
Genetic diversity of sorghum (Sorghum bicolor L. Moench) 

germplasm and hybrid potential under contrasting 

environments in Mozambique 

 

By 

Eduardo Pinto Mulima 

MSc. Plant Breeding (Moi University, Kenya) 

BSc. Agronomic Science (Eduardo Mondlane University, Mozambique) 

 

 

 

 

A thesis submitted in fulfilment of the requirements for the degree 

of Doctor of Philosophy (PhD) in Plant Breeding 

 

 

 

African Centre for Crop Improvement (ACCI) 

School of Agricultural, Earth and Environment Sciences 

University of KwaZulu-Natal 

Pietermaritzburg 

Republic of South Africa  

 

 

December 2017



ii 

 

Abstract  

Sorghum is the second most important grain cereal after maize in most African countries, 

including Mozambique. However, despite the increase in production in Sub-Saharan region, 

productivity is still very low averaging 0.4 t.ha-1 compared to a potential yield of 3.0 t.ha-1. The 

use of improved cultivars such as hybrids selected by farmers could double current yields. 

The objectives of this study were to: i) assess farmers’ preferences and needs in sorghum 

varieties through participatory rural appraisal and participatory variety selection, ii) determine 

diversity of the important morphological traits of Mozambican germplasm using multivariate 

analysis; iii) study the genotype by environment (G x E) interactions during development of 

improved varieties and iv) construct a selection index that can be used to select for multiple 

traits in hybrid development. The results of participatory rural appraisal showed that attributes 

preferred by farmers were high grain yield, good food quality and suitability of the harvested 

grain for various uses. Besides yield, farmers identified additional important traits such as 

earliness, grain size, and grain colour. Drought tolerance and head size were mentioned as 

key traits used to compare new varieties to the local varieties. Involving farmers in the 

evaluation of the hybrids and during selection revealed the importance of not focusing on yield 

only during the development of a new variety.  

The available germplasm in Mozambique exhibited genetic diversity as they were grouped 

into four clusters. The Shannon Diversity index (H’) distinguished days to 50% flowering, 

thousand seed weight, seed size, leaf colour, inflorescence compactness, head shape and 

presence of awns as the traits with high genetic diversity. It implies that these characters can 

be utilized in the breeding process in selecting parents for use in sorghum improvement. 

Moreover, results from genotype x environment showed a highly significant (P<0.001) hybrids 

main effects and hybrid x environment interactions for grain yield indicating differences 

between hybrids and variation of the environments. The genotype and genotype-environment 

interaction (GGE biplot) analyses identified genotypes with wide adaptation as well as 

genotypes with specific adaptation. Hybrids with wide adaptation and high yield were: GS11 

(SPL 38A x SDS 6013R), GS18 (TX 628A x IS14257R) and GS36 (TX631A x MZ 37R) and, 

those with specific adaptation were GS 5 (8610A x MZ 2R), GS 25 (ICSA 12A x MZ 2R), GS 

22 (ICSA 21A x MZ 2R), GS 1 (LARSVYT 46A x MZ 2R), GS 24 (ICSA 21A x MZ 37R), GS 

30 (CK 60A x IS 14257R) and GS 2 (LARSVYT 46A x IS 14257R). 

All testers had significant GCA effects on grain yield, days to 50% flowering and plant height. 

Testers IS 14257R and MZ 37R showed positive GCA values for grain yield while some 

hybrids and the two parents had positive SCA values. Lines LARSVYT 46A, SPL 38A and TX 
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631A also had positive GCA effects for grain yield. Highly significant negative GCA effects for 

days to 50% flowering were observed for lines 8601A, ICSA 12A, TX 631A and LARSVYT 

46A. For plant height, line TX 631A, ICSA 12A, ICSA 21A and TX 628A were significant 

negative while panicle length showed positive significant GCA effect for the lines LARSVYT 

46A, SPL 38A and TX 631A. Hybrids ICSA 12A x MZ 2R, ICSA 12A x SDS 6013R and TX 

631A x SDS 6013R were resistant to rust, while moderate resistance was detected in 

LARSVYT 46A x IS 14257R, LARSVYT 46A x SDS 6013R and 8601A x MZ 37R. Overall, 

most of the hybrids were classified as resistant to moderately resistant to Cercospora spp, 

whereas all the hybrids were classified as resistant to anthracnose. The parents involved in 

the crosses could be used as sources of resistance in future studies. Among the lines, TX 

631A, ICSA 12A and SPL 38A performed well for most of the characters compared to mid-

parent heterosis. 

Analysis of variance for on-farm trials identified hybrid TX 631A x MZ 37R as high yielding with 

short plants. The tallest plants on-station were detected for hybrid SPL 38A x SDS 6013R. In 

contrast, the local variety had the tallest plants in on-farm trials and was late in flowering. 

Hybrid SLP 38A x MZ 2R was also late in flowering. The mean grain yield for the local variety 

was 1.0 t.ha-1 and the highest yielding hybrid had 3.0 t.ha-1. These results showed the grain 

yield potential of the hybrids over the local variety, ranging from 150% to 200% above the local 

variety yield. In addition to yield, farmers identified additional important traits that included 

earliness, large grain size, and white grain colour. Drought tolerance and head size were used 

as benchmark traits for comparing new varieties to the local variety. 

Results from selection indices showed that the highest grain yielding genotypes were not 

associated with high index scores. For Smith-Hazel selection index, the genotype CK 60A x 

MZ 37R had the highest score followed by TX 631A x MZ 37R, CK 60A x MZ 2R, SPL 38A x 

MZ 37R and TX 628A x MZ 37R. For the desired gain index, the top five genotypes were ICSA 

19A x MZ 37R, 8601A x SDS 6013R, SPL 38A x SDS 6013R, CK 60A x MZ2R and TX 628A 

x IS 14257R. The only genotype that appeared in the top five scores using the two indices 

was CK 60A x MZ 2R. The selection index proposed by Smith-Hazel was the most efficient in 

simultaneously selecting hybrids for grain yield and other yield attributes. Overall, the results 

of this study revealed that involving farmers in the evaluation of hybrids and during selection 

is important as the farmers choose hybrids not only for yield. Having hybrids with farmers’ 

preference can speed up the adoption of new varieties. Additionally, selection of multiple traits 

simultaneously using an index score results in a realistic response to selection for all the traits 

that are being combined. This can speed up breeding for the traits instead of focusing on one 

trait at a time. 
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CHAPTER I: INTRODUCTION 

1.1. Background 

Agriculture sector is one of the largest contributors to the economy and livelihoods of the 

majority of people in Africa. In Mozambique, agriculture plays a vital role in the development 

of the country and is one of the pillars for economic growth. According to USAID (2017), 

agriculture remains the backbone of Mozambique’s economy, employing more than 80% of 

its labour force and contributing more than a quarter of its GDP. Nearly 90% of the domestic 

foods are produced by families or smallholder farmers. The existing vast potential for crop 

production makes the country suitable for farming and for improved agricultural productivity. 

Unfortunately, farmers are still using unimproved varieties that are low yielding and susceptible 

to adverse effects of climate changes. The farmers grow cassava and maize as the main crops 

while sorghum, millet, rice and beans are among the food security crops in the country. Among 

these crops, sorghum responds best to a wide range of environments (Machado and Paulsen, 

2001).  

Sorghum is a very important cereal in the semi-arid areas of the tropics and sub-tropics in sub-

Saharan Africa. It is a main cereal grain in Mozambique after maize with a total area under 

cultivation of 2.9 million hectares (FAOSTATS, 2014). Moreover, the majority of agricultural 

production depends on rainfall thus is severely affected by weather variability. Although, 

sorghum production falls under different agro-ecological zones of the north and central regions 

where annual rainfall is between 500-700 mm, the crop still grows well in areas with good 

rainfall (Olembo et al., 2010). This crop is adapted to widely differing climatic and soil 

conditions, it tolerates drought and high-temperature stress better than many crops, remaining 

inactive during dry periods (Gnansounou et al., 2005; Olembo et al., 2010). Although drought 

has been affecting crop production, sorghum performed better during such conditions, an 

indication of its ability to withstand drought in semi-arid regions of Africa (Machado and 

Paulsen, 2001), particularly central and north Mozambique. 

It was reported that the use of low grain yielding varieties has not changed substantially over 

the past five years in Mozambique with the average yield ranging from 0.4 t.ha-1 to 0.6 t.ha-1 

(Tsusaka et al., 2015). This has been due to a number of factors including the fact that, 

agriculture in the sorghum producing areas, namely  the central regions of Nampula, Sofala 

and Manica, has remained basically under rain-fed and zero-input systems (WorldBank, 2004; 

Goodbody et al., 2010). Low productivity in sorghum has also been linked to a lack of modern 

farming technologies, therefore, a combination of classic and modern plant breeding methods 

is desired to develop farmer-preferred cultivars with high grain yield potential relative to current 
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commercial and local cultivars. The local cultivars are usually adapted to multiple biotic and 

abiotic constraints, but the grain yield is usually low and thus requires improvement. In view 

of the aforesaid, improved cultural practices such as crop rotation, timeous weeding, bird 

control and the inclusion of improved cultivars, especially the use of hybrids by the farmers, 

could double the current yields (WorldBank, 2004; FAO, 2013).  

In many areas where sorghum is produced, farmers continue to use their local varieties with 

low yield potential (Tsusaka et al., 2015). Therefore, there is a need to increase productivity 

of this crop through development of high yielding varieties with resistance to pests and 

diseases. The use of available local resources (germplasm and agronomic practices) to 

improve productivity based on management practices and development of new varieties 

requires knowledge of genetic variability. Knowledge of genetic variability within cultivars has 

a strong impact on plant breeding strategies and on genetic conservation (Simioniuc et al., 

2002). Conventionally, plant breeding and testing used to focus more on yield improvement, 

nutrition and disease resistance but less on plant adaptation to natural environmental 

constraints. The crop environment adaptation can be influenced by altitude, rainfall, 

temperature and growing period (Ayana and Bekele, 2000) as well as poor field management 

and use of non-improved seed. The variation in these factors affects sorghum agronomic 

characters. These characters include plant height, days to flowering, peduncle exsertion, 

panicle length and width, number and length of primary branches per panicle as well as 

thousand seed weight. Consequently, recommendation of varieties must be according to agro-

ecological zones and farmers’ preferences. 

Farmers tend to rely on crops such as sorghum and pearl millet when faced with unfavorable 

climatic conditions (Tsusaka et al., 2015). Nonetheless, there is still a remarkably low sorghum 

production as well as consumption among some Mozambican communities. In addition, 

sorghum productivity and market supply have declined in recent years due to unfavorable 

climatic conditions, low yields and damage by field pests (Benfica et al., 2014). This suggests 

that households can be motivated by improving market  access, offering high prices for the 

product, which can help the farmers to invest in improved agricultural technologies and put 

more effort in increasing agricultural productivity (Benfica et al., 2014). In addition, increased 

productivity and processed sorghum products can create high amounts of marketable surplus, 

such that, with market access, this can result in increased market participation leading to 

potential improvements in overall household welfare. 

Moreover, there is a need to determine the causes of low adoption and release of improved 

varieties in the country.  This could be achieved through clearly identifying what farmers prefer 

in a cultivar through researcher-farmer interaction and collaboration (Witcombe et al., 1996).  
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This method involves encouraging farmers to participate in experiments using their own fields 

where they can learn, adopt and spread new technologies to other farmers (Leeuwis, 2013). 

Participatory approaches should be adopted on selection criteria of traits that are important to 

the farmers so that they can easily accept and adopt the new cultivars. This depends on 

farmers’ needs and it varies from location to location. Participatory plant breeding (PPB) is a 

breeding method that brings farmers and researchers together and enables them to select 

crop varieties suitable to their specific environmental conditions. The use of PPB approach 

could have various incentives, including understanding of farmers’ criteria, improved 

biodiversity, empowering farmers, facilitating farmers learning, increasing productivity, and 

speeding the process to release and adoption of varieties (Sperling et al., 2001). Involvement 

of farmers in breeding programmes increases efficiency because breeders are better able to 

orient their breeding strategies to the needs of farmers. This process moves from participatory 

plant breeding to participatory variety selection (PVS). 

Many studies have outlined the advantages of participatory variety selection (PVS) on 

adoption of new varieties and increased productivity (Bänziger and Cooper, 2001; Witcombe 

et al., 2005; Trouche et al., 2012). Participatory breeding has been proposed as an active 

approach for developing varieties combining productivity gains, adaptability to a particular 

system and quality traits for subsistence agriculture in marginal environments (Trouche et al., 

2011). Consequently, farmers should identify environments to assess new germplasm and 

take into consideration the various quantitative and qualitative traits important to their own 

environment (Morris and Bellon, 2004; Trouche et al., 2011). Trouche et al. (2012) concluded 

that on-farm selection has many limitations depending on seed generation evaluated but the 

trial produces more stable genotypes having a combination of earliness, plant height, grain 

size and yield closer to that expected by farmers. Understanding farmers’ preferences and 

acceptability of a new variety are essential parameters for its adoption and use (Horn et al., 

2015; Olubunmi, 2015). Therefore, for the plant breeder it is essential to study the genotype-

environment interaction effects on grain yield during the development of the new improved 

varieties. 

Mohammadi and Amri (2008) reported that the identification of superior genotypes is 

complicated by genotype x environment interaction. Several statistical methods facilitate the 

interpretation of the genotype x environment interactions and are used to explain adequately 

the genotype performance across environments. These procedures are based on analysis of 

variance, multivariate analysis, linear regression, non-linear analysis and biplot analysis. The 

commonly used approaches for analysis of genotype by environment interaction (GEI) are 

additive main effects and multiplicative interaction (AMMI) and genotype and genotype-
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environment interactions (GGE biplot) analysis (Duarte and Vencovsky, 1999; Yan et al., 

2000). The advantage of GGE biplot analysis over AMMI analysis lies in the fact that biplots 

explain an intermediate fraction of sum of squares of genotypes + genotypes by environments 

(G + GE), making the graphical illustration more accurate and more practical (Yan et al., 2007). 

Sibiya (2009) compared the two methods and found AMMI and GGE biplot analysis to depict 

similar results for maize hybrid selection. On the other hand, Balestre et al. (2009) found GGE2 

biplot better than AMMI1 and graphical accuracy was higher in representing the proportion of 

G + GE. In addition, Ma et al. (2004) suggested that GGE biplot stands for genotype main 

effects plus GEI and it was confirmed by Yan et al. (2007) that GGE biplot had many visual 

interpretations than AMMI, including the visualization of crossover GEI. Therefore, GGE biplot 

was used to analyze and interpret the genotype performance across several environments in 

Mozambique. 

The choice of an appropriate selection method for plant breeding may favour identification of 

superior genotypes during the development of new cultivars and saves time and costs (Kurek 

et al., 2001). Identification of superior genotypes requires selection methods that can exploit 

efficiently the available genetic material, maximizing the genetic gain in relation to the 

characteristics of interest (Vivas et al., 2012). Therefore, a selection index that results from a 

combination of certain traits, which pursue simultaneous selection, allows identification of 

superior genotypes. 

Selection of several traits at the same time is mostly facilitated by the establishment of a 

selection index that uses the optimal combination of multiple traits (Shook, 2006; Cruz, 2013). 

The use of the selection index allows identification of superior genotypes established by the 

optimal linear combination of various traits (Vittorazzi et al., 2017). Selecting of traits 

simultaneously using an index provides useful information and realistic response to selection 

for all the traits that are being combined by giving a total genetic value to the individual line 

(Bänziger and Lafitte, 1997). Initially, Smith (1936) and Hazel (1943) reported the use of 

selection index in plants and animals, respectively, and then later other indices were proposed 

by Williams (1962), Pešek and Baker (1969) and Mulamba and Mock (1978).  

The Smith-Hazel index has been shown to give maximum genetic advance (Strefeler and 

Wehner, 1986). However, the index is not as simple as other indices as it requires estimation 

of genetic variances and covariances and an assignment of economic weights for each trait 

(Strefeler and Wehner, 1986; Eshghi et al., 2011). On the other hand, in the case of the desired 

gain proposed by Pesek and Baker (1969) they specify the desired gain value rather than 

economic weights.  Hence, it maximizes the expected response in proportion to the gain 

specified by the breeder.   



5 

 

Moreover, the correlation between traits is also an alternative method for selection of 

genotypes. The weak correlation between traits of interests makes selection more complicated 

because sometimes it is difficult to associate the best genotypes for one trait with the best 

genotype for another trait. This was explained by Lande and Arnold (1983) who mentioned 

that selection of a specific trait produces not only direct effect of that trait but also include 

indirect effects on correlated traits or characters. Therefore, selection cannot be done for a 

single character without giving importance to another character that is correlated to it.  

 

1.2. Problem statement and justification 

The variation in temperatures in Mozambique in the last few years has affected maize 

production resulting in reduced yield, reduction in time to maturity and grain filling duration 

(Harrison et al., 2011). This has opened a vista of opportunities for the production of neglected 

crops, such as sorghum, known as resilient crops that respond well to climate change 

conditions. Although sorghum is the second most important grain cereal after maize in most 

African countries, including Mozambique, its productivity has remained low averaging 0.4 t.ha-

1 compared to a potential yield of 3.0 to 6.0 t.ha-1 (Kumar et al., 2008).  

Therefore, to increase grain yield in sorghum, it might be important to exploit the potential 

heterosis of the crop (Reddy et al., 2012). According to Ashok Kumar et al. (2011), new 

sorghum hybrid varieties showed a 30-40% heterosis for grain yield compared to the best pure 

line varieties. Furthermore, Mahdy et al. (2011) recorded heterosis for sorghum grain yield 

over the best parent of between 9 to 97% while lower estimates were obtained in crosses with 

adapted parent lines. The potential hybrids are those with inherited traits such as grain yield, 

plant height, maturity, tillering and disease resistance. It is, therefore, essential for sorghum 

breeders to study the combining ability among parents for grain yield and secondary traits for 

improvement of grain yield potential which is one of the most important traits in sorghum 

breeding (Reddy et al., 2012). According to Thomas et al. (2017), one of the strategies to 

increase the yield potential is manipulating heterosis. The use of improved cultivars such as 

hybrids selected by farmers could double current yields. 

In order to improve adoption of improved cultivars, it is essential for the breeder to understand 

farmers’ preferences and acceptability of a new variety (Horn et al., 2015; Olubunmi, 2015) 

and also study the combining ability and the genotype by environment interactions effects 

during the development of new improved varieties. Although studies have been done on GEI, 

combining ability and heterosis for sorghum grain yield, there is still limited information on 

combining ability in the sorghum germplasm available in Mozambique and the potential for 
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exploitation of heterosis for hybrid development as well as their genotype-environment 

interactions effects. 

Besides the exploration of heterosis and GEI, plant breeders have been facing challenges to 

select superior genotypes using one trait. The use of selection index allows the prediction of 

selection gains for the traits evaluated together and a more understanding and exploitation of 

superior genotypes. This suggests that sorghum breeders should consider the use of different 

selection strategies and indices to select superior genotypes for grain yield and other traits to 

improve the crop according to the trait of interest. Therefore, use of selection index will help 

on selection of superior genotypes in the present study and also facilitate selection of new 

superior genotypes in future work in the sorghum breeding programme in Mozambique. 

 

1.3. Research objectives 

The objectives of this study were to:  

1. Assess farmers’ preferences and needs in sorghum varieties through participatory 

rural appraisal and participatory variety selection, 

2. Determine the morphological characteristics that distinguish desirable breeding 

materials to be exploited in hybrid development 

3. Select adapted and superior genotypes and study their genotype by environment 

(G x E) interactions 

4. Estimate combining ability of the genotypes and the heterosis of hybrids over the 

commercial cultivars for grain yield and 

5. Construct a selection index that can be used to select superior genotypes. 

 

1.4. Research hypotheses 

The following hypotheses were tested: 

1. Farmers have specific preferences for certain agronomic traits in sorghum and they 

are aware of the major production constraints in their areas, which should be 

considered in developing new varieties, especially the new sorghum hybrids. 

2. There is a high genetic diversity for grain yield among the adapted national sorghum 

germplasm to distinguish desirable breeding material for hybrid exploitation. 

3. Changes in environment affects the performance of the sorghum germplasm and that 

can be exploited to identify germplasm with wide or specific adaptation. 
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4. The selected sorghum germplasm have good combining ability for grain yield and yield 

components hence they can be exploited to make hybrids that are adapted to different 

agro-ecological regions in Mozambique. 

5. High performance genotypes have high index in selection that can be used to identify 

superior genotypes. 

 

1.5. Thesis structure 

The above-mentioned objectives and hypotheses were tested and presented in different 

chapters, which constitute this thesis. The chapters are written as an independent manuscript 

for journal publication, therefore may contain some overlaps in information and references 

between the chapters. The structure of the thesis is presented as follows: 

 Chapter 1: Thesis introduction 

 Chapter 2: Literature review 

 Chapter 3: An appraisal of sorghum farmers’ trait preferences, production threats and 

opportunities for plant breeding in central region of Mozambique 

 Chapter 4: Identification of important morphological traits in Mozambican sorghum 

germplasm using multivariate analysis 

 Chapter 5: Combining ability and Heterosis for sorghum grain yield and secondary 

traits across lowlands and midlands Mozambique 

 Chapter 6: Influence of genotype x environment interaction on grain yield performance 

of sorghum genotypes across lowlands and midlands of Mozambique 

 Chapter 7: Participatory variety selection of sorghum hybrids using farmers’ 

preferences and knowledge in central area of Mozambique 

 Chapter 8: Identification of superior sorghum genotypes from farmers’ preferences 

traits using selection indices 

 Chapter 9: General Research Overview 
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2. LITERATURE REVIEW 

2.1. Introduction 

This chapter reviewed the topics relevant to the research to provide the theoretical basis for 

the study. Therefore, it gives an understanding of sorghum production and their constraints at 

country and farmer level. Additional information on sorghum improvement and heterosis 

importance for hybrid development and yield increase is discussed. Moreover, it states 

combining ability effects and the methods used to estimate them and discusses the 

implications of genetic diversity, genotype by environment interaction and yield stability in 

breeding. The importance of involving farmers in breeding programmes is also highlighted. 

 

2.2. Global sorghum production 

In 2014, the world sorghum production was estimated at 59.3 million metric tonnes with the 

USA as the top producer with 8.8 million metric tonnes/annum (HarvestChoice, 2014). 

Currently, the production has been estimated with a decrease of 3.74 million tonnes around 

the world due to climate change effects (USDA, 2017). In the United States, 78% of the 

production is for grain, although some of the varieties are dual-purpose cultivars (grain and 

forage) mainly grown for feed (Vanderlip, 1998; Taylor, 2005; Acquaah, 2012). The second 

top producer is currently Nigeria with production of 6.6 million metric tonnes/annum and it is 

the largest producer in Africa (HarvestChoice, 2014; USDA, 2017). The other important 

producers in Africa are Burkina Faso, Cameroon, Chad, Mali and Rwanda  (Acquaah, 2012). 

The productivity of sorghum in various countries in sub Saharan Africa (SSA) has changed 

drastically over the years. In west and central Africa, grain yield has increased by 129% from 

the 1970s with actual production of 13 million metric tonnes (Reddy et al., 2012; 

HarvestChoice, 2014; ICRISAT, 2017). Moreover, in 2008, Nigeria produced around 71% of 

the total regional sorghum (Gourichon, 2013). This increase was also experienced in eastern 

and southern Africa (ESA) during the same period, whereby an increase of 18% occurred, 

resulting in 8 million metric tonnes being realized. For southern Africa, South Africa is the 

major sorghum producer, producing between 100 000 to 180 000 tonnes annually (Plessis, 

2008). Sorghum production has also been increasing in Mozambique since 2006, where the 

average production was estimated at 156 000 tonnes (Goodbody et al., 2010) and rose to an 

average production of 260 000 tonnes in 2017 (FAO-GIEWS, 2017) (Table 2-1).  
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Table 2-1 Cereals production in Mozambique in the past 6 years 

Crop 2012-2016 2016 2017 

000 tonnes 

Maize 1483 1794 2000 

Rice (paddy) 352 333 360 

Sorghum 212 240 260 

Others 48 52 50 

Total 2094 2419 2670 

Source: FAO/GIEWS, 2017 

2.3. Sorghum production in Mozambique 

Although sorghum production in Mozambique has increased, the yield is still very low (0.4 t.ha-

1) compared to a potential yield in the world of 3.0 to 6.0 t.ha-1 (Kumar et al., 2008; Tsusaka 

et al., 2015). In addition, the agricultural system is basically rain-fed and zero-input  with the 

sorghum mainly produced in the central regions of Nampula, Sofala and Manica (WorldBank, 

2004; Goodbody et al., 2010). The use of cultural practices such as crop rotation, timeous 

weeding, bird control and improved cultivars especially the use of hybrids by the farmers could 

increase the current yields (Diao et al., 2007). Thus, the rapid growth in economic and food 

security in Mozambique can be achieved through investment in research, with a focus on yield 

increases (WorldBank, 2004; FAO, 2013). 

The use of sorghum hybrids has been reported to add value to a country’s production (Malali, 

1980; Li and Li, 1998; Adugna and Tesso, 2008). For example, in Queensland, yield evaluation 

of different varieties was found to range from <1 t.ha-1 to >3.5 t.ha-1 (Chapman et al., 2000). 

Furthermore, there is a need to increase grain yield by identifying adapted and stable hybrids 

that can be used in commercial production. This increase in yield can be achieved through the 

use of existing technologies (Sanchez et al., 2007; Pronyk et al., 2012) such as doubled 

haploids, molecular markers and participatory variety selection. China is a typical example of 

countries that have managed to achieve food security through increased use of hybrids and 

chemical fertilizer (Po-Chi et al., 2008). Thus, in SSA including Mozambique, the use of 

modern crop varieties that effectively respond to most of the biotic and abiotic constraints 

could be the solution to food insecurity (Chen et al., 2011). In general, crop breeding and 

genetic research can contribute more to the development of productive and efficient varieties 

to increase grain yield. In addition, this development must be accompanied by appropriate 

cropping systems to achieve both sustainable yield increase and a reduction in environmental 

degradation.  
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2.4. Sorghum production constraints 

The yield gap between the potential grain yield and yield in farmers’ fields in Mozambique still 

exists (Tsusaka et al., 2015). This is mainly due to a number of factors that include limited 

inputs, biotic, abiotic, and socio-economic constraints (Waddington et al., 2010). Among 

these, the biotic constraints in sorghum production play a major role in low productivity, 

especially in the field where plant diseases reduce grain and dry matter yield (de Milliano et 

al., 1992). 

2.4.1. Biotic constraints 

The most important biotic constraints that affect grain yield in sorghum are diseases. Diseases 

that have been reported to contribute greatly to yield reduction include: ergot disease 

(Claviceps africana) (Pažoutová et al., 2000; Dahlberg et al., 2001; Bhanderi et al., 2015), 

rusts (Puccinia purpurea) (Wang et al., 2006; Silva et al., 2015) and anthracnose 

(Collectotrichum graminicola).  

The diseases which include grain mould and ergot reduce the economic value of the grain as 

they produce toxic chemicals which affect the grain quality. This is a major problem which 

occurs mainly in cool areas during the flowering stage of the plants (Little et al., 2012). 

Biological and chemical control methods have been used, but these are not readily available 

or affordable to poor resourced farmers. In addition, ergot and some species of Fusarium have 

been managed through a reduction in the number of sclerotia per panicle as a result of 

chemical applications (Leslie, 2008). However, management of these diseases through 

genetic resistance is the most effective and economical control method as it is the most 

convenient to the small-scale farmer.  

There are some encouraging reports on the control of these diseases, for example, Reed et 

al. (2002) reported ergot resistance in some varieties that was associated with rapid pollination 

characteristics. Other studies reported germplasm sources with physiological resistance to 

ergot in the A3 male sterile genetic background, based on a low-level infestation in male-sterile 

hybrids under field conditions (Dahlberg et al., 2001; Reed et al., 2002). Frederickson et al. 

(1991) reported that due to the increase in the use of male sterile lines in eastern and southern 

Africa in breeding high-yield varieties and hybrids, the disease has become more important.  

Sorghum rust was found to have minimal effects on sorghum yield. However, it can expose 

plants to other major diseases such as stalk rots, charcoal rot and grain mould and contributes 

to lodging by reducing leaf area and increasing plant stress (White et al., 2012). The disease 
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can be managed through cultural practices such as planting date management and use of 

resistant plants (Pande et al., 2003; McIntyre et al., 2005).  

Anthracnose, on the other hand, has been reported as one of the most common and 

destructive diseases affecting sorghum, particularly in hot and humid areas (White et al., 

2012). Use of susceptible cultivars can cause losses up to 50%.  Symptoms are usually 

expressed from seedlings, leaves, stem, peduncles and the grain is also affected (Marley et 

al., 2005; White et al., 2012).  Control of this disease is often difficult as it is less predictable 

year after year due to its dependence on the weather conditions. In seasons with high rainfall, 

the disease is prevalent and damaging. As a result, small-scale farmers are severely affected 

because they cannot afford to buy pesticides to control the disease. Disease control of 

anthracnose is through use of resistant germplasm and crop residue management by cleaning 

the fields after harvesting (Marley et al., 2005). Therefore, identification and selection of 

genotypes with greater levels of disease resistance could be more sustainable and effective 

for grain yield increase in the smallholder farming sector. 

Furthermore, downy mildew (Peronosclerospora sorghi) also results in yield losses in sorghum 

(Sharma et al., 2012).  Downy mildew is economically important as it causes death of plants 

or lack of panicle initiation (Jeger et al., 1998). It causes substantial losses in grain yield in 

many parts of the semi-arid tropics where sorghum is the staple food. Downy mildew is mostly 

controlled by the use of treated seed with the systemic fungicide, metalaxyl (Leslie, 2008). 

Resistance has been identified and successful cultivars have been created (Bandyopadhyay 

and Frederiksen, 1999; Rosenow et al., 2014). However, repeated cultivation of resistant 

cultivars has led to the emergence of new races of the pathogen that are virulent to the cultivar. 

This has, therefore, placed an emphasis on the need to utilize genes from diverse sources in 

order to create hybrids with durable resistance (Kamala et al., 2002).  

Other important biotic constraints are birds and Striga. Several studies revealed Striga 

(Mounde et al., 2015; Dereje et al., 2016; Ali and Mahdi, 2017) as an important  sorghum pest. 

Ejeta (2007) reported that Striga can be controlled using resistant cultivars combined with field 

management. On other hand, reduction of Striga seed bank using organic matter and fertlizer 

to suppress soils (Ransom, 2000) is also recommended. For bird control, repellents are used 

combined with/or the use of bird-resistant cultivars (Crase and Dehaven, 1976; Kumar et al., 

2005). Therefore, sorghum breeders have a major task of developing cultivars adapted to 

farmers’ conditions and resistant to the various biotic factors.  
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2.4.2. Abiotic constraints 

Sorghum is widely adapted to varying climatic and soil conditions. It tolerates drought and 

high-temperature stress better than many crops, remaining inactive during dry periods 

(Gnansounou et al., 2005; Olembo et al., 2010). Although drought has been affecting crop 

production, sorghum performs better than other cereals under different environmental 

stresses, including drought stress an indication of its ability to withstand drought in semi-arid 

regions of Africa making it more economical to produce (Machado and Paulsen, 2001). 

However, Gill et al. (2001) reported that heat and drought are factors that significantly 

contribute to yield reduction and the water deficit affects plant growth, metabolism and 

productivity (Sharma et al., 2004). Other abiotic constraints affecting sorghum plants are 

salinity, dehydration, cold weather, osmotic pressure (Gill et al., 2003) and low soil fertility 

(Waddington et al., 2010).  There is, therefore, a need to breed sorghum cultivars that tolerate 

different abiotic factors. 

2.4.3. Socio-economic constraints 

 Important socio-economic constraints in SSA that affect most crop production including 

sorghum are: inadequate fertilizer uses and management, use of unimproved or unsuitable 

varieties, planting time and density (Waddington et al., 2010). Use of inorganic fertilizer in 

combination with other agronomic practices such as planting time and plant density can 

increase yields. For example in Nigeria, Amujoyegbe et al. (2007) reported that the use of 

inorganic fertilizer had a greater effect on grain yield and chlorophyll in sorghum than maize 

with a difference of 0.066 t.ha-1. 

The major sorghum socio-economic constraints in Mozambique are markets, high seed prices, 

limited access to markets for inputs, lack of extension services for sorghum, lack of preferred 

varieties and processing technologies (Nankani et al., 2006; Asfaw et al., 2010; Waddington 

et al., 2010; Agumagu et al., 2014). There is still lack of markets for farmers to sell their 

produce and unavailability of improved seed for farmers to purchase (Hamukwala et al., 2010). 

The demand for sorghum products by the urban consumers as a result of migration of people 

from rural to urban areas and the increased awareness of the nutritional value of sorghum 

calls for sorghum commercialization rather than subsistence production (Macauley and 

Ramadjita, 2015). There is, therefore, a need to increased productivity to respond to the 

demand by use of improved varieties. 

On the other hand, access to markets is also affected by poor road infrastructure between 

rural areas and the main urban markets. Consequently, in some rural areas the access to 

improved seed and new technologies is extremely limited. In these areas, the source of seed 
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for farmers is mostly their own harvested seed, other farmers, from local grain markets and 

from the informal seed sector (Almekinders et al., 1994). Most of the seed from these sources 

is usually adapted to farmers’ agro-ecological and socio-economic conditions and the seed is 

often obtained without involvement of cash as it is used more for farmers subsistence 

(Almekinders et al., 1994; Remington et al., 2002). The transformation of subsistence 

agriculture to commercialized farming depends on the availability of improved seed and fertility 

inputs (Rohrbach and Kiala, 2000). Currently many farmers in Mozambique depend on 

subsistence agriculture with low productivity and low inputs. It is thus critical to enhance the 

productivity for those farmers who produce for the local markets.  

Seed price and seed quality are also important factors for the market. Rohrbach and Kiala 

(2000) reported that the price of seed and grain on the local market was almost the same due 

to poor quality of seed on the market and limited markets for grain. It is, therefore, important 

that a trusting environment between farmers and companies who buy agricultural products be 

created, if strong markets are to be developed. Farmers need fair prices and companies need 

to feel confident to invest in farming (Nankani et al., 2006). Zavale et al. (2005) observed in 

their study that education of farmers did not have a significant impact on the adoption decision. 

The reasons for the non-adoption of new technologies, for example, in eastern Africa, were a 

result of farmers not being aware of improved technologies, unavailability of improved 

technologies or unprofitable technologies (Doss, 2003).  

Thus, the key for growth and increased productivity in agriculture involves the adoption and 

use of available new technologies, as well as access to markets. A combination of improved 

seed, fertilizer and irrigation are requirements for yield increase (Nankani et al., 2006), but use 

of appropriate technologies to reach out farmers is important to ensure adoption of the 

technologies. However, increase in productivity due to innovative technologies cannot be 

achieved on its own, it has to be combined and complemented with improvements in 

Agricultural Institutions and human capital development (Zavale et al., 2005). 

2.5. Sorghum improvement 

Sorghum is a self-pollinating diploid (2n=2x=20) species with a high photosynthetic efficiency. 

There are three important species of sorghum: S. bicolor (Linn.) Moench (2n=2x=20), S. 

propinquun (Kunth) Hitche (2n=2x=20) and S. halepense (Linn.) Pers.(2n=2x=40) (Acquaah, 

2012). The most important species in crop production is S. bicolor and has been cultivated 

and inter-crossed with other sorghums to produce fertile hybrids. Initially, sorghum was 

typically tall, late to mature, easily lodged and very low yielding (Rooney, 2004). However, the 

interest to increase yield and improve other characteristics such as plant height, maturity, 
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disease resistance, conceived the idea of hybrid development. Exploration of F1 hybrids in 

sorghum started in the USA in the mid-1950s with the development of the cytoplasmic male 

sterility system (CMS) (Kramer, 1987; Menz et al., 2004). The use of cytoplasmic male sterile 

system from the local material is a great step towards sorghum improvement in many 

countries.  

The origin of the cytoplasmic male sterility is known to be geographically from America, India 

and Africa (Sane et al., 1996). The CMS is broadly categorized into different groups that 

include A1, A2, A3, A4, etc. These groups depend on their maintainer and restorer crosses 

(Sane et al., 1996; Schnable and Wise, 1998). The A1 is mainly used for commercial hybrid 

production (Sane et al., 1996), but it requires a very close management of the population 

during anthesis (Rooney, 2004). Therefore, the production of hybrids and improved varieties 

is the most significant successful breeding effort over the last few decades.  

Understanding the selection method for population improvement of sorghum is another 

important step. Selection methods used to identify the most suitable parent genotypes with 

traits of interest range from mass selection to family-based selection methods (Rooney, 2004). 

The breeding efforts in sorghum are based on specific traits of interest and these traits vary 

from region to region where the majority of producers demand high yielding and stable hybrids. 

On the other hand, resistance/tolerance to a specific abiotic stress or biotic stress is also 

required. Additionally, consumers require a certain grain quality depending on the growing 

environment and grain use. Thus, defining the breeding priorities according to the producers 

and consumers preferences is an important initial step in the implementation of a breeding 

programme.    

For instance, in the early 1980s, the Sorghum and Millet Improvement Programme (SMIP) 

managed by ICRISAT made significant efforts to bring improved varieties to different countries 

(Chisi, 2003; Olembo et al., 2010). In addition, under this programme the variety Macia (open-

pollinated variety-OPV) was released in Mozambique in 1996. This variety was widely 

accepted by farmers at the village level (Chisi, 2003). Nevertheless, yields and grain quality 

of these improved cultivars declined due to outcrossing with the non-adapted cultivars.  As a 

result,  in 2008 the Alliance for a Green Revolution in Africa (AGRA) funded the sorghum 

breeding programme in Mozambique to develop and promote the use of improved sorghum 

open pollinated variety (OPV) and hybrid varieties to increase grain yield, disease and pest 

resistance, and drought tolerance (AGRA, 2009). The goal for the sorghum programme is to 

accumulate favourable alleles for the traits of interest while maintaining as much genetic 

diversity as possible for further crosses. 
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2.6. Genetic diversity 

Traditionally, sorghum farmers keep and cultivate diverse landraces that may have a lower 

risk of crop failure due to changes in climate, disease, pests, and soil limitations (Brush, 2000; 

Barnaud et al., 2007). Therefore, knowledge of the local and improved cultivars and 

understanding their diversity is of interest in the breeding programme and has applications in 

the design of the breeding strategies. 

