 

elite soybean lines across environments 

 The GT biplot results, explained a high percentage of 80% of the total variation.  

 Plant height had a positive direct effect on grain yield hence it can be used as a 

selection trait that contributes to yield that is, the more the values for plant height the 

higher the yield.  

 TGX 2001-3FM, TGX 2002-3DM, and TGX 2002-6DM can be recommended to be 

used as parents in other breeding programmes for yield improvement.  

 The positive relationship observed between grain yield and plant height; days to 

flowering and early vigour via days to maturity indicate the possibility of simultaneous 

improvement of the traits through selection. 

5.2.3 Genetic diversity analysis of soybean 

 The genetic diversity data was obtained using SNP markers from 48 soybean lines.  

 The average gene diversity and genetic distance ranged from 0.42 to 0.55 with an 

average of 0.47 and 0.61 to 0.87 respectively.  

 The polymorphic information content ranged from 0.44 to 0.5 with a mean of 0.48.  

 Genotypes TGX 2002-3DM and TGX 2002-3FM had the highest genetic distance 

between them indicating that they were highly diverse.  

 The AMOVA indicated highly significant differences at F=0.001 with among individuals, 

among populations and within individuals contributing 45%, 28% and 26% 

respectively.   

 The 48 soybean lines were clustered in three main groups. 

 From 348 SNP markers used 199 polymorphic SNPs genetically distinguished the 

genotypes. Therefore, the set of SNP markers used have the ability to accurately 

estimate genetic diversity among soybean genotypes used.  

 The study revealed wide genetic diversity among soybean genotypes, therefore, 

creating an opportunity for parent selection that can be used for soybean improvement 

and increase productivity. 

5.3 General recommendations based on the findings 

The following breeding implications and recommendations realized from the study were as 

follows; 

High yielding genotypes with general and specific adaptation were identified, informative 

environments and those with similar responses and were identified in the study. This entails 

that in the soybean breeding programme, when conducting multi location trials, the 
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environments with the same response; one can be dropped to reduce the cost attached to 

carrying out the trials. The informative environments can be used as selection sites for 

genotypes prior from release in preliminary variety selection trials. 

When selecting genotypes, both the grain yield and agronomic traits are very important hence 

the genotypes associated with high grain yield and their associated traits would be preferable 

to be used as female parents when making crosses. However, further studies can be 

performed on these lines to assess if these desirable traits can be passed on to the next 

generation. 

Genotypes that were observed with wide genetic diversity can be used in a breeding 

programme for crop improvement and develop cultivars that have high grain and improved 

nutritional attributes. The polymorphic SNP markers can be recommended for use in different 

soybean diversity studies and breeding programmes. The genotypes observed with a high 

genetic distance can be commended and selected as parents for crosses in order to come up 

with superior cultivars 

 