2.6.1. Importance of genetic diversity in sorghum breeding 

Information on the level of diversity in different germplasm is helpful for the identification of 

sources of improved breeding gene pools and the search for genes that have not been 

selected (Warburton et al., 2008). The use of diverse landraces by farmers is to address 

complex problems in their farming systems that include various stresses such as diseases, 

pests as well as drought and low soil fertility. Farmers prefer varieties with good yield but also 

with potential market value and stable under these stresses (McGuire, 2000; Dossou-Aminon 

et al., 2014). Therefore, availability of genetic diversity permits selection of germplasm that is 

stable and high yielding and with other traits preferred by farmers. This selection could be 

through heterotic groups or by use of molecular markers (Menz et al., 2004). The identification 

of these groups and genetic distances may be based on several agronomic data and explored 

through multivariate analysis (Yeung and Ruzzo, 2001) and diversity index (Chikuta et al., 

2015). Use of these tools in characterizing diversity can give information regarding the 

germplasm that is important for yield improvement programmes. Therefore, it is important to 

characterize Mozambican germplasm since accessions in the collection have not been 

described. 

2.6.2. Multivariate methods for genetic diversity analysis 

 An extensive variety of multivariate techniques is available for analysis of genetic diversity 

and the choice of the most suitable method depends on the type of data. Fundamentally, the 

analysis summarizes a large set of data by means of relatively few parameters (Chatfied and 

Collins, 1980). Three techniques are mostly used for multivariate analysis and these are  

principal component analysis (PCA), cluster analysis and discriminant analysis (Murtagh and 

Heck (2012). The first method focuses on inter-object correlations, reduction of their 

dimensionality and allows graphic presentation of the data, while the second is the application 

of automatic grouping procedures. The third method classifies items into pre-defined groups. 

These methods have been applied in a number of studies. For example, principal component 

and cluster analysis were useful in characterizing sorghum germplasm based on 
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morphological (Ngugi and Maswili, 2010; Seetharam and Ganesamurthy, 2013; Chikuta et al., 

2015) and molecular markers (Folkertsma et al., 2005; Ali et al., 2008; Upadhyaya et al., 

2012). Chikuta et al. (2015) found that using PCA and cluster analysis on phenotypic traits, 

genotypes were classified according to their genetic similarities or differences. Moreover, 

results from PCA can be helpful in parent selection, thus breeding improvement (Seetharam 

and Ganesamurthy, 2013). Furthermore, molecular markers have also been used to assess 

genetic diversity in sorghum. For example, Assar et al. (2005) used simple sequence repeats 

(SSRs) to assess genetic variability among sorghum germplasm from different origins and 

clustered them according to morphological and molecular markers. Therefore, use of different 

methods in assessing diversity is helpful in improving the breeder’s parental selection and 

hybridization as high yielding parents with traits of interest can be targeted. On the other hand, 

diversity index is also commonly used to identify phenotypic diversity among diverse parents 

(Upadhyaya et al., 2010).  

2.7. Combining ability analysis 

Hybrid development requires complementarity between parents. This complementarity in 

sorghum is achieved by the use of male sterility to facilitate crossing, resulting in identification 

heterosis for many traits such as yield (Reddy et al., 2007). The information on combining 

ability of the parents is very important for a hybrid oriented breeding programme (Kenga et al., 

2004; Makanda et al., 2010). Combining ability is defined as the capacity of a cultivar or 

individual parent to transmit superior performance or desired genes to its offspring (Fasahat 

et al., 2016). There are two concepts of combining ability, general combining ability (GCA) and 

specific combining ability (SCA). Sprague and Tatum (1942) and Griffing (1956) defined 

general combining ability as the average performance of a parent in hybrid combination and 

specific combining ability as the performance of parent in a specific cross.    

According to Goyal and Kumar (1991), the information on combining ability assists in 

identifying superior parents and hybrids and also to define the ideal gene action controlling 

the traits. The general combining ability (GCA) analysis is done in the process of developing 

superior genotypes while specific combining ability gives the performance of the hybrids (Cruz 

and Regazzi, 2004). Kenga et al. (2004) found that good general combiners do not always 

create superior hybrid combinations. This shows that there is a need of evaluating the F1 

hybrids first before such information is generated. For the hybrid combination, the importance 

of GCA essentially implies importance of additive gene action while the SCA shows the 

importance of non-additive gene effects and other interactions such as epistasis (Kenga et al., 

2004; Makanda et al., 2010). Kenga et al. (2005) reported that the interaction between the 

GCA and SCA with environment indicates the response of different traits over environments. 
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Hussien (2015) identified sorghum hybrids and parents with good combining ability for grain 

yield and days to 50% flowering while Mohammed (2009) found good combining ability for 

forage yield and earliness in flowering. The hybrids developed also need to be evaluated in 

different environments to identify the best genotypes for specific or wide environment 

adaptation.  

2.8. Genotype x environment interaction 

Genotype by environment interaction is the differential response of two different genotypes to 

environmental variation (Yan et al., 2007). The genotype by environment interaction has 

implication on the genotype’s adaption and evaluation, where unpredictable environments 

and/or reduction of genetic variance increases selection in one direction. The genotype-by-

environment (GE) interaction is undesirable for breeders as it confounds genotype evaluation 

(Yan and Tinker, 2006). The crucial requirement for improvement of plant adaptation is the 

identification of the phenotypic stability and management of adapted genes (Farshadfar et al., 

2012). Phenotypic stability is often used to refer to variations in the phenotypic composition of 

the yield while the genotypic composition remains stable (Becker and Leon, 1988).  

Several methods have been used to analyse multi-environment trial data and select superior 

genotypes for specific or wide adaptation. Methods such as additive main effects and 

multiplicative interaction (AMMI) (Gauch, 2006) and the genotype,  genotype by environment 

(GGE) biplot method (Yan et al., 2007) have been suggested for exploring G x E in genotype 

evaluation. The AMMI model combines the analysis of variance and principal component 

analysis while GGE biplot is based on the principal component analysis (Gauch, 2006; Yan et 

al., 2007). In the AMMI model, the main effects are retained as additive effects, while the GEI 

is treated as a multiplicative effect (Duarte and Vencovsky, 1999). Further, Yan et al. (2007) 

concluded that both GGE and AMMI analysis were able to separate genotype and genotype-

by-environment in mega-environment but  GGE biplot was more superior than AMMI1 graph 

in mega-environment analysis. The GGE biplot uses the principal component scores to plot 

the effective view of multi-environment trial by showing “which-won-where” (Yan et al., 2007). 

It was reported in several studies that GGE biplot is an excellent method for visual data 

analysis (Yan and Tinker, 2006; Farshadfar et al., 2012; Akter et al., 2015). In the present 

study, GGE biplot analysis was used to identify the high yielding and stable genotypes. 

The G x E interaction is important in determining the relationship of the traits such as linear 

and non-linear regression (Mungra et al., 2011). This interaction is higher in semi-arid tropics 

due to the variability of abiotic and biotic factors (Alagarswamy et al., 1996). However, the 

adaptability of the superior cultivars to certain environments is given by a cultivar superiority 
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index (Pi), where the lower value indicates general adaptation and higher value specific 

adaptation (Lin and Binns, 1988). This index can be used to measure performance and 

stability of a cultivar based on characteristics of the cultivar to allow better selections to be 

made. The achievement of the goals defined in the breeding programme depends on the 

method the breeder uses to identify and select the superior genotypes according to the traits 

of interest. 

 

2.9. Heterosis in sorghum 

2.9.1. Use of variability in sorghum 

Genetic variability is essential to hybrid sorghum improvement. Variability determines genetic 

gain from selection and grouping of the cultivars into heterotic groups (Makanda et al., 2009).  

In other words, the sorghum breeding programmes have been using A/B and R lines as the 

heterotic groups where the female lines A/B must be heterotic to the R line for a successful 

hybrid creation (Acquaah, 2012). However, in the development of a line, two groups are 

separated, whereby one is used as a tester for the other. Selection of an effective tester for 

evaluating the hybrid performance and heterosis of new inbred lines is crucial to ensure their 

accurate evaluation (Menz et al., 2004; Packer and Rooney, 2011). The importance of 

heterosis in hybrid development is its contribution to increased yields. It is estimated that it 

increases yield by at  least 15% (Lippman and Zamir, 2007). Kenga et al. (2004), reported that 

the use of sorghum hybrids in India achieved an 80% yield increase in production in the past 

20 years with reduction of the area under the crop.  

These results show that the yield increase needs to be improved through breeding for yield 

and other interest traits using hybrids. In sorghum hybrids, grain yields have been reported to 

vary from 1.6 t.ha-1 to 6.4 t.ha-1 depending on the complementarity of the lines (Patil, 2007). 

In addition, the crosses between male sterile and male-fertile from different heterotic groups, 

demonstrated to be productive in hybrid combinations (Li and Li, 1998; Kenga et al., 2004) but 

it is crucial to determine the potential of the new hybrid cultivar by testing against the 

progenitors and successful varieties on the market. Makanda et al. (2010) reported in their 

study that the current varieties on the market are inferior in yield potential compared to hybrid 

cultivars in southern Africa. Therefore, the inclusion of local populations and exotic material in 

the crosses to produce stable hybrids with high heterosis from diverse genotypes is a good 

step in the hybrid production process (Hallauer et al., 2010).  
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The Sorghum Breeding programme in Mozambique has been creating varieties and 

evaluating them under different environments for many years but it is still lacking information 

on the combining ability of the lines available for hybrid development. Although data have 

been collected from many trials, the information available is mainly limited to yield and the 

main genotype effect. Moreover, the information of interaction genotype by environment may 

be treated as noise or a confounding factor. A better understanding of the phenotypic effects 

is still required to relate genotypic to phenotypic variation during crop improvement. 

2.9.2. Contribution of heterosis in sorghum 

There are many morphological characteristics contributing to heterosis expression in 

sorghum. The effect of heterosis in the hybrid can be measured by the mid-parent values. 

Different studies reported hybrids that were early, taller and had higher grain yield than their 

better parents (Singhania, 1980; Premalatha et al., 2006; Bagheri and Jelodar, 2010; Hussien, 

2015). Haussmann et al. (2000) and Blum et al. (1990) reported mid-parent heterosis values 

of 13 and 88% and 24 to 40% respectively. This hybrid superiority was shown in grain yield. 

Hayes and Rooney (2014) reported grain yield heterosis of 172% over the line parents. 

Moreover, recent studies reported yield increases of up to 29% for lowland adapted hybrids 

and increased up to 52% for a highland adapted hybrid in Ethiopia (Mindaye et al., 2016). 

Therefore, there is need to study different morphological traits to better understand the 

inheritance and selection or identification of superior genotypes. 

2.10. Farmers’ trait preferences for improved sorghum varieties 

Adaptation of the variety in the local environment is a requirement for farmers when selecting 

a variety. Farmers in remote and variable environments prefer adaptable cultivars with stable 

yield and good for food security with yields which may be higher on average (Almekinders et 

al., 2007). Thus, farmers prefer cultivars that have a substantial increase in yield under low-

yielding conditions than those that give the same increase in yield under high yielding 

conditions (Tester and Langridge, 2010). However, it is important to consider other critical 

attributes considered by farmers such as food quality. Asrat et al., (2010) reported that the 

important attributes for farmers’ variety selections are adaptability and stability. In addition, 

involving farmers in the breeding programme using participatory plant breeding (PPB) 

methods was reported by Manandhar et al. (2004) and Mekbib (2006). In these methods, 

several techniques can be used such as on-farm trials, questionnaires interviews, group 

discussions, matrix ranking and other methods according to the situation (Almekinders et al., 

2007; Nkongolo et al., 2008). 
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An on-farm trial known as mother and baby trial has been used to assess technologies by 

farmers and has two main approaches (Snapp, 2002). Firstly, researchers conduct the trials 

at the research station with replications and secondly, they conduct a large number of on-farm 

trials across a spectrum of environments (Fielding and Riley, 1998). The second approach 

takes into consideration the variability of the environments characterizing farmers regions and 

each site performances, the reason to simultaneous replicate using the first approach (Fielding 

and Riley, 1997). University of Reading (1998), reported that for on-farm trials it is better to 

have more farmers with a single treatment, rather than fewer farms with many replications in 

each trial. The on-farm system has an advantage over conventional methods in selecting and 

spreading out varieties for the target environment with a specific constraint (Banziger and De 

Meyer, 2002). In general, mother and baby trials contribute rapidly to developing improved 

varieties and facilitate the exchange of information and experience among the partners. 

Gonsalves (2005) reported some of the advantages of using these approaches whereby: i) 

researcher-extension collects substantial amount of high quality data for both qualitative and 

quantitative traits; ii) easily observable and can be used to predict adoption of the potential 

technologies; iii) farmers rapidly gain experience and confidence in using technology in their 

fields and iv) it leads to joint research-extension learning, feedback, and changes in practices 

by both groups. This means that it helps to improve the efficiency of research and extension 

by making impact at farmers’ level. 

Many farmers in Africa, particularly in Mozambique choose to grow local varieties than new 

improved varieties due to the knowledge of the grain quality, adaptability and the performance 

under their local farming systems. Those attributes are supposed to be used to select a new 

cultivar and it can vary depending on location, gender and production costs (Vom Brocke et 

al., 2003). Consequently, the production cost can be reduced with a gain in yield by use of an 

improved and high yielding variety (Deb et al., 2005). In fact, selection of high yielding cultivars 

with farmers’ preference traits is critical. Therefore, breeders need to involve farmers in 

assessments based on their preferences. 

2.11. Selection Index 

Selection of the characters based on the farmers’ selection criteria is an important step for the 

adoption of a new cultivar. Selecting plants based on the economic values brings a value to 

the cultivar on the market. The economic value of a plant is mostly determined by several 

characters (Dabholkar, 1999). In sorghum, some of the preferred characters by farmers are 

grain yield, seed size, plant height, grain quality, and resistance to pests or diseases. For the 

breeder to achieve maximum improvement in the economic value of the cultivars it is important 

to have an efficient selection procedure which is determined by several characters (Dabholkar, 
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1999). The effects of selection on quantitative traits can indicate changes in the genetic 

properties of the population, such as means, variances and covariances. According to Singh 

et al. (2011), the main limitation to estimate selection indices is attributed to biotic traits such 

as pest damage, that can contribute negatively to selection. Therefore, selection criteria 

should consider measuring the combined effect of different components simultaneously.  

Selection of high yielding genotypes based on a single parameter is therefore difficult, as 

increase in yield may change the other parameters such as plant height, earliness and grain 

size. Tesfamichael et al. (2013) found that in Ethiopia the criteria for farmers selection in 

sorghum was panicle size, seed size, grain colour and maturity date. Knowledge of heritability 

influences the choice of selection procedures used by plant breeders to decide which selection 

methods would be most useful to improve the character, to predict gain from selection and to 

determine the relative importance of genetic effects (Laghari et al., 2010). 

The choice of a selection method for plant breeding may favour identification of superior 

genotypes during the development of new cultivars and saves time and cost (Kurek et al., 

2001). The identification of superior genotypes requires selection methods capable of 

exploiting efficiently the available genetic material, and maximizing the genetic gain in relation 

to the characteristics of interest (Vivas et al., 2012). Therefore, a selection index that results 

from a combination of certain traits that pursue simultaneous selection, allows identification of 

superior genotypes. 

The selection of several traits at the same time is mostly facilitated by the use of a selection 

index based on a combination of multiple traits (Shook, 2006; Cruz, 2013). The use of the 

selection index allows identification of superior genotypes established by the optimal linear 

combination of various traits (Vittorazzi et al., 2017). Selecting for traits simultaneously using 

an index provides useful information and a realistic response to selection for all the traits that 

are being combined by giving a total genetic value to the individual line (Bänziger and Lafitte, 

1997).  It thus results in fast genetic advance, thus reducing the breeding time required to 

come up with the product for the target market.  Initially, Smith (1936) and Hazel (1943) 

reported use of selection indices in plants and animals respectively and then later other indices 

were proposed by Williams (1962), Pešek and Baker (1969) and Mulamba and Mock (1978). 

Many breeding programmes use selection indices in different crops to select superior 

genotypes and predict genetic gain, which leads to an appropriate performance. The limitation 

of selection indices in some situations is the establishment of economic weights for the various 

traits of interest (Pešek and Baker, 1969; Coimbra et al., 1999; Vittorazzi et al., 2017). For this 

reason, Cruz (1990) proposed the use of experimental data to estimate the economic weights. 
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2.12. Summary 

From the literature reviewed, it was noted that sorghum is widely produced in the world mainly 

in semi-arid areas of Asia and Africa where it is one of the most important staple foods. The 

yield production in most of the African countries is still very low when compared to the demand. 

Moreover, use of hybrids in Africa is still limiting but could increase the current production and 

rapid growth in economic and food security of most of the African countries. This increase may 

start from identifying the adapted and stable hybrids that can be used for commercial 

production associated with other technologies. However, there is limited information available 

on the development of sorghum hybrids in Africa. Although yield increase is the targeted goal, 

there are many constraints to be taken into consideration. These constraints are biotic, abiotic, 

field management and socio-economic constraints whereby drought and diseases are the 

main constraints affecting the crop during the growth period. Diseases such as anthracnose, 

rusts, ergot, downy mildew, grain mould might need a good disease management and 

identification of sources of genetic resistance. Genetic resistance was shown to be the most 

effective and economic control method.  On the other hand, hybrid development on sorghum 

requires a good understanding of the breeding methods to be used as well as selection 

methods. Additionally, knowledge of consumers and producer’s requirement and preferences 

is essential to improve the breeding strategies. Use of diverse sources of germplasm owned 

by farmers is used to meet complex goals of farmers’ farming systems such as cultivar with 

tolerance to different stresses (diseases, pests, and drought and soil fertility problems). 

Therefore, farmers’ opinions and preferences must be included in the breeding programme 

when defining the objectives. Variability is important for genetic gain from selection and 

grouping lines/cultivars into different heterotic groups. The complementarity of the lines in the 

crosses is crucial; therefore, the involvement of exotic material in crosses is a good step in the 

hybrid production process. A better understanding of the phenotypic effects is still required to 

relate genotypic to phenotypic variation during crop improvement. The yield stability remains 

an important factor in the variable African production environments where there is need of 

multi-environment trials analysis for selecting superior genotypes for wide or specific 

adaptation. Then the cost of field evaluation for grain yield and yield components can be 

reduced if environments are characterised. Although most of the studies reported in the 

literature have provided useful information for superior parents and hybrid selection, few 

reported the combining ability for grain yield and yield components for sorghum. 
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3. An appraisal of sorghum farmers’ trait preferences, 

production threats and opportunities for plant breeding in 

central region of Mozambique 

Abstract 

Sorghum is the third most important grain cereal after maize and rice in most African countries, 

including Mozambique. However, despite the increase in production in Sub-Saharan region, 

productivity is still very low averaging 0.4 t.ha-1 compared to a potential yield of 3.0 t.ha-1. The 

present study was conducted to understand farmers’ preferences and needs in sorghum 

varieties, production threats as well as how to involve them in breeding activities. The study 

covered the high potential sorghum production districts of Guro and Mussorize in central 

Mozambique. About 7 to 18 representative farmers were included in each discussion group 

resulting in 110 farmers across six locations. Data were collected through structured interviews 

using a structured questionnaire to guide the discussions. Data were subjected to analyses 

using cross-tabulation procedure, and contingency chi-square values were calculated for tests 

of significance. The results showed that sorghum was an important crop as maize (13.6%) in 

terms of production across the study locations followed by cowpea (11.4%).  Sorghum 

production depended on many factors such as area used, crop duration in the field and yield 

levels in each season. All the farmers across the locations preferred white grained sorghum 

types, whereas 83.3% and 16.7% preferred hard and soft grain types, respectively. The 

attributes preferred by farmers were high grain yield, good food quality and suitability of the 

harvested grain for various uses. The major constraint in the production mentioned by farmers 

was drought. The other constraints were operational and included weeding, thinning out 

plants, threshing and sieving, cutting and transporting grain during and after harvest. The 

important constraints in sorghum commercialization were a combination of low price, 

unavailability of seed and weak markets. Therefore, there is a need to use improved varieties 

that could increase sorghum production and improve seed quality for sorghum production and 

marketing of sorghum products. 
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3.1. Introduction 

Sorghum (Sorghum bicolor L.) is a staple food crop in the drier parts of Africa, Europe and 

Asia (Ogeto et al., 2013). It is the third most important crop in terms of grain production after 

maize and rice in many African countries, including Mozambique. Sorghum is one of the cereal 

crops that are well adapted to biotic and abiotic stress factors (Hassan, 2015).  Because of its 

tolerance to severe droughts and long dry spells during the rainy season, the crop is frequently 

grown in semi-arid and subtropical regions of the world (Dennes, 1990), particularly in regions 

where rainfall is generally low, erratic and poorly distributed.  

In Mozambique, sorghum  is produced and consumed mostly in the northern and central 

regions of the country (INTSORMIL, 2008; WorldBank, 2014). In these areas, well adapted 

traditional varieties have been used by farmers, but the rate of adoption of improved varieties 

has remained low (Benfica et al., 2014). However, as the agricultural sector continues to 

experience challenges in production due to repeated and extended droughts, there is a need 

for the development of improved drought resistant crops including sorghum. 

Sorghum production increased in Mozambique between 2006 and 2009, when the average 

annual production was estimated at 384 000 tonnes (Goodbody et al., 2010). However, due 

to drought and other constraints, production dropped to 139 000 tonnes in 2012 but increased 

again due to government intervention, which involved seed distribution. Consequently, in 2014 

a total of 155 164 tonnes grain sorghum was harvested (FAOSTAT, 2017). Despite the 

increase in production, the productivity has remained low, averaging 0.4 t.ha-1 compared to a 

potential yield of 3.0 to 6.0 t.ha-1 (Kumar et al., 2008). This has been due to a number of factors 

including the fact that, agriculture in the Mozambican sorghum producing areas, namely  the 

central regions of Nampula, Sofala and Manica, has remained basically under rain-fed and 

zero-input systems (WorldBank, 2004; Goodbody et al., 2010). In view of the aforesaid, 

improved cultural practices such as crop rotation, timeous weeding, bird control and the 

inclusion of improved cultivars especially the use of hybrids by the farmers could double the 

current yields (WorldBank, 2004; FAO, 2013).  

Although farmers tend to rely on crops such as sorghum and pearl millet when faced with 

unfavorable climatic conditions (Tsusaka et al., 2015b), there is still remarkably low sorghum 

production as well as consumption among some Mozambican communities. In addition, 

sorghum productivity and market supply have declined in recent years due to unfavorable 

climatic conditions, low yields and damage by field pests (Benfica et al., 2014). This suggests 

that households can be motivated by improving market  participation, offering high prices for 

the product, which can help the farmers to invest in improved agricultural technologies and 
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put more effort in increasing agricultural productivity (Benfica et al., 2014). In addition, 

increased productivity could create higher amounts of marketable surplus, such that, with 

market access, could result in increased market participation leading to potential 

improvements in overall household welfare. 

Since sorghum is the preferred cereal where maize cannot grow, it thus serves as an excellent 

food security crop. Therefore, the causes of the low adoption of developed and released 

improved varieties in Mozambique need to be determined.  This could be achieved through 

clearly identifying what farmers prefer in a cultivar through researcher-farmer interaction and 

collaboration.  This method involves encouraging farmers to participate in experiments using 

their own fields where they can learn, adopt and spread new technologies to other farmers 

(Leeuwis, 2013). Participatory approaches should be adopted on selection criteria of traits that 

are important for farmers so that they can easily accept and adopt the new cultivars. This 

depends on farmers’ needs and it varies from location to location. Participatory plant breeding 

is actually a breeding method that brings farmers and researchers together and enables them 

to select crop varieties suitable to their specific environmental conditions. 

Additionally, assessment and diagnosis are important to provide a better understanding of the 

farmers’ needs, thereby increasing the possibility of long-term sustainability of the technology 

in the community. Therefore, the objectives of this study were: i) to assess farmers’ 

preferences for traits in new sorghum varieties in central Mozambique, and ii) to identify 

sorghum production constraints in the region which can lead to opportunities for sorghum 

breeding.  

 

3.2. Materials and Methods 

3.2.1. Study locations 

The study was conducted in six villages covering two selected districts of Manica province in 

the central part of Mozambique (Figure 3-1). The districts are Guro and Mussorize located in 

northern and southern parts of the province, respectively. The six villages selected constituted 

high potential sorghum production areas of the province ( 

Table 3-1). 
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Table 3-1 Coordinates of six the villages in two districts of Manica province where the 

study was conducted 

Village District Latitude Longitude Altitude (m.a.s.l) 

Guro 
Guro 17o24.772’s 33o21.594’e 729 

Mandie 
Guro 16o27.238’s 33o21.594’e 158 

Dimbe 
Guro 16o26.188’s 33o34.016’e 151 

Espungabera 
Mussorize 20o43.889’s 32o78.609’e 731 

Mabudo 
Mussorize 20o28.545’s 32o59.285’e 434 

Gunhe 
Mussorize 20o13.693’s 33o19.679’e 188 

 

The average annual rainfall in Guro town (centre of the district) is 600 mm with a maximum 

temperature of 30.5oC and minimum of 17.5oC (MAE, 2005). It is located around 729 m above 

sea level (m.a.s.l.). The soil type varies from red clay soil to sandy soil in the north of the 

district. The northern part of the district, where farmers grow mainly sorghum and pearl millet, 

and have livestock, is dry and the temperatures can be as high as 36-40oC during the rainy 

season (November-January). 

Figure 3-1 Map of the locations used in Manica Province (source: Mapsland, google) 
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Mussorize district has an average annual rainfall of around 1500 mm with a maximum 

temperature of 25oC and minimum of 15.1oC (MAE, 2005). Espungabera is the town of 

Mussorize district and is located around 700 m.a.s.l. The maximum temperature varies 

between 25-27oC in January and minimum of 10-14oC in July. This district borders Zimbabwe 

in the west and semi-arid district of Machaze in the south east. The area where farmers 

produce mainly sorghum and cassava in the district is semi-arid with red clay soils and the 

annual rainfall is 600-800 mm.  

3.3. Farmer participation 

In each district, three villages where sorghum is produced purposively were selected. In Guro 

district, the selected villages were Mandie, Dimbe and Guro, while in Mussorize district they 

were Mabudo, Gunhe and Espungabera. The leaders of the villages who know the people 

assisted with the sampling of the farmers. The criteria for farmer selection was based on 

farmers’ involvement in sorghum production or in any activity related to sorghum. About 7-18 

representative farmers were included in each discussion group resulting in 110 farmers across 

locations. However, in Mandie and Dimbe the number of farmers were more than 15 people 

and were therefore, divided into two groups to answer the same questionnaire. The study 

could not cover more locations and farmers due to limited resources. 

The locations with most participants were Mandie and Dimbe followed by Guro, Mabudo and 

Gunhe (Table 3-2). Espungabera had the least number of participants because many farmers 

were not well informed regarding the day of the interview and some farmers were not in the 

villages.  

Table 3-2 Distribution of farmers according to location and gender 

3.4. Data collection and analysis 

Data were collected through interviews using a structured questionnaire to guide the 

discussions. The questionnaire had five components: a) general information, b) sorghum 

 Location Total 

Guro District Mussorize District  

Farmers Guro Mandie Dimbe Espungabera Mabudo Gunhe  

Men 5 8 7 6 5 5 12 10 58 

Women 10 5 5 12 13 2 3 2 52 

Subtotal 15 13 12 18 18 7 15 12  

Total  110 
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production and sales, c) farmers’ preferences, d) sorghum production costs and e) farmers’ 

constraints. The staff that facilitated the discussions in each location were a breeder, a socio-

economist, an agronomist and an extension agent. The discussions were conducted in local 

languages (Ximanhica, Shona and Portuguese) and the collected information was translated 

into English on the same day. 

Production cost was based on the value estimated by farmers for each activity.  Data were 

subjected to analyses using cross-tabulation procedure and contingency chi-square values 

calculated for test of statistical significance using SPSS version 16.0 (SPSS Inc., 2007). 

Additionally, production cost was used to estimate the profitability of producing sorghum in 

each district using he following formula: 

Profitability =  [Grain yield (kg/ha) x selling price (Mt/kg)]  − [Production cost (Mt/ha)] 

 

3.5. Results 

3.5.1. Farmers’ participation in farm activities 

The group discussions indicated that men in all locations were responsible for clearing new 

land for farming while land preparation differed according to location (Table 3-3). In Guro, 

Mandie and Espungabera, both men and women participated in land preparation. On the other 

hand, in Mabudo and Gunhe, women were responsible for land preparation while in Dimbe it 

was done by men.   

Plantings in Guro and Mandie were done by men, women and children whereas in Dimbe, 

Espungabera, Mabudo and Gunhe, plantings were done by men and women only. Although, 

thinning out and weeding were activities done by men, women and children in Guro and 

Mandie; in Dimbe and Espungabera these were done by women and children only. In Mabudo 

and Gunhe thinning and weeding were done by both men and women. 

Men and women were mostly involved in harvesting in Mandie, Espungabera and Gunhe while 

in Guro, Dimbe and Mabudo, harvesting was done by men, women as well as children. On 

the other hand, threshing of the grain was done only by women in Dimbe and Espungabera. 

In Mandie, Mabudo and Gunhe this activity was done by both men and women whereas in 

Guro it was done by men, women and children. Construction of granaries was done only by 

men in all the locations, while milling and bird scaring were done by women and children, 

respectively. The transportation of the harvested crop was done by both men and women in 

Dimbe and Gunhe. In Guro and Mabudo, transportation of the harvest was done by men, 
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women and children while in Mandie and Espungabera it was done by men. Moreover, in 

Guro, Dimbe and Espungabera women were responsible for selling farm products while in 

Mandie, Mabudo and Gunhe, both men and women were involved in the selling of farm 

products. 
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Table 3-3 Percentage of participation in various activities on the farm based on gender across six locations 

Activity 
Guro Sede (%) Mandie (%) Dimbe (%) Espungabera (%) Mabudo (%) Gunhe (%) 

M W C M W C M W C M W C M W C M W C 

Land clearing (new farm) 100   100   100   100   100   100   

Land preparation 50 50  50 50  100   50 50   100   100  
Planting 30 50 20 30 50 20 50 50  50 50  50 50  50 50  
Thinning and Weeding 30 50 20 30 50 20  70 30  70 30 50 50  50 50  
Harvesting 30 50 20 50 50  30 50 20 50 50  30 50 20 50 50  
Threshing 30 50 20 50 50   100   100  50 50  50 50  
Silo building 100   100   100   100   100   100   
Transportation of 
products 30 50 20 100   50 50  100   30 50 20 50 50  
Sale of produce  100  50 50   100   100  50 50  50 50  
Milling  100   100   100   100   100   100  
Bird control     100     100     100     100     100     100 

M = Men, W = Women, C = Children 
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3.5.2. Importance of sorghum in relation to the other crops produced in the 

region 

There was a significant difference (P≤0.05) among locations in terms of the crops produced 

and their importance (Table 3-4). The main crops produced across locations were maize, 

sorghum and cowpea, corresponding to 13.6%, 13.6% and 11.4%, respectively. Pigeon pea, 

sweet potato, sesame and beans ranked the same in terms of importance across the locations 

(Table 3-5). There were other minor crops produced as indicated in Table 3-5. Maize and 

sorghum were produced across all the locations, but in different quantities and for different 

purposes. 

Table 3-4 Analysis of variance for number of crop species produced  

1Groups are divided in subsistence crop and cash crop 

The majority of the crops produced across the six locations were mainly for subsistence and 

sorghum was the only subsistence crop that covered all locations (Figure 3-2). About 70.5% 

of the crops were used for food or for other home uses while 25% were used as cash crops. 

Only 4.5% of the crops were used for both purposes, that is, cash and subsistence. The crops 

used for cash were cotton, beans, cowpea, sesame and maize.  

 Sum of Squares df Mean 

Square 

F Sig. 

Between Groups1 178.440 2 89.220 5.474 0.008 

Within Groups 668.287 41 16.300   

Total 846.727 43    
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Table 3-5 List of the crops produced and their importance for farmers across the six 

locations 

Crop Produced Total Farmers* Importance across location 

(%) 

Maize 82 13.6 

Sorghum 110 13.6 

Peanut 40 4.5 

Pigeon pea 91 9.1 

Sweet potato 78 9.1 

Sesame 49 9.1 

Cowpea 103 11.4 

Pearl millet 40 4.5 

Watermelon 36 2.3 

Cucumber 36 2.3 

Pumpkin 36 2.3 

Cotton 7 2.3 

Vegetables 7 2.3 

Beans 83 9.1 

Cassava 27 4.5 

Subsistence crop 91 70.5 

Cash crop 19 25.0 

Subsistence and cash crop 42 4.5 

*Total number of farmers growing the crop 

The importance of the crops differed from one location to another. Sorghum was always within 

the top three important crops across the six locations, except for Espungabera where cash 

crops were more important. In Guro, Dimbe, Mabudo and Gunhe, sorghum was mentioned as 

the second important crop, after maize while in Mandie it was mentioned the third priority crop. 

The ranking of the other crops changed according to the use and location (Figure 3-2). 
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Figure 3-2 Crop production versus the importance across locations 

Location legend: 1- Guro, 2- Mandie, 3- Dimbe, 4- Espungabera, 5- Mabudo and 6- Gunhe
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3.5.3. Factors affecting sorghum production  

It was observed that sorghum production across the six locations depended on many factors. 

Some of the factors listed by farmers were; area used, crop duration in the field and yield in 

each season. The minimum hectarage used for sorghum production was one hectare and a 

maximum of four hectares per farmer, with other farmers allocating one and half, two and three 

hectares to sorghum (Figure 3-3). Dimbe and Espungabera were the locations with one 

hectare on average while Guro, Mandie, Gunhe and Mabudo covered one and half hectares, 

two, three and four hectares, respectively.  

The duration of the crop in the field was around six months per season in all locations. The 

longest sorghum cropping period was reported in Mabudo where sorghum took as long as 

eight months in the field and the shortest (six months) was in Guro and Mandie. The other 

locations had a crop season of seven months.  

There was a significant difference in yield in a good season when compared to a bad season 

(P<0.05). Guro, Mandie, Gunhe and Mabudo had yields below 2.0 t.ha-1 during good seasons 

while Dimbe and Espungabera produced above 2.0 t.ha-1. These locations with yield above 

2.0 t.ha-1 showed a large difference between good seasons and bad seasons though for other 

locations the difference was not large. 

 

Figure 3-3 Sorghum yield under good and bad seasons across locations 

The interviewees reported that during the last three years (2012 - 2014) sorghum production 

decreased due to many reasons including insufficient rainfall, lack of markets and lack of 

availability of improved seed. The majority of farmers indicated the absence of strong markets 
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for sorghum (39.1%) and lack of improved seed (24.6%). Few interviewees highlighted 

insufficient rainfall (13.6%) and a combination of insufficient rainfall and unavailability of 

markets (22.7%) as the main factors resulting in decreased sorghum production (Table 3-6).  

Table 3-6. Percentage of respondents indicating different causes of a reduction in sorghum 

production over the years  

Cause Number of farmers Percentage 

Less rain 15 13.6 
No market 43 39.1 
No improved seed 27 24.6 
Less rain and no market 25 22.7 
Total 110 100 

X2  0.667 
p-value  0.881 

Respondents from Dimbe and Espungabera reported that the decrease in sorghum production 

was due to a lack of strong markets for sorghum and also low prices. Mabudo and Gunhe 

indicated that it was due to a lack of improved seed availability at the village while in Guro the 

main reason was insufficient rainfall. Mandie was the only location where a combination of 

insufficient rainfall and lack of markets was raised. 

3.5.4. Farmers’ trait preferences 

The results showed that different farmers preferred different traits in a sorghum variety. These 

were divided into plant and grain related traits. 

3.5.4.1. Plant trait preferences 

There was a significant difference (p<0.05) in plant traits preferred by farmers across all 

locations (Table 3-7). 
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Table 3-7 Test of significance for the various plant traits preferred in sorghum varieties 

  

Trait 

  

Test Value = 0  

 

X2 
t 

 

df 

 

Sig. (2-

tailed) 

 

Mean 

Difference 

 

95 percent 

Confidence 

Interval of the 

Difference 

Lower Upper 

Plant height 13.00 5 0.000 2.167 1.74 2.60 2.667 

Panicle insertion 3.73 5 0.014 2.500 0.78 4.22 0.000 

Leave colour 5.97 5 0.002 1.833 1.04 2.62 0.667 

Plant vigour 4.00 5 0.010 1.333 0.48 2.19 1.000 

2.667 
Stem size 4.00 5 0.010 1.333 0.48 2.19 

Leave position 4.57 5 0.006 1.833 0.80 2.87 2.667 

Plant use 4.39 5 0.007 3.000 1.24 4.76 1.000 

Regarding plant height, 89.1% of the farmers preferred short plants. This trait is associated 

with early maturing varieties. Gunhe was the only location where farmers (10.9%) chose 

average to tall plants (Table 3-8). For panicle insertion; big panicles were selected in Guro, 

Mabudo and Gunhe while in Mandie, Dimbe and Espungabera, they preferred big and long 

panicles. This trait is strongly associated with the harvest yield. 

Leaf colour was important to the farmers because it indicates how healthy the plant is. Dark 

green leaves were mostly selected by farmers in Mandie, Dimbe and Espungabera and 

corresponded to 61.8% of all interviewed farmers. On the other hand, 24.5% of the farmers 

specifically in Guro and Gunhe selected a light green colour. About 13.6% of the farmers in 

Mabudo had no leaf colour preferences indicating any colour of leaves (dark or light green). 

In terms of vigour, the majority of farmers (86.4%) selected vigorous plants in the field. Mandie 

farmers selected average plants meaning not too much vigour (13.6%). Regarding leaf 

architecture, 57.3% of the farmers selected open leaves, while 20% chose any leaf position 

and 22.7% preferred straight leaves. Guro, Dimbe and Gunhe farmers selected open leaves, 

while Espungabera and Mabudo preferred any leaf position. Mandie farmers were the only 

ones that preferred straight leaves. 
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In terms of plant use, construction (20.0%), and construction and animal feed (55.5%) were 

the major activities that used most of the plant materials after harvesting across all the 

locations. On the other hand, 13.6% of the farmers left the plant materials as residue in the 

field while some used the materials for both construction and field residue (10.9%). Farmers 

in Guro and Espungabera used the plant materials for construction, while Mandie and Dimbe 

farmers used the materials for construction and animal feed. Mabudo farmers left the plants 

as residue in the field and in Gunhe they used the plant materials for both construction and 

residue in the field. 

Table 3-8 Parameters selected by farmers in the sorghum plants 

Parameters Number of farmers Percent 

Plant height Short 98 

12 

89.1 

10.9 Average 

Panicle insertion Big 42 

68 

38.2 

68.8 Big and long 

Leaf colour Light green 27 

68 

15 

24.5 

61.8 

13.6 

Dark green 

Any  

Plant vigour Vigorous 95 

15 

86.4 

13.6 Average 

Leaf position Open leaves 63 

25 

22 

57.3 

22.7 

20.0 

Straight leaves 

Any  

Plant use Construction 22 

15 

61 

12 

20.0 

13.6 

55.5 

10.9 

Field residue 

Construction and animal feed 

Construction and field residue 

3.5.4.2. Grain related traits preferred by farmers 

The grain colour selected across locations was 100% white. Hard grain types were preferred 

by 83.3% of the farmers whereas 16.7% of the farmers preferred soft grain. The hard grain 

was selected in Guro, Dimbe, Espungabera, Mabudo and Gunhe while the soft grain was 

selected in Mandie.  

In respect to seed size, 66.7% of the farmers in Guro, Mandie, Espungabera and Mabudo 

chose big size and 33.3% of the farmers in Dimbe and Gunhe chose small seeded types 

(Table 3-9). On the other hand, 50% of farmers chose sweet grains, 33.3% indicated any taste 
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and 16.7% preferred bitter grain taste. Guro, Mandie and Mabudo farmers preferred sweet 

grains, Dimbe and Espungabera no taste preferred and Gunhe bitter taste. It was observed 

that 66.7% of the farmers used sorghum for brewing, food and animal feed while 16.7% used 

the grain for brewing or for food (Table 3-9). Farmers in Mandie, Dimbe, Espungabera and 

Gunhe used the grain for brewing, food and animal feed while in Guro they used it more for 

brewing and food and in Mabudo, only for brewing. 

Grain was stored for more than a year in Dimbe, Espungabera and Gunhe (50.0%) while in 

Mandie and Mabudo grain was stored for a year (33.3%). However, in Guro farmers stored 

the grain for only three months (16.7%). Additional characteristics considered in grain 

selection by farmers across locations included the duration of the grain in the granary, taste 

for beer, and cooking time. Guro, Dimbe and Espungabera farmers reported that the shelf-life 

in the granary is very important while in Mandie they reported that they preferred grain with a 

short cooking time and longer storage/shelf-life in the granary, whereas in Mabudo and Gunhe 

farmers indicated that they preferred grain that was good for brewing beer (Table 3-9). 

Table 3-9 Grain characteristics selected by farmers in sorghum  

Parameters Number of farmer Percent 

Grain colour White 110 100.0 

Hardness Hard 85 

25 

83.3 

16.7 Soft 

Size Big 62 

48 

66.7 

33.3 Small 

Taste Sweet 55 

12 

43 

50.0 

16.7 

33.3 

Bitter  

Any 

Grain use Brewing 15 

15 

80 

16..7 

16.7 

66.7 

Brewing and food 

Brewing, food and animal feed 

Storage Three months 15 

40 

55 

16.7 

33.3 

50.0 

One year 

More than a year 

Other 

characteristics 

Stay longer in granary (shelf-life) 58 

27 

25 

50.0 

33.3 

16.7 

Good for beer 

Cook quickly and stay longer in granary 
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3.5.4.3. Cost of producing the sorghum 

The production cost was calculated based on the hired labour for activities carried out on the 

farm. In Mussorize district, farmers did not hire labour for some of the activities. Results 

showed that the cost of producing a hectare of sorghum in the two districts was higher in the 

southern part of the province than in the northern (Table 3-10). 

Table 3-10 Cost of sorghum production activities in two districts 

Activity Guro District cost (MZN/ha) Mussorize District cost 

(MZN/ha) 

Land preparation                 3,100.00                           4,500.00  

Seedling/Planting                    600.00                           2,500.00  

Pesticide                    150.00                                       -    

Thinning out                 1,250.00                           1,250.00  

First weeding                    500.00                           1,250.00  

Second weeding                    750.00                                       -    

Granary preparation                    500.00                                       -    

Harvesting                    875.00                              800.00  

Transport                    300.00                                       -    

Threshing                 1,000.00                                       -    

Total                 9,025.00                         10,300.00  

Total difference (percent) 12.37 

Exchange rate 1 USD = 35 MZN (February, 2015) 

The total sorghum production cost in Mussorize district was 12.37% more than in Guro district 

where the land preparation, planting and first weeding were the most expensive activities 

(Table 3-10).  

In Mussorize district, some of the activities were not usually carried out using hired labour 

because the cost was too high. For example, pesticides were not commonly applied, and a 

second weeding was also not commonly practiced. In addition, granary preparation, transport 

and threshing were solely done by the families. 

3.5.4.4. Estimation of profitability 

The estimation of profitability was analysed assuming that family and hired labour had the 

same remuneration. The information used to estimate profitability is indicated below: 

Cost of producing sorghum = 9,0255.00 Mt/ha (Guro district) and 10,300.00 Mt/ha (Mussorize 

district) 
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Grain selling price in 2015 = 15,00 Mt/kg 

Average of production in 2015 [grain yield (kg/ha)] = 1500-2,000.00 kg/ha (Mussorize and 

Guro  districts respectively) 

 

Profitability =  [Grain yield (kg/ha) x selling price (Mt/kg)]  − [Production cost (Mt/ha)] 

 

1. Profitability Guro district = (2000 kg/ha x 15,00 Mt/kg) – (9025.00 Mt/ha)  

Profitability Guro district = 20975.00 Mt/ha 

2. Profitability Mussorize district = (1500 kg/ha x 15,00 Mt/kg) – (10,300.00 Mt/ha)  

Profitability Mussorize district = 12200.00 Mt/ha 

The estimation of profitability in the two districts showed that Guro had more profit when 

compared to Mussorize district. Although, most activities are paid using farm products, it is still 

be more profitable to grow sorghum in Guro.  

3.5.5. Constraints faced by farmers in sorghum production 

The respondents in the discussion mentioned different constraints affecting sorghum during 

the growing season. Constraints were divided into production constraints, pest and disease 

constraints, commercialization constraints, varieties used and other needs to improve their 

farming. 

3.5.5.1. Production Constraints 

The major constraint in the production mentioned was drought, as was experienced in the last 

5 years and indicated by 11.77% of the farmers. The other production constraints had to do 

with field operations and weeding, thinning out plants, threshing, sieving, cutting and 

transporting grain during and after harvest and corresponded to 5.88% each (Table 3-11). 

Table 3-11 Production constraints/challenges across locations as indicated by the farmers 

Constraint Percent 

Weeding 5.88 

Thinning and weeding 5.88 

Drought 11.77 

Threshing and sieving 5.88 

Weeding, cutting and transport 5.88 

Fungi  11.77 
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Grasshoppers  11.77 

Wild chickens 5.88 

Rats 5.88 

Low price in the market 5.88 

Unavailability of improved seed 5.88 

Price, seed and market 11.77 

Unavailability of markets and improved seed 5.88 

Mandie and Dimbe were the only locations where drought was a major concern. The farmers 

in these locations also listed weeding and thinning as other challenges.  Farmers in Mabudo, 

indicated that threshing and sieving were the main challenges while in Gunhe, it was cutting 

the plants before harvesting and transporting the harvest from the fields to the homes. 

For diseases and pests; fungi and grasshoppers were the major pests with 11.77% each. The 

other constraints included wild chickens and rats (5.88%) which were shown to cause serious 

damage in some sorghum fields (Table 3-11). Apart from rats, fungi and grasshoppers, there 

were also birds and stem borers as reported by farmers in Mandie, Dimbe and Gunhe. The 

fungal diseases were not specified but from the description given, they appeared to be downy 

mildew (Peronosclerospora sorghi) and ear rot (Fusarium graminearum). Espungabera 

farmers indicated the presence of rust (Puccinia purpurea) and stem borer (Chilo partellus) 

apart from the pests and diseases already mentioned above. 

3.5.5.2. Commercialization constraints 

The important constraints in sorghum commercialization were low selling prices of seed or 

grain, unavailability of seed and weak markets for sorghum (Table 3-11). Most farmers 

(11.77%) indicated a combination of price, availability of seed and markets as the most 

important constraints. These constraints were reported in Mandie, Guro and Mabudo. 

Espungabera farmers had a potential to produce sorghum but the main constraint was the low 

price of the grain on the market while in Gunhe farmers produced mainly for consumption and 

only sold when they had surplus. 

3.5.5.3. Sorghum varieties used 

The seed used in most of the locations were a mixture of local and improved varieties (Figure 

3-4). In Guro, Mandie and Dimbe farmers used a mixture of seeds while in Espungabera they 

used improved seeds and in Mabudo and Gunhe they used local seed only. 
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In Mabudo and Gunhe they were aware of the improved seed but its availability was one of 

the major constraints. Guro, Mandie and Dimbe farmers had acquired Macia variety about 10 

years ago and this explained the reason for the mixture of improved and local seed. 

 

Figure 3-4 Percentage of important traits for farmers across districts 

3.5.6. Improvement needed to increase sorghum production 

The major requirement by farmers across locations was increased yields of sorghum by use 

of improved varieties (Figure 3-4). Guro and Dimbe farmers preferred high yielding and early 

maturing varieties, may be due to the harsh climatic conditions in those areas. Mandie, 

Mabudo and Gunhe farmers required seed of improved varieties to increase the production, 

as they were faced with insufficient rainfall in their location in the last 2 years. Espungabera 

farmers indicated that sorghum markets needed to improve, especially the price of seed and 

the number of grain buyers. 

3.6. Discussion 

The study showed that the level of participation by men was higher than women across 

locations during the interviews. Mussorize did not have many women participating in the 

interviews of agricultural activities and this might be due to the fact that information about 

interview dates did not reach them in time for them to attend. In rural areas, women are 

responsible for most of the farming and household activities resulting in fewer numbers 

participating in surveys and group discussions when the husbands are present. This is 
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expected in these regions where there is a perception that men are responsible for cash crops 

and women for subsistence crops. It can also be attributed to the assumption that farm 

activities are a woman’s job while men have more free time and can attend different meetings 

including focus group discussions. The results agree with Doss (1999) that women are more 

involved in subsistence crop production than men. WorldBank (2006) reported in a study that 

most farmers are women, and extension staff should therefore reach out to women groups 

and guarantee that suitable technology is gender-oriented. However, the findings in this study 

revealed that both men and women were involved in sorghum production activities.  

The results also revealed that for the majority of activities, both men and women participated. 

However, specific activities such as clearing new lands for farming and granary building are 

perceived as men’s activities while milling the grains is regarded as a woman’s activity. In 

general, women participated in most of the activities, except clearing new land for farming and 

silo building in all districts. Men’s participation in various activities varied from district to district. 

This differs from the results reported in other studies where women were responsible for 

sowing, piling up of panicles, winnowing, threshing, processing and selling, while men were 

responsible for ploughing, opening the holes for sowing, picking and burning of weeds, stem 

cutting, seed selection and construction of granaries (Dossou-Aminon et al., 2014). Different 

results were reported by Tsusaka et al. (2015), where women were responsible for land 

preparation, harvesting and transportation of stalks while men were responsible for weeding.  

The involvement of women in planting, bird scaring, harvesting and post harvesting processing 

is common in many crops including sorghum (Muui et al., 2013). The participation of children 

in farm activities was to reduce labour costs for field operations and it depended on the number 

of children existing in the household as well as whether they were registered at school. In both 

districts, the selling of produce was done by men and women, but the money was kept and 

managed by women. Although women played a significant role in providing labour for most 

agricultural activities, both men and women were involved  (SOFA and Doss, 2011).  

In central Mozambique, the most important food crops are maize, cassava and sweet potatoes 

followed by sorghum, beans, millet and rice while cotton, groundnut and some cashew are the 

cash crops (WorldBank, 2006; Kiregyera et al., 2007). Due to harsh environments in the driest 

areas and actual climatic conditions, farmers tend to cultivate more of sorghum and pearl millet 

(Tsusaka et al., 2015). This study showed a diversity of crops produced in all locations but the 

most common were maize, sorghum, pigeon pea, cowpea, sweet potato, sesame and beans. 

The crops were produced for consumption as well as a source of income. The sector of cash 

crop farming was an important source of income growth, but there is need to develop markets 

and balance interest of out-growers (WorldBank, 2006). According to Barbier (1990), a cash 
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crop is a crop that may be sold locally or abroad where it can be a food or non-food product 

while subsistence crop refers to domestic production of basic staples.  

Farmers indicated that cereals such as sorghum, maize and pearl millet were mostly used as 

food security crops. These results are in agreement with findings of Benfica et al. (2014) that 

cereals are dominant among the aggregate food crops. A similar observation was made by 

Chipanshi et al. (2003) who reported that maize and sorghum are a good adaptive strategy 

under a changing climate and they are a food security option under farmers’ conditions. A 

crop’s importance tends to change over years due to changing climatic conditions. In 2003, 

sorghum was in 4th place after maize, cassava and rice (MADER, 2004). However, currently 

sorghum is the second most important cereal after maize in rural areas (Benfica et al., 2014). 

Tobacco and sesame are the two crops rising in economic importance in the country, 

particularly after a decrease of production in Zimbabwe (Walker et al., 2006). The results 

showed that cotton and sesame were important cash crops in the study areas. Farmers 

consider beans and vegetables as cash crops since they are produced and sold on the local 

market. According to Walker et al. (2006), important cash and export crops in Mozambique 

are tobacco, cashew, cotton, coconut, sugar cane and sesame. 

The farmers also indicated that sorghum is mostly used for consumption than selling when 

compared to other cereals. These results are in agreement with the findings of Tsusaka et al. 

(2015)  from a survey conducted in Tete province where sorghum, pearl millet, groundnut and 

cowpea were the most important crops for women while watermelon and pineapple were 

important for men. Crops such as peanuts, pigeon pea, cowpea and beans are mostly 

consumed fresh as vegetables. Among the crops, sorghum is one of the crops with no local 

markets available and it is mostly produced for consumption, thus confirming its role as a food 

security crop. According to Walker et al. (2006), sorghum has a role in food security for many 

farmers particularly in dry and non-maize producing areas. Groundnut is an important legume 

and mostly used as cash crop in more productive areas and as a subsistence crop in dry areas 

while cowpea and pigeon pea are mostly for subsistence (Walker et al., 2006; Basavaraj et 

al., 2015). The results of this study showed that farmers’ production can be improved, 

nevertheless since agricultural production is rainfed, weather variability will always affect 

production where no adaptable crops are used. 

The factors affecting sorghum production, as observed in this study, were land use, crop 

period in the field and grain yield. This information showed that the majority of farmers use 

small areas to produce sorghum and only a few of them use large hectarages. These factors 

affect more crops that are intercropped or mixed with other crops in each season. In terms of 

production volume statistics, the most commonly grown cereal crops in Mozambique are 
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maize, sorghum, rice and pearl millet in that order (MASA, 2015). According to Tsusaka et al. 

(2015), maize and sorghum farmers assign an average of 1.4-1.5 hectares of land to each 

crop in harsh environments, however, maize always yields less than sorghum and pearl millet. 

In a good rainfall season and on a new farm, sorghum yields can go up to 3.0 t.ha-1. This might 

be because the land has not been exhausted and is still endowed with enough nutrients for 

crop growth. This is in agreement with Taylor (2005) who reported higher yields (4.1 t.ha-1) 

when improved sorghum varieties were used in the short rainy season in Kenya. Sorghum is 

not only associated with drought-resistance, but it can also tolerate periods of water-logging. 

On the other hand, in a bad season, low yields of approximately 0.4 to 0.8 t.ha-1 may be 

realised. The low yield range, observed in this study is in agreement with results by Tsusaka 

et al. (2015) that, due to low and erratic rainfall in sorghum producing areas, yields fluctuate 

between 0.3-0.5 t.ha-1 (Tsusaka et al., 2015).  In the northern region of the country, sorghum 

is produced in an environment where rainfall can exceed 1200 mm per annum, whereas in the 

dry southern parts of the country,  it is not an important crop (Walker et al., 2006). Farmers 

reported that sorghum takes a long period in the field (6-8 months). In the northern part of 

Manica province, this was a major complaint from farmers; while in the southern region of the 

same province, it was an advantage to the farmers due to the intercropping system used.  This 

shows that, in the south, farmers need an early maturing variety while in the north; an 

intermediate to late maturing variety is preferred. In the past, sorghum was the most important 

food crop in Mozambique but due to marketing policies, farmers have shifted production 

gradually from sorghum to maize (Mucavele, 1988). The increase in production in most areas 

might be realised through improvement of sorghum markets in terms of prices and increase 

in number of buyers. 

It was also observed that farming practices are learned from old people or people with more 

experience in agricultural activities. Although, the government extension officers assist 

farmers with livestock farming and some crop activities such as vegetables and maize rarely 

do they give them information on sorghum and pearl millet. This might be due to lack of 

information and experience in crops such as sorghum by the young people and new extension 

staff.  

Farmers preferred traits such as short plant height, big panicles, stay green leaves and 

vigorous plants for plant aspect; while for grain, they preferred white, big, hard and sweet 

grain. Moreover, farmers preferred grain that was hard, had long shelf-life and with a good 

taste for brewing as well as less cooking time. These results are similar to findings from the 

northern part of the country, where farmers prefer flint grain typically found in local varieties 

compared to the softer and sweeter grain (Tsusaka et al., 2015). The storing period varies, 
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and storage is done at the fire place and in granaries but it is infested by post-harvest insects 

after a short time (Muui et al., 2013). In other studies, Buah et al. (2010) found that farmers 

selected varieties on the basis of good food quality, stable grain yield, brewing quality, 

earliness, and pest and drought tolerance. Moreover, environmental adaptability and yield 

stability are attributes preferred by farmers (Asrat et al., 2009). The grain size, colour and 

shape are considered as important traits from a marketing point of view as preferred types 

fetch higher prices (Basavaraj et al., 2015). Besides these traits, high productivity, good quality 

of dough and porridge, high market value, resistance to storage pests and drought are 

additional preferred traits (Dossou-Aminon et al., 2014). 

On the other hand, farmers in this study mentioned that the residues of the plants were used 

as animal feed and building material among other household uses. Farmers cultivate a diverse 

set of varieties to face stresses and meet diverse needs. Besides grain, sorghum biomass is 

appreciated for feed or construction (McGuire, 2008). This is also in agreement with 

observations by Basavaraj et al. (2015) who reported that farmers can use crop residues as 

fodder to enhance incomes through milk production. Other traits preferred by the farmers in 

the landraces grown are high yields, high vigour, good taste, ease of grain processing and  

cleaning, resistance to drought, early maturity, and resistance to birds and other pests (Muui 

et al., 2013).  

The farmers’ preferences were important criteria for adoption of new and improved varieties. 

In addition, involving the farmers in the initial stages of a breeding programme is useful for the 

adoption process. Attributes such as grain and plant uses might be considered in a breeding 

programme. The use of sorghum grain for beer brewing may be an option for future 

interventions by developing varieties with good malting qualities that can lead to demand from 

the beer industry.  

The results showed that drought was the main constraint faced by the farmers’ and had 

severely affected them for the last five years. According to the farmers, food crop production 

had declined by more than 40%, however, they continued to harvest something (though small 

quantities) from sorghum and pearl millet every year.  These  results agree with the findings 

of  Basavaraj et al. (2015) that the farmer’s constraints are related to moisture stress, yield 

variability, labour scarcity, marketing and cost of production. Furthermore, Dossou-Aminon et 

al. (2014a) identified climate variability as a constraint in sorghum production. Rain fluctuation 

and drought were the most important factors indicated by farmers. Crop adaptation is an 

essential aspect that will mitigate the future severity of climate change impacts on food 

production and there is a need to understand possible responses of Sub-Saharan African 

(SSA) crops to climate change (Schlenker and Lobell, 2010). 
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Besides drought; pests, diseases and commercialization were among the other challenges 

raised. Therefore, some improvements are needed to address these challenges. Fungal 

diseases were the main constraint across locations and their effect is severe when there is 

too much rain. In the dry season, sorghum is mostly affected by birds and wild chickens. 

Farmers did not use any chemical inputs to control pests and diseases. Apart from snares for 

the wild chickens and birds, these pests are scared off by children with noise of bottles and 

cans. According to Tsusaka et al. (2015), birds are the major constraint on sorghum and pearl 

millet production and mitigation is done by scaring off using family labour. These findings are 

similar with observations in Marara (Tete) where farmers control birds by shouting and 

throwing stones (Muui et al., 2013; Tsusaka et al., 2015). In Kenya, the major farmers’ 

constraint in sorghum production are shoot fly, birds, ants, aphids, borers, smut and honey 

dew (Muui et al., 2013).  

The commercialization of farm products is one of the farmers’ targets, but it was noticed that 

the farmers were also involved in other off-farm activities for income generation because of 

poor market access and a decline in crop production levels. Poor market access could be 

caused by lack of infrastructure such as good roads to the villages. The engagement in 

activities such as off-farm activities might have an undesirable influence in sorghum farming 

because they are more profitable and attractive (Tsusaka et al., 2015). It was observed across 

the six locations that both men and women were involved in selling of the products, but that 

women were generally less able than men to participate in economic opportunities because 

of their heavy workloads than men. In addition to farming activities, they have to search for 

water, care for the children and other household activities thus limiting their participation in 

economic activities (Guanziroli and Frischtak, 2011). Thus, men were more involved in 

business or market activities than the agricultural work itself when compared to women. 

Identification of improved varieties was difficult for some farmers because they use the short 

stature of the plant to relate with Macia variety. It was only in Espungabera that farmers used 

improved sorghum seed. This was because its location is on the border town with Zimbabwe 

whereby the market is influenced by the neighbouring country. The government programme 

also once distributed improved seed of Macia variety during the driest seasons, but not all 

villages received it. The genetic purity of the varieties in the six locations was low probably 

because of seed mixtures since farmers recycle seed every season. Additionally, farmers lack 

of resources to buy inputs, including seed, might be the main reason for not using improved 

seed, and the ultimate result is decreased sorghum production. Some of the main factors 

responsible for decline in sorghum production were lack of seed, use of unimproved varieties 

and inappropriate marketing policies (Mucavele, 1988). Use of improved varieties is extremely 
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important for sorghum to compete with many new crops that have widespread adaptability 

across varying conditions. Higher yields are essential, not only for rural food security but also 

for increasing commercialisation (Taylor, 2005). Evidently, continually increasing the farming 

area of sorghum will be sustainable in the long-term, particularly for semi-arid areas of Africa. 

It was also observed that the profitability of sorghum production is not as high as it looks, and 

still challenges such as availability of stable market exist. On other hand, farmers produce 

sorghum more for self-consumption and very few households market their sorghum.  This 

could be due to price and demand of sorghum in the market that is still low. The use of poor 

crop management, low yielding varieties and no fertilizer on the fields are factors that might 

influence the low productivity of the crop. These could be to unavailability and high cost of the 

inputs in the districts. The district of Guro had high profit than Mussorize district. This shows 

that farmers make profit from sorghum production although the production still low. Baiyegunhi 

and Fraser (2009) reported similar results when they calculated profitability in sorghum 

production in three villages in Nigeria. Rosenzweig and Binswanger (1992) supported the idea 

that profitability by farmers is influenced by aversion of risks, their capital and variability of 

rainfall. Risk-averse farmers prefer a combination of rotation between crops compared to 

planting a single crop (Willims et al., 2000). 

3.7. Conclusion 

Farmers select varieties based on their needs and adaption of the variety to the farming 

system. The important attributes preferred by farmers include high grain yield, food quality and 

use of the harvested products. The use of early to intermediate maturity sorghum varieties by 

farmers could contribute to improvement in production levels for this crop. Such varieties might 

have additional traits, for example, white grains that are more preferred for food and brewing. 

Extension staff can also advise the farmers on which technologies they can use to improve 

sorghum productivity and access to markets. The involvement of more women in sorghum 

production and marketing could help promote sorghum as an industrial and food crop in the 

country. This could also improve quality of seeds used in sorghum production with a market 

orientation point of view. Breeders could improve varieties by responding to the farmers’ needs 

such as by incorporating resistance to pests and diseases as well as tolerance to drought. 

Similarly, the varieties could have good storability because it is one of the farmer’s concerns. 
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4. Identification of important morphological traits in 

Mozambican sorghum germplasm using multivariate analysis 

Abstract 

Classification of sorghum breeding materials based on multiple crucial characters is important 

towards the possible formation of homogeneous groups of genotypes, and groups that can be 

exploited in the identification of parents for use in a breeding programme. The objective of this 

study was to determine the morphological characters that distinguish desirable breeding 

material in the National Sorghum breeding programme and group the genotypes according to 

similarity. Principal component analysis (PCA) and cluster analysis were used to establish the 

relationships among germplasm and the Shannon Diversity index was used to quantify the 

level of diversity. Fifteen cytoplasmic male sterile (CMS) lines and ten male fertile (restorer - 

R) lines were used. The experiment was conducted at Sussundenga Research Station over 

two seasons and laid out in a 13 x 2 alpha lattice design replicated twice. Morphological 

characterization was carried out based on the International Board for Plant Genetic 

Resources/ International Crops Research Institute for the Semi-Arid Tropics descriptor list. 

Cluster analysis grouped genotypes into four clusters based on days to 50% flowering, 1000 

seed weight, stay green, seed size, panicle exsertion, midrib colour, leaf rolling, leaf 

orientation, leaf colour, inflorescence compactness, head shape, glume cover, glume colour, 

awn and grain colour. Five principal components cumulatively accounting for 58.5% of the 

total variation were observed from the PCA analysis as significant contributors, whereas the 

remaining components individually made a negligible contribution. The diversity index showed 

high diversity for seven characters, including days to 50% flowering, thousand seed weight, 

seed size, leaf colour, inflorescence compactness, head shape and presence of awns. The 

variation in morphological characteristics showed the importance of knowing the germplasm 

diversity, especially for characters highly preferred by farmers such as earliness, grain yield, 

plant height and grain colour. These results have implications in selecting parents for use in 

sorghum improvement through breeding.  
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4.1. Introduction 

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop worldwide that is used for 

food, feed, fibre and biofuel. There are different types of sorghum depending on intended use, 

viz.  grain sorghum, dual purpose (grain and fodder) sorghum, fodder sorghum, forage 

sorghum, and sweet stalk sorghum (Kumar et al., 2008; Reddy et al., 2012). Moreover, 

classification of sorghum is also based on uses and importance where the relative height and 

grain/stover productivity are considered. 

Central Africa is the origin of sorghum and is where it was domesticated (de Wet and 

Huckabay, 1967; House, 1985; House, 1995) and continues to be cultivated. The cultivated 

and wild sorghums demonstrate greatest genetic diversity of this crop (Ayana and Bekele, 

1999). In Ethiopia, the centre of diversity of sorghum, 15 cultivated sorghum races have been 

reported (Mengesha, 1975). Within these 15 races, 5 races are primary  (bicolor, caudatum, 

guinea, durra and kafir) and 10 are intermediates (Harlan and De Wet, 1972). The most 

cultivated race in southern and eastern Africa is guinea (Folkertsma et al., 2005; Lacy et al., 

2006). However, Ramathani et al. (2011) reported that all five primary races are cultivated in 

Sub-Saharan Africa. Therefore, it is important to classify the germplasm used in breeding 

programmes to make it easy for plant breeders to identify and select valuable genetic 

resources for direct use by farmers and for use in their breeding programmes. 

There are many mathematical methods that permit grouping of species according to their 

characteristics. The common methods are the multivariate analyses that include principal 

component analysis (PCA) and cluster analysis which are used to establish the relationship 

among germplasm and Shannon diversity index which is used to determine the level of 

diversity in the germplasm. The PCA is a strong tool, which reduces the dimensionality of the 

data before applying clustering (Derksen et al., 1995; Yeung and Ruzzo, 2001). Additionally, 

cluster analysis is used for pattern recognition and as a discriminant method that reveals 

structure and relationships in the data (Anderberg, 2014). The Shannon diversity index 

measures unequal weights in a community through decomposing the measurements into 

expressive components (Jost, 2007). One of the differences between principal component 

analysis and cluster analysis is that the few PCs containing most of the variation certainly do 

not capture most of the cluster structure (Yeung and Ruzzo, 2001). This implies that the two 

methods can complement each other to enhance the results. 

The importance of estimating genetic diversity is to identify similar groups of genotypes that 

facilitate conservation, evaluation and utilisation of the genetic resources. The diversity of 

different germplasm is used as a possible source of genes that can improve the performance 
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of cultivars in terms of uniqueness and distinctness of the phenotypic and genetic constitution 

(Geleta et al., 2006). The phenotypic diversity estimation may be based on agro-morphological 

traits to evaluate the magnitude of diversity among genotypes using multivariate approaches 

such as cluster and principal component analysis. These methods use the morphological 

characters to provide information about the similar groups and the information generated can 

be used to identify genotypes that have desirable characters for breeding purposes such as 

hybridization for pedigree breeding. Chikuta et al. (2015) used multivariate analysis 

approaches to select sorghum genotypes exhibiting high levels of grain and fodder traits from 

morphological and agronomic data, while Mujaju and Chakauya (2008) used multivariate 

analysis to categorise agro-morphological characters of sorghum landraces to explain 

production factors and uses of sorghum at farmers’ level. 

Genetic diversity studies in sorghum have been evaluated through phenotypic data (Mujaju 

and Chakauya, 2008; Godbharle et al., 2010; Seetharam and Ganesamurthy, 2013; Chikuta 

et al., 2015) and molecular marker data (Madu and Uguru, 2006; Ali et al., 2008; Muraya, 

2014). However, there is no information on the genetic diversity of sorghum germplasm in 

Mozambique. The objective of this present study was to identify important morphological traits 

that distinguish desirable breeding material in the National Sorghum breeding programme. 

4.2. Materials and Methods 

4.2.1.  Plant material 

Fifteen cytoplasmic male sterile (CMS) lines and ten male fertile (restorer- R) lines were used 

in this study (Table 4-1). These breeding lines were sourced from ICRISAT and from the 

National Sorghum programme. Maintainer lines (B-lines) were planted next to the A-lines to 

facilitate grain formation by male sterile lines, thereby enabling collection of data for panicle 

and grain traits. 
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Table 4-1 List of sorghum lines used in the study 

Genotype no Line Genotype no Line 

1 150B 14 MA6B 

2 8607B 15 MACIA 

3 860IB 16 MZ 2R 

4 A6352R 17 MZ 30R 

5 CK 60B 18 MZ 37R 

6 ICSA 12B 19 SDS 260R 

7 ICSA 19B 20 SDS 6013R 

8 ICSA 21B 21 SPI 38B 

9 IS 14257R 22 SPL9B 

10 IS 21458R 23 TX 623B 

11 IS 7179R 24 TX 628B 

12 LARSVYT 19R 25 TX 630B 

13 LARSYT46B 26 TX 631B 

4.2.2.  Location and experimental design 

The experiment was conducted at Sussundenga Research Station (SRS) over two seasons. 

The lines were planted in January 2015 and December 2016. This location covered the mid-

altitude mega-environment. Table 4-2 summarizes the location and annual average rainfall 

per season. The maximum temperature of 29.5oC and minimum of 17.6oC characterize the 

location (MAE, 2014). The majority soil type in SRS is red clay soil but sandy soils are also 

found in some areas. 

Table 4-2 Characteristics of the location and season used for evaluation of germplasm  

Location Season Code 

Latitude 

(oS) 

Longitude 

(oE) 

Altitude 

(m) 

Rainfall* 

(mm) 

Sussundenga 2015/16 Sus16 19o18’ 33o15’ 635 522 

Sussundenga 2016/17 Sus17 19o18’ 33o15’ 635 989 

  *Rainfall referred to the amount received during the crop growing season 

The trial was laid out in a 13 x 2 alpha lattice design with two replications. Each plot had four 

rows that were 4 m long and spaced 80 cm apart, with an in-row spacing of 25 cm. The crop 

management was according to recommended practices.  

4.2.3.  Data collection 

Morphological characterization was done using International Board for Plant Genetic 

Resource (IBPGR) and International Crops Research Institute for the Semi-Arid Tropics  

ICRISAT (1993) descriptor list. The characteristics used for phenotypic characterization are 
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described in Table 4-3. The data were collected and recorded from the two middle rows of 

each plot. Six plants per accession were randomly selected for observations and 

measurements. 

4.2.4.  Data analysis 

The analysis of variance for the parameters was used to estimate the mean squares effects 

using the GLM procedures in SAS software 9.3 version (SAS, 2011), according to the model:  

 

     

Where: Pijk is the phenotypic value of the ith accession, µ the grand mean, gi the genetic effect 

for the ith accession, rj the replication effect, bk the block effect in each replication and eijk the 

residual error. 

 

Cluster analysis was performed using unweighted pair-group method with arithmetic average 

(UPGMA) and dendrogram constructed using the GenStat statistic software version 18th 

(Payne et al., 2016). Principal component analysis (PCA) was performed using the R statistics 

software (R Team, 2014) where the biplot of multivariate data was constructed.  

The diversity among germplasm was determined from morphological frequencies using the 

method suggested by Grenier et al. (2000). The characters observed were used to calculate 

Shannon-Weaver index of diversity (H’) from the frequency distribution for the accessions and 

grouped into different classes according to Perry and McIntosh (1991). The calculation was 

done as:   H’ = 1-  

Where: H’ is Shannon Diversity Index; pi is the proportion of accessions in the ith class of n-

class character; n is the number of phenotypic classes of traits. 

The H’ estimates were done using GenStat statistic software version 18th (Payne et al., 2016) 

and Microsoft Excel. 

  



75 

 

Table 4-3 Descriptors used for morphological characterization of sorghum germplasm. 

Characteristic Descriptor and code 

Stay green 

 

Seed size 

Very slight senescent (1), leaves senescent 25% (2), leaves senescent 50% (3), leaves senescent 

75% (4) and complete senescent (5) at harvest stage 

Small< 5mm (1), medium< 5-10mm (2), large> 10mm (3) 

Leaf rolling Non- rolled leaf (1), 25% leaves rolled (2), 50% leaves rolled (3), 75% leaves rolled (4) and all 

leaves rolled (5) 

Panicle 

exsertion 

Slightly exserted <2cm (1), exserted 2-10cm (2), well exserted >10cm (3), peduncle re-curved (4) 

Leaf colour Dark green (1) and light green (2) 

Leaf orientation Erect (1) and dropping (2) 

Inflorescence 

compactness 

Very loose erect (1), very loose dropping (2), loose erect (3), loose dropping (4), semi loose erect 

(5), semi loose dropping (6), semi compact elliptic (7), compact elliptic (8), compact oval (9), half 

broom corn (10) and broom corn (11) 

Head shape Elliptical (1), oblong (2), round (3), semi-loose (4) and loose (5) 

Midrib colour White (1), dull green (2), yellow (3), brown (4) and purple (5) 

Grain colour Red (1), yellow (2), brown (3), white (4), light orange (5), white with orange (6) and white and red 

(7), cream (8) 

Awns Absent (1) and present (2) 

Glume colour White (1), red (2), purple (3), black (4), grey (5), brown (6), dark brown (7) 

Glume cover 25% grain covered (1), 50% grain covered (2), 75% grain covered (3), 100% grain covered (4) 

and glume longer than grain (5) 

Source: adapted from IBPGR/ICRISAT, 1993 

4.3. Results 

4.3.1. Analysis of variance 

Analysis of variance showed highly significant differences (P≤0.01) among genotypes for most 

of the characters measured except for the grain colour, glume colour and presence of awns 

(Table 4-4). 
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Table 4-4 Mean squares and variability parameters for various characters of sorghum 
genotypes 

Characters MS GV PV h2
b H' 

Days to 50% flowering 764.79*** 182.66 216.83 84.2 3.25 

1000 seed weight (g) 27.99*** 5.37 11.88 45.2 3.25 

Stay green 2.25*** 0.56 0.58 96.2 3.21 

Grain colour 7.43 1.73 2.24 77.2 3.21 

Seed size 1.55*** 0.35 0.50 69.1 3.24 

Panicle exertion 3.66*** 0.87 1.06 81.3 3.20 

Midrib colour 3.62*** 0.90 0.92 97.4 3.19 

Leaf rolling 2.01*** 0.46 0.64 71.1 3.21 

Leaf orientation 1.79*** 0.44 0.47 92.8 3.21 

Leaf colour 1.08*** 0.23 0.37 63.2 3.23 

Inflorescence 13.36*** 3.16 3.90 81.0 3.24 

Awn 1.78 0.19 1.23 15.1 3.25 

Head shape 3.83*** 0.90 1.12 80.1 3.23 

Glume colour 16.06 3.76 4.79 78.5 3.21 

Glume cover 1.76*** 0.43 0.47 92.8 3.21 

***, **, * significant at 0.1, 1 and 5% respectively. MS= mean square, GV= genotypic variance, 
PV= phenotypic variance, h2

b= Heritability broad sense and H’= Shannon-Weiner 
Diversity index  

4.3.2. Morphological characterization 

Days to 50% flowering ranged from 81 days to 116 days. Line 150B had the least number of 

days (81) while the lines A6352R and MA6B had the highest number of days (116). For the 

thousand-seed weight, line ICSA21B had a weight of 13.7 g representing the lowest whereas 

IS 7179B and SP 9B recorded 21.5 g and 21.1 g, respectively, representing the highest values 

(Table 4-5). 

Regarding the stay green character, 65.4% of the lines had 25% of their leaves senesced, 

30.8% of the lines had very slight senescence, whereas 3.8% had 50% of their leaves 

senesced. The most senesced genotype was IS 7179R where by harvesting time, 50% of the 

leaves were senesced. The majority of lines (65%) had white grain colour, 11% had creamy 

grains, while the remaining lines had red (8%), brown (8%) and light orange (8%) grains. In 

respect to seed size, most lines were medium size although lines SDS 6013R, SPL 38B, MZ 

2R and IS 7179R were on average, large seeded.  Panicle exsertion was mostly between 2 

and 10 cm (42.3%), however, some had more than 10 cm (34.6%), and fewer exserted below 

2 cm (23.1%). 
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Furthermore, midrib colour presented dull green colour in the majority of lines (53.8%), while 

white midrib colour was present in 42.3% of the lines and 3.8% were brown.  Similar 

percentages were observed for leaf rolling characteristic, where 53.8% had their leaves rolled 

by 25%, 42.3% non-rolled leaves, and 3.8% had leaves rolled by 50%. Likewise, regarding 

leaf orientation and colour, the majority of genotypes had dark green leaves and dropping 

(61.5%) whilst some had erect and light green leaves (38.5%). 

For inflorescence compactness (Figure 4-1), the compact elliptic form was the most abundant 

(46.2%), followed by the semi compact elliptic (26.9%), compact oval (15.4%); and semi loose 

dropping, semi loose erect and loose erect each with 3.8%. On the other hand, 42.3% of the 

lines had round shaped heads, followed by semi loose shape (38.5%) and oblong shape 

(19.2%). About 96.2% lines in this study had no awns whereas 3.8% displayed awns as 

observed in line IS 7179R.  Furthermore, different glume colours and glume covering 

percentages were observed. Most of the lines displayed grey glume colour (73.1%) while other 

lines presented red glumes (11.5%), black glumes (7.7%) and brown glumes (7.7%). The grain 

glume covering was 25% for the majority (53.8%) of lines, and other lines (46.2%) had 50% 

covering. 

Figure 4-1 Inflorescence compactness of different genotypes. Compact elliptic (a), semi 
compact elliptic (b) and semi loose erect (c) 

  

A B C 
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Table 4-5 Means for the morphological characters used in the study for each genotype 

Line DF SW SS PE MC LR LO LC IF 

150 B 81 18.1 2 3 2 2 2 2 8 

8607 B 101 17.1 3 2 1 1 2 1 7 

860I B 88 16.1 2 3 2 2 1 2 8 

A6352 R 115 20.9 2 3 2 2 1 2 8 

CK 60 B 107 17.6 2 2 2 2 1 1 5 

ICSA 12 B 106 19.1 2 3 2 2 2 1 7 

ICSA 19 B 114 16.7 2 3 2 1 2 2 7 

ICSA 21 B 104 13.7 2 3 2 1 2 2 8 

IS 14257 87 17.2 3 1 2 2 2 2 8 

IS 21458 107 20.1 2 2 1 2 2 2 6 

IS 7179 94 21.5 3 3 1 1 1 2 8 

LARSVYT 19 R 97 16.4 2 2 1 2 2 1 8 

LARSYT46 B 87 20.3 2 2 1 2 2 2 8 

MA6 B 116 18.2 2 2 1 1 1 1 7 

MACIA 94 16.4 2 3 1 1 1 2 8 

MZ 2 106 18.4 3 2 2 1 2 1 9 

MZ 30 112 16.5 2 1 1 2 1 1 8 

MZ 37 101 16.8 1 2 2 1 2 2 7 

SDS 260 R 94 18.7 2 2 4 2 1 1 3 

SDS 6013 R 106 16.8 3 1 1 2 2 2 7 

SPI 38 B 98 18.2 3 3 2 1 1 2 7 

SPL9 B 104 21.1 2 2 2 1 2 1 8 

TX 623 B 103 20.3 2 1 1 1 2 2 8 

TX 628 B 105 20.2 2 2 2 3 2 1 9 

TX 630 B 88 19.2 2 1 2 2 1 2 9 

TX 631 B 87 17.6 2 1 1 2 2 2 9 

LSD 5.8 2.5 0.4 0.4 0.2 0.4 0.2 0.4 0.8 

CV (%) 5.8 14.0 17.9 22.0 9.4 27.9 11.8 24.1 11.6 

SED 2.9 1.3 0.2 0.2 0.1 0.2 0.1 0.2 0.4 
DF= days to flowering, SW= 1000 seed weight, SS= seed size, PE= panicle exsertion, MC= midrib 

colour, LR= leaf rolling, LO= leaf orientation, LC= leaf colour, IF= inflorescence compactness. 

4.3.3. Variability and heritability of the characters 

The genetic variance, phenotypic variance and heritability estimates are presented in Table 

4-4. The phenotypic variance was higher than the genetic variance for all characters. Higher 

estimates were observed for days to 50% flowering, thousand seed weight, glume colour and 

inflorescence compactness. The other characters such as stay green, seed size, leaf rolling, 

leaf colour and glume cover presented lower estimates. 

Very high heritability estimates were obtained for stay green and midrib colour with 96.2% and 

97.4%, respectively. Glume cover and leaf orientation also had very high heritability estimates 
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of 92.8% each. The characters with heritability estimates below 50% were thousand seed 

weight and presence of awns with 45.2% and 15.1%, respectively. 

4.3.4. Cluster analysis 

The results of cluster analysis are presented in Figure 4-2 (genotypes names in Table 4-1). 

Lines 8 (ICSA 21B), 23 (TX 623B), 22 (SPL 9B), 20 (SDS 6013R), 24 (TX 628B), 10 (IS 

21458R), 16 (MZ 2R), 6 (ICSA 12B) and 5 (CK 60B) were grouped together (Cluster I). The 

second group (cluster II) constituted lines 17 (MZ 30R), 7 (ICSA 19B), 14 (MA 6B) and 4 

(A6352R). The third group (Cluster III) included lines 19 (SDS 260R), 15 (Macia), 11 (IS 

7179R), 21 (SPL 38B), 12 (LARSVYT 19R), 18 (MZ 37R) and 2 (8607R). The fourth group 

(Cluster IV) comprised of lines 25 (TX 630B), 13 (LARSVYT 46B), 26 (TX 631B), 9 (IS 

14257R), 3 (8601B) and 1 (150B). Cluster I contained the largest number of B and R lines 

from different groups, followed by Cluster III which was made up of only R lines. Cluster IV 

grouped the majority of B lines and only one IS 14257R line.  The least number of lines was 

found in Cluster II. 
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Figure 4-2 Dendrogram of 26 sorghum lines showing genetic similarity based on 
morphological characters (genotypes names are presented in Table 4-1) 

Table 4-6 presents cluster means for the various characters that were measured or observed. 

Cluster I had lines with an average of 105 days for 50% flowering. Average seed weight in this 

cluster was 18.6 g per thousand grains, with medium seed size and plants with 25% senesced 

leaves at harvest maturity. Panicle exsertion was 2-10 cm with dark green and dropped leaves. 

The leaves were 25% rolled and midrib colour was dull green. The head was round, semi-

compact elliptic inflorescence, awn less with white grains. The grains were 25% covered with 

purple glumes.  

Cluster II contained lines with a longest duration to 50% flowering. The lines had an average 

of 114 days for flowering and a mean of 18.1 g for thousand seed weight. The stay green 

character rating was on average 25% leaves senesced at harvesting maturity. Seed size was 

medium and panicle was exserted between 2 cm and 10 cm. Additional characters included 

non-rolling and erect leaves with a dull green midrib. The leaves were dark green and 

inflorescence compactness was the semi compact elliptic category. Head shape was on 

average round with white grains, awn less with purple glumes covering 25% of the grain.  

I 

IV 

III 

II 
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Days from planting to 50% flowering averaged 97 in Cluster III and plants produced medium 

sized seed weighing on average 17.9 g per thousand grains. The plants stayed green until 

harvest maturity (25% senesced leaves) with dull green midrib and no rolling leaves, erect 

oriented and light green. The panicles were 2-10 cm exserted with semi compact elliptic 

inflorescence that was round in shape. The grains were white with no awns but covered 25% 

with black glumes.  

Cluster IV consisted of early flowering group with an average of 86 days to 50% flowering. 

The size of seeds was medium with an average weight of 18.1 g per thousand grains and 

plants having 25% senesced leaves at harvest maturity. The leaves were light green, 25% 

rolled, dropped with a dull green midrib. The panicles were exserted 2-10 cm with round and 

compact elliptic inflorescence, and awn less. The grains were light orange and covered 50% 

with grey glumes 

Table 4-6 Cluster means for morphological characters measured in the 26 sorghum 
genotypes 

  Cluster 

 I II III IV 

Character n = 9 n= 4 n=7 n=6 

Days to 50% flowering 105 114 97 86 

1000 seed weight (g) 18.6 18.1 17.9 18.1 

Stay green 2 2 2 2 

Seed size 2 2 2 2 

Panicle exsertion 2 2 2 2 

Midrib colour 2 2 2 2 

Leaf rolling 2 1 1 2 

Leaf orientation 2 1 1 2 

Leaf colour 1 1 2 2 

Inflorescence compactness 7 7 7 8 

Head shape 3 3 3 3 

Glume cover 1 1 1 2 

Glume colour 5 3 4 5 

Grain colour 4 4 4 5 

Awn 1 1 1 1 
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4.3.5. Principal component analysis 

The PCA analysis showed that 58.5% of the total variation was accounted for by five 

components (Table 4-7) and the first component had the major contribution of 15% to the 

variation. Variation in the first component was mainly from the positive eigenvector loadings 

of head shape, days to 50% flowering and negative loadings of leaf colour, leaf orientation 

and inflorescence compactness. The second component contributed 13% to the variation 

mainly from the positive loadings of head shape, panicle exsertion, midrib colour, glume colour 

and negative loadings of leaf rolling and inflorescence compactness. 

The variation in the third component (12.2%) was due to positive loadings of midrib colour, 

grain colour and days to 50% flowering while the negative eigenvector loadings were due to 

stay green and presence of awns. Positive loadings of days to 50% flowering and the 

thousand-seed weight contributed 9.5% to the total variation of the fourth component with high 

negative loadings of seed size. The fifth component variation (7.9%) was due to positive 

loadings of glume colour, glume cover and negative loadings of inflorescence compactness 

and leaf colour. 
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Table 4-7 Principal components and eigenvector loadings for the morphological characters 

Principal Components 
Component 

1 
Component 

2 
Component 

3 
Component 

4 
Component 

5 

Eigen vectors 
(loadings)      

Head shape 0.35 0.33 -0.25 0.15 0.11 

Stay green -0.17 -0.48 -0.37 -0.33 0.11 

Leaf rolling -0.22 -0.63 0.20 -0.26 0.14 

Panicle exsertion 0.13 0.38 0.11 -0.40 -0.14 

Leaf colour -0.41 0.23 0.18 -0.12 0.37 

Leaf orientation -0.36 0.11 0.26 0.15 -0.20 
Inflorescence 
compactness -0.35 -0.34 0.18 -0.16 -0.30 

Midrib colour 0.28 0.30 0.31 -0.27 0.17 

Grain colour -0.28 0.24 0.38 -0.25 -0.19 

Awn -0.28 0.30 -0.43 -0.15 -0.14 

Glume colour -0.28 0.36 0.21 0.19 0.41 

Glume cover -0.24 0.20 -0.18 0.16 0.46 

Seed size -0.20 -0.17 0.27 -0.77 0.20 
Days to 50% 
flowering 0.31 -0.26 0.30 0.62 0.17 

1000 seed weight (g) -0.18 0.19 -0.18 0.53 0.17 

Proportion of variance 
(%) 0.150 0.139 0.122 0.095 0.079 
Cumulative proportion 
(%) 0.150 0.289 0.410 0.506 0.585 

Characters such as head shape, midrib colour, panicle exsertion, glume colour, presence of 

awns, grain colour, glume cover, and thousand seed weight were positively correlated. 

Negative correlations were found between the characters days to 50% flowering, leaf colour, 

seed size, stay green, grain colour, thousand seed weight, awn presence, glume colour and 

inflorescence compactness (Figure 4-3). A strong positive correlation was found between the 

characters glume cover, glume colour, presence of awns and thousand seed weight. On the 

other hand, there was a strong correlation between the characters head shape, midrib colour 

and panicle exsertion. A strong negative correlation was found between inflorescence 

compactness, head shape, midrib colour and panicle exsertion. The negative correlations 

were found between the characters head shape and inflorescence compactness as well as 

between days to 50% flowering and seed size. These results showed that there is a correlation 

between some morphological characters measured in the study. 
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Figure 4-3 Biplot of the first and second principal components (Comp. 1 and Comp. 2) of 

morphological characters in the study. 

 

DF= days to flowering, SW= 1000 seed weight, SG= stay green, GC= grain colour, SS= seed size, PE= 
panicle exsertion, MC= midrib colour, LR= leaf rolling, LO= leaf orientation, LC= leaf colour, IF= 
inflorescence compactness, Aw= presence of awns, HS=head shape, GCl= glume colour, GCv= glume 
cover 
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4.3.6. Diversity index 

The Shannon Diversity Index (H’) was estimated to compare the morphological characters 

used in the study (Table 4-4). The mean of Shannon Diversity index of the characters was 

3.22. The H’ of stay green, panicle exsertion, midrib colour, leaf rolling, leaf orientation, glume 

colour, glume cover and grain colour were on par with the mean. Days to 50% flowering, 

thousand seed weight, seed size, leaf colour, inflorescence compactness, head shape and 

presence of awns were found to have H’ greater than mean. The last seven characters showed 

high diversity when compared to the first eight characters.  

4.4. Discussion 

The results showed highly significant differences among genotypes for most of the characters 

measured except for grain colour, glume colour and presence of awns. Days to 50% flowering 

ranged from 81 for line 150B to 116 days recorded for A6352R and MA 6B. The flowering 

period among genotypes was almost a month and this might be attributed to a mixture of 

genotypes with different genetic backgrounds and different responses to environmental 

conditions. A study by Craufurd and Peacock (1993) characterised genotypes on responses 

to temperature and photoperiod,  and they found that variation in flowering period was affected 

by photoperiod and environment adaptation. Water stress also has an influence on days to 

flowering in as much as it increased the period between panicle initiation and flowering by 

retarding the rate of panicle development (Craufurd et al., 1993). Seed size in this study was 

mostly medium, although some lines had large seeds. For thousand seed weight, ICSA21B 

had the lowest weight (13 g), whereas IS 7179B and SP 9B had the highest weights of 21.5 g 

and 21.1 g, respectively. The fact that most of the genotypes were medium sized imply lack 

of variation in seed size. There is, therefore, no evidence in this study to suggest that seed 

weight was influenced by seed size. Seed weight has been reported to be positively correlated 

to seed size and yield (Evans and Bhatt, 1977; Ezeaku and Mohammed, 2006). Seed size 

may be considered as an important factor when selecting seed due to plasticity associated 

with the seed to complete different growth stages (Sadras, 2007).  

As far as leaf orientation and leaf rolling are concerned, the majority of lines had dropped 

orientation and rolled leaves. These characteristics might be influenced by a short period of 

drought during the growth season. On the other hand, some lines did not change the leaf 

orientation and rolling. Water deficit, high air temperature and sunlight affect leaf rolling in 

plants (Kadioglu and Terzi, 2007). Regarding the stay green character, 65.4% of the lines had 

low levels of senescence (25% of their leaves senesced) under optimal growing conditions. 

Additionally, Burke et al. (2010) found that the best way to identify stay green line (BTx642) is 
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to evaluate in well-watered environments. However, stay green trait could be affected by pre-

flowering or post-flowering drought stress (Burke et al., 2013). The stay green trait is an 

important component when breeding for drought tolerant crop and photosynthesis 

components (Thomas and Smart, 1993). It also improves adaptation to drought and respond 

to yield under different agro-ecological conditions of sorghum (Borrell et al., 2000). The 

majority of grain exhibited white colour and it was observed as one of the preferred 

characteristics by farmers in a PRA study (Mulima, unpublished). White grain colour was 

indicated by farmers to be associated with preferences of porridge colour and taste (Vom 

Brocke et al., 2010). Seed size and seed colour are the important traits to farmers during 

variety selection (Odendo et al., 2001). Therefore, selection of a variety has to meet specific 

farmer requirements in order to cater for local food industrial requirements as preferred by the 

final consumer (Dicko et al., 2006). 

Inflorescence compactness was dominated by the compact elliptic type with round head 

shape. The inflorescence structure is an essential element for breeders due to the contribution 

of it to the yield, stability and quality of the grain (Brown et al., 2006).  Additionally, it was 

observed that most lines had no awns and seed were covered 25% by grey glumes. The 

presence of strong awns in the seed may be used as a protection against bird’s attack. 

According to Upadhyaya et al. (2010), glume cover and glume colour may be utilized to screen 

for grain mould resistance. Panicle compactness is used as a racial indicator and it is 

influenced not only by a number of branches and elongation but also by abortions in a branch 

(Brown et al., 2006). 

 

4.4.1.  Variability and heritability of the characters 

The phenotypic variance was higher than the genotypic variance for all characters. Higher 

phenotypic estimates were observed for days to 50% flowering, thousand seed weight, glume 

colour and inflorescence compactness. The other characters such as stay green, seed size, 

leaf rolling, leaf colour and glume cover presented lower estimates. The phenotypic expression 

could be influenced by rainfall and temperature differences between the seasons as recorded 

with 522 mm during 2016 and 989 mm in 2017. Similar findings from Chikuta et al. (2015) and 

Ayana et al. (2000) indicate that gradient of rainfall, temperature and growing sites are 

important for genotype variation. The phenotypic expression can infer genetic variability and 

consequences of phenotypic variation due to changes in the environment (Abubakar and 

Bubuche, 2013). Similarly, Seetharam and Ganesamurthy (2013) found that a narrow 

difference between the phenotypic and genetic variation are an indication of little 

environmental influence. Variability in characters such as stay green, leaf rolling, and leaf 
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orientation implies that the traits can be used to exploit drought tolerance. An extensive 

collection of genetic variability can be used in the improvement of drought tolerance in grain 

sorghum (Abdalla, 2014; Idris et al., 2015). 

High heritability estimates were obtained for stay green, midrib colour, glume cover and leaf 

orientation. The characters such as thousand seed weight and presence of awns had 

heritability estimates below 50%. The low heritability estimates have implication in breeding 

because phenotypic selection cannot be based on those traits with low heritability values. 

Similar results of low heritability were observed in sorghum for panicle length and breadth 

(Arunkumar, 2013). According to Bello et al. (2007), traits that are related to grain yield and 

yield components might have low heritability due to direct or indirect effects of the several 

components while Obilana and Fakorede (1981) reported that heritability estimates tend to be 

low for the traits that are influenced by the environment (quantitative traits).   

It is said that the characters with higher heritability estimates may reflect the utility of the 

characters in a breeding strategy. This result is in agreement with Warkad et al. (2008) who 

observed low heritability estimates for grain and fodder yield,  thousand seed weight and 

presence of awns in sorghum. Similar results were obtained by Seetharam and Ganesamurthy 

(2013) for 50% flowering and Liang et al. (1972) for 50% flowering, plant height and seed 

weight. The inflorescence has higher heritability in the primary branch than secondary and 

tertiary branches (Brown et al., 2006). High heritability suggests that the main genes for those 

characters may have an additive gene effect and consequently indicate the importance of 

those characters for selection. 

4.4.2.  Cluster analysis 

Cluster I contained the largest number of lines which also were from different sets (B and R 

lines) followed by Cluster III which contained only R lines. The Cluster IV grouped majority of 

B lines and only one R line. Cluster II consisted of the fewest number of lines. Cluster analysis 

was able to group the lines according to flowering period, with Cluster II having members 

taking longest time to flowering; Cluster I and III were intermediate flowering groups and 

Cluster IV was the earliest to flower. This grouping revealed that information about flowering 

period among the lines may be useful in order to identify parents for different maturity groups. 

The success of any crop breeding programme is based on the knowledge and availability of 

genetic variability for efficient selection (Ali et al., 2008). The characters, thousand seed 

weight, stay green, seed size, panicle exsertion, midrib colour, head shape and presence of 

awns showed similar characteristics in all clusters. Characters such as leaf rolling, leaf 

orientation, leaf colour, inflorescence compactness, glume covering, glume colour and grain 
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colour were the most distinguishing traits between the clusters. Leaf rolling, and leaf 

orientation were clustered in the same pattern in cluster I and IV as well as II and III. The 

clusters that were paired together were I and II, III and IV for leaf colour. Inflorescence 

compactness, glume cover and grain colour clustered together I, II and III. Grouping the 

genotypes according to the characteristics might reveal that the lines have similarity in one or 

more traits. Seetharam and Ganesamurthy (2013) reported that promising genotypes can be 

identified from cluster means recorded for each trait. A better understanding of genetics of 

morphological characteristics is required by the breeder to increase the efficiency of selection 

of more diverse and adapted parents for crop improvement (Billot et al., 2013). These clusters 

suggested that there is a large amount of allelic diversity in the germplasm in this study, 

assuming that it could be divided into four groups. 

4.4.3.  Principal component analysis 

Principal component analysis showed that 58.5% of the total variation was explained by five 

principal components. The first principal component had the major contribution (15%) to the 

total variation. In the first component, maximum weight should be given to the traits with high 

magnitude and positive Eigenvector loadings, namely head shape and days to 50% flowering 

and traits with high magnitude negative loadings viz. leaf colour, leaf orientation and 

inflorescence compactness. In a separate study, days to 50% flowering was found as one of 

the most important characters contributing to the first principal component (Ayana and Bekele, 

1999), hence its importance has been confirmed in this study.  The second principal 

component explained 13.9% of the variation, and in this component maximum importance 

should be attached to traits with high positive loadings specifically head shape, panicle 

exsertion, midrib colour and glume colour and those with high magnitude negative loadings 

viz. leaf rolling and inflorescence compactness. In the third component, maximum importance 

should be attached to traits with high positive loadings, namely, midrib colour, grain colour and 

days to 50% flowering; and those traits with high negative loadings, that is, stay green and 

presence of awns. The traits, days to 50% flowering and the thousand seed weight (with 

positive loadings), and stay green, panicle exsertion and seed size (with negative loadings) 

should be given maximum importance in the fourth principal component. Ayana and Bekele 

(1999) also observed that thousand seed weight was one of the important traits in the fourth 

principal component.  In the fifth component, maximum weight should be attached to positive 

loadings, namely, leaf colour, glume colour and glume cover and those with negative loadings, 

specifically, inflorescence compactness and leaf colour. The dull green midrib colour and dark 

green leaf colour were suggested to be associated with pithy stems, meaning juicy stems 
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(Ngugi and Maswili, 2010), while days to 50% flowering was found to be strongly correlated 

with 95% maturity (El Naim et al., 2012). 

Positive and strong correlations were found between the characters glume cover and glume 

colour, presence of awns and thousand seed weight. Also, there was a strong correlation 

between the head shape, midrib colour and panicle exsertion. Negative and strong 

correlations were found between inflorescence compactness, head shape, panicle exsertion 

and midrib colour. The opposite correlations were found between the characters head shape 

and inflorescence compactness as well as between the days to 50% flowering and seed size. 

These results aligned with PCA result, whereby the positively correlated characters are the 

same with positive contribution under PCA. Additionally, the negatively correlated characters 

were also similar to PCA results. This suggested that those characters should be taken into 

consideration when doing the selection for crop improvement. Grouping morphologically 

similar germplasm is useful for selecting parents for crossing (Ayana and Bekele, 1999; 

Iannucci et al., 2011) and evaluating the F1. According to Rahim et al. (2010), F1 hybrids from 

genotypes with maximum distance result in high yield, achieving maximum heterosis. 

4.4.4.  Diversity index 

The Shannon Diversity index (H’) values for stay green, panicle exsertion, midrib colour, leaf 

rolling, leaf orientation, glume colour, glume cover and grain colour were on par with the mean. 

This indicated that the traits were less diverse. Days to 50% flowering, thousand seed weight, 

seed size, leaf colour, inflorescence compactness, head shape and presence of awns were 

found to have H’ greater than the mean. A low H’ shows lack of genetic diversity and an 

extremely unbalanced frequency classes for an individual trait (Upadhyaya et al., 2010). Highly 

diverse genotypes are important in a breeding programme as they may be useful in predicting 

the potential of hybrid progenies when combined with other genotypes (Seetharam and 

Ganesamurthy, 2013). Additionally, it would be interesting and fruitful to see the extent of 

segregation for different traits generated by those crosses (Upadhyaya et al., 2010). 

4.5. Conclusion 

The results of the Mozambican sorghum germplasm diversity study have provided interesting 

information that is useful in improvement of the genotypes. The traits that are not strongly 

related could be exploited in recombination breeding in future. The multivariate analyses 

clearly showed the grouping of the genotypes according to the characters outlined in the study. 

Diversity index additionally confirmed the range in the traits which can be explored in 

hybridization. Therefore, these results have implications in selection of parents for use in 
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sorghum improvement programme. For example, genotypes that are early in maturity, 150B, 

IS 14257R, LARSVYT 46B, TX 631B, TX 630B and 8601B could be used for improving 

earliness, while for late maturity genotypes MA 6B, A 6352R, ICSA 19B and MZ 30R could be 

used when late cultivars are desired. Moreover, grain yield can be increased using genotypes 

that produce seed with good weight such as IS 7179R, SPL 9B and A 6353R and those 

associated with large seed size as observed in lines SPL 38B, SDS 6013R and MZ 2R. On 

the other hand, lines ICSA 21B, 8610B, MZ 37R, 150B and MZ 2R can be exploited for drought 

tolerance variety deployment due to the intense stay green character. The line IS 7179R can 

be used for hybridization to reduce the bird attack due to the presence of awns. Additionally, 

for mould resistance, lines 8601B and TX 630B can be used. Morphological characteristics 

identified will assist breeders in understanding the importance of the germplasm diversity, and 

help identify important characters that are highly preferred by farmers such as earliness, grain 

yield, plant height and grain colour.  
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5. Combining ability and heterosis for sorghum grain yield and 

secondary traits across lowland and midland Mozambique 

Abstract 

Low sorghum grain yield in Mozambique makes production of the crop less attractive and 

unsustainable, ultimately leaving many households food insecure. Development of improved 

cultivars with increased grain yield coupled with farmers’ preferred traits is thus desired. This 

study aimed at evaluating the combining ability and heterosis of sorghum crosses relative to 

current commercial cultivars. Nine cytoplasmic male sterile genotypes (designated as lines) 

and four cytoplasmic male fertile genotypes (designated as testers) were crossed in a line x 

tester mating scheme. The resultant 36 hybrids were evaluated and compared to two checks 

in respect of grain yield and secondary traits across six test environments. Testers showed a 

significant GCA effect for grain yield, days to 50% flowering and plant height. The GCA values 

for grain yield were positive for IS 14257R and MZ 37R. The days to 50% flowering were highly 

significant (P≤0.01) with negative GCA effects in testers IS 14257R and MZ 37R while plant 

height was significant and negative in tester SDS 6013R. Three lines, LARSVYT46A, SPL38A 

and TX631A had significant and positive GCA effects for grain yield, and negative but 

significant GCA effects for other traits except for panicle length. Testers IS14257R and MZ 

37R had positive GCA values for grain yield while some hybrids based on the two parents also 

had positive SCA effects. Lines 8601A, ICSA12A, TX631A and LARSVYT46A had highly 

significant negative GCA effect for days to 50% flowering. For plant height, line TX631A, 

ICSA12A, ICSA21A and TX628A had negative and significant GCA effects while panicle 

length showed positive significant GCA effect for the lines LARSVYT46A, SPL38A and 

TX631A. For disease resistance: hybrids ICSA12A x MZ2R, ICSA12A x SDS6013R and 

TX631A x SDS6013R were resistant to rust while moderate resistance was found in 

LARSVYT46A x IS14257R, LARSVYT46A x SDS6013R and 8601A x MZ37R. In addition, 

most of the hybrids were classified as resistant to moderately resistant to Cercospora spp, 

whereas all hybrids were classified as resistant to anthracnose. The parents involved in the 

crosses can be used as sources of resistance in future studies. The heterosis over the trial 

mean and the best check ranged from 1.2 to 22.6% and 0.1 to 37.2% respectively. The hybrid 

TX 631A x MZ 37R had better performance over the best check, check mean and over the 

best parents for grain yield. Therefore, lines and testers with good general combining ability 

for grain yield associated with low level of disease may be exploited in new combinations to 

develop new sorghum hybrids. 
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5.1. Introduction 

Agriculture in southern Africa has been affected by erratic rainfall accompanied with harsh 

climatic conditions for most growing seasons. During the 2015-2016 rainy season, 

Mozambique was affected by two consecutive El Nino phenomena that induced droughts. This 

situation led to unprecedented levels of food insecurity (Tadross, 2009; Vam, 2017). Although 

drought has been affecting crop production, sorghum performed better during these conditions 

as an indication of its ability to withstand drought in semi-arid regions of Africa (Machado and 

Paulsen, 2001), particularly central and north Mozambique. However, it was reported that the 

use of low grain yielding varieties has not changed substantially over the past five years in 

Mozambique with average yields ranging from 0.4 t.ha-1 to 0.6 t.ha-1 (Tsusaka et al., 2015). 

Low productivity in sorghum has been linked to a lack of modern farming technologies 

including low use of improved varieties. Therefore, development of cultivars with high grain 

yield potential more than the current commercial and local cultivars with farmers’ preferable 

characteristics is desired. Although local cultivars are adapted to multi-factor effects of biotic 

and abiotic constraints, grain yield is still considered a major trait that requires improvement. 

Many studies have proven that grain yield can be improved through the use of potential 

sorghum hybrids (House, 1995). The potential hybrids are those with inherited traits such as 

grain yield, plant height, maturity, tillering and disease resistance. It is, therefore, essential for 

sorghum breeders to study the combining ability among parents for grain yield and some of 

these secondary traits for improvement of grain yield potential which is the most important trait 

in sorghum breeding (Reddy et al., 2012). The use of adapted parents may enhance farmers’ 

food security and income through increased yield (Rattunde et al., 2013). Sorghum is known 

for its potential heterosis for grain yield that can be exploited for hybrid development. 

According to Ashok Kumar et al. (2011), newly developed hybrid varieties showed 30-40% 

heterosis for grain yield over the best known commercial hybrid checks. Furthermore, Mahdy 

et al. (2011) recorded heterosis for sorghum grain yield over the best parent of between 9 to 

97% and lower estimates were obtained in crosses with adapted parent lines. 

Therefore, for the plant breeder it is essential to study the combining ability of the parents 

during the development of new improved varieties. Understanding of the inheritance of 

characters comes through knowledge of the combining ability of the lines. Bertan et al. (2007) 

indicated that this helps in selection of the best lines for use in a breeding programme. Several 

studies on combining ability and heterosis in sorghum have been conducted (Kenga et al., 

2005; Makanda et al., 2010; Menezes et al., 2014; Mindaye et al., 2016). Kenga et al. (2005) 

reported significant positive general combining ability (GCA) and specific combining ability 

(SCA) effects for most of the traits. They also observed that the male lines were capable of 
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transmitting high yielding potential to the offspring and female lines effectively transmitted 

earliness and medium to tall height. Makanda et al. (2010) indicated that heterosis explained 

the high grain yield obtained for hybrids when compared to the parents and check varieties. 

Furthermore, Menezes et al. (2014) reported that crossing two parents that exhibited highest 

GCA could possibly produce the best performing cross due to an increasing frequency of 

favourable genes. According to Thomas et al. (2017), one of the strategies to increase the 

yield potential is manipulation of heterosis.  

Heterosis studies in sorghum have shown that grain yield is dependent on the contribution of 

various components such as increased plant height (Jain and Patel, 2013; Ringo et al., 2015), 

harvesting index (Can et al., 1997), larger leaf area, higher number of grains per panicle (Beil 

and Atkins, 1967; Liang et al., 1972), and photosynthesis process and transpiration (Kirby and 

Atkins, 1968; Blum et al., 1977; Blum et al., 1990). Although studies have been done on 

combining ability and heterosis for sorghum grain yield there is still no information available 

on combining ability of the germplasm in Mozambique and the potential for exploiting heterosis 

for hybrid development.  Furthermore, information regarding parents potential for grain yield 

is limiting. The main objectives of this study were to estimate combining ability of the lines 

used in the National Sorghum programme and estimate the heterosis of the hybrids over the 

commercial cultivars for grain yield and yield component traits. 

5.2. Materials and Methods 

5.2.1. Plant materials 

The sorghum genotypes used in this study were obtained from the Sorghum National Breeding 

programme and some were originally from the International Crops Research Institute for the 

Semi-Arid Tropics (ICRISAT). The two standard checks used during evaluation were varieties 

widely grown in the country with good grain yield performance and stability. The hybrids which 

produced a full set of seed after crossing were used for the evaluation (Figure 5-1). This 

procedure is used for hybrid development as well as in identifying male sterile seed parents 

(House, 1985).   The parental lines were divided into two groups: cytoplasmic male sterile 

lines (CMS) designated as females and cytoplasmic male fertile lines (CMF) as males (Table 

5-1). The CMS lines facilitated the hybrid development in sorghum improvement (Reddy et al., 

2008a). Nine female lines (lines) and four male lines (testers) were used in a Line x Tester 

mating scheme. All crosses were successful and the resultant 36 hybrids together with two 

checks were evaluated in yield trials across six test environments (combination of year-

location) during 2015/16 and 2016/17 seasons (Table 5-2). The 13 parents were also 

evaluated in four of the six test environments.  
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Figure 5-1 Sorghum hybridization in a greenhouse (left) and sorghum head of one hybrid 
during field evaluation (right) at Sussundenga Research Station.  

Table 5-1 Parents used in the line by tester crossing block for hybrid development 

Parent Group Designation Group Origin 

LARSVYT 46A CMS Female Line NAR/ICRISAT 

8601A CMS Female Line NAR/ICRISAT 

SPL 38A CMS Female Line NAR/ICRISAT 

ICSA 19A CMS Female Line NAR/ICRISAT 

TX 628A CMS Female Line NAR/ICRISAT 

ICSA 21A CMS Female Line NAR/ICRISAT 

ICSA 12A CMS Female Line NAR/ICRISAT 

CK 60A CMS Female Line NAR/ICRISAT 

TX 631A CMS Female Line NAR/ICRISAT 

IS 14257R CMF Male Tester NAR/ICRISAT 

SDS 6013R CMF Male Tester NAR/ICRISAT 

MZ 2R CMF Male Tester NAR 

MZ 37R CMF Male Tester NAR 

NAR = National Research Sorghum Programme; cytoplasmic male sterile lines (CMS) and 

cytoplasmic male fertile lines (CMF) 
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5.2.2. Field evaluation sites 

The trials were conducted at Chókwè and Maniquenique in the southern region, Sussundenga 

in the central region and Mapupulo in the northern region. These sites cover from low to mid-

altitude environments (Table 5-2).  

Table 5-2 Locations used for evaluation of entries over two seasons and rainfall received 
during the evaluation period 

Location Season Code 

Latitude 

(oS) 

Longitude 

(oE) Altitude (m) 

Rainfall*  

(mm) 

Sussundenga** 2015/16 Sus16 19o18’ 33o15’ 635 522 

Chókwè** 2015/16 Chk16 24o52’ 33o00’ 33 380 

Sussundenga** 2016/17 Sus17 19o18’ 33o15’ 635 989 

Chókwè** 2016/17 Chk17 24o52’ 33o00’ 33 650 

Maniquenique 2016/17 Man17 24o73’ 33o53’ 13 468 

Mapupulo 2016/17 Map17 13o19’ 38o86’ 534 1050 

  *Rainfall refers to the amount received during the crop growing season, **Parents evaluation sites 

5.2.3. Experimental design and field management 

The 36 experimental hybrids, along with two check hybrids were laid out in a 19 x 2 alpha 

lattice design with three replications in each environment. The 13 parents were also evaluated 

in the same field adjacent to the hybrids and were laid out in a randomized complete block 

design with three replications in four of the six environments. Individual plots consisted of two 

rows which were 5 m long, spaced 0.75 m apart and the distance between plants in a row was 

0.25 m.  Fertilizer was applied at recommended rates of 250 kg ha-1 NPK (12-24-12) basal 

fertilizer, and 150 kg ha-1 Urea (46% N) as a top-dressing fertilizer. Other cultural practices 

such as ploughing, disking, hand planting, hand weeding and herbicides and pesticide 

application were carried out at each site. 

Ten plants were randomly selected from each hybrid in each replication to measure the 

characters such as days to 50% flowering, plant height, panicle length, number of tillering 

plants, number of panicles and panicle aspect. Grain yield, biomass and disease scoring were 

done at on per plot basis. Adjusted harvest grain yield was determined following the standard 

practices used by CIMMYT (CIMMYT, 1985) as presented: 

Grain yield (t.ha-1) = [Grain weight (kg/plot) x 10 x (100-MOI*)/ (100-12.5) / (Plot Area)] 

*MOI = Grain Moisture Content 



101 

 

Due to high amounts of rainfall received in the 2016/17 season, three diseases severely 

affected some entries in four experimental sites. The diseases were Cercospora spp (similar 

to grey leaf spot (GLS) in maize), Puccinia purpurea (rust) and Colletotrichum graminicola 

(Cesati) Wilson (anthracnose). The disease severity was recorded based on visual 

assessment of the degree of damaged leaf area on scale of 1 to 5, where 1 = no disease, 2 = 

1 to 5% leaf area damaged, 3 = 6 to 20% leaf area damage, 4 = 20 to 40% leaf area damaged, 

and 5 = severe disease with more than 40% leaf area damaged. The scores were further 

classified according to disease reaction type, where less than 5% leaf damage = resistant (R), 

6 to 10% leaf damage = moderate resistant (MR), 10 to 20% leaf damage = moderately 

susceptible (MS) and more than 20 % leaf damage = susceptible (S).  

5.2.4. Data analysis 

The individual and combined season data were analysed using PROC GLM procedure in SAS 

9.3 (SAS, 2011). Analyses of variance (ANOVA) were done first by environment with 

genotypes as the main effect, then a combined analysis across environments was conducted 

to evaluate the effect of environment, genotypes and their interactions. The calculation of 

combining ability effect was done only for the 36 hybrids tested. The data analysis followed a 

fixed effects model: 

𝑌𝑖𝑗𝑘𝑙 =  𝜇 + 𝑙𝑖 + 𝑟𝑗(𝑙𝑖) + 𝑏𝑖𝑗 + 𝑚𝑘 + 𝑓𝑖 + (𝑚 ∗ 𝑓)𝑘𝑙 + (𝑙 ∗ 𝑚)𝑖𝑘 + (𝑙 ∗ 𝑓)𝑖𝑙 + (𝑙 ∗ 𝑚 ∗ 𝑓)𝑖𝑘𝑙 + 𝜀𝑖𝑗𝑘𝑙 

Where: Yijkl = observed hybrid response; µ = overall mean of the population; li =effects of the 

ith environment; rj (li) = effects of the jth replication in the ith environment; bij = effects of the 

blocks in the jth replication in the ith environment; mk = effects of the kth male parent; fl = effects 

of the lth female parent;  m*fkl = effects of the interaction between kth male and lth female 

parents; li*mk = interaction effects of the ith environment in kth male parent; li*fl = interaction 

effects of the ith environment in lth female parent; li*m*fkl = interaction effects of the ith 

environment and the interaction between the kth male and lth female parents; Ԑijkl = 

experimental error. 

Estimation of general combining ability (GCA) and specific combining ability (SCA) effects 

were done according to Dabholkar (1999): 

𝑘𝑗(𝑡𝑒𝑠𝑡𝑒𝑟) =
𝑌.𝑗.

𝑟𝑙
− 

𝑌…

𝑟𝑙𝑡
 ; 

𝑓𝑖 (𝑙𝑖𝑛𝑒) =  
𝑌𝑖..

𝑟𝑡
−
𝑌…

𝑟𝑙𝑡
 and 
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𝑆𝑖𝑗 =  
𝑌𝑖𝑗

𝑟
−
𝑌𝑖. .

𝑟𝑡
−
𝑌. 𝑗.

𝑟𝑙
+
𝑌…

𝑟𝑙𝑡
 

where k(tester) and f(line) represent the estimates of GCA effects ith lines and jth tester, 

respectively. Sij represents the SCA effects of i x jth cross. Yi.., Y.j. and Y… represent the sum 

of lines, testers and grand total of the grain yield respectively. 

The “t” test was used to estimate the significance of the GCA and SCA, and standard errors 

were calculated as follows: 

𝑆𝐸𝑘𝑗 = (
𝑀𝑒

𝑟𝑙
)
1
2, 𝑗 = 1,… , 𝑗 

𝑆𝐸𝑓𝑖 =  (
𝑀𝑒

𝑟𝑡
)1/2, 𝑖 = 1,… , 𝑖 

𝑆𝐸𝑖𝑗 =  (
𝑀𝑒

𝑟
)1/2 

Where SEs are the standard errors for testers (SEkj), lines (SEfi) and crosses (SEij). Me - is 

the mean square of the error. Thus, t test: 

𝑡𝑔 =  
𝑔 − 0

𝑆𝐸𝑔
 

𝑡𝑠 =  
𝑠𝑖𝑗 − 0

𝑆𝐸𝑖𝑗
 

Where tg – test significance for GCA effects and ts – test significance for SCA effects. The t 

test was considered significant at probability of 5% if the value was greater than 1.96 and 

significant at 1% if it was greater than 2.58. 

Heterosis (H) analysis was performed to compare the hybrids with their parents and identify 

hybrid performance that exceeds the average parental performance (House, 1985). The 

heterosis was calculated using the following formulas:  

1) Heterosis over the mid-parent: 

(MPH) = [(F1 – MP)/*MP]*100, where F1 = hybrid mean performance, MP = average 

predicted performance for the two parents. 

2) Standard heterosis: 
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(HBP) = [(F1 – MT)/*MT]*100, where F1 = hybrid mean performance, MT = best check mean, 

checks mean, best parents mean or trial mean 

5.3. Results 

The results from the analysis of variance showed that hybrids differed in grain yield 

performance across environments (P≤0.01). Secondary traits such as days to 50% flowering, 

plant height, panicle length and number of tillering plants per plot were also highly significant; 

however, there was no significant variation for number of panicles (Table 5-3). The 

environments exhibited highly significant differences (P≤0.01) for all traits. Testers were 

significant (P≤0.05) for grain yield and plant height, and highly significant (P≤0.01) for days to 

50% flowering. There were significant differences for panicle length, number of tillering plants 

and number of panicles. On the other hand, lines exhibited highly significant differences 

(P≤0.01) for all traits except number of panicles that were significant at P≤0.05. The line x 

tester interaction effect was highly significant (P≤0.01) for all traits except number of panicles. 

The environment x hybrids interaction was highly significant (P≤0.01) for all traits while 

environment x line interaction did not show significant differences for panicle length and 

number of panicles but was highly significant (P≤0.01) for grain yield, and significant for 

number of panicles (P≤0.05). Environment x tester interaction effects and the environment x 

line x tester were highly significant (P≤0.01) for all traits.  

The line effects and environment x hybrid interaction effects were highly significant (P≤0.01) 

for Cercospora spp, rust, anthracnose and biomass (Table 5-4). Testers showed highly 

significant differences for biomass but did not show significant differences for the three 

diseases. Although the line x tester interaction effect was significant (P≤0.01) for all the 

diseases, it was not significant for biomass. The environment x hybrids interaction effect was 

highly significant (P≤0.01), and the environment x line interaction effect was significant 

(P≤0.05). Furthermore, the environment x line x tester interaction was highly significant for 

rust, anthracnose and biomass but not significant for Cercospora spp.  

5.3.1. Grain yield and other Agronomic traits 

The results from analysis of variance of grain yield across six test environments showed that 

the main effects (genotypes and environments) and their interaction were highly significant 

(P<0.001, Table 5-3). The mean grain yields of the parents and hybrids were 1.23 t.ha-1 and 

2.63 t.ha-1, respectively. There were highly significant differences (P<0.001) among 

environments for all traits. The grain yields in the different environment ranged from 3.5 t.ha-1 
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to 0.6 t.ha-1 where the highest yields were from environment Map17 followed by Sus17, Sus16, 

Man17, Chk17 and Chk16 had the lowest yields (Figure 5-2).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 Hybrids performance for grain yield at different environments.  

Map17
29%

Sus17
28%

Sus16
18%

Man17
10%

Chk17
10%

Chk16
5%

Map17 Sus17 Sus16 Man17 Chk17 Chk16



105 

 

Table 5-3 Mean squares for grain yield and secondary traits across six environments 

Source of Variation DF 
Grain yield 

(t.ha-1) 

Days to 
flowering 

(days) 
Plant height 

(cm) 
Panicle 

length (cm) 
Number of 

tillering plants 
Number of 
panicles 

Environment (Env.) 
5 

128.63*** 2808.51*** 30899.37*** 1241.82*** 513.39*** 2825.94*** 

Block (Rep x Env.) 
3 

0.54 3.64*** 1329.33*** 53.20*** 36.28*** 66.48* 

Hybrids 
35 

1.46*** 64.68*** 3010.23* 125.45** 47.87*** 60.94 

Tester (GCA) 
3 

1.25* 92.72*** 1407.18*** 27.11 15.17 15.68 

Line (GCA) 
8 

2.00*** 106.48*** 5020.67*** 342.17*** 78.34*** 93.89* 

Line x Tester (SCA) 
24 

1.43*** 52.47*** 2438.94*** 72.63*** 44.93*** 57.55 

Env. X Hybrids 
175 

1.50*** 86.29*** 3060.51*** 143.64*** 45.12*** 86.83*** 

Env. X Tester 
15 

1.48*** 53.79*** 3263.75*** 35.25 18.49 75.90* 

Env. X Line 
40 

1.82** 129.61*** 5523.80*** 394.97*** 80.57*** 140.41*** 

Env. X Line x Tester 
120 

1.35** 77.28*** 2206.93*** 59.46*** 33.64*** 68.51*** 

Error 
402 

0.48 1.90 519.71 26.03 17.15 43.91 

Overall mean   2.04 66.62 139.59 31.76 18.60 20.80 

R2 (%)   85.54 98.09 80.50 80.32 67.88 68.75 
*, **, *** Data is significant at P≤0.05, P≤0.01 and P≤0.001 respectively 
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Table 5-4 Mean squares for disease scores and biomass across four environments 
Source of Variation DF Csp¥ Rust¥ Anth¥ Bio 

Environment (Env.) 5 6.70*** 5.68*** 4.04*** 570.69*** 

Block (Rep x Env.) 3 0.33 0.32 0.49 5.81 

Hybrids 35 0.51** 0.96*** 1.32*** 7.90** 

Tester (GCA) 3 0.17 0.25 0.12 13.89** 

Line (GCA) 8 0.43** 1.14*** 1.03** 13.21*** 

Line x Tester (SCA) 24 0.59*** 0.57*** 0.96*** 5.92 

Env. X Hybrids 175 0.38*** 0.90*** 1.21*** 7.65*** 

Env. X Tester 15 0.24 0.70*** 1.56*** 14.28*** 

Env. X Line 40 0.58*** 0.81*** 1.27*** 7.85*** 

Env. X Line x Tester 120 0.27 0.79*** 0.88*** 6.97*** 

Error 402 0.21 0.24 0.40 4.33 

Overall mean   2.02 2.30 1.68 6.44 

R2 (%)   64.06 72.26 65.22 74.69 
*, **, *** Data is significant at P≤0.05, P≤0.01 and P≤0.001 respectively; Csp = Cercospora spp, Rust = Puccinia purpurea, Anth = Anthracnose 

and Bio = Biomass; ¥ disease rating scores (1=symptomless and 5=severe leaf damage).
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5.3.2. Hybrid reaction to the foliar diseases 

Among the three diseases observed [Cercospora spp, Puccinia purpurea (leaf rust) and 

Colletotrichum graminicola (anthracnose)], anthracnose was less severe with average leaf 

damage area between 1 to 5%. Rust was the most severe disease with 10 to 30% leaf area 

damage. Cercospora spp was rated between 6% and 10% leaf area damage. The checks 

Macia and Sima had moderate resistance (MR) for both anthracnose and Cercospora spp but 

Macia showed susceptibility to rust. The rust resistant hybrids were ICSA 12A x MZ 2R, ICSA 

12A x SDS 6013R and TX 631A x SDS 6013R while moderately resistant were LARSVYT 46A 

x IS 14257R, LARSVYT 46A x SDS 6013R and 8601A x MZ 37R. For Cercospora spp, most 

of the hybrids were rated as either resistant or moderately resistant whereas for anthracnose 

all hybrids were resistant. 

5.3.3. General combining ability estimates 

The line GCA mean squares were highly significant (P≤0.01) for all traits except for number of 

tillering plants which was significant at P≤0.05 (Table 5-3). The tester GCA mean squares 

were highly significant for days to 50% flowering and plant height biomass but not significant 

for grain yield. Non- significant GCA mean squares were observed in testers for number of 

tillering plants, number of panicles, Cercospora spp, rust and anthracnose (Table 5-5). On the 

other hand, SCA mean squares were significant (P≤0.05) for number of panicles and biomass 

but highly significant (P≤0.01) for grain yield, days to 50% flowering, plant height, panicle 

length, number of tillering plants, Cercospora spp, rust and anthracnose (Table 5-5). The 

desirable direction for selection based on GCA and SCA effects was positive for grain yield 

and panicle length and negative for days to 50% flowering, plant height, number of tillering 

plants, disease score and biomass. For grain yield, testers MZ 2R and SDS 6013R showed 

negative GCA values while IS 14257R and MZ 37R showed non-significant positive values.  

The lines with significant positive (P≤0.01) GCA effects for grain yield were LARSVYT 46A, 

SPL 38A and TX 631A while 8601A, ICSA 19A and TX 628A showed significant (P≤0.01) 

negative GCA effects. Days to 50% flowering were highly significant (P≤0.01) with negative 

GCA effects in testers IS 14257R and MZ 37R while plant height was significant and negative 

in tester SDS 6013R. The lines that showed highly significant (P≤0.01) negative GCA effects 

for days to 50% flowering were 8601A, ICSA 12A and TX 631A and those significant (P≤0.05) 

were LARSVYT 46A. For the plant height, lines TX 631A, ICSA 21A and TX 628A had 

significant negative GCA effects (P≤0.05). Panicle length showed a positive significant 

(P≤0.01) GCA effect for the lines LARSVYT 46A, SPL 38A and TX 631A, while the negative 

but significant (P≤0.01) GCA effects were obtained for the lines 8601A, ICSA 19A, ICSA 21A 

and ICSA 12A. The desirable direction for number of tillering plants were shown by line 
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ICSA21A and was highly significant (P≤0.01) while the opposite direction significant (P≤0.01) 

GCA effects were found in SPL 38A. Negative significant (P≤0.01) GCA values for rust disease 

scores were observed for lines ICSA 12A and TX 631A while other lines had positive GCA 

values for the rest of the diseases.     
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Table 5-5 General combining ability estimates of parents for grain yield and secondary traits across six environments 

Parent line 

GY  

(t.ha-1) 

DF 

(days) 

PH 

(cm) 

PL 

(cm) NP Csp¥ RUST¥ ANTH¥ 

(Testers)         

MZ 2R -0.09 0.73** 0.54 0.48 -0.12 -0.02 0.03 -0.02 

IS 14257R 0.09 -0.78** -0.96 -0.44 0.40 0.00 0.02 -0.01 

SDS 6013R -0.06 0.65** -4.36* 0.16 -0.04 0.04 -0.04 0.02 

MZ 37R 0.05 -0.60** 4.78** -0.20 -0.23 -0.01 -0.01 0.01 

SE 0.10 0.10 1.80 0.40 0.30 0.04 0.04 0.10 

(Lines)         

LARSVYT 46A 0.29** -0.35* 11.99** 3.59** 1.10* -0.02 -0.05 -0.08 

8601A -0.01 -2.14** 3.29 -2.30** 0.35 0.02 -0.01 0.00 

SPL 38A 0.16** 1.55** 2.86 3.00** 1.88** -0.05 0.06 -0.04 

ICSA 19A -0.09 1.11** 6.18* -1.45* 0.12 -0.02 -0.05 -0.09 

TX 628A -0.16** 1.01** -5.75* -0.54 -0.24 -0.05 0.21** 0.22** 

ICSA 21A -0.19** 1.01** -5.33* -1.73** -1.63** 0.01* 0.00 -0.03 

ICSA 12A -0.08 -0.85** -0.40 -1.58** -0.34 0.11* -0.11* 0.09 

CK 60A -0.08 0.08 3.04 -0.64 -0.81 -0.07 0.09 -0.05 

TX 631A 0.17** -1.43** -15.88** 1.66** -0.42 0.07 -0.13* -0.01 

SE 0.10 0.20 2.70 0.60 0.50 0.05 0.06 0.07 
*, **, *** Significant at P≤0.05, P≤0.01 and P≤0.001, respectively; GY =Grain yield (t.ha-1), DF = Days to 50% flowering, PH =Plant height, PL = Plant length, NP 

= Number of tillering plants, Csp = Cercospora spp, Rust = Puccinia purpurea, and Anth = Anthracnose. ¥ Disease rating scores (1=symptomless and 

5=severe leaf damage). 
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5.3.4. Specific combining ability estimates 

The line SCA mean squares were highly significant (P≤0.01) for all traits except for number of 

panicles and biomass that were not significant (Table 5-3). For SCA effects, most of the 

hybrids showed significant effects in the desirable direction for selection for each trait. The 

cross TX 631A x MZ 37R had significant (P≤0.01) positive SCA effects for grain yield (Table 

5-7). The other crosses showed a negative SCA effects for grain yield. About 14 hybrids 

showed significant (P≤0.05) and negative SCA effects for days to 50% flowering, while 10 

hybrids showed significant (P≤0.05) positive SCA effects. The highest negative SCA values 

for days to 50% flowering were recorded for hybrids 8601A x IS 14257R, 8601A x SDS 6013R, 

ICSA 12A x MZ 2R, TX 631A x IS 14257R and TX 631A x MZ 37R.  Most of the hybrids 

showed significant (P≤0.05) negative SCA effects for plant height while all the positive SCA 

effects for panicle length were not significant.   Fifteen hybrids involving lines TX 631A, CK 

60A, ICSA 12A, ICSA 21A, TX 628A and 8601A showed a significant (P≤0.05) negative SCA 

effects for number of tillering plants. Most of the SCA effects for the three diseases were not 

significant except for the hybrids LARSVYT 46A x MZ 37R and CK 60A x MZ 2R that showed 

significant (P≤0.05) negative SCA effects. 

5.3.5. Correlation among grain yield and secondary traits 

Correlation coefficients among GCA and SCA effects of the different traits were determined 

(Table 5-6).  Most of the correlation coefficients among the traits were very low (r<0.5) apart 

from the significant coefficients. A significant positive correlation coefficient (P≤0.05) was 

observed between the parent GCA effects for grain yield and number of tillering plants and 

between number of tillering plants and panicle length. Besides, a negative and significant 

(P≤0.05) correlation was found between Cercospora spp disease scores and rust disease 

scores.  Significant correlation coefficients (P≤0.05) between SCA effects were obtained for 

the following pairs of traits: grain yield and panicle length; grain yield and number of tillering 

plants, as well as panicle length and number of panicles.  
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Table 5-6 Pearson correlation coefficients among SCA effects (below diagonal) of the 
hybrids and GCA effects (above diagonal) of the parents for grain yield and secondary traits 
across six environments 

  GY DF PH PL NP Csp RUST ANTH 

GY 

 

-0.35 0.23 0.80 0.69** 0.02 -0.36 -0.41 

DF -0.29 

 

0.08 0.18 0.05 -0.53 0.47 -0.01 

PH 0.33 -0.14 
 0.13 0.47 -0.44 0.07 -0.42 

PL 0.43** 0.02 0.05 
 0.64** -0.22 -0.06 -0.27 

NP 0.71*** -0.07 0.39 0.41**  -0.24 0.03 -0.20 

Csp 0.02 -0.19 -0.06 0.01 -0.03 
 -0.78** 0.16 

RUST -0.17 0.15 0.12 0.01 -0.11 -0.14 
 0.44 

ANTH -0.10 0.04 -0.15 -0.09 0.06 -0.13 0.33 
 

*, **, *** Significant at P≤0.05, P≤0.01 and P≤0.001 respectively; GY =Grain yield (t.ha-1), DF = 

Days to 50% flowering, PH =Plant height, PL = Panicle length, NP = Number of tillering plants, 

Csp = Cercospora spp, Rust = Puccinia purpurea and Anth = Anthracnose.  

5.3.6. Genotype superiority  

The performance of the top ten experimental hybrids was compared to the checks. The earliest 

flowering hybrids were TX 631A x IS 14257R and 8601A x IS 14257R with 62 days. Macia 

(check) was also part of the early genotypes with 65 days to flowering. On the other hand, 

Macia (check) was amongst the shortest genotypes with 120 cm after TX 631A x MZ 2R with 

117 cm. The hybrids LARSVYT 46A x MZ 2R, LARSVYT 46A x SDS 6013R, SPL 38A x MZ 

2R, TX 631A x SDS 6013R, SPL 38A x IS 14257R, SPL 38A x MZ 37R and TX 631A x IS 

14257R displayed large panicle sizes of 35 cm to 38 cm compared to Sima (check) and Macia 

with 34 cm and 30 cm respectively. The hybrids ICSA 21A x MZ 37R, ICSA 12A x IS 14257R 

and TX 628A x MZ 37R were the top three in respect to number of tillering plants per plot with 

16 plants. Few number of panicles were recorded from the check Macia and hybrids 8601A x 

SDS 6013R, ICSA 21A x MZ 2R and TX 628A x MZ 37R. None of the checks appeared in the 

top 10 genotypes for grain yield performance. However, when raking the top 20, Sima came 

at position 16 while Macia came at position number 20.  The hybrids with the highest average 

grain yield across environments were TX 631A x MZ 37R followed by SPL 38A x SDS 6013R 

and LARSVYT 46A x IS 14257R (Figure 5-3). 
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Figure 5-3 Top 20 genotypes performance for grain yield across six locations
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Table 5-7 Specific combining ability estimates of the 36 hybrids for grain yield and secondary traits across six environments 

 Hybrids 

GY 

(t.ha-1) 

DF 

(days) 

PH 

(cm) 

PL 

(cm) NP GLS¥ RUST¥ ANTH¥ 

LARSVYT 46A x MZ 2R 0.06 0.10 6.37 1.83 -1.04 0.00 0.04 -0.10 

LARSVYT 46A X IS 14257R 0.26 -1.01** 7.08 -1.41 2.69** 0.19 0.18 0.09 

LARSVYT 46A X SDS 6013R 0.13 -1.18** -7.94 0.90 1.13 0.11 -0.15 0.18 

LARSVYT 46A X MZ 37R -0.10 -0.84** -7.65 -3.25** -2.31** -0.23* -0.18 -0.07 

8601A x MZ 2R -0.22 -0.95** 1.18 -5.24** -1.54 0.00 0.15 0.09 

8601A x IS 14257R -0.31 -4.90** 1.15 -7.54** -0.15 -0.17 -0.07 0.29* 

8601A x SDS 6013R -0.51** -4.51** -25.26** -7.14** -2.09** 0.30** 0.07 -0.02 

8601A x MZ 37R 0.18 0.27 -14.02** -5.58** 1.24 0.11 -0.12 0.04 

SPL 38A x MZ 2R -0.11 1.71** -17.54** 0.53 1.13 -0.09 -0.01 -0.07 

SPL 38A x IS 14257R -0.16 1.55** -27.70** -0.21 0.74 0.05 0.02 0.21 

SPL 38A x SDS 6013R 0.27 1.66** 18.38** -4.04** 2.13** 0.02 0.07 0.04 

SPL 38A x MZ 37R -0.17 -0.23 -11.80* -0.57 -0.42 -0.06 0.27* 0.07 

ICSA 19A x MZ 2R -0.53** 1.82** -6.78 -4.20** -0.26 0.19 -0.01 -0.10 

ICSA 19A x IS 14257R 0.03 -0.12 -7.93 -6.17** -0.87 -0.03 0.04 0.07 

ICSA 19A x SDS 6013R -0.40* 1.05** -10.49 -2.36* -0.70 -0.09 0.02 -0.07 

ICSA 19A x MZ 37R -0.29 0.16 -0.20 -9.37** -1.65 0.00 -0.15 0.15 

TX 628A x MZ 2R -0.30 -0.23 -16.95** -3.98** -1.26 0.02 0.57** 0.76* 

TX 628A x IS 14257R 0.15 0.10 -17.80** -3.77** 2.24** -0.17 0.07 0.32* 

TX 628A x SDS 6013R -0.83** 2.38** -31.04** -6.89** -2.70** -0.11 0.13 0.21 
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 Hybrids 

GY 

(t.ha-1) 

DF 

(days) 

PH 

(cm) 

PL 

(cm) NP GLS¥ RUST¥ ANTH¥ 

TX 628A x MZ 37R -0.49** 0.27 -7.31 -3.81** -3.20** 0.22* 0.15 -0.02 

ICSA 21A x MZ 2R -0.48** 1.88** -12.97* -4.92** -3.04** 0.02 0.04 0.04 

ICSA 21A x IS 14257R -0.15 -1.01** -16.85** -7.91** -2.37** 0.05 0.07 -0.18 

ICSA 21A x SDS 6013R -0.39* 2.27** -20.46** -6.04** -1.48 0.08 -0.12 0.15 

ICSA 21A x MZ 37R -0.58** -0.62 -21.13** -4.36** -3.59** 0.02 0.10 0.26 

ICSA 12A x MZ 2R -0.40* -3.51** -4.09 -5.78** -0.37 0.14 -0.18 -0.04 

ICSA 12A x IS 14257R -0.61** 1.05** -23.37** -7.46** -3.54** -0.09 0.10 0.26 

ICSA 12A x SDS 6013R 0.09 -0.73* -18.92** -3.84** -0.76 0.27* -0.18 0.18 

ICSA 12A x MZ 37R -0.24 -1.73** -5.34 -5.55** -0.65 0.25* -0.10 0.37* 

CK 60A x MZ 2R -0.28 0.10 -21.38** -4.61** -0.92 -0.25* -0.07 0.07 

CK 60A x IS 14257R -0.33* -0.79* -5.54 -5.14** -1.98* 0.25* 0.04 -0.07 

CK 60A x SDS 6013R -0.34* 1.21** -25.39** -5.72** -3.15** -0.03 0.24* 0.09 

CK 60A x MZ 37R -0.20 -1.73** 14.35** -3.38** -1.15 -0.11 0.24* 0.09 

TX 631A x MZ 2R -0.37* 2.21** -35.75** -5.95** -2.65** 0.14 -0.10 0.04 

TX 631A x IS 14257R 0.10 -5.34** -30.42** -1.02 -2.09** 0.19 -0.10 -0.13 

TX 631A x SDS 6013R -0.38* 0.21 -30.84** -0.09 -1.65 0.08 -0.18 0.32* 

TX 631A x MZ 37R 0.51** -4.34** -16.63** -2.57* 0.74 0.00 -0.07 0.12 

SE 0.20 0.30 5.40 1.20 1.00 0.11 0.12 0.15 
*, **, *** Significant at P≤0.05, P≤0.01 and P≤0.001 respectively; GY =Grain yield (t.ha-1), DF = Days to 50% flowering, PH =Plant height, PL = 

Plant length, NP = Number of tillering plants, Csp = Cercospora spp, Rust = Puccinia purpurea, Anth = Anthracnose and Bio = Biomass. ¥ 

Disease rating scores (1=symptomless and 5=severe leaf damage). 
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5.3.7. Heterosis estimates for grain yield across environments 

The heterosis over the mid-parent (MPH) and standards heterosis (SH) are outlined in Table 

5-8. The heterosis was highly significant (P<0.01) over the mid-parent, trial mean, best check 

and best parents. The grain yield mean of the parent lines and hybrids was 1.23 t.ha-1 and 

2.63 t.ha-1, respectively. Across all the environments, hybrids showed superior grain yield over 

all parents, with the mean heterosis over the mid-parent of 194% and mean heterosis over the 

best check of 76% (Table 5-8). The MPH was positive and ranged from 52 to 194% over the 

mid-parent. Twenty-six hybrids had heterosis over the mid-parent with more than 100% and 

the remaining 10 were below 100%. The top five hybrids were: TX 631A x MZ 37R, followed 

by SPL 38A x SDS 6013R, LARSVYT 46A x IS 14257R, 8601A x MZ 37R and TX 628A x IS 

14257R. Most of the hybrids had heterosis from 5 to 57% above the trial mean. The hybrids 

8601A x SDS 6013R, ICSA 19A x MZ 2R, ICSA 21A x MZ 37R, ICSA 12A x IS 14257R, TX 

628A x SDS 6013R had heterosis below the trial mean. 

The hybrid TX 631A x MZ 37R had better performance over the best check, check mean and 

over the best parent for grain yield. The heterosis over the best check ranged from 5 to 76%. 

Two testers (IS 14257R and MZ 37R) and one line (LARSVYT 46A) were selected based on 

their positive and significant GCA effects for grain yield when compared with hybrids. The 

hybrids generated from the selected testers or lines exhibited high level of heterosis, whereas 

lines TX 631A and 8601A combined with tester MZ 37R also displayed high levels of heterosis 

of 182% and 148%, respectively. The combination of the selected line LARSVYT 46A with 

tester IS 14257R displayed a level of heterosis of 141% (Table 5-8). Among the top 10 hybrids, 

the lines that combined with tester MZ 37R displayed high levels of heterosis with TX 631A 

and 8601A, while the lines; LARSVYT 46A, TX 628A, TX 631A and ICSA 19A resulted in 

hybrids with high levels of heterosis when combined with tester IS 14257R. On the other hand, 

the hybrids from testers SDS 6013R and MZ 2R with line LARSVYT 46A also displayed a high 

level of heterosis. 
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Table 5-8 Standard heterosis for grain yield (t.ha-1) of 36 hybrids across six environments 

Genotypes 
MPH 
(%) 

SH to 
trial 

mean 
(%) 

SH to 
best 

check 
(%) 

SH to 
check 
mean 
(%) 

SH to 
P2 (%) 

SH to 
P4 (%) 

SH to 
P5 (%) 

TX 631A x MZ 37R 293.9 156.8 175.5 176.4 265.2 282.2 203.9 

SPL 38A x SDS 6013R 268.8 143.4 160.5 161.3 242.5 258.1 186.5 

LARSVYT 46A x IS 14257R 267.6 142.7 159.7 160.5 241.4 256.9 185.6 

8601A x MZ 37R 258.6 137.9 154.4 155.2 233.3 248.3 179.4 

TX 628A x IS 14257R 255.1 136.1 152.3 153.1 230.2 244.9 177.0 

LARSVYT 46A x SDS 6013R 253.4 135.2 151.3 152.1 228.7 243.3 175.8 

TX 631A x IS 14257R 250.7 133.7 149.7 150.4 226.2 240.7 173.9 

ICSA 12A x SDS 6013R 250.3 133.5 149.4 150.2 225.8 240.3 173.6 

LARSVYT 46A x MZ 2R 246.5 131.5 147.1 147.9 222.4 236.6 171.0 

ICSA 19A x IS 14257R 243.9 130.1 145.6 146.4 220.1 234.2 169.2 

CK 60A x MZ 37R 241.6 128.8 144.2 144.9 218.0 231.9 167.6 

SPL 38A x MZ 2R 229.5 122.4 137.0 137.7 207.1 220.3 159.2 

LARSVYT 46A x MZ 37R 227.2 121.2 135.6 136.3 205.0 218.1 157.6 

ICSA 21A x IS 14257R 223.1 119.0 133.2 133.8 201.3 214.1 154.7 

SPL 38A x MZ 37R 222.6 118.7 132.9 133.6 200.9 213.7 154.4 

SPL 38A x IS 14257R 221.5 118.1 132.2 132.9 199.8 212.6 153.6 

8601A x MZ 2R 217.0 115.7 129.6 130.2 195.8 208.3 150.5 

ICSA 12A x MZ 37R 214.8 114.6 128.2 128.9 193.8 206.2 149.0 

ICSA 19A x MZ 37R 211.1 112.6 126.0 126.7 190.5 202.7 146.5 

CK 60A x MZ 2R 209.1 111.5 124.9 125.5 188.7 200.8 145.1 

8601A x IS 14257R 208.0 110.9 124.2 124.8 187.7 199.7 144.3 

TX 628A x MZ 2R 206.7 110.2 123.4 124.0 186.5 198.4 143.4 

CK 60A x IS 14257R 205.0 109.3 122.4 123.0 184.9 196.8 142.2 

CK 60A x SDS 6013R 202.2 107.8 120.7 121.3 182.4 194.1 140.2 

ICSA 19A x SDS 6013R 202.0 107.8 120.6 121.2 182.3 194.0 140.1 

TX 631A x SDS 6013R 200.6 107.0 119.8 120.4 181.0 192.6 139.2 

TX 631A x MZ 2R 199.5 106.4 119.1 119.7 180.0 191.5 138.4 

ICSA 12A x MZ 2R 198.2 105.7 118.3 118.9 178.8 190.2 137.5 

ICSA 21A x SDS 6013R 197.7 105.4 118.0 118.6 178.4 189.8 137.1 

ICSA 21A x MZ 2R 188.3 100.5 112.4 113.0 169.9 180.8 130.6 

TX 628A x MZ 37R 188.2 100.4 112.4 112.9 169.8 180.7 130.5 

8601A x SDS 6013R 185.8 99.1 110.9 111.5 167.6 178.4 128.9 

ICSA 19A x MZ 2R 183.7 98.0 109.7 110.2 165.8 176.4 127.4 

ICSA 21A x MZ 37R 178.6 95.2 106.6 107.2 161.1 171.4 123.9 

ICSA 12A x IS 14257R 175.9 93.8 105.0 105.5 158.7 168.9 122.0 

TX 628A x SDS 6013R 152.4 81.3 91.0 91.4 137.5 146.3 105.7 

Error MS 5288.8 1504.5 1885.2 1904.1 4305.6 4874.4 2544.7 

Critical Value of Studentized 
Range 

5.5 5.5 5.5 5.5 5.5 5.5 5.5 

Minimum Significant 
Difference 

94.3 50.3 56.3 56.6 85.1 90.5 65.4 

SH-Standard Heterosis, Checks = Macia and Sima, P2 = IS 14257R, P4 = MZ 37R and P5 = 

LARSVYT 46A 
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5.4. Discussion 

5.4.1. Grain yield performance and genotype superiority  

From the results, it was observed that, in general, the grain yield for the hybrids involving 

testers MZ 37R and SDS 6013R was higher than those involving testers IS 14257R and MZ 

2R. However, the same hybrids involving IS 14257R were ranked in third and fifth position of 

the top ten high yielding hybrids across the environments. This suggests that the two testers 

IS 14257R and MZ 2R were more adapted to those environments. The contribution of the four 

testers to grain yield of the top ten hybrids was between 11 and 35% yield increase than the 

trial mean (data not shown). Among the top 10 hybrids, four were crosses with tester IS 

14257R, three with SDS 6013R, two with MZ 37R and one with MZ 2R, but the superiority 

over the trial mean were 35% from MZ 37R, 23% from SDS 6013R and IS 14257R each and 

13% from MZ 2R. The magnitude of GCA effects of the testers suggested that IS 14257R was 

the best tester for yield improvement although MZ 37R demonstrated superiority over the other 

testers in contributing to grain yield increase. These results align with the findings of Mindaye 

et al. (2016) where using adapted and non-adapted groups of sorghum hybrids for increased 

productivity  revealed hybrids that were superior to local checks by 10 and 52% for grain yield. 

According to Farshadfar et al. (2012), genotypes with high mean yield across tested 

environments are regarded as ideal genotypes. For the secondary traits, hybrids involving IS 

14257R performed better for days to 50% flowering, MZ 2R and Macia for plant height, MZ 

2R and SDS 6013R for panicle length, MZ 37R and IS 14257R for number of tillering plants, 

SDS 6013R and MZ 2R for number of panicles. In a study by Thakare et al. (2014) involving 

line x tester crosses, plant height showed a high significant contribution to grain yield. In 

addition, in this current study, analysis of the environments showed that environments Map17, 

Sus17 and Sus16 had the highest yield performance. This implies that Mapupulo and 

Sussundenga locations could be used to identify potentially high yielding hybrids, but 

additional testing is needed. 

Among the three diseases observed, rust was the most severe disease followed by 

Cercospora spp and anthracnose. The checks Macia and Sima had moderate reaction (MR) 

to anthracnose and Cercospora spp but Macia showed susceptibility to rust. The hybrids 

classified as resistant to rust were ICSA 12A x MZ 2R, ICSA 12A x SDS 6013R and TX 631A 

x SDS 6013R, while moderately resistant were LARSVYT 46A x IS 14257R, LARSVYT 46A x 

SDS 6013R and 8601A x MZ 37R. For Cercospora spp, most of the hybrids were classified 

as resistant to moderately resistant whereas for anthracnose, all hybrids were classified as 

resistant. This suggested that the source of resistance to anthracnose and Cercospora spp 

were from the parents. Similar results were found by Wang et al. (2006) where accessions 
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from South Africa and Mali showed high resistance to anthracnose. Although rust disease 

itself has insignificant effects on sorghum grain yield (Wang et al., 2006), it can predispose 

plants to other major diseases. Deployment of resistance to anthracnose has been used to 

control the disease in many hybrids and lines (Frederiksen, 2000). Although the weather 

conditions were favorable for disease development and spread, further studies using artificial 

inoculation are recommended. 

 

5.4.2. Combining ability effects 

The GCA mean squares for testers were significant to highly significant for grain yield, days 

to 50% flowering, plant height and biomass but not significant for panicle length, number of 

panicles, Cercospora spp, rust and anthracnose. Traits with significant GCA effects were 

influenced by additive gene action, and breeding progress could be achieved through 

selection of good parents (Makanda et al., 2010). The interaction of line x tester with the 

environment was highly significant except for Cercospora spp. It also suggests that the hybrids 

performed differently for the same trait in a different environment. These findings are important 

for the breeding strategy especially in breeding for specific adaptation. Therefore, grain yield 

could be improved using methods such as hybridization or pure line selection when SCA is 

important (Reddy et al., 2008b). 

The testers were highly significant for days to 50% flowering, plant height, panicle length and 

biomass but not significant for grain yield. Significant GCA mean squares for number of tillering 

plants, number of panicles, Cercospora spp, rust and anthracnose were also observed. 

Significant GCA effects suggested the importance of additive genetic variance for the 

expression of the traits. Tadesse et al. (2008) found similar results of additive genes controlling 

plant height while Kenga et al. (2004) reported additive genes for both plant height and 

flowering days. Days to 50% flowering were highly significant with negative GCA effects in 

testers IS 14257R and MZ 37R, while plant height was significant with a negative GCA effect 

in tester SDS 6013R. The other traits did not show any significant GCA effects. Parents with 

significant positive GCA effects might be valuable for integration of delayed maturity when 

needed. A positive direction for selection was desirable for grain yield and panicle length and 

negative for days to 50% flowering, plant height, number of tillering, plants disease scores and 

biomass. The GCA effects in the desired direction deliver support in a selection system and 

parents having greater GCA in the desired direction for traits of interest can be selected for 

further hybridization and assessment programmes (Tariq et al., 2014). The lines with 

significant positive GCA effects for grain yield were LARSVYT 46A, SPL 38A and TX 631A 

while 8601A, ICSA 21A and TX 628A which showed significant negative GCA effects. For 
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plant height, lines TX 631A, ICSA 12A, ICSA 21A and TX 628A were significant for SCA 

effects. For panicle length, lines LARSVYT 46A, SPL 38A and TX 631A showed positive 

significant GCA effects while the negative but significant GCA effects were obtained for the 

lines 8601A, ICSA 19A, ICSA 21A and ICSA 12A. The undesirable GCA effect direction for 

number of tillering plants (positive) was shown by line ICSA21A and the effect was highly 

significant. In the opposite direction, significant GCA effects were recorded for line SPL 38A. 

Negative and significant GCA effects for disease scores were found in lines ICSA 12A and TX 

631A for rust disease and other lines had positive GCA effects values for other diseases. A 

significant interaction amongst the environment and GCA (testers) for all traits indicated the 

differences between the genotypes in environment responses for these traits while significant 

GCA (lines) indicated that genotype were more constant in expression over environments 

(Kenga et al., 2005). These results also indicated the importance of the yield components 

during the yield assessment for stability and adaptability of genotypes.  

SCA mean squares were significant for number of panicles, biomass, days to 50% flowering, 

plant height, panicle length, number of tillering plants, Cercospora spp, rust and anthracnose. 

This indicated that non-additive gene effects contributed to variation in expression of the traits.  

Kenga et al. (2005) reported that lack of significant SCA mean squares indicate that genes 

which contributed in variation are additive. For SCA effects, most of the hybrids showed 

significant effects in the desired direction for each trait (positive or negative). Grain yield 

showed significant positive SCA effects for the cross TX 631A x MZ 37R (Table 5-7). Other 

crosses showed negative SCA effects for grain yield. Negative SCA effects for days to 50% 

flowering were observed in hybrids 8601A x IS 14257R, 8601A x SDS 6013R, ICSA 12A x MZ 

2R, TX 631A x IS 14257R and TX 631A x MZ 37R.  Most of the hybrids showed significant 

negative SCA effects for all traits except for number of panicles and biomass. The hybrids 

LARSVYT 46A x MZ 37R, 8601A x SDS 6013R, TX 628A x SDS 6013R, TX 628A x MZ 37R, 

ICSA 21A x MZ 2R, ICSA 21A x IS 14257R, ICSA 21A x MZ 37R, ICSA 12A x IS 14257R, CK 

60A x IS 14257R, CK 60A x SDS 6013R, TX 631A x MZ 2R and TX 631A x IS 14257R showed 

significant negative SCA effects for number of tillering plants. While the SCA effects for 

diseases Cercospora spp, rust and anthracnose were not significant except the hybrids 

LARSVYT 46A x MZ 37R and CK 60A x MZ 2R that showed significant negative SCA effects. 

None of the best five hybrids with respect to grain yield were early maturing. This trait is usually 

linked to low yielding in sorghum. Efficient breeding strategies should be effective to improve 

grain yield and earliness by exploiting superior high yield and earl maturity hybrids (Hayes and 

Rooney, 2014). The non-additive gene action for grain yield indicates that when high yielding 

improved lines are selected, then additional yield improvement might be achieved in a hybrid 

programme (Singhania, 1980). 
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The significance of GCA and SCA mean squares for the lines and testers is an indication of 

the importance of both additive and non-additive gene action in controlling the expression of 

the various traits. Performance of the hybrids across the six environments was also different. 

This might be due to differences in trial management as well as differences in soil moisture 

and rainfall at each site and season. Chapman et al. (2000) have reported similar factors 

causing complication of genotype x environment interaction of sorghum hybrids over location 

and years. High yielding lines and testers may appear as poor combiners for hybrid 

development and this behaviour could be from intra and/or inter allelic interaction of genes 

concerned with the character (Dabholkar, 1999). This explains why not all superior hybrids 

had parents showing good per se performance in respect of the concerned characteristic. In 

addition, Tariq et al. (2014) explained that the mean performance of the parents and their 

hybrids is assumed to be one of the important features for their evaluation and parents with 

high mean values may or may not convey their high performance to their hybrids. This 

performance over the parents may be either over-dominance at some quantitative trait loci 

(QTL) involved in the traits and/or there may be some dominance, not necessarily complete 

but with the increasing alleles disseminated to some extend between the two parents (Mackay, 

2011). 

The correlation between the performance of the parents (GCA) and hybrids (SCA) was 

significant for some traits and not significant for other traits. Correlation coefficients among 

GCA and SCA effects were significant for grain yield, days to 50% flowering, plant height, 

panicle length, number of tillering plants and the diseases. For GCA effects, significant and 

positive correlation between grain yield and number of tillering plants (r=0.69) and between 

number of tillering plants and panicle length (r=0.64) were observed. This revealed that 

number of tillering plants and panicle length had minor but significant contribution to grain 

yield. Smith (1986) explained that the correlation between the line per se and testcross 

performance are expected to be less than 0.5 due to masking effects of favourable dominant 

alleles in the tester. Additionally, panicle length was strongly associated with the number of 

tillering plants existing in a plot. Similar results were reported where panicle length exhibited 

the least association with grain yield  (Ezeaku and Mohammed, 2006).  A significant but 

negative correlation between Cercospora spp and rust diseases were observed. Therefore, 

depending on the environmental conditions, an increase in one disease could reduce the 

impact of the other disease. SCA effects showed significant and positive correlations between 

grain yield and panicle length, as well as grain yield and number of tillering plants. In addition, 

a significant and positive correlation between panicle length and number of panicles was also 

observed. It suggests that the contribution of these traits to grain yield should be considered 

simultaneously when selecting for yield improvement in sorghum. The relationship among the 
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traits may differ from environment to environment as Heinrich et al. (1983) indicated that the 

environment is an important factor affecting yield and its components. 

5.4.3. Estimates of heterosis 

The combination of cytoplasmic male sterile lines with cytoplasmic male fertile lines produced 

hybrids that exhibited higher mean grain yield compared to the high parent grain yield and 

best check. These results revealed the potential to increase sorghum productivity of hybrids 

resulting from crosses involving locally adapted genotypes.  Across the environments, hybrids 

showed superior grain yield over the parents and checks. This superiority was also reported 

by Mindaye et al. (2016) and Kenga et al. (2005) in crosses involving male sterile lines and 

restorer lines. The highest amount of heterosis over the mid-parent was observed in hybrid 

TX 631A x MZ 37R. The highest amount of heterosis over the mid-parent observed in the 

hybrids revealed the genetic potential of the involved lines in breeding for grain yield 

improvement. Hayes and Rooney (2014) reported a high grain yield potential of parental lines 

in six black sorghum hybrids that performed 172% more than parents. The significant 

combining ability for the lines showed that additive genes were more important than non-

additive genes for most of the traits, suggesting a preliminary selection of the parents that 

produce hybrid combinations having wide and/or specific adaption to different environments 

would be possible. Similar results have been reported by Premalatha et al. (2006), where 

estimates of GCA and SCA indicated presence of both additive and non-additive gene action 

for all traits under study. The hybrid with significant and positive SCA effects for grain yield 

also had high heterosis level for the same trait. Significant positive heterosis was also 

associated with higher SCA effects in most of the hybrids (Umakanth et al., 2012). The 

exploitation of heterosis might be one of the possible methods for improvement of grain yield 

in sorghum (Premalatha et al., 2006). 

Among the lines, TX 631A, ICSA 12A and SPL 38A performed well for most of the characters 

compared to mid parent heterosis. On the hand, MZ 37R and IS 14257R testers had better 

performance and exhibited high levels of heterosis for most of the characters that contribute 

to grain yield. Premalatha et al. (2006) suggested that heterosis over the check or local variety 

could be considered as the best criteria for evaluation of hybrids. 

5.5. Conclusion 

The testers IS 14257R and MZ 37R had desired GCA effects for grain yield and days to 50% 

flowering while lines LARSVYT 46A, SPL 38A and TX 631A had desired GCA effects for grain 

yield. Lines 8601A, ICSA 12A, TX 631A and LARSVYT 46A had desired GCA effects for days 
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to 50% flowering. For plant height, lines TX 631A, ICSA 12A, ICSA 21A and TX 628A had 

desired GCA effects while for panicle length, lines LARSVYT 46A, SPL 38A and TX 631A had 

desired GCA effects. The lines ICSA 12A and TX 631A showed desired GCA effects for rust 

disease. The hybrid with highest average of grain yield across environments was TX 631A x 

MZ 37R followed by SPL 38A x SDS 6013R and LARSVYT 46A x IS 14257R. The early 

maturing hybrids were TX 631A x IS 14257R, 8601A x IS 14257R and Macia (check). None 

of the checks were ranked in the top 10 genotypes for grain yield. The hybrids resistant to rust 

were ICSA 12A x MZ 2R, ICSA 12A x SDS 6013R and TX 631A x SDS 6013R, while 

moderately resistant hybrids were LARSVYT 46A x, IS 14257R, LARSVYT 46A x SDS 6013R 

and 8601A x MZ 37R. The parents involved in these crosses can be used as sources of 

resistance in future breeding programmes.  The heterosis over the mid-parent and over best 

check ranged from 52 to 194% and 5 to 76%, respectively. The parents IS 14257R, MZ 37R 

and LARSVYT 46A were selected for grain yield. The hybrids containing the selected testers 

or lines exhibited high levels of heterosis whereas lines TX 631A and 8601A combined with 

tester MZ 37R displayed level of heterosis of 182% and 148% respectively. The line LARSVYT 

46A exhibited heterosis of 141% when combined with tester IS 14257R.  
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6. Influence of genotype x environment interaction on grain yield 

performance of sorghum genotypes across lowlands and 

midlands of Mozambique 

Abstract 

For an efficient selection of desirable genotypes, genotype by environment interaction 

components have to be understood, after which they can either be ignored, minimized or 

exploited. Therefore, it is essential for plant breeders to study the genotype by environment 

interactions during development and selection of improved varieties. The present study 

evaluated grain yield adaptability and stability of sorghum hybrids to identify the best 

performing genotypes across and within specific environments using the genotype, genotype 

by environment (GGE) biplot analysis. A total of 38 entries, which included 36 experimental 

hybrids and 2 checks were evaluated across six test environments during 2015/16 and 

2016/17 seasons, with three replications in each environment. The experimental hybrids were 

generated in a Line x Tester mating design involving nine cytoplasmic male sterile (CMS) lines 

and four restorer lines. In addition, the 13 parents were also evaluated. The hybrid main effects 

and hybrid x environment interactions for grain yield were highly significant (P<0.001) 

indicating differences among hybrids and environments. Although checks performed well in 

some environments, their potential yields were lower compared to the experimental hybrids 

(1.23 t.ha-1 and 2.63 t.ha-1, respectively). Based on the mean performance and stability P12 

(CK 60A) and P5 (LARSVYT46A) were the high yielding and stable parents whereas the 

hybrids GS9 (SPL 38A x MZ 2R), GS36 (TX 631A x MZ 37R), GS1 (LARSVYT46A x MZ 2R) 

and GS34 (TX 631A x IS 14257R) were high yielding and stable. Hybrids GS9 and GS36 

showed general adaptation across environments while GS2 (LARSVYT46A x IS 14257R), 

GS11 (SPL 38A x SDS 6013R), GS38 (SIMA), GS7 (8601A x SDS 6013R), GS32 (CK 60A x 

MZ 37R) had specific adaptation to different environments. The recommended environment 

for testing new genotypes were Mapupulo and Sussundenga where LARSVYT46A x IS 

14257R is recommended for Mapupulo and SPL 38A x SDS 6013R for Sussundenga. These 

results will assist the breeder in recommending hybrids according to performance and 

adaption as well as selection of the best environment to test new genotypes. 
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6.1. Introduction 

In Mozambique, agriculture plays a vital role in the development of the country and is one of 

the pillars for economic growth. According to USAID (2017), agriculture remains the backbone 

of Mozambique’s economy, employing more than 80% of its labour force and contributing 

more than a quarter of its GDP. The existing vast potential for crop production makes the 

country suitable for farming and for improved agricultural productivity. Unfortunately, farmers 

are still using unimproved varieties that are low yielding and susceptible to adverse effects of 

climate changes. Sorghum is amongst the crops grown for food security by families in 

smallholder farms. The crop responds well to a wide range of environments (Machado and 

Paulsen, 2001), and it has considerable potential to be used as both human food and a 

beverage source (Reddy et al., 2012). It is also an important source of nutraceuticals such as 

antioxidants, phenolics and cholesterol-lowering waxes (Taylor et al., 2006). In terms of 

production, grain yield remains the most important trait considered by farmers (Reddy et al., 

2012). 

Sorghum has potential for heterosis for grain yield which can be exploited for hybrid 

development. According to a study by Ashok Kumar et al. (2011), new hybrid varieties gave 

30-40% heterosis for grain yield compared to the best hybrid checks under rainfed conditions. 

Therefore, for the plant breeder it is essential to study the genotype x environment interactions 

(GEI) effects on grain yield during the development of improved varieties. Mohammadi and 

Amri (2008) reported that the identification of superior genotypes is complicated by genotype 

by environment interactions. Although several statistical methods facilitate interpretation of the 

GEI, very few explain adequately the genotype performance across environments. Eberhart 

and Russell (1966) suggested that the means to reduce GEI was to use genetic mixtures 

rather than homogeneous or pure lines. In contrast, other researchers found that evaluation 

based on several years and locations is a good strategy to pursue in breeding under varying 

environments (Mohammadi and Amri, 2008; Dehghani et al., 2013).  Selection for high yielding 

and stable genotypes requires a preliminary evaluation that ranks varieties according to their 

adaptation. Evaluation of potential genotypes from crosses is the first step before 

implementation of selection. 

Different procedures have been developed to evaluate crop adaptability and stability. These 

procedures are based on analysis of variance, multivariate analysis, linear regression, non-

linear analysis and biplot analysis. There are several approaches for analysis and 

interpretation of GEI based on biplots. However, the additive main effects and multiplicative 

interaction (AMMI) analysis was found to be the most useful because of the larger number of 

practical explanations it provides (Duarte and Vencovsky, 1999) compared to other methods. 
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Additionally, Yan et al. (2000) proposed a modification on the conventional AMMI analysis and 

called it GGE biplot (genotype and genotype-environment interaction) analysis. The 

advantage of GGE biplot analysis over AMMI analysis lies in the fact that biplots explain an 

intermediate fraction of sum of squares of genotypes + genotypes by environments (G + GE), 

making the graphical illustration more accurate and more practical (Yan et al., 2007). Sibiya 

(2009) compared the two methods and found AMMI and GGE biplot analysis to depict similar 

results for maize hybrid selection. On the other hand, Balestre et al. (2009) found GGE2 biplot 

being superior to AMMI1 and graphical accuracy was higher in representing the proportion of 

G + GE. On other hand, Ma et al. (2004) suggested that GGE biplot stands for genotype main 

effects plus GEI and it was confirmed by Yan et al. (2007) that GGE biplot had many visual 

interpretations than AMMI, including the visualization of crossover GEI. Therefore, for this 

study, GGE biplot was selected to analyze and interpret the genotype by environment 

interaction for experimental hybrids across several environments in Mozambique. The aims of 

the present study were to evaluate the grain yield adaptability and stability of sorghum hybrids 

and to identify the best performing genotypes across environments and in specific 

environments using the GGE biplot methodology. 

6.2. Materials and Methods 

6.2.1. Plant materials 

Thirteen sorghum genotypes used as parents in this study were obtained from the Sorghum 

National Programme but were originally bred by the International Crops Research Institute for 

the Semi-Arid Tropics (ICRISAT). The two standard checks used during evaluation are 

varieties widely used in the country with high grain yield performance and stability. The parent 

lines were divided into two groups; nine cytoplasmic male sterile (CMS) designated as females 

and four cytoplasmic male fertile (CMF) as males (Table 6-1). 
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Table 6-1 Parental material used in the line by tester crossing block to develop the 

sorghum hybrids 

Line Group Designation Parent code Origin 

LARSVYT 46A Line Female P5 NAR/ICRISAT 

8601A Line Female P6 NAR/ICRISAT 

SPL 38A Line Female P7 NAR/ICRISAT 

ICSA 19A Line Female P8 NAR/ICRISAT 

TX 628A Line Female P9 NAR/ICRISAT 

ICSA 21A Line Female P10 NAR/ICRISAT 

ICSA 12A Line Female P11 NAR/ICRISAT 

CK 60A Line Female P12 NAR/ICRISAT 

TX 631A Line Female P13 NAR/ICRISAT 

IS 14257R Tester Male P2 NAR/ICRISAT 

SDS 6013R Tester Male P3 NAR/ICRISAT 

MZ 2R Tester Male P1 NAR 

MZ 37R Tester Male P4 NAR 
 *NAR = National Research Sorghum Programme;  

6.2.2. Line x tester crosses and field evaluation sites 

 The nine females and four male lines were crossed in a line x tester mating scheme to 

produce 36 experimental hybrids at Sussundenga Research Station. The 36 experimental 

hybrids along with two check hybrids were grown for evaluation in six test environments 

(combination of year-location) during 2015/16 and 2016/7 seasons (Table 6-2). The thirteen 

parents were also evaluated in four test environments during the same seasons (designated 

with an asterisk in Table 6-2).  

6.2.3. Evaluation sites 

The trials were conducted at four sites in Mozambique: Chókwè, Maniquenique (South), 

Sussundenga (Central), Mapupulo (North). These locations covered from low to mid-altitude 

mega-environments. Table 6-2 summarizes the geographic locations of each of the sites used 

and their annual average rainfall. 
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Table 6-2 Locations used for evaluation of parents, hybrids and checks  

Location Season Code 

Latitude 

(oS) 

Longitude 

(oE) Altitude (m) 

Rainfall* 

(mm) 

Sussundenga** 2015/16 Sus16 19o18’ 33o15’ 635 522 

Chókwè** 2015/16 Chk16 24o52’ 33o00’ 33 380 

Sussundenga** 2016/17 Sus17 19o18’ 33o15’ 635 989 

Chókwè** 2016/17 Chk17 24o52’ 33o00’ 33 650 

Maniquenique 2016/17 Man17 24o73’ 33o53’ 13 468 

Mapupulo 2016/17 Map17 13o19’ 38o86’ 534 1050 

  *Rainfall refers to the amount received during the crop growing season, ** Parents included 

at these sites only 

6.2.4. Experimental design 

The experimental layout in each environment was a 19 x 2 alpha lattice design with three 

replications. Each plot consisted of two rows that were 5 m long with a spacing of 0.75 m inter-

row spaced 0.25 m between plants.  A blended NPK (12-24-12) fertilizer was applied at a rate 

of 250 kg ha-1 (basal application) at planting. Urea (46% N) was applied as a top dressing at 

a rate of 150 kg ha-1 at 30 days and a week before flowering. Other cultural practices such as 

ploughing, disking, hand planting, hand weeding and herbicides application were carried out 

at each site.  

6.2.5. Data analysis 

Combined data were analysed using PROC GLM procedure in SAS 9.3 (SAS, 2011). ANOVA 

was performed separately for each environment with genotypes as the main effect, then a 

combined analysis across environments was conducted to evaluate the effect of years, 

genotypes, and environments and their interactions. Genotype means were ranked and 

compared using Tukey test at 5% probability level.  

Adjusted harvest grain yields were calculated according to CIMMYT (1985): 

Grain yield (t.ha-1) = [Grain weight (kg/plot) x 10 x (100-MOI)/ (100-12.5) / (Plot Area)] 

6.2.6. GGE biplot analysis 

The GGE biplot analysis was performed using GenStat 14 (Payne et al., 2011) and R software 

(R Team, 2014). This method is based on the principal component analysis (PCA) to 

effectively explore the multi-environment trial data (Yan et al., 2000; Farshadfar et al., 2012). 
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The following model for GGE biplot based on singular value decomposition (SVD) of first two 

principal components was used (Yan and Tinker, 2006):  

𝑌(𝑖𝑗) − 𝜇 − 𝛽𝑖 = 𝜅1𝜆𝑖1𝜉𝑗1 + 𝜅2𝜆𝑖2𝜉𝑗2 + 𝜀𝑖𝑗 

Where: Yij = Yield mean of ith genotype in jth environment; µ = grand mean; βj = main effect of 

environment j; µ + βj = mean yield across all genotypes in environment j; κ1 and κ2 = singular 

values (SV) for the first and second Principal component (PC1 and PC2), respectively, λi1 and 

λj2 = eigen vectors of hybrid i for PC1 and PC2, respectively, ξi1 and ξi2 = eigen vectors of 

environment j for PC1 and PC2, respectively, εij = residual associated with genotype i in 

environment j. 

6.3. Results 

The results from the analysis of variance of grain yield across six test environments showed 

that the main effects of the genotypes, environment and their interaction were highly significant 

(P<0.001, Table 6-3). The means for the parents and hybrids were 1.23 t.ha-1 and 2.63 t.ha-1 

respectively. The environment effect was highly significant (P<0.001). Yields ranged from 7.1 

t.ha-1 to 0.51 t.ha-1 and the environment with highest grain yield was Map17 and Sus17, while 

Man17 and Chk16 had the lowest yields.   
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 Table 6-3 Analysis of variance for grain yield of hybrids and parents tested across six 

environments  

Source DF Type III SS Mean Square F Value Pr > F 

Hybrids 
     

Environment 5 852.338659 170.4677318 357.21 <.0001 

BLK(REP*Env) 30 16.227678 0.5409226 1.13 0.2898 

ENTRY 37 53.8708812 1.4559698 3.05 <.0001 

Hybrids 35 53.1202041 1.5177201 3.08 <.0001 

ENTRY*Env 185 277.258879 1.4986966 3.14 <.0001 

Env*Hybrids 175 257.467671 1.4712438 2.99 <.0001 

Error 426 203.293122 0.477214 
  

Corrected total 683 1406.23541       

Parents           

Environment 3 24.9563436 8.3187812 143.46 <.0001 

BLK(REP*Env) 8 1.03171795 0.12896474 2.22 0.032 

Parent 12 13.7083359 1.14236132 19.7 <.0001 

Env*Parent 36 3.72435641 0.10345434 1.78 0.0136 

Error 96 5.56661538 0.05798558   
Corrected Total 155 48.9873692       

Means      
Hybrids   

2.63   
Parents     1.23     

6.3.1. Genotype ranking within and across test environments  

The ranking of the top 15 hybrids and two checks based on the mean grain yields within and 

across environments is presented in Table 6-4. The hybrids that appeared in more than 2 

environments in the top 15 were GS36 (5 env), GS32 (5 env), GS14 (4 env), GS11 (4 env), 

GS3 (4 env), GS6, GS8, GS10, GS22, GS31, GS33, GS34 and GS35. The other two hybrids 

appeared in two environments (GS5 and GS30). The checks appeared in only one (MACIA) 

and two (SIMA) environments. Hybrid GS36 had an average mean grain yield of 3.68 t.ha-1 in 

five environments followed by GS8 with 3.57 t.ha-1 in two environments consecutively. These 

hybrids were followed by GS1 (4 env) with 3.13 t.ha-1 and GS34 (3 env) yielding 3.02 t.ha-1. 

The yield of the other hybrids ranged from 2.84 t.ha-1 (5 env) to 1.5 t.ha-1 (3 env). 
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Table 6-4 Ranking of the top 15 hybrids based mean grain yield across environments 

Rank 
Sus 

15/16 
Chk 

15/16 
Man 

16/17 
Sus 

16/17 
Chk 

16/17 
Map 

16/17 
Overall (mean 
yield- t.ha-1) 

1 GS36 GS15 GS4 GS36 GS27 GS2 GS36 (2.76) 

2 GS11 GS3 GS32 GS18 GS32 GS3 GS8 (2.52) 

3 GS3 GS4 GS33 GS38 GS36 GS1 GS11 (2.51) 

4 GS8 GS7 GS23 GS8 GS29 GS36 GS34 (2.43) 

5 GS5 GS9 GS31 GS7 GS6 GS34 GS10 (2.40) 

6 GS32 GS25 GS34 GS28 GS13 GS9 GS3 (2.38) 

7 GS14 GS16 GS36 GS27 GS14 GS37 GS31 (2.35) 

8 GS1 GS35 GS13 GS22 GS35 GS17 GS32 (2.34) 

9 GS10 GS14 GS10 GS2 GS28 GS10 GS5 (2.31) 

10 GS33 GS6 GS22 GS16 GS4 GS18 GS14 (2.28) 

11 GS31 GS2 GS3 GS32 GS30 GS21 GS30 (2.15) 

12 GS34 GS33 GS9 GS14 GS12 GS11 GS35 (2.14) 

13 GS30 GS26 GS1 GS31 GS25 GS8 GS33 (2.10) 

14 GS22 GS23 GS5 GS35 GS15 GS27 GS22 (2.09) 

15 GS6 GS32 GS38 GS11 GS22 GS29 GS6 (2.08) 

Mean(t.ha-1) 1.98 0.58 1.28 2.98 1.16 3.53 1.91 
LSD (0.05) 0.77 0.15 0.15 1.13 0.40 2.20 0.15 
MSe 0.23 0.01 0.01 0.49 0.06 1.79 0.01 

CV 24.01 15.00 7.05 23.54 20.22 38.00 15.51 

P 0.000 0.000 0.000 0.000 0.000 0.007 0.000 
P *** *** *** *** *** *** *** 
Min 0.62 0.23 0.60 1.88 0.34 1.66 0.94 
Max 4.67 1.41 2.64 5.14 3.05 5.68 3.58 

6.3.2. Analysis of the parents using GGE biplot 

The results of the GGE biplot of grain yield of 13 parents used in the development of hybrids 

showed that the two PCs explained 100% (PC1 = 81.2% and PC2 = 18.81%) of the variation 

(Figure 6-1).  

6.3.2.1. Relationship among test environments 

Environment vectors were drawn from the biplot origin to respective environments. The 

environments for each location in the two seasons were overlaid showing the similar 

conditions to the genotypes.  The angle between the vectors of two environments showed the 

correlation between them. A smaller angle less (than 90o) showed high correlations and was 

observed for the four environments (Figure 6-1).  

The angle between environments Sus16, Sus17 and environments Chk16 and Chk17 were 

less than 90o (Figure 6-1). The environments Chk16 and Chk17 were positive and strongly 

correlated and so were environments Sus16 and Sus17. Additionally, the Chk and Suss 

locations were positive and strongly correlated. 
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Figure 6-1: GGE biplot based on grain yield (t.ha-1) for parents in 4 environments showing the 

relationship among them. 

Where environments are Sus16 = Sussundenga first season; Chk16 = Chókwè first season; 

Sus17 = Sussundenga second season; Chk 17 = Chokwe second season 

6.3.2.2. Discriminating ability and representativeness of test environments 

The visualization of vector length of the environmental vector is proportional to the standard 

deviation within the respective environments and it is measures the discriminating ability of 

the environments. Therefore, all four environments showed good discriminating ability for 

parents.  

Representativeness of a test environment uses the Average Environment Axis (AEA) line that 

passes through the average environments and the biplot origin (Figure 6-2).  
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Figure 6-2: The discriminating and representativeness view of the test environments. The 

environments described in environments were P5 and P12. The other parents (P1, P3 and 

P9) on the vertex were poor in the test envronments. 
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Figure 6-3: Polygon view of the GGE biplot based on grain yield (t.ha-1) for the parents across 

four environments. The environments are described in Figure 6-1. 
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Thus Figure 6-2 shows that none of the environments was representative for the parents’ 

selection. Although the environments were discriminating, they were non-representative of the 

environments. These environments are useful for selecting unstable genotypes because they 

all fell in a single mega-environment (Figure 6-3). 

6.3.3. Mega-environment identification and “which-won-where” genotype selection 

Figure 6-3 shows a polygon view divided into four sectors based on the rays of the biplot and 

the four environments were grouped in one sector. Consequently, the results showed the 

presence of one mega-environment covering all four environments and that P12 and P5 were 

the best parents in the mega-environment. The vertex for each quadrant represents the parent 

with the highest or lowest yield in a particular environment. The highest yielding parents in the 

mega-environments were P5 and P12. The other parents (P1, P3 and P9) on the vertex were 

poor in the test envronments. 

 

Figure 6-3: Polygon view of the GGE biplot based on grain yield (t.ha-1) for the parents across 

four environments. The environments are described in Figure 6-1. 
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6.3.3.1. Mean performance and stability of the genotypes 

The parents that were furthest from the origin in the positive direction of the average 

environmental coordinate (AEC) and with shortest perpendicular distance from AEC were 

defined as high yielding and stable (Figure 6-4). The AEC abscissa pointed to higher mean 

yield across environments. Thus, P12 and P5 had the highest mean yield followed by P8, P7, 

P2, P4, P10 and P13. For stability, P12 and P5 had the shortest distance from AEC, meaning 

that they were the most stable parents. The parents P1, P3 and P9 were the worst in terms of 

yield and stability. Their PC1 values were below zero and had longest vectors from AEC. 

 

Figure 6-4: GGE biplot based on grain yield (t.ha-1) for four environments ranking parents 

based on both the mean grain yield (t.ha-1) and stability. The environments are described in 

Figure 6-1. 

The parents P8, P7, P13 and P10 are located on the line that connects P12 and P9, meaning 

that the rank was P12 > P5 > P8 > P7 > P13 and P10. 
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6.3.4. Analysis of the hybrids using GGE biplot across locations 

6.3.4.1. Relationships among test environments 

From the analysis of GGE biplot, the first two PCs explained 63.88% (Axis 1= PC1 = 37.11% 

and Axis 2 = PC2 = 26.77%) of the total GGE variation. The relationships among the 

environments is shown by vectors drawn from the biplot origin to the environments (Figure 

6-5). The environments Map17 and Sus17, Map17 and Sus 16 were positively correlated 

(acute angle) while Map17 and Man17, Map17 and Chk17 were slightly negatively correlated 

(obtuse angle). The environments Map17 and Chk16 were not correlated (right angle). The 

negatively correlated environments provide information of presence of crossover genotype by 

environment.  

 

Figure 6-5 Relationships among the environments for hybrids evaluation 

Environments are Sus16 = Sussundenga 2015/6; Chk16 = Chókwè season 2015/6; Sus17 = 

Sussundenga season 2016/7; Chk 17 = Chokwe season 2016/7, Man17 = Maniquineque 

season 2016/7 and Map17 = Mapupulo season 2016/7. 
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6.3.4.2. Discriminating ability and representativeness of test environments 

Among the six environments, Map17, Sus16 and Sus17 were most discriminating 

(informative) environments while the least discriminating environments were Chk16, Chk17 

and Man17 (Figure 6-6). The result for representativeness of the test environments showed 

that Map17 was the most representative environment than the others due to the small angle 

between the environmental vector and AEC. Although Map17 was slightly representative, it 

was not the best test environment for selecting generally adapted genotypes. The environment 

Sus16 and Sus17 were discriminating but non-representative. 

 

Figure 6-6 The discriminating and representativeness view of the test environments. The 

environments are described in Figure 6-5 

6.3.4.3. Mean performance and stability of the genotypes 

High yielding and stable genotypes were found far from the origin and had the shortest vectors 

from AEC (Figure 6-7). The high yielding hybrids were GS3 and GS2 followed by GS1, GS36, 

GS11, GS9, GS34 and GS10. The most stable hybrids were GS9 and GS36. The hybrids with 

high yielding and high stability were GS9, GS36, GS1 and GS34. The hybrids that were 
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unstable although high yielding were GS2, GS3, GS11 and GS10. The low yielding but stable 

hybrids were GS29, GS12, GS22 and GS19.  

 

 

Figure 6-7: GGE biplot based on grain yield (t.ha-1) for hybrids performance and stability. 

The environments are described in Figure 6-5. 

6.3.4.4. Mega-environment identification and “which-won-where” 

Figure 6-8 presents the polygon view biplot of mega-environment classification and the best 

genotypes based on the rays of the biplot.  The rays of the biplot divided the plot into eight 

sectors. The environments appeared in five sectors. Each environment fell in a different sector 

except Chk16 and Man17. The winning hybrids for each sector were the ones on the vertex 

of the environment. The highest yielding hybrid in environment Map17 was GS2 while in Sus16 

was GS11. For Sus17, hybrid GS38 was the high yielding and in Chk17 was GS7. The 

environments Chk16 and Man17 had GS32 as the high yielding genotype. The highest yielding 
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environment was Map17 followed by Sus16 and Sus17. The environments Chk16, Chk17 and 

Man17 had average yield below the mean. 

 

Figure 6-8 Polygon view of the GGE biplot based on grain yield (t.ha-1) of 36 hybrids for 

the mega-environments. The environments are described in Figure 6-5. 

6.4. Discussion 

The hybrids main effects and hybrid x environment interactions for grain yield were significant 

and showed differences among hybrids and environments. Though checks performed well in 

some environments, the potential yield was low compared to the hybrids. According to Yan 

and Rajcan (2002) and Farshadfar et al. (2012), the genotype that has high mean yield across 

test environments and highly stable performance is regarded as the model genotype. This 

genotype has large PC1 scores (high mean yield) and small PC2 score (high stability) (Akter 

et al., 2015). Based on the GGE biplot results, the model genotypes for the parents were P12 

and P5 followed by P8, P7, P10 and P13. For the hybrids, the model genotypes were GS9 

and GS36 followed by GS1 and GS34. These were high yielding and more stable genotypes 

across the six environments. The other genotypes such as GS29, GS12, GS22 and GS19 

were more stable but low yielding across environments. Parent P5 (high yield and stable) was 
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one of the parents for the high yield and stable hybrid GS1. Two of the high yielding parents 

P7 and P13 were parents of the hybrids that were stable and had high yielding (GS9 and 

GS34, respectively). None of the tester parents (P1 to P4) was classified as high yielding or 

stable. However, the high yielding and stable parent P12 and high yielding parents P8 and 

P10 were not part of any of the high yielding or high yielding and stable hybrids. High yielding 

parents may appear as poor combiners for hybrid development and this behaviour could be 

from intra and/or interallelic interaction of genes concerned with the character (Dabholkar, 

1999). 

The environments Chókwè 16 (Chk16) and Chókwè 17 (Chk17) were positive and strongly 

correlated, so were environments Sussundenga 16 (Sus16) and Sussundenga 17 (Sus17). 

This suggested that the seasons were similar in discriminating the parents. It also indicates 

that in future, evaluation of parents can be done at the two locations in one year/season. The 

environments Mapupulo 17 (Map17) and Sussundenga 17 (Sus17) and Mapupulo 17 (Map17) 

and Sussundenga 16 (Sus 16) were positively correlated (acute angle) while Mapupulo 17 

(Map17) and Maniquiniqui 17 (Man17), Mapupulo 17 (Map17) and Chókwè 17 (Chk17) were 

slightly negatively correlated (obtuse angle). The environments Map17 and Chk16 were not 

correlated (right angle). The slightly negatively correlated environments provide information of 

presence of crossover genotype by environment. It implies that the genotype by environment 

was moderately large. GGE biplot analysis was more effective in revealing correlation among 

treatments in relation to their response to the environment, the correlation among 

environments, and the crossover genotype by environment interactions (Ma et al., 2004). The 

presence of strong negative correlations among environments is an indication of a strong 

crossover genotype by environment (Yan and Tinker, 2006). The presence of close 

association among test environments suggests that the same information about the genotypes 

could be obtained from fewer test environments if the two environments are closely correlated 

consistently across years or seasons. This suggests that additional evaluations are required 

to confirm the consistency of the environments. Based on the angles of test environment 

vectors, the six environments were grouped into four groups.  In the group including Chókwè 

16 (Chk16), Chókwè 17 (Chk17) and Maniquiniqui 17 (Man17), the environments were closely 

correlated, suggesting that they provided redundant information about genotypes, while 

Sussundenga 17 (Sus17), Sussundenga 16 (Sus16) and Mapupulo 17 (Map17) were 

separated by larger angles and could be suitable for evaluation of this set of genotypes using 

fewer test environments thereby increasing breeding efficiency. The longest vectors were 

observed for environments Sussundenga 17 (Sus17), Mapupulo 17 (Map17) and 

Sussundenga 16 (Sus16). The differences in performance of the hybrids in different seasons 
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may be due to the variation in climate, field management, planting date, sowing intensity or 

depth, or other agronomic practices. 

The visualization of the length of the environment vector is proportional to the standard 

deviation within the respective environments and is a measure of the discriminating ability of 

the environments. Therefore, all the four environments, were discriminating of the parents. 

This indicates that the environments provided information about the parents and should be 

used as test environments. Although the environments were discriminating, they were non-

representative environments. Therefore, none of the environments could be considered “ideal 

environment” for parents’ selection. The ideal environment should be able to differentiate the 

genotypes and be representative of the target environment. However, this environment might 

be beneficial to use as a test environment for selecting unstable genotypes. According to Yan 

and Tinker (2006), in a single mega-environment, the ideal test environment should be most 

discriminating and also most representative of the target environment. Although Mapupulo 17 

(Map17) was slightly representative, indicating that it could be used as a good test 

environment for selecting generally adapted genotypes. The environment Sussundenga 16 

(Sus16) and Sussundenga 17 (Sus17) were discriminating but non-representative, suggesting 

that they are useful for selecting specifically adapted genotypes. The non-discriminating test 

environment is less useful because it provides little discriminating information about the 

genotypes (Yan and Tinker, 2006). 

The model environment should be discriminating and representative of important properties 

of all test environments (Yan, 2001). Presence of GxE interaction confounds the identification 

of an ideal environment (Yan et al., 2000). According to Akter et al. (2015), the test 

environments should have large PC1 scores to discriminate genotype main effect and 

absolute small PC2 score in order to represent the overall environments. The model 

environment for the hybrids was Mapupulo 17 (Map17) because it had a large PC1 score and 

small PC2 score. Therefore, this environment is more suitable for evaluation of all genotypes 

because it is stable and high yielding. Besides that, environment, Sussundenga 17 (Sus17) 

and Sus16 had arge PC2 scores indicating that they contributed most to the GxE interaction 

and are recommended for studies of stability and adaptability. These two environments were 

discriminating environments. The most discriminating environment is the one with longest 

vectors from the biplot origin (Sibiya et al., 2013). Yan et al. (2000), also revealed that 

genotypes showing high PC1 scores (high mean yield) and PC2 scores close to zero (more 

stable) are considered ideal genotypes. The ideal test environment should have a high PC1 

score (genotype discrimination) and PC2 scores close to zero (representative environment) 

(Yan et al., 2007). 
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The environments Chókwè 16 (Chk16), Chókwè 17 (Chk17) and Maniquiniqui 17 (Man17) had 

PC1 and PC2 scores close to zero, indicating good stability although low yielding. This result 

shows that evaluation in these environments was similar and in future evaluations, it would 

make sense not to use all of the three environments in order to save resources. Based on the 

results, the test environments had angles less than 90o indicating high correlations among 

them. The environments Chókwè 16 (Chk16), Chókwè 17 (Chk17) and Maniquiniqui 17 

(Man17) were more correlated than Sussundenga 17 (Sus17) and Sussundenga 16 (Sus16) 

and Sussundenga 16 (Sus16) and Mapupulo 17 (Map17). The angles approximately 90o were 

found between environment Sus17 and Map17. This indicates that the two environments are 

less correlated. The angle between the vectors line connecting environments from the biplot 

origin defines the correlation coefficient between the environments (Kroonenberg, 1995; Akter 

et al., 2015). 

According to Yan et al (2007), genotypes with high yield appeared on the vertices of the 

polygon. The highest yielding and most stable parents in the mega-environment were P12 and 

P5. The parents P8, P7, P10 and P13 were also high yielding but less stable than P12 and 

P5. The parents P1, P3 and P9 were poor in the test environments. Therefore, this suggested 

that those high yielding parents should be selected and used for the target mega-environment. 

Yan and Tinker (2006) reported that if the biplot explained a high portion of total variation, the 

genotypes are truly stable. These estimations were to identify the model/or ideal genotypes 

across or in a specific environment. According to Yan and Tinker (2006), the pattern of GxE 

interaction provides a good visualization of multi-environment trials.  

The biplot within the polygon view was used for which-won-where and mega environments. 

Additionally, average environmental coordinate (AEC) was an axis line used to show the 

ranking of the hybrids and their mean yield and stability. The AEC view in GGE biplot can be 

referred to as the “the mean vs. stability” view (Yan et al., 2007; Dia et al., 2016). It is the axis 

with a small circle at the end of the arrow and passes through the average environment and 

the biplot origin (Yan and Tinker, 2006). The average environment (tester) coordinate (AEC) 

method in GGE biplot was used to estimate the yield and stability of the genotypes. Genotypes 

that were located either on the AEC abscissa or had a near zero projection onto the AEC 

ordinate were more stable (Yan et al., 2000). Accordingly, parent P5 and P12 were high 

yielding and more stable whereas P3 was the unstable parent, revealed by the longest vectors 

from the AEC and PC1 score below zero. The hybrids GS9, GS36, GS1 and GS34 were the 

most stable and high yielding genotypes while GS3, GS2, GS11 and GS10 were high yielding. 

GS9 was the most stable out of four stable hybrids. The biplot indicates the best performing 

hybrids for each environment and groups of environments (Yan and Hunt, 2001). The highest 
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yielding hybrid in environment Map17 was GS2 while in Sus16 was GS11. For Sus17, hybrid 

GS38 was the high yielding genotype and in Chk17 it was GS7. The environments Chk16 and 

Man17 had GS32 as the high yielding hybrid. According to Yan and Hunt (2001), the relation 

between genotypic traits or environmental factors and PC1 scores varied over years and it 

could be due to the difference between summer and winter test environments. 

6.5. Conclusion 

The results showed that all test environments for hybrids were discriminating but not 

representative while for hybrids, environments Mapupulo 17 season (only tested in one 

season), Sussundenga 16 season and Sussundenga 17 season were the most discriminating 

environments (Sussundenga was good in both seasons). Mapupulo 17 season was the 

environment which was slightly representative. Moreover, one mega-environment was found 

in parent evaluation and five mega-environments for the hybrids. The best parents were P12 

(CK 60A) and P5 (LARSVYT46A) but none fell in a specific environment. Additionally, the 

specific environments for hybrids were: Mapupulo 17 (GS2 = LARSVYT46A x IS 14257R), 

Sussundenga 16 (GS11 = SPL 38A x SDS 6013R), Sussundenga 17 (GS38 = SIMA), Chókwè 

17 (GS7 = 8601A x SDS 6013R) and Chókwè 16 and Maniquenique 17 (GS32 = CK 60A x 

MZ 37R). 

The mean performance and stability showed CK 60A and LARSVYT46A as the high yielding 

and stable parents. High yielding and stable hybrids were GS9 (SPL 38A x MZ 2R), GS36 (TX 

631A x MZ 37R), GS1 (LARSVYT46A x MZ 2R) and GS34 (TX 631A x IS 14257R). The parent 

LARSVYT46A (high yielding and stable) was one of the parents for high yielding and stable 

hybrid LARSVYT46 x MZ 2R. Two of the high yielding parents P7 (SPL 38A) and P13 (TX 

631A) were parents of the high yielding and stable hybrids GS9 (SPL 38A x MZ 2R) and GS34 

(TX 631A x IS 14257R) respectively. These results will help the breeder to recommend the 

hybrids according to performance and adaption as well as selection of the best environment 

to test genotypes. 
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7. Participatory variety selection of sorghum hybrids using 

farmers' preferences and knowledge in central Mozambique 

Abstract 

 Understanding farmers’ preferences for new varieties is essential for the acceptance and 

adoption of the improved varieties. Therefore, the objective of this study was to identify and 

select sorghum hybrids that meet farmers’ preferences by using farmers’ knowledge and 

participation. Top six sorghum hybrids pre-selected on-station for grain yield in 2015/16 

season at Sussundenga and Chókwè research station trials were evaluated in 10 on-farm 

trials in Sussundenga district. The trials were conducted using the mother and baby scheme 

where the mother trial was planted at Sussundenga research station and the baby trials were 

in farmers’ fields around the station. An alpha lattice design with three replications was used 

for the mother trial and the baby trials were set in a randomized complete block design with 

two replications. Data collection was based on grain yield, maturity, grain colour, panicle size, 

plant height and farmers’ opinions. The individual and combined data were analysed using 

PROC GLM procedure in SAS 9.3. The mean squares for grain yield across seasons on-

station were highly significant (P<0.001) for hybrids, seasons (environment) and their 

interaction. Days to 50% flowering were highly significant (P<0.001) for the environment, 

hybrids and hybrid x environment interaction. The number of panicles was highly significant 

only for the hybrid x environment interaction while plant aspect was significant for hybrids and 

the environment. The results from analysis of variance across the ten farmers’ trials were 

highly significant (P<0.001) for all the traits recorded. Hybrid TX 631A x MZ 37R had high yield 

and shorter plants. The tallest plants on-station were from hybrid SPL 38A x SDS 6013R. In 

contrast, for on-farm trials, the local variety had the tallest plants and was late in flowering, 

while for the hybrids SLP 38A x MZ 2R was late in flowering. The mean yield for the local 

variety was 1.0 t.ha-1, while the high yielding hybrid had 3.0 t.ha-1. Out of the 25 farmers; the 

female farmers ranked the hybrid TX 631A x MZ 37R as the best in terms of grain yield, early 

maturity, less bird damage and white grain colour. These were followed by ICSA 19A x SDS 

6013R in terms of plant height and white grain colour. The male farmers chose hybrid ICSA 

19A x SDS 6013R based on plant height and sweetness of the stem. In addition to yield, 

farmers identified additional important traits such as earliness, grain size, and grain colour. 

The farmers also used drought tolerance and head size as benchmark traits for comparing 

new varieties to the local variety. Therefore, involving farmers in the evaluation and selection 

identified hybrids with farmer preferred traits and thus revealed the need for breeders to not 

only target yield in the development of new varieties.  It is also anticipated that the farmers 

would easily adopt these hybrids.                                                           
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7.1. Introduction 

Sorghum grain yield improvement under adverse environments and agronomic management 

poses many challenges for plant breeders.  It is thus important for the breeder to understand 

the production constraints farmers face in order to select adapted genotypes. The use of 

participatory plant breeding (PPB) approach could be a solution as it helps breeders to 

understand farmers’ criteria, improve biodiversity by maintain original germplasm, empower 

farmers, facilitate farmers learning, increases productivity, and speeds the process of 

releasing and adoption of varieties (Sperling et al., 2001). Involvement of farmers in breeding 

programmes increases efficiency because breeders orient their breeding strategies to the 

needs of the farmers. This process is called participatory plant breeding. The other term used 

and assist breeders on variety selection is participatory variety selection (PVS), known as the 

selection of released or pre-released varieties by farmers on their own field. 

Many studies have outlined the advantages of participatory variety selection (PVS) on 

adoption of new varieties and increase in productivity (Bänziger and Cooper, 2001; Witcombe 

et al., 2005; Trouche et al., 2012). Participatory breeding has been proposed as an active 

approach for developing varieties that combine productivity gains, adaptability to a particular 

system and quality traits for subsistence agriculture in marginal environments (Trouche et al., 

2011). Consequently, it is important to identify germplasm that responds to farmers 

environments where qualitative and quantitative traits are taken in consideration (Morris and 

Bellon, 2004; Trouche et al., 2011). Trouche et al. (2012) concluded that on-farm selection 

has many limitations depending on seed generation evaluated but the trials produce more 

stable genotypes having a combination of earliness, plant height, grain size and yield closer 

to that expected by farmers. Understanding farmers’ preferences and acceptability of a new 

variety are essential parameters for the adoption and use of the varieties (Horn et al., 2015; 

Olubunmi, 2015). Therefore, the objective of this study was to identify and select sorghum 

hybrids that meet farmers’ preferences by using farmers’ knowledge and participation. 

 

7.2. Materials and Methods 

7.2.1. Plant materials 

Top six sorghum hybrids pre-selected on-station for grain yield at Sussundenga and Chókwè 

research stations in 2015/16 season trials were used in this study (Table 7-1). Farmers were 

involved in the selection of these hybrids. Each farmer used a local sorghum variety as a 

check. 
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Table 7-1 Plant material selected for on-farm trial 

Entry no Crosses Group Origin 

1 SPL 38A x SDS 6013R Hybrid NAR/ICRISAT 

2 TX 631A x MZ 37R Hybrid NAR/ICRISAT 

3 LARSVYT 46A x SDS 6013R Hybrid NAR/ICRISAT 

4 LARSVYT 46A x MZ 37R Hybrid NAR/ICRISAT 

5 SPL 38A x MZ 2R Hybrid NAR/ICRISAT 

6 ICSA 19A x SDS 013R Hybrid NAR/ICRISAT 

7 Local variety Local Farmer seed 

NAR = National Agriculture Research Sorghum Programme; 

 

7.2.2. Evaluation sites and experimental design 

The trials were conducted during the rainy season of 2016/17 for on-farm trial and seasons 

2015/16 and 2016/17 for on-station. Ten participating farmers with knowledge of sorghum 

management were selected to conduct the on-farm trials around Sussundenga Research 

Station in Matica locality. The selected farmers included both men and women. The trials were 

conducted in a Mother and Baby scheme. The mother trial was planted at Sussundenga 

Research Station while the baby trials were in farmers’ fields around the station.  

The mother trial included other hybrids and it was layout in a 19 x 2 alpha lattice design with 

three replications described in chapter 5. Each plot consisted of two rows of 5 m long with 

0.75 m inter-row spacing and 0.25 m between plants.  Fertilizer was applied at recommended 

rates of 250 kg ha-1 NPK (base application) and 150 kg ha-1 urea (top-dressing). Other cultural 

practices such as land cultivation, hand planting and hand weeding were carried out at each 

site.  

The baby trials were set in a randomized complete block design with two replications in each 

farmer’s field. Each entry had two rows, 5 m long with 0.75 m inter-row spacing and 0.25 m 

between plants. Fertilizer was applied at a rate of 200 kg ha-1 NPK (basal fertilizer) during 

planting.  Farmers took care of all agronomic practices as they would normally do in their own 

fields. The on-farm trials were monitored by researchers and technical personnel from the 

research station who also did the data collection. Farmers hosting the trials and other 

neighbouring farmers were invited to the mother trial during harvesting at Sussundenga 

Research Station to evaluate and select hybrids based on their criteria of preference. A total 

of 25 farmers (16 women and 9 men) participated. 
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7.2.3. Data collection and analysis 

Farmers’ assessed the mother trial twice; during flowering stage and during harvesting. In the 

baby trial, each farmer did the assessment. Data collection was based on grain yield, maturity, 

grain colour, panicle size, and plant height. The agronomic scoring criteria were used to 

capture farmers’ preferences of each tested variety where each farmer gave scores according 

to their preferences. These criteria were ranked according to the following scores; where 1= 

very good hybrid, 2 = good hybrid, 3 = average, 4 = poor and 5 = very poor hybrid. The score 

1 considered hybrids with high grain yield, early to intermediate maturity, white to brown grain 

colour, large panicle size and medium to tall plant height. The score 5 was for hybrids with low 

grain yield, late maturity, small panicle size and very short plant height. The individual and 

combined season data were analysed using PROC GLM procedure in SAS 9.3 (SAS, 2011). 

ANOVA was done first by season and across season at Sussundenga research station trial 

and then individual and across farmers’ trials. Genotype means were ranked and compared 

using the t-test (P=0.005).  

7.3. Results 

7.3.1. On-station evaluation trial 

The mean squares for grain yield across two seasons (2015/16 and 2016/17) on-station 

showed the main effects of hybrids and seasons (environment) and their interaction to be 

highly significant (P<0.001, Table 7-2). Days to 50% flowering were highly significant 

(P<0.001) for the environments, hybrids and hybrid x environment interaction. The number of 

panicles was highly significant only for the hybrid x environment interaction, while plant aspect 

was significant (P<0.05) for hybrids and highly significant (P<0.001) for the environment.  A 

significant difference was observed for the panicle length and number of plants for the hybrids, 

plant height was significant for the hybrid x environment interaction. The mean grain yield of 

the hybrids for the two seasons was 3.4 t.ha-1. 

Table 7-2 to Table 7-5 show the means for the traits that were significantely significant for the 

hybrid x environment (season) interaction. Grain yield showed statistical differences among 

the hybrids in the two seasons (Table 7-2). TX 631A x MZ 37R had the highest grain yield 

among hybrids across seasons with a mean of 5.7 t.ha-1 followed by SPL 38A x SDS 6013R 

with a mean yield of 4.2 t.ha-1. The lowest grain yield was observed for hybrid ICSA 19A x 

SDS 6013R in the second season with a mean of 1.6 t.ha-1.  
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Table 7-2 Grain yield (t.ha-1) comparisons among the sorghum hybrids in the two seasons 

at Sussundenga Research Station 

Hybrids Environment Means 

ICSA 19A x SDS 6013R 2 1.62a 

SPL 38A x MZ 2R 2 2.08 ab 

LARSVYT 46A x MZ 37R 2 2.38 ab 

LARSVYT 46A x SDS 6013R 1 2.49 ab 

SPL 38A x MZ 2R 1 2.66 ab 

LARSVYT 46A x MZ 37R 1 2.67 ab 

LARSVYT 46A x SDS 6013R 2 3.26 bc 

ICSA 19A x SDS 6013R 1 3.35 bc 

SPL 38A x SDS 6013R 1 3.49 bc 

SPL 38A x SDS 6013R 2 4.84 cd 

TX 631A x MZ 37R 2 5.34 d 

TX 631A x MZ 37R 1 6.0 d 

Mean  3.4 

Environment 1- refers to season 2015/16 and environment 2 – refers to season 2016/17.  

Means in a column followed by the same letters are not significantly different at P>0.05 

The least number of days to 50% flowering was 62 and was obtained by hybrid TX 631A x MZ 

37R in the first season, while the most number of days was observed in the second season 

for hybrid SPL 38A x SDS 6013R (Table 7-3).  
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Table 7-3 Comparison of days to 50% flowering for the sorghum hybrids evaluated in two 

seasons at Sussundenga Research Station 

Hybrids Environment Mean 

TX 631A x MZ 37R 1 62a 

LARSVYT 46A x SDS 6013R 1 62 a 

SPL 38A x SDS 6013R 1 63 ab 

ICSA 19A x SDS 6013R 1 64 bc 

LARSVYT 46A x SDS 6013R 2 65 bc 

TX 631A x MZ 37R 2 67 cd 

SPL 38A x MZ 2R 1 68 cd 

LARSVYT 46A x MZ 37R 2 68 de 

LARSVYT 46A x MZ 37R 1 69 de 

ICSA 19A x SDS 6013R 2 70 de 

SPL 38A x MZ 2R 2 73 de 

SPL 38A x SDS 6013R 2 74 e 

Mean   67 

Environment 1- refers to season 2015/16 and environment 2 – refers to season 2016/17. 

Means in a column followed by the same letters are not significantly different at P>0.05 

For the numbers of panicles, it was observed that the four hybrids that had few numbers of 

panicles in the first season, had many panicles in the second season (Table 7-4). These 

hybrids were LARVYT 46A x MZ 37R, SPL 38A x SDS 6013R, ICSA 19A x SDS 6013R and 

LARSVYT 46A x SDS 6013R. Moreover, hybrid TX 631A x MZ 37R did not show significant 

differences between the two seasons. 
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Table 7-4 Mean for number of panicles of sorghum hybrids evaluated in two seasons at 

Sussundenga Research Station  

Hybrids Environment Mean 

LARSVYT 46A x MZ 37R 2 5a 

SPL 38A x SDS 6013R 1 8 ab 

ICSA 19A x SDS 6013R 2 8 ab 

LARSVYT 46A x SDS 6013R 2 10 bc 

SPL 38A x MZ 2R 2 12 bc 

SPL 38A x SDS 6013R 2 14 cd 

TX 631A x MZ 37R 2 14 cd 

TX 631A x MZ 37R 1 15 cd 

SPL 38A x MZ 2R 1 22 cd 

ICSA 19A x SDS 6013R 1 22 cd 

LARSVYT 46A x SDS 6013R 1 24 cd 

LARSVYT 46A x MZ 37R 1 28 d 

Environment 1- refers to season 2015/16 and environment 2 – refers to season 2016/17. 

Means in a column followed by the same letters are not significantly different at P>0.05 

Plant height showed statistical differences for the hybrid x environment interaction (Table 7-5). 

Hybrid TX 631A x MZ 37R had the shortest plants during season two. The same hybrid had 

an average height of 91.5 cm in the first season. The tallest plants were from hybrid SPL 38A 

x SDS 6013R with an average of 175.7 cm. 
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Table 7-5 Mean for plant height of sorghum hybrids evaluated in two seasons at 

Sussundenga Research Station 

Hybrids Environment Mean 

TX 631A x MZ 37R 2 91.5a 

LARSVYT 46A x SDS 6013R 2 98.7 ab 

SPL 38A x MZ 2R 2 104.7 ab 

LARSVYT 46A x MZ 37R 1 106.2 ab 

SPL 38A x MZ 2R 1 118.8 ab 

LARSVYT 46A x MZ 37R 2 119.0 ab 

SPL 38A x SDS 6013R 1 122.8 ab 

ICSA 19A x SDS 6013R 2 124.3 ab 

TX 631A x MZ 37R 1 126.3 ab 

ICSA 19A x SDS 6013R 1 159.1 ab 

LARSVYT 46A x SDS 6013R 1 170.4 ab 

SPL 38A x SDS 6013R 2 175.7 b 

Mean  126.0 

Environment 1- refers to season 2015/16 and environment 2 – refers to season 2016/17.  

Means in a column followed by the same letters are not significantly different at P>0.05 

The number of plants showed statistical difference for the hybrids with hybrid SPL 38A x SDS 
6013R having an average of 20 plants per plot (Table 7-6). Hybrid LARSVYT 46A x MZ 37R 
had the lowest number of plants per plot (9 plants). 
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Table 7-6 Mean number of plants of sorghum hybrids evaluated in two seasons at 

Sussundenga Research Station 

Hybrids Environment Mean 

LARSVYT 46A x MZ 37R 2 9.00a 

LARSVYT 46A x SDS 6013R 1 13.33 ab 

LARSVYT 46A x SDS 6013R 2 13.33 ab 

LARSVYT 46A x MZ 37R 1 13.67 ab 

SPL 38A x MZ 2R 1 15.00 ab 

ICSA 19A x SDS 6013R 2 16.33 ab 

SPL 38A x MZ 2R 2 17.00 ab 

TX 631A x MZ 37R 1 17.33 ab 

TX 631A x MZ 37R 2 17.67 ab 

ICSA 19A x SDS 6013R 1 18.67 b 

SPL 38A x SDS 6013R 2 19.33 b 

SPL 38A x SDS 6013R 1 19.67 b 

Mean  16.00 

7.3.2. On-farm evaluation trial 

Analysis of variance across the ten farmers’ trials showed highly significant main effects of 

hybrid, environment, and hybrid x environment interaction at (P<0.001) for all the traits 

recorded (Table 7-8). For plant height, there were statistical differences between the hybrids 

and the local variety. The local variety had the tallest plants with an average mean of 215 cm 

when compared to the tallest hybrid SPL 38A x SDS 66013R which was 178 cm. However, 

these two entries were not significantly different, but the local variety was significantly different 

from the rest of the hybrids (P<0.001) for plant height. Most of the farmers preferred tall plants 

for various purposes including grain yield and stems/stalks for building houses and/or 

granaries (Figure 7-1). Statistically, days to 50% flowering did not show differences among 

the hybrids but there were statistical differences between the hybrids and local variety (Figure 

7-2). The local variety took longer to 50% days to flowering (78 days), while for the hybrids the 

days to 50% flowering varied between 62-64 days.  
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Figure 7-3 shows the number of panicles combined with other traits. The longest panicle size 

was observed in the local variety with 46 cm, but it was not significantly different from the 

hybrids LARSVYT 46A x MZ 37R (42 cm), SPL 38A x MZ 2R (39 cm) and TX 631A x MZ 37R 

(38 cm). The hybrids which were significantly different from the local variety were SPL 38A x 

SDS 6013R (38 cm), LARSVYT 46A x SDS 6013R (38 cm), ICSA 19A x SDS 6013R (37 cm) 

and TX 631A x MZ 37R (37 cm). 

 

 

Figure 7-1 Use of sorghum stems/stalks by farmers to build poultry shelters in Matica 

locality 

 

Figure 7-2 Combined grain yield (t.ha-1) and days to 50% flowering (DF) across the ten 

farmers. 

Entry numbers were: 1 = SPL 38A X SDS 6013R, 2 = TX 631A X MZ 37R, 3 = LARSVYT 46A 

X SDS 6013R, 4 = LARSVYT 46A X MZ 37R, 5 = SPL 38A X MZ 2R, 6 = ICSA 19A X SDS 

6013R and 7 = Local variety 
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Table 7-7 Mean squares for grain yield (t.ha-1) and other components obtained at Sussundenga Research Station 

Source of Variation DF Grain 

yield 

Days to 

flowering 

Plant 

height 

Panicle 

length 

Number of 

plants 

Number of 

panicles 

Plant 

aspect 

Season (Env.) 1 0.32 230.03*** 2085.44 124.69 6.25 802.78*** 6.85*** 

Block (Rep x Env.) 4 0.75 7.11 1838.44 101.53* 0.97 32.78 0.73 

Hybrids 5 10.39*** 40.49*** 1845.18 31.29 54.63** 33.78 1.33* 

Env. x Hybrids 5 1.81*** 25.03*** 2804.51* 12.89 8.18 163.98*** 0.89 

Error 35 0.28 4.74 777.04 29.69 11.31 26.28 0.49 

Overall mean   3.35 66.97 126.61 35.69 15.86 15.22 2.27 

R2 (%)   91.97 86.07 67.78 55.87 58.91 78.53 67.87 

 

Table 7-8 Mean squares for grain yield (t.ha-1) and other components obtained at on-farm trial around Matica 

Source of Variation DF Grain yield Days to flowering Plant height Panicle length Number of plants Number of panicles 

Farmers (Env.) 9 41.43*** 1218.28*** 3497.32*** 207.13*** 4148.14*** 1254.59*** 

Block (Rep x Env.) 10 0.43** 2.24 532.21** 7.11 79.90 86.70 

Hybrids 6 9.81*** 372.56*** 9183.36*** 189.46*** 1457.28*** 3235.46*** 

Env. x Hybrids 54 1.46*** 13.77*** 1446.12*** 60.55*** 153.02*** 196.81*** 

Error 60 0.21 1.57 211.95 14.76 60.52 51.13 

Overall mean   2.53 65.17 169.76 39.52 54.24 59.67 

R2 (%)   97.66 99.36 93.04 87.75 93.98 93.22 



163 

 

The number of panicles showed significant differences between the hybrids and the local 

variety.  The local variety had the least number of panicles (32 panicles per plot). Among the 

hybrids, the number of panicles varied between 62-69 with no significant differences amongst 

them (Figure 7-3). Similarly, the number of plants per plot were significantly different between 

the hybrids and the local variety. The hybrids’ number of plants ranged between 57 and 63 

plants per plot compared to 32 plants per plot for the local variety. Among the hybrids, TX 

631A x MZ 37R had the least number of plants, while SPL 38A x MZ 2R had the highest 

number. Grain yield was also significantly different between the hybrids and the local variety 

where the local variety had the lowest yield compared to the hybrids (Figure 7-2). The mean 

yield for the local variety was 1.0 t.ha-1 and the highest yielding hybrid (TX 631A X MZ 37R) 

had a mean of 3.0 t.ha-1. This hybrid was not significantly different from the other hybrids. The 

hybrids had a yield advantage ranging from 150% to 200% above the local variety yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-3 Combined plant height (PH), panicle length (PL), number of plants (NP) and 

number of panicles (NPA) across the ten farmers’ fields 

7.3.3. Other traits selected by farmers 

The breeder’s target trait during selection was high yield of the hybrids over the local varieties. 

However, additional traits were selected for by the farmers who participated during harvesting 

of the mother trial on-station and from individual farmers during harvesting of baby trials. Out 

of the 25 farmers; the female farmers ranked the hybrid TX 631A x MZ 37R as the best in 

terms of grain yield, early maturity, less bird damage and white grain colour. These were 

followed by ICSA 19A x SDS 6013R in terms of plant height and white grain colour. The male 

farmers chose hybrid ICSA 19A x SDS 6013R based on plant height and sweetness of the 
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stem. In general, the majority of farmers’ preferences for sorghum varieties were high yield, 

early maturity, grain size and colour, and plant height. Farmers mentioned that they also 

preferred a variety that had stable yield and was adapted to their agro-ecological system. 

Drought was also mentioned by some farmers, although it was not possible to differentiate the 

drought tolerant varieties due to the good season which experienced high amounts of rain. 

Additionally, farmers indicated that one of the characteristics they liked about the hybrids was 

the compact and big head size when compared to their local variety that has a loose and small 

head (Figure 7-4). Although this was the preferred characteristic, farmers also mentioned that 

bird damage was higher in the compacted head than in the loose head.  

 

Figure 7-4 Compact sorghum hybrid head (left) and loose local variety head (right) during 

evaluation 

7.4. Discussion 

7.4.1. On-station evaluation trial 

For grain yield across the two seasons (2015/16 and 2016/17), the main effects of hybrids and 

seasons (environment) and their interaction were highly significant at (P<0.001). Hybrid TX 

631A x MZ 37R had the highest grain yield among hybrids across seasons with a mean of 5.7 

t.ha-1 followed by SPL 38A x SDS 6013R with a mean yield of 4.2 t.ha-1. The lowest grain yield 

was obtained for ICSA 19A x SDS 6013R in the second season with a mean of 1.6 t.ha-1.  It 

was observed that the grain yield was higher in the second season than the first season. One 
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of the reasons was the limited amount of rain received in the first season during flowering 

stage. If the drought occurs during post-flowering, it severely affects the translocation of 

nutrients to the sink and, premature senescence resulting in drastic reduction in grain filling 

(Crasta et al., 1999). This suggested that hybrids did not express their grain yield potential in 

the first season. The environmental conditions affect the yield variability of grain crops during 

the most sensitive stages of crop development (Wheeler et al., 2000). Borrell et al. (2000) 

reported that grain yield declined when a deficit of water in hybrids increases. An important 

element of yield under stress conditions is the water use efficiency of the crops (Blum, 2009). 

Therefore, the hybrids in the study exhibited tolerance to drought during the first season and 

had a higher yield than the commercial/local varieties. This shows that weather conditions 

were not the limiting factor for the low yields of the adapted varieties like improved varieties 

and/or local varieties. Similar results were reported in a study that compared exotic genotypes 

with local adapted genotypes (Calhoun et al., 1994). 

The ranking of the hybrids for number of days to 50% flowering changed between the two 

seasons. The hybrid TX 631A x MZ 37R had the least number of days in the first season and 

an average number of days in the second season (Table 7-3). A similar trend was observed 

in the hybrid SPL 38A x SDS 6013R which had the most number of days to 50% flowering. 

The hybrids were not consistent in the days to 50% flowering in the two seasons, thus 

contributing to the hybrid x environment interaction observed This variation might have been 

due to the drought stress experienced during the flowering stage in the first season (2015/16). 

Drought has been reported as an important stress that affects the genetic and physiological 

mechanism of the plant (Tuinstra et al., 1996). Both pre-flowering and post-flowering drought 

stress responses have been identified in sorghum (Harris et al., 2006) and these influence the 

period of flowering and ultimately the grain yield.  

Four hybrids had the least number of panicles in the first season, but the panicles were much 

larger in size. Similarly, plant height showed significant hybrid x environment interaction across 

the seasons. This indicated that the number of panicles and plant height are strongly 

influenced by changes in climatic conditions. Graham and Lessman (1966) reported that high 

yielding sorghum genotypes may be achieved in a combination of plant height and other 

components.  Plant height was reported to be one of the most important yield components 

(Fernandez et al., 2009) especially for biofuel production in sweet stem sorghum where it 

contributed to increased biomass. 
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7.4.2. On-farm evaluation trial 

The on-farm trials resulted in highly significant main effects for hybrids, environment and their 

interaction for all the traits. This indicated that the hybrids responded differently under the 

different agronomic farmer management practices. This shows that the use of unlike farmers 

was appropriate to capture their variety preferences. Active involvement of farmers in plant 

breeding has been shown to increase the efficiency of classical breeding (Witcombe et al., 

2005; Gyawali et al., 2007). Morris and Bellon (2004) reported different approaches of 

participatory plant breeding which include inviting farmers to participate in varietal selection 

and evaluation activities or teaching them formal selection techniques. Additionally, adoption 

of new improved varieties by farmers requires an understanding of the important environments 

and production constraints they face and thus involve them from the initial stages of the 

breeding process (Bänziger and Cooper, 2001). Moreover, Mekbib (2006) suggested that 

defining or setting goals and objectives especially for breeding multi-purpose varieties should 

involve final consumers and industrialists. Many years of participatory approaches to identify 

genotypes with characters preferred by farmers is an approach that leads to the adoption of 

the new varieties (Nkongolo et al., 2008). Therefore, understanding farmers’ preferences and 

acceptability of a new variety is essential for the adoption of improved varieties (Horn et al., 

2015; Olubunmi, 2015). 

Although grain yield was one of the traits that the farmers selected, they had additional 

characteristics they looked for in a variety.  These included adaptability and yield stability. This 

indicates that farmers were more concerned with their environments which experienced 

frequent droughts and thus desired a variety that allowed them to harvest something even 

during the dry seasons. This could be one of the reasons they keep growing the local variety 

even though it is low yielding. The low adoption rate of high yielding varieties can be explained 

by the fact that most of the varieties are selected without involving farmers (Asrat et al., 2010). 

The best hybrid selected by most farmers was based on good grain yield, early maturity, less 

bird damage and white grain colour. The majority of men preferred tall plants with sweet stems, 

while women preferred earliness. This is explained by fact that men are more worried about 

the use of all the sorghum parts, while women are worried about food for the family.  In general, 

the majority of farmers preferred a sorghum variety with high yield, early maturity, large grain 

size, white grain colour and tall plants. Moreover, farmers also mentioned that drought 

tolerance was an important trait for the varieties. These results are in agreement with findings 

that breeder’s on-station selections produce lines with high grain yields, while farmers’ 

selections produce varieties with a combination of earliness, plant height, grain size and grain 

yield (Trouche et al., 2011; Trouche et al., 2012). Other farmers chose earliness as an 
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important trait and defined it as the ability of the plants to complete the growing stage up to 

flowering stage before the rainy season stops so that the grain filing period will not be 

compromised (Vom Brocke et al., 2010). The white grain colour was mentioned as an 

important trait as most of the farmers mix sorghum flour with maize flour to cook their staple 

food, a thick porridge. This characteristic might be an important key for future breeding 

strategies for farmers’ preferences where it should be used as one of the traits for selection. 

Plant height and head size were also important criteria for some of the farmers and it is 

associated positively with good grain yield. The reasons for selecting plant height were mostly 

related to the use of the stems for building houses or granaries. The other traits preferred by 

farmers were post-harvest traits in combination with high yield and variety stability for the short 

and long rainy season (Lacy et al., 2006). On the other hand, farmers mentioned the 

importance of having drought tolerant varieties, although the study did not select for drought 

tolerance among the hybrids due to high amounts of rain during the growing season. Drought 

resistant crops are essential for food security (Vunyingah and Kaya, 2016). 

Farmers, in general, preferred high yielding hybrids combined with other characteristics 

essential for their environment. Additionally, seed for the improved varieties such as hybrids 

should be easily accessible and markets for the grain should be available. 

7.4.3. Implications for breeding 

Farmers’ selections were based on the production constraints in each environment and this 

resulted in a variety that combined high grain yield, early maturity, large grain size, tall plant 

height and drought tolerance. This implies that breeders should pay attention to these traits 

and other traits that confer drought tolerance such as stay green if the varieties have to be 

adopted. From this study, two groups of varieties should be deployed; one that responds to 

high yield and early maturity, and the other to high yield with tall plants. The reason is that 

normally accumulation of plant biomass takes long, thus varieties will not fit in the short and 

early maturing group. In addition, farmers usually recycle seed, and this might result in yield 

reduction in a hybrid. Therefore, farmer education on sorghum hybrids is essential.  

7.5. Conclusion 

The results of on-station and on-farm trials resulted in the identification of hybrid TX 631A x 

MZ 37R as high yielding, with short plant height. Moreover, the tallest plants on-station were 

from hybrid SPL 38A x SDS 6013R. In contrast, the local variety had the tallest plants on the 

on-farm trials and was late in flowering. Within the hybrids, SLP 38A x MZ 2R was late in 

flowering, followed by LARSVYT 46A x MZ 37R, SPL 38A x SDS 6013R, TX 631A x MZ 37R, 

ICSA 19A x SDS 6013R and LARSVYT 46A x SDS 6013R. The mean yield for local variety 
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was 1.0 t.ha-1 while the highest yielding hybrid had 3.0 t.ha-1 (TX 631A x MZ 37R). Out of the 

25 farmers; the female farmers ranked the hybrid TX 631A x MZ 37R as the best in terms of 

grain yield, early maturity, less bird damage and white grain colour. Some morphological traits 

selected based on farmers’ preferences were the same selected based on field performance, 

such as yield, earliness, grain colour. These were followed by ICSA 19A x SDS 6013R in 

terms of plant height and white grain colour. The male farmers chose hybrid ICSA 19A x SDS 

6013R based on plant height and sweetness of the stem. These results showed the potential 

of the hybrids over the local variety with a yield advantage ranging from 150% to 200% above 

the local variety. Thus, the study supports the importance of interactive and involvement of 

farmers throughout the development of varieties for large scale adoption. Involving farmers in 

the evaluation and selection of hybrids showed that breeders should not only target yield but 

other traits important to farmers such as earliness, grain size, grain colour and plant height. 

Drought tolerance and head size were also mentioned as important traits used to compare 

new varieties with the local variety. 
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8. Comparison of selection indices to identify superior sorghum 

genotypes according to the morphological traits 

Abstract 

 Different agronomic characters are important to farmers when selecting preferred sorghum 

genotypes. However, the biggest challenge is to select for these traits at the same time using 

one score. It is thus crucial to identify selection methods that favour identification of superior 

genotypes and maximizes genetic gain from selection of the characters of interest 

simultaneously. A selection index helps to evaluate the total genotypic value of an individual 

plant regarding the traits of interest. Therefore, the objectives of this study were to develop 

two selection indices (Smith-Hazel and desired gains) and compare their effectiveness in 

identifying superior genotypes based on the agronomic traits of importance. Thirty-Six F1 and 

36 F2 populations were evaluated in separate trials at the same location and season in a 6 x 

6 alpha lattice design with three replications. The genetic and phenotypic variance-covariance 

matrices were determined to assist in the development of the indices.  Four traits; grain yield 

(GY), plant height (PH), panicle length (PL) and panicle weight (PW) were used to evaluate 

the selection indices based on the economic values (Smith-Hazel) and desired gains. Scores 

observed were not associated with the highest yielding genotypes. For Smith-Hazel selection 

index, the genotype CK 60A x MZ 37R had highest score followed by TX 631A x MZ 37R, CK 

60A x MZ 2R, SPL 38A x MZ 37R and TX 628A x MZ 37R. For desired gain index, the top 5 

scored genotypes were ICSA 19A x MZ 37R, 8601A x SDS 6013R, SPL 38A x SDS 6013R, 

CK 60A x MZ2R and TX 628A x IS 14257R. The genotype CK 60A x MZ 2R is the only 

genotype that appeared in the top five using the two indices. The selection index proposed by 

Smith-Hazel was the most efficient procedure for simultaneous selection of the hybrids for 

grain yield and other yield attributes. This method allowed the prediction of genetic gain for 

the traits evaluated together and a more efficient selection of superior genotypes. Then, this 

suggests that sorghum breeders should consider the use of different selection strategies and 

indices to select superior genotypes for grain yield and other traits to improve the crop 

according to the trait of interest. 
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8.1. Introduction 

Sorghum (Sorghum bicolor L. Moenchi) is an important annual cereal crop among the 

cultivated cereals. It is the main crop and a staple food for most of the semi-arid areas in 

Africa. It is a crop of choice for most African countries due to its wide range of adaptation to 

stresses, mainly in areas where frequent droughts are experienced (Yohannes et al., 2016). 

Additionally, sorghum has multi-purpose use ranging from food to beverage. The stems are 

used to feed animals and for constructing houses. Therefore, farmers have their own 

preferences and criteria they use for variety selection that is determined by the crop uses. 

Breeders should, therefore, consider the farmers’ trait preferences during variety 

development. Selection of traits based on the farmers’ preferences is an important step for the 

adoption of a new cultivars. Moreover, farmers give specific weights to traits based on how 

important they are to them.  The most important traits are given high values that make 

economic sense to the farmers. In sorghum, some of the important characters are grain yield, 

seed size, plant height, grain quality and resistance to pest or disease.  

Cultivar development is based on exploration of interested traits with genetic variability 

(Ahmad et al., 2011). Variability within segregating populations can be used to exploit new re-

combinations to produce superior transgressive segregates through selection (Oliveira et al., 

2012). In F2 generation, the maximum variability is obtained allowing effective selection to 

take place. At early stages, the efficiency of selection can be low due to low heritability of some 

traits of interest (Backes et al., 2002; Laghari et al., 2010; Oliveira et al., 2012). Furthermore, 

variability of experimental materials is not the only important component for the success of the 

selection but also the accuracy of the selection methods used that may allow effective 

prediction of genetic gain (Resende, 2007; Borges et al., 2010).  

The choice of an appropriate selection method for plant breeding may favour identification of 

superior genotypes during the development of new cultivar and saves time and costs (Kurek 

et al., 2001). Identification of superior genotypes requires selection methods that can exploit 

efficiently the available genetic variability, maximizing the genetic gain in relation to the 

characteristics of interest (Vivas et al., 2012). Therefore, selection index that results from a 

combination of certain traits that pursue simultaneous selection, allows identifying superior 

genotypes. 

Selection of several traits at the same time is mostly facilitated by the establishment of a 

selection index that uses the optimal combination of multiple traits (Shook, 2006; Cruz, 2013). 

The use of the selection index allows identification of superior genotypes established by the 

optimal linear combination of various traits (Vittorazzi et al., 2017). Selecting of traits 
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simultaneously using an index provides useful information and realistic response to selection 

for all the traits that are being combined by giving a total genetic value to the individual line 

(Bänziger and Lafitte, 1997). Initially, Smith (1936) and Hazel (1943) reported the use of a 

selection index in plants and animals, respectively and then later other indices were proposed 

by Williams (1962), Pešek and Baker (1969) and Mulamba and Mock (1978).  

The Smith-Hazel index has been shown to give maximum genetic advance (Strefeler and 

Wehner, 1986). However, the index is not as simple as other indices as it requires estimation 

of genetic variances and covariances and an assignment of economic weights for each trait 

(Strefeler and Wehner, 1986; Eshghi et al., 2011). On the other hand, the desired gain 

proposed by Pesek and Baker (1969) specifies the desired gain value rather than economic 

weights.  Hence, it maximizes the expected response in proportion to the gain specified by the 

breeder.  Many breeding programmes use selection indices in different crops to select superior 

genotypes and predict genetic gain. The limitation to the use of selection indices in some 

situations is the poor establishment of economic weights for the various traits of interest 

(Pešek and Baker, 1969; Coimbra et al., 1999; Vittorazzi et al., 2017). For this reason, Cruz 

(1990) proposed the use of experimental data to estimate the economic weights. The 

efficiency of the selection indices may be estimated using selection differential as a gain 

predictable from selection. Selection differential represents a measure of improvement in the 

given trait due to selection (Nagaraja, 1981). Another important component in selection is 

heritability of the traits, defined as “the fraction of the selection differential expected to be 

gained when selection is practised on a defined reference unit” (Hanson, 1963). 

The present study developed two indices based on the Smith-Hazel index and the desired 

gain index and compared these two methods in identification of superior genotypes for many 

traits simultaneously in order to realize genetic gain.  

  



175 

 

8.2. Materials and Methods 

8.2.1. Plant materials 

F1 crosses were developed from a 9 x 4, line x tester mating scheme. The 36 F1 hybrids were 

advanced to F2 generation and selected as individual plants in each plot (Table 8-1).  

Ten random plants from each plot were selected from F2 for plant height, panicle length, 

panicle weight and grain yield. In the F1 plot, the number of days to 50% flowering, plant 

height, panicle length, number of plants, number of panicles, panicle weight and grain yield 

were recorded. 

Table 8-1 Plant material used in the trials using the F1 and F2 generations 

Entry Genotype   Entry Genotype 

1 LARSVYT 46A x MZ 2R  19 TX 628A x SDS 6013R 

2 LARSVYT 46A x IS 14257R  20 TX 628A x MZ 37R 

3 LARSVYT 46A x SDS 6013R  21 ICSA 21A x MZ 2R 

4 LARSVYT 46A x MZ 37R  22 ICSA 21A x IS 14257R 

5 8601A x MZ 2R  23 ICSA 21A x SDS 6013R 

6 8601A x IS 14257R  24 ICSA 21A x MZ 37R 

7 8601A x SDS 6013R  25 ICSA 12A x MZ 2R 

8 8601A x MZ 37R  26 ICSA 12A x IS 14257R 

9 SPL 38A x MZ 2R  27 ICSA 12A x SDS 6013R 

10 SPL 38A x IS 14257R  28 ICSA 12A x MZ 37R 

11 SPL 38A x SDS 6013R  29 CK 60A x MZ 2R 

12 SPL 38A x MZ 37R  30 CK 60A x IS 14257R 

13 ICSA 19A x MZ 2R  31 CK 60A x SDS 6013R 

14 ICSA 19A x IS 14257R  32 CK 60A x MZ 37R 

15 ICSA 19A x SDS 6013R  33 TX 631A x MZ 2R 

16 ICSA 19A x MZ 37R  34 TX 631A x IS 14257R 

17 TX 628A x MZ 2R  35 TX 631A x SDS 6013R 

18 TX 628A x IS 14257R   36 TX 631A x MZ 37R 

  

8.2.2. Field evaluation sites 

The 36 experimental hybrids and families (F1 and F2) were grown for evaluation in two test 

environments during 2016/17 seasons. The trial sites were Chókwè and Sussundenga 

research stations (described in chapter 5). The experimental layout in each environment was 

a 6 x 6 alpha lattice design with three replications. Each plot had two rows that were 5 m long 

with a spacing of 0.75 m and 0.25 m. A blended NPK (12-24-12) fertilizer was applied at a rate 

of 250 kg ha-1 (basal application). Urea (46% N) was applied as a top dressing at a rate of 150 

kg ha-1 at four leaf stage and a week before planting. Other cultural practices such as 
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ploughing, disking, hand planting, hand weeding and herbicides application were carried out 

at each site.  

8.2.3. Data collection and analysis 

Ten plants were randomly selected from each hybrid in each replication to measure the 

characters such as days to 50% flowering, plant height, panicle length, number of plants, 

number of panicles, panicle weight and grain yield. Analysis of variance was done using PROC 

GLM procedure in SAS 9.3 (SAS, 2011). The parent-offspring regression analyses using the 

F1 and F2 generations was used to obtain the variances and covariances and the .phenotypic 

and genotypic variance-covariance matrix were estimated using R statistic software (R Team, 

2014). R software was also used to estimate the indices coefficients and determine the gains 

for the genotypes.  

8.2.4. Construction of selection indices 

Both the Smith-Hazel and desired gain indices consider the phenotypic (P) and genotypic (G) 

variance-covariance matrices. The genetic components of variance and covariance were 

calculated for grain yield, plant height, panicle length and panicle weight.  

For Smith-Hazel index, the index coefficients were estimated from: b = P-1Ga  

Where: b = vector of the weights of phenotypic values (bi values), P-1 = inverse of the 

phenotypic (Vp) variance-covariance matrix, G = genotypic variance-covariance (Vg) 

matrix, a = vector of the economic weights attributed to genotypic values 

The phenotypic variance and covariance matrix were symbolized by Vp and genotypic variance 

and covariance symbolized by Vg. These were estimated and the solution of the matrix 

obtained according to Dabholkar (1999) equations as follows: 
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Where a1, a2, a3 and a4 are the weights applied and G2
1, G2
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genotypic variances of the characters x1, x2, x3 and x4 respectively. The genotypic covariances 

were estimated as G2
21 = G2

12, G2
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13, G2
41 = G2

14, G2
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23, G2
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24, G2
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34.  

The index coefficients for the Smith-Hazel method were then estimated by solving the matrix 

below: 

 

       Vp     Vg 

For the Desired gain index, the weighting factors (bi’s) were obtained as:  b = G-1h  

Where b = vector of bi’s, G-1 = inverse of genotypic variance-covariance matrix (Vg), 

and h = vector of desired gains from the trait 

The weights for the desired gain index were computed by solving the matrix below: 

 

Vg 

8.2.4.1. Economic and desired gain weights 

Plant height was given an economic weight of one and desired gain of zero since not much 

improvement was needed in this trait for the present study. The desired gain of 10% was given 

to panicle length and panicle weight and 20% to grain yield (Table 8-2).  
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Table 8-2 Relative economic values and desired gains used in the study 

Trait 
Relative Economic 

value (a) Desired gain (h) 

Plant height 1 0 

Panicle length 2 0.10 

Panicle weight 2 0.10 

Grain yield 4 0.20 

 

After estimating the genetic components of variance and covariance and evaluating for the 

b’s, the values were substituted in the following index for each F2 family: 

I = b1X1 + b2X2 + …+ biXi +…+ bnXn 

Following function originated the following: 

    Iy = b1X1 + b2X2 + b3X3 + b4X4 

Where: Iy – selection index for grain yield, plant height, panicle length and panicle weight; bi – 

weights for each trait and Xi – phenotypic value of the traits. 

The phenotypic and genotypic variances for each trait were used to estimate the broad sense 

heritability (h2
BS) as follows: 

h2
 (BS) = ẟ2

g/ẟ2
p 

Where: h2
BS – the broad-sense heritability, ẟ2

g – genetic variance and ẟ2
p – phenotypic 

variance. 

The response to selection was calculated based on the indices. The selection intensity used 

was 5% corresponding to the value of 2.06. 

The efficiency of the two indices was compared based on expected gain in the individual trait 

for yield (GY), plant height (PH), panicle length (PL) and panicle weight (PW). 

Expected genetic advance for each trait (ΔG): 

ΔG = I *ΣΣaibiGij / (ΣΣbibjPij) 1/2 

Expected genetic advance for all studied traits (ΔH): 



179 

 

ΔH = Σai *ΔG 

For the desired gain index, the desired gain in the traits was considered by the expression: Δg 

= Gb^I / ẟi, where Δg – vector of desired gain, G – genetic covariance matrix between traits, 

b^ - vector n and ẟi square root of the index variance. 

8.3. Results 

The analysis of variance indicated a highly significant difference among the traits for both the 

F1 hybrids and F2 families (Table 6-3). The observed traits in F2 were used to estimate the 

selection indices and the traits used were grain yield, plant height, panicle length and panicle 

weight.  The mean for the four traits was higher in F1 than F2 whereby the plant height had a 

mean of 148 cm in F1 compared to 139 cm in F2. The panicle length was 34 cm and 27 cm 

for F1 and F2, respectively. The panicle weight and grain yield were 3.2 and 2.9 kg/plot for F1 

and 2.6 and 2.3 kg/plot for F2. The heritability for the selected traits in F1 was found to be 

moderate for plant height (h2=0.50) and low for the other traits such as panicle length 

(h2=0.29), panicle weight (h2= 0.19) and grain yield (h2= 0.26). 
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Table 8-3 Mean squares for grain yield of F1 hybrids and F2 families tested across two environments 

Source of variation DF GY PW PL PH 

F1 hybrids      

Site 1 400.52*** 288.54*** 908.56*** 6767.04*** 

Block(Rep) 2 0.25ns 2.16*** 37.25ns 484.95ns 

Entry 35 2.71*** 3.29*** 41.27*** 2054.20*** 

Site*Entry 35 1.71*** 2.43*** 66.31*** 2132.76*** 

Error 142 0.601849 0.419763 18.94947 565.7284 

Total 215 
    

F2 families      

Site 1 64.03*** 330.65*** 5642.17*** 6541.70ns 

Block(Rep) 2 0.10ns 42.26*** 709.03*** 13499.45*** 

Entry 35 1.16*** 3.22*** 623.84*** 21147.59*** 

Site*Entry 35 0.78*** 2.10*** 214.48*** 3998.44*** 

Error 2086 0.360671 0.667209 84.6651 2048.532 

Total 2159     

*** Significant at p ≤ 0.01, * Significant at p ≤ 0.05, ns -none significant, PH – plant height, PL - panicle length, PW – panicle weight, GY – grain 

yield, NPA – number of panicles, NP – number of panicles, DF – days to flowering. 
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8.3.1. Selection indices for four traits 

Four traits were used to construct the selection indices based on the combinations of traits 

and their economic values using two methods of Smith-Hazel and desired gain. Data from 

the four common traits in the two generations were used to estimate the phenotypic and 

genotypic variance-covariance matrices. It was observed that the estimates of genotypic 

variances were smaller than their respective phenotypic variances for all traits. Plant height 

had higher variance in generations F1 and F2, followed by panicle length. Panicle weight 

and grain yield had smaller variances (Table 8-4 and Table 8-5).  

Table 8-4 Phenotypic variance-covariance matrix for traits in F1 and F2 generation 

 PH PL PW GY 

F1 hybrids     

PH 244.035 12.7183 0.86693 0.85839 

PL 12.7183 6.10678 0.39357 0.52869 

PW 0.86693 0.39357 0.37577 0.37114 

GY 0.85839 0.52869 0.37114 0.41818 

F2 families     

PH 278.97 8.03133 0.87614 0.82549 

PL 8.03133 7.0018 0.35408 0.47834 

PW 0.87614 0.35408 0.23652 0.18927 

GY 0.82549 0.47834 0.18927 0.20521 

Legend described in Table 8-3 

Table 8-5 Genotypic variance-covariance matrix between the F1 and F2 generation  

 F2PH F2PL F2PW F2GY 

F1PH 122.745 4.81655 0.29733 0.32288 

F1PL 4.81655 1.74868 0.23564 0.26024 

F1PW 0.29733 0.23564 0.07205 0.0926 

F1GY 0.32288 0.26024 0.0926 0.10717 

Legend described in Table 8-3 

The Smith-Hazel index and desired gain index assumed the economic weights to estimate 

discriminant coefficients (bi’s) by multiplying the weights with genotypic matrix and inverse 

phenotypic matrix. The calculation was based on the following formula: 

𝑏𝑠𝑖 = (

122.745 4.81655 0.29733

4.81655 1.74868 0.23564

0.29733 0.23564 0.07205

     
0.32288

0.26024

0.0926
0.32288 0.26024     0.0926 0.10717

) ∗ (

1
2
2
4

) ∗ (𝑉𝑝)
−1

 

Vg                    a 

Where: bsi – estimates for Smith-Hazel discriminant coefficients, Vg – genotypic matrix, a -

economic weights and Vp
-1 – inverse phenotypic matrix. 
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𝑏𝑖 = (

0.00407 0.09482 0.88392

0.11484 0.28593 1.34467

16.34928 5.02789 6.93938

     
1.02538

1.16866

5.66769
3.16198 5.39690     5.15602 4.66548

) ∗ (

0
0.1
0.1
0.2

) 

Vg
-1                                 h 

Where: bi – estimates for desired gain discriminant coefficients, Vg – genotypic matrix, h -

desired gain and Vp
-1 – inverse phenotypic matrix. 

The results obtained were bs1= 0.5264, bs2= 0.3299, bs3= -0.8748, bs4= 2.7635 and b1= 0.009, 

b2=-0.4605, b3=8.5510, b4=-4.4310 corresponding to plant height, panicle length, panicle 

weight and grain yield, respectively. The mathematical function for selecting index was used 

to construct the Smith-Hazel index and desired gain index for each trait as presented in Table 

8-6 and Table 8-7. 

The results from the indices showed that the genotypic scores were not associated with 

highest grain yielding genotypes. The genotype ICSA 12A x SDS 6013R had the highest grain 

yield but for Smith-Hazel index was in position 18th. The genotype CK 60A x MZ 37R which 

had the highest score was the 7th position for grain yield. The genotypes TX 631A x MZ 37R, 

CK 60A x MZ 2R, SPL 38A x MZ 37R and TX 628A x MZ 37R were the top 5 scored genotypes 

respectively, in ranking. The selected superior genotypes using the desired gain index were 

different from those selected using the Smith-Hazel index. For the desired gain index, the top 

5 scored genotypes were ICSA 19A x MZ 37R, 8601A x SDS 6013R, SPL 38A x SDS 6013R, 

CK 60A x MZ2R and TX 628A x IS 14257R. The genotype CK 60A x MZ 2R was the only 

genotype that appeared in the top five scores for the two indices. The other top five genotypes 

appeared for the desired gain index were in positions 16th,11th,18th and 7th respectively, in the 

Smith-Hazel index. 
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Table 8-6 Superior genotypes selection using Smith-Hazel index 

Rank 
Entry PH PL PW GY 

Smith-Hazel 
index 

1 CK 60A x MZ 37R 176.10 31.02 3.19 2.96 108.33 
2 TX 631A x MZ 37R 166.30 35.69 3.84 3.54 105.73 
3 CK 60A x MZ 2R 170.05 30.25 3.32 2.91 104.63 
4 SPL 38A x MZ 37R 167.30 32.95 3.03 2.50 103.19 
5 TX 628A x MZ 37R 167.35 30.04 3.07 2.54 102.34 
6 LARSVYT 46A x SDS 6013R 166.10 31.91 2.64 2.29 101.97 
7 TX 631A x SDS 6013R 157.65 34.49 2.84 2.73 99.41 
8 LARSVYT 46A x MZ 2R 159.75 30.63 2.28 2.23 98.35 
9 LARSVYT 46A x MZ 37R 155.65 31.53 2.52 2.30 96.49 
10 LARSVYT 46A x IS 14257R 151.50 32.76 3.16 2.76 95.42 
11 ICSA 21A x IS 14257R 149.05 31.81 3.52 3.24 94.83 
12 TX 628A x MZ 2R 148.55 32.62 2.85 2.46 93.27 
13 ICSA 21A x SDS 6013R 150.05 29.84 2.12 1.90 92.22 
14 ICSA 12A x MZ 37R 142.60 31.49 3.50 3.44 91.91 
15 8601A x IS 14257R 148.50 26.01 2.90 2.75 91.81 
16 8601A x MZ 2R 147.70 28.33 2.67 2.24 90.94 
17 ICSA 19A x SDS 6013R 142.10 32.28 2.99 2.75 90.44 
18 ICSA 12A x SDS 6013R 134.40 35.21 4.12 3.99 89.78 
19 TX 631A x IS 14257R 138.30 32.39 2.73 2.49 87.96 
20 SPL 38A x MZ 2R 140.20 29.54 2.61 2.23 87.43 
21 ICSA 12A x IS 14257R 143.40 25.39 2.55 2.05 87.31 
22 TX 631A x MZ 2R 140.90 30.94 2.54 1.85 87.28 
23 ICSA 19A x IS 14257R 136.10 30.18 3.31 2.93 86.78 
24 TX 628A x IS 14257R 133.95 31.92 3.57 3.19 86.72 
25 8601A x MZ 37R 133.90 30.40 3.29 3.12 86.26 
26 SPL 38A x IS 14257R 137.90 31.05 2.19 1.84 86.00 
27 TX 628A x SDS 6013R 139.70 27.21 2.54 1.99 85.80 
28 ICSA 21A x MZ 2R 134.35 31.68 2.90 2.48 85.49 
29 ICSA 19A x MZ 37R 129.20 29.58 3.61 3.35 83.85 
30 SPL 38A x SDS 6013R 128.90 27.85 3.20 2.82 82.03 
31 CK 60A x IS 14257R 127.55 29.69 2.68 2.17 80.60 
32 ICSA 21A x MZ 37R 123.40 29.75 2.39 2.05 78.34 
33 ICSA 19A x MZ 2R 119.25 31.92 2.83 2.53 77.81 
34 8601A x SDS 6013R 120.20 28.61 3.20 2.69 77.33 
35 CK 60A x SDS 6013R 118.80 30.38 2.36 2.26 76.74 
36 ICSA 12A x MZ 2R 115.10 29.00 2.60 2.34 74.33 

PH – plant height, PL - panicle length, PW – panicle weight, GY – grain yield 
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Table 8-7 Superior genotypes selection using Desired gain index 

Rank 
Entry PH PL PW GY 

Desired 
gain index 

1 ICSA 19A x MZ 37R 129.20 29.58 3.61 3.35 3.58 
2 8601A x SDS 6013R 120.20 28.61 3.20 2.69 3.33 
3 SPL 38A x SDS 6013R 128.90 27.85 3.20 2.82 3.21 
4 CK 60A x MZ 2R 170.05 30.25 3.32 2.91 3.05 
5 TX 628A x IS 14257R 133.95 31.92 3.57 3.19 2.93 
6 ICSA 19A x IS 14257R 136.10 30.18 3.31 2.93 2.70 
7 TX 628A x MZ 37R 167.35 30.04 3.07 2.54 2.66 
8 ICSA 12A x SDS 6013R 134.40 35.21 4.12 3.99 2.56 
9 ICSA 21A x IS 14257R 149.05 31.81 3.52 3.24 2.41 
10 ICSA 12A x IS 14257R 143.40 25.39 2.55 2.05 2.26 
11 TX 631A x MZ 37R 166.30 35.69 3.84 3.54 2.23 
12 8601A x IS 14257R 148.50 26.01 2.90 2.75 1.94 
13 TX 628A x SDS 6013R 139.70 27.21 2.54 1.99 1.59 
14 8601A x MZ 37R 133.90 30.40 3.29 3.12 1.51 
15 ICSA 12A x MZ 37R 142.60 31.49 3.50 3.44 1.41 
16 CK 60A x MZ 37R 176.10 31.02 3.19 2.96 1.41 
17 8601A x MZ 2R 147.70 28.33 2.67 2.24 1.16 
18 SPL 38A x MZ 37R 167.30 32.95 3.03 2.50 1.14 
19 LARSVYT 46A x IS 14257R 151.50 32.76 3.16 2.76 1.07 
20 CK 60A x IS 14257R 127.55 29.69 2.68 2.17 0.72 
21 TX 631A x MZ 2R 140.90 30.94 2.54 1.85 0.49 
22 ICSA 21A x MZ 2R 134.35 31.68 2.90 2.48 0.38 
23 SPL 38A x MZ 2R 140.20 29.54 2.61 2.23 0.09 
24 TX 628A x MZ 2R 148.55 32.62 2.85 2.46 -0.23 
25 ICSA 19A x SDS 6013R 142.10 32.28 2.99 2.75 -0.25 
26 ICSA 12A x MZ 2R 115.10 29.00 2.60 2.34 -0.40 
27 ICSA 19A x MZ 2R 119.25 31.92 2.83 2.53 -0.60 
28 LARSVYT 46A x SDS 6013R 166.10 31.91 2.64 2.29 -0.80 
29 ICSA 21A x MZ 37R 123.40 29.75 2.39 2.05 -1.24 
30 TX 631A x IS 14257R 138.30 32.39 2.73 2.49 -1.35 
31 LARSVYT 46A x MZ 37R 155.65 31.53 2.52 2.30 -1.77 
32 TX 631A x SDS 6013R 157.65 34.49 2.84 2.73 -2.26 
33 SPL 38A x IS 14257R 137.90 31.05 2.19 1.84 -2.48 
34 ICSA 21A x SDS 6013R 150.05 29.84 2.12 1.90 -2.71 
35 CK 60A x SDS 6013R 118.80 30.38 2.36 2.26 -2.77 
36 LARSVYT 46A x MZ 2R 159.75 30.63 2.28 2.23 -3.03 

PH – plant height, PL - panicle length, PW – panicle weight, GY – grain yield 

The selection intensity of 5% was used to select the superior genotypes. The Smith-Hazel 

index showed genetic gain for the traits plant height, panicle length and grain yield with values 

of 75.47%, 10.14% and 7.21%, respectively. Undesired gain in panicle weight of -2.57% was 

also observed. In contrast, the desired gain index resulted in the following genetic gain; panicle 

weight (25.08%) and plant height (1.29%), but undesired gain in grain yield and panicle length 

with a value of 11.56% and 14.15%, respectively (Table 8-8). The expected genetic gain was 

18.06% for Smith-Hazel index and 0.04% for desired gain index. 
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Table 8-8 Estimates of the percentage gain based on selection differential for the four 

traits 

Trait 
Smith-Hazel 

index 
Desired gain 

index 

Plant height 75.47 1.29 

Panicle length 10.14 -14.15 

Panicle weight -2.57 25.08 

Grain yield 7.21 -11.56 

Expected genetic advance 18.06 0.04 

 

8.4. Discussion 

The results of this study showed significant differences for all traits evaluated. The estimation 

of genetic and phenotypic variances showed high variability. These results imply that simple 

selection methods can be used to identify superior genotypes. High degree of genetic 

variability allows selection by simple methods that result in significant genetic gain (Coimbra 

et al., 1999). The higher and mid values for genetic variances are essential for selection of 

superior genotypes (Laviola et al., 2012).  

The heritability estimates of the selected traits were moderate for plant height and low for the 

other traits (panicle length, panicle weight and grain yield). The low and moderate heritability 

estimates could imply higher effects of the environment across experimental sites and less 

additive genetic variance. Presence of different environments may underestimate heritability 

estimates (Bertoldo et al., 2010). The values of heritability for some traits indicated that there 

are good prospects for selecting superior individual genotypes within the same population. 

Hazel (1943) stated that improvement from phenotypic selection is related to the additive 

genetic variance (narrow sense heritability) of the observed variance and it differs from trait to 

trait.  

The present study aimed at selecting superior genotypes in terms of grain yield and other 

traits. Two selection indices were used to select superior genotypes. The Smith-Hazel index 

had higher genetic gain for most of the individual traits of interest. The desired gain index was 

not important for selection of the progenies in the study population because it resulted in 

undesired gain of the main trait of interest (grain yield). For expected genetic gain, the Smith-

Hazel index was also superior to desired gain index. Similar results of undesired gain for traits 

in the desired gain index (Pešek and Baker,1969) was reported by Viana et al. (2017) for the 

number of fruits, fruit mass and longitudinal diameter of the fruits. On the other hand, de Paula 

et al. (2002) found that the desired gain index was similar to other selection methods when 
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studying genetic gain for forest breeding in Eucalyptus. Moreover, the same method was found 

to obtain genetic gain for production traits and fruit quality in papaya (Ide, 2008). Desired 

positive genetic gain was also obtained by Gonçalves et al. (2007) when selecting progenies 

for recombination in passion fruit. This result is in agreement with findings by Silva and Viana 

(2012). 

The interest of the breeder is to develop sorghum plants that have high grain yield and other 

positive yield components such as plant height and panicle size. The Smith-Hazel index had 

higher scores for most of the traits of interest. This indicated that the method was more 

appropriate for selection of the superior hybrids in the study population. Similar results were 

found by Viana et al. (2017) on the study of passion fruits where Smith (1936) and Hazel 

(1943) indices delivered higher genetic gain for number of fruits, yield and fruit mass. Smith-

Hazel predicted higher gain than other indices when one of the main traits is yield (Cruz et al., 

1993; Granate et al., 2002). Contrasting results were reported by Silva and Viana (2012) for 

Smith-Hazel index when studying alternatives for selection in recurrent intra-population of 

passion fruits where the genetic gain was negative for the traits of interest. Mock and Bakri 

(1976) proposed to assign Smith-Hazel index for cold tolerance in maize although it was found 

difficult to assign weights for cold-tolerance. They concluded that Smith-Hazel index placed 

too much emphasis on percentage emergence when economic weights were equal for all 

traits. On the other hand, Laviola et al. (2012) reported that most of the elevated genetic gain 

is expected in the initial stages of the breeding programme because most plants tend to 

produce very little and groups of plants with high yield will be selected.  

The result of different indices efficiencies demonstrates that indices differed in selection 

strategies and efficiency according to the population and traits used in the study (Crosbie et 

al., 1980). Williams (1962) stated that the best way of avoiding estimate weights of observable 

variates using known weights of non-observable linear function is comparing two or more 

indices for selection. The use of a selection index is to maximize the mean value of traits while 

retaining a specific fraction of the members of the original population (Cochran, 1951; Singh 

et al., 2011). Therefore, selection should be based on a set of traits that allows the 

simultaneous achievement of reasonable genetic gain (Vittorazzi et al., 2017).  

The predicted gains with the selection index of Smith (1936) and Hazel (1943) were higher 

than predictions based on desired gain of Pešek and Baker (1969). Therefore, the selection 

of superior hybrids was done using Smith-Hazel index according to the experimental 

conditions. The prediction of the desired gain index (Pešek and Baker, 1969) underestimates 

the gain for plant height, panicle length and grain yield. This might be because the weights 

given to the traits were not adequate to express the genetic gain. On the other hand, the 
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selection index of Smith (1936) and Hazel (1943) showed greater values for most of the traits 

of interest under study. Young (1961) stated that the maximum selection of superior genotypes 

is achieved when the traits are of equal importance and it increases with increase in number 

of traits under selection, but decreases with increasing differences in relative importance. 

8.5. Conclusion 

The results showed that the scores from the selection indices were not associated with highest 

grain yielding genotypes. The genotype CK 60A x MZ 37R had highest score followed by the 

genotypes TX 631A x MZ 37R, CK 60A x MZ 2R, SPL 38A x MZ 37R and TX 628A x MZ 37R. 

The selection index proposed by Smith-Hazel was the most efficient for simultaneous selection 

of hybrids for grain yield and other yield attributes. This method allowed the prediction of 

genetic gain for the traits evaluated together and a more efficient selection of superior 

genotypes. This suggested that sorghum breeders should consider the use of different 

selection strategies and indices to select superior genotypes for grain yield and other traits to 

improve the crop according to the trait of interest. Moreover, knowledge of the economic 

weights of the traits demonstrated to be a fundamental key when comparing different indices. 

Therefore, it is recommended for future studies to compare more selection indices for selecting 

superior genotypes. 
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9. General Research Overview 

9.1. Introduction 

The research carried out in the present study explored ICRISAT derived and Mozambican 

sorghum germplasm for hybrid potential under different environments. This chapter gives an 

overview on the objectives and major findings from the research. It also, highlights the 

implications of the findings to breeding strategies. The following specific objectives were used 

to test the hypothesis under the study: 

i. Assess farmers’ preferences and needs in sorghum varieties through participatory 

rural appraisal and participatory plant breeding. 

ii. Determine the morphological characteristics that distinguish desirable breeding 

materials to be exploited in hybrid development. 

iii. Study the genotype by environment (G x E) interactions during development of 

improved varieties. 

iv. Determine the combining ability for grain yield among the Mozambican germplasm 

by using line by tester mating design, and 

v. Construct a selection index that can be used to select superior genotypes. 

9.2. Summary of research findings 

9.2.1. An appraisal of sorghum farmers’ trait preferences, production threats 

and opportunities for plant breeding in central region of Mozambique 

 The study demonstrated that farmers select varieties based on their needs and 

adaption of the variety to the farming system. The most preferred attributes by farmers 

included: early maturity, high grain yield, white grain colour, food quality and tall plants 

for use of the stem as building material.  

 Extension service is a key to guide farmers on which technologies they can use to 

improve sorghum productivity and access to markets. 

 The major constraint was drought. The other production challenges were weeding, 

thinning out plants, threshing, sieving, cutting and transporting grain during and after 

harvest.  
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 The important constraints in sorghum commercialization were a combination of low 

prices, unavailability of seed and limited markets. 

 The involvement of more women in sorghum production and marketing could help 

production improvement in the country. This could also improve quality of seeds used 

in sorghum production with a market orientation point of view. 

9.2.2. Identification of important morphological traits in Mozambican sorghum 

germplasm using multivariate analysis 

 The morphological traits such as earliness, grain yield, seed size, drought and bird 

attack were mentioned as the important traits. Those traits can be used in hybridization 

programmes. 

 Genotypes 150B, IS 14257R, LARSVYT 46B, TX 631B, TX 630B and 8601B could be 

used for improving earliness, while for late maturity genotypes MA 6B, A 6352R, ICSA 

19B and MZ 30R could be selected.  

 Grain size and weight were associated with grain yield and genotypes IS 7179R, SPL 

9B, A 6353R, SPL 38B, SDS 6013R and MZ 2R were identified.  

 Genotypes ICSA 21B, 8610B, MZ 37R, 150B and MZ 2R presented an intense stay 

green character that can be exploited for drought tolerance variety deployment.  

 IS 7179R can be used for hybridization to reduce bird attack due to the presence of 

awns and for mould resistance, lines 8601B and TX 630B can be used. 

 The genotypes grouped in different clusters in the analysis and revealed similarity of 

some lines used in the breeding programme. This will help reducing the number of 

lines involved in crosses and better explore the combining ability of those lines. 

9.2.3. Combining Ability and Heterosis for sorghum grain yield and secondary 

traits across lowland and midland Mozambique 

 The GCA mean squares for testers were significant for the following traits; grain yield, 

days to 50% flowering, plant height and biomass.  

 Testers IS 14257R and MZ 37R showed positive GCA values for grain yield, and 

negative and significant GCA effects for days to 50% flowering, while tester SDS 

6013R had negative and significant GCA effects for plant height. Lines LARSVYT 46A, 
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SPL 38A and TX 631A showed positive GCA effects for grain yield, while 8601A, ICSA 

12A, TX 631A and LARSVYT 46A had highly significant negative GCA effects for days 

to 50% flowering 

 For plant height, lines TX 631A, ICSA 12A, ICSA 21A and TX 628A were significant, 

while for panicle length, lines LARSVYT 46A, SPL 38A and TX 631A had positive 

significant GCA effects.  

 Negative significant GCA values for disease scores were observed for ICSA 12A and 

TX 631A for rust disease.  

 Hybrids resistant to rust were ICSA 12A x MZ 2R, ICSA 12A x SDS 6013R and TX 

631A x SDS 6013R, and moderately resistant were LARSVYT 46A x, IS 14257R, 

LARSVYT 46A x SDS 6013R and 8601A x MZ 37R. Most of the hybrids were resistant 

to moderately resistant to Cercospora spp, and for anthracnose all hybrids were 

classified as resistant.  

 The earliest flowering hybrids were TX 631A x IS 14257R and 8601A x IS 14257R and 

Macia (check). In addition, Macia had the shortest plants after TX 631A x MZ 2R. The 

largest panicle was observed in hybrid LARSVYT 46A x MZ 2R.  

 None of the checks ranked in the top ten genotypes for grain yield. The hybrid with the 

highest average grain yield across environments was TX 631A x MZ 37R followed by 

SPL 38A x SDS 6013R and LARSVYT 46A x IS 14257R. 

 Heterosis over the mid-parent and over best check ranged from 52 to 194% and 5 to 

76% respectively. 

 Lines TX 631A and 8601A combined with tester MZ 37R displayed levels of heterosis 

of 182% and 148%, respectively. Line LARSVYT 46A with tester IS 14257R displayed 

level of heterosis of 141%.  

 The testers IS 14257R and MZ 37R had desired GCA effect for grain yield and days 

to 50% flowering while lines LARSVYT 46A, SPL 38A and TX 631A had desired GCA 

effect for grain yield. MZ 37R and IS 14257R were the testers with better performance 

and resulted in hybrids with high levels of heterosis for most of the characters that 

contribute to grain yield.  
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9.2.4. Influence of genotype x environment interaction on grain yield 

performance of sorghum genotypes across lowlands and midlands of 

Mozambique 

 All the test environments for hybrids were discriminative but not representative. For 

hybrids: environments Mapupulo 17, Sussundenga 16 and Sussundenga 17 were the 

most discriminating environments. Mapupulo 17 was the environment slightly 

representative. One mega-environment was observed for the parents and five mega-

environments for the hybrids.  

 The best parents in the mega-environments were: P12 (CK 60A) and P5 

(LARSVYT46A). Additionally, the specific environments for the hybrids were: 

Mapupulo 17 (GS2 = LARSVYT46A x IS 14257R), Sussundenga 16 (GS11 = SPL 38A 

x SDS 6013R), Sussundenga 17 (GS38 = SIMA), Chókwè 17 (GS7 = 8601A x SDS 

6013R) and Chókwè 16 and Maniquenique 17 (GS32 = CK 60A x MZ 37R). 

 CK 60A and LARSVYT46A were high yielding and stable parents, while high yielding 

and stable hybrids were; GS9 (SPL 38A x MZ 2R), GS36 (TX 631A x MZ 37R), GS1 

(LARSVYT46A x MZ 2R) and GS34 (TX 631A x IS 14257R).  

9.2.5. Participatory variety selection of sorghum hybrids using Farmers’ 

preferences and knowledge in central area of Mozambique 

 Involving farmers in the evaluation of the hybrids and during selection revealed the 

importance of not only targeting yield in the development of new varieties. 

In addition to yield, farmers identified other important traits such as: earliness, grain 

size, grain colour and plant height. Drought tolerance and head size were mentioned 

as important traits used to compare new varieties with local ones. 

 The results of on-station and on-farm trials facilitated the identification of hybrid TX 

631A x MZ 37R as high yielding with short plants. Moreover, the tallest plants on-

station were found in hybrid SPL 38A X SDS 6013R. In contrast, local variety had the 

tallest plant height during on-farm evaluation.  

 Additionally, the local variety had the highest number of days to 50% flowering, while 

for the hybrids, SLP 38A x MZ 2R had the longest period to 50% flowering followed by 
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LARSVYT 46A x MZ 37R, SPL 38A x SDS 6013R, TX 631A x MZ 37R, ICSA 19A x 

SDS 6013R and LARSVYT 46A x SDS 6013R.  

 The mean yield for the local variety was 1.0 t.ha-1 and the high yielding hybrid had 3.0 

t.ha-1 (TX 631A x MZ 37R). 

9.2.6. Identification of superior sorghum genotypes from farmers’ preferences 

traits using selection indices 

 Index scores were not associated with highest grain yielding genotypes.  

 The Smith-Hazel index was the most efficient procedure for simultaneous selection of 

hybrids for grain yield and other yield attributes where the genotype CK 60A x MZ 37R 

had the highest score followed by the genotypes TX 631A x MZ 37R, CK 60A x MZ 

2R, SPL 38A x MZ 37R and TX 628A x MZ 37R.  

 The use of Smith-Hazel index and desired gains index showed the importance of 

knowing well the traits to be attributed the economic weights or desired response but 

it is recommended in future studies, the comparison of more selections indices and 

more traits when select superior genotypes.  

9.3. Implication for breeding 

The participatory rural appraisal and participatory plant breeding studies showed that breeders 

and farmers need to work together to develop varieties that will be acceptable to farmers 

based on their agro-ecological environments and variety preferences. According to the 

farmers’ production environments and selection criteria; a variety can have a combination of 

high grain yield, early maturity, tall plants and drought tolerance characteristics. This implies 

that breeders should exploit traits that confer drought tolerance such as stay green combined 

with large grain size and early flowering. From the results, it was clear that two groups of 

varieties needed to be deployed; one that responds to high yield and early maturity and the 

other to high yield with tall plants. 

The study also highlighted the need for scientists to take advantage of the available 

technologies and approaches such as molecular technologies combined with an interactive 

breeding to improve existing varieties or develop new ones. In addition, the use of some 

landrace traits in hybrid deployment would have a large positive impact on the households. 

Besides that, farmers still use recycled seed which results in yield reduction in a hybrid, thus 

farmer education in sorghum hybrids is important. 
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A combination of several methods involving farmers from the start where breeding objectives 

are being defined could increase the crop adoption and dissemination of new improved 

varieties to other farmers across location. The participation of all stakeholders from formal 

breeding to farmer breeding, including the consumers and industrialist in development of 

varieties is a crucial step for variety selection and use. 

The results of the Mozambican sorghum germplasm diversity study have provided interesting 

information that is useful in the improvement of sorghum varieties. The traits that are not 

strongly related could be exploited in recombination breeding in future. The multivariate 

analyses clearly showed the grouping of the genotypes according to the characters outlined 

in the study. Diversity index gave emphasis to the results by evidently showing more diverse 

traits which can be used in hybridization for grain yield, pest and disease resistance and 

tolerance to drought. Therefore, these results have implications in the selection of parents for 

use in sorghum improvement programme. 

Morphological characteristics assist breeders in understanding the importance of the 

germplasm diversity, which will classify important characters that are highly preferred by 

farmers such as earliness, grain yield, plant height and grain colour. Breeding for new varieties 

with good storability, resistance to pests and diseases according to farmers criteria could 

enhance adoption of those varieties. 

Selection of superior genotypes using different traits of interest in selection indices should be 

considered by sorghum breeders for improvement of varieties for multi-traits. 

 

 

 


