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Abstract

Tumour-infiltrating immune cells have been widely implicated to play a significant role in carcinogenesis, through both pro- or
anti-tumour effects. The multi-faceted effects of lung cancer associated T lymphocytes have been extensively studied, and yet,
the role of B lymphocytes remains an area less studied. In this review, we will describe the current understanding of the role
of tumour-infiltrating B lymphocytes in NSCLC, discuss their prognostic significance, their functionality within the tumour
microenvironment and ultimately how we might harness B-cell biology to develop B-cell therapeutic strategies in cancer.

Keywords B lymphocyte - Non-small-cell lung cancer (NSCLC) - Humoral Immunity - Immunoglobulin - Tumour

-infiltrating B lymphocyte (TIL-B)

Introduction

Immune responses within the tumour microenvironment
(TME) are important determinants of tumour behaviour, pro-
gression, and aggressiveness [1]. The role of T-cell-mediated
immune responses in solid tumours is well established and
has become the driving force for major therapeutic advances,
specifically with the advent of immune checkpoint inhibitors
[2]. The success of single agent and combination checkpoint
blockade, which enables antigen-experienced microenviron-
mental T cells, has transformed the treatment paradigm of
advanced NSCLC both as a front-line option and in the plati-
num-refractory setting. As a consequence, our understanding
of the biology of these T cells has expanded exponentially.
In contrast, our knowledge of B-cell biology in cancer is
less well developed. Tumour-infiltrating B cells have been
observed in all stages of lung cancer development, with
their presence differing according to stage and histological
subtype. Given that they play a role in both humoral and
cellular immunity B-cell parameters may be important in
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determining both responsiveness to and toxicity of check-
point blockade. Manipulation of B-cell biology might offer
significant immune-therapeutic opportunities [3]. Thus,
understanding B-cell biology in NSCLC is of fundamen-
tal importance in informing potential novel multi-faceted
approaches to favourably reset the immune contexture of the
cancer microenvironment.

B-cell ontogeny

In the bone marrow, haematopoietic stem cells serve as the
common lymphoid progenitor and continually give rise to B
cells throughout life [4]. B-cell development and differentia-
tion are subsequently regulated through the B-cell receptor
(BCR). On leaving the bone marrow, B-cell development
takes place in B-cell follicles within secondary lymphoid
organs (SLOS), where germinal centres (GC) develop in
response to antigen encounter. Mature B cells undergo a
process known as somatic hypermutation (SHM), where
enzyme induced mutations are introduced in the heavy and
light chain variable regions to further diversify the immuno-
logical repertoire. The same enzyme mediates immunologi-
cal class switch recombination (CSR), replacing the p con-
stant region for another heavy chain region to generate IgA,
IgE or IgG. The cells with the highest affinity B-cell recep-
tors (BCR) are positively selected (this requires signalling
through the BCR for the cell to survive, negative selection
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occurs when the B-cell antigen receptor binds self-antigen
and, therefore, undergoes cell death) and undergo clonal
expansion in the germinal centre. These class-switched B
cells can then give rise to long-lived plasma cells or memory
B cells [5]. Germinal centres, which are normally found in
SLOS such as the spleen and lymph nodes, can also occur as
tertiary lymphoid structures (TLS) in tumours; this has been
reported in colon, breast and NSCLC [6-8]. The de novo
formation of ectopic lymphoid tissue can occur at the site of
inflammation in potentially any organ system [9]. There is
evidence that the adaptive immune system can be initiated
independent of SLOS in these TLS in NSCLC [7].

B-cell function
Antigen presentation

T cell immune responses can be activated by B cells. Anti-
gen-specific interactions require antigen internalisation via
the BCR with subsequent presentation to T cells in an MHC-
restricted manner [10]. Depleting host B cells from normal
adult mice results in sub-optimal CD4 + T cell activation
during immune responses to low-dose foreign antigen [11].
Activated B cells derived from peripheral donor blood from
healthy controls present antigens to CD4 +and CD8+T
cells [12]. B cells and dendritic cells further provide a co-
stimulatory signal which is critical to the expansion of an
effector T cell population, namely the cross-linking of CD40
with CD154 (CD40 Ligand) on CD4 + T cells [10] which in
turn induces the expression and thence stabilisation of CD86
(B7.2) and CD80 (B7.1) on the B-cell surface (second co-
stimulatory signal).

Antibody production

B cells exist as long-lived plasma cells to produce antigen-
specific antibody. The functional BCR can recognise an
array of foreign antigens in the circulation and lymphoid
organs, which then triggers antigen-specific antibody
responses. Following antigen binding, BCR stimulation
results in a signalling cascade mediated by membrane
bound protein tyrosine kinases, Spleen Tyrosine Kinase
(SYK), Bruton Tyrosine Kinase (BTK) and PI3K, in par-
ticular PI3K which is a p110 isoform with high lymphocyte
specificity [4]. This in turn results in B-cell differentiation
into plasma and memory cells. The plasma cells will traf-
fic to the bone marrow or reside in SLOS, where they will
continue to secrete antibody. BCR signalling controls this
process from early B-cell precursor development to terminal
plasma cell differentiation, long-lived IgG plasma cells are
devoid of the BCR [5].

@ Springer

Immunosuppression

B cells play a vital role in the development of the immune
system but are also responsible for immune homeostasis.
Their immunosuppressive role has been illustrated by their
ability to function as regulatory cells or Bregs, whereby they
influence T cell differentiation and thus T-cell-mediated
inflammatory responses through IL-10 production [13].
B regulatory cells are associated with limiting excessive
inflammation [14] and mice lacking IL-10 producing Bregs
develop chronic inflammation [15]. IL-10 producing Bregs
induce the Treg phenotype by skewing T cell differentiation
in mice [16] and humans [17]. Other cytokines that have
been implicated in B-cell specific immunosuppression are
TGF-beta and IL-35. TGF-beta when produced by B cells
can induce CD4 + T cell apoptosis [18] and CD8+T cell
anergy [19]. Chimaeric mice lacking either p35 or EBi3
(IL-35 subunits) in B cells develop accentuated autoimmune
responses and have greater protection against Salmonella
induced sepsis [20].

IL-10 has been useful for Breg characterisation in both
mice and humans; however, this can be up or down-regulated
during immune activation and is not a stable inducible trait
[14, 21]. A lineage-specific marker for Bregs equivalent to
Foxp3 has not been identified. B cells are polarised to Bregs
in response to microenvironmental cues: Bregs have been
derived by treating human derived peripheral B cells with
tumour-conditioned media; these Bregs were able to sup-
press the activity of human T cells in vitro and they exhib-
ited low surface expression of CD20 unlike healthy control
human B cells [22, 23]. These tumours evoked Bregs did not
utilise IL-10 dependent suppression but instead primarily
functioned to promote the differentiation of Tregs (CD25+)
via the TGFp signalling axis [22].

Pre-clinical studies of the role of B cells
in cancer

There appears to be a significant difference in the role of B
cells in animal models which represent different stages in the
development of cancer. In murine models of pre-malignancy,
B cells appear to drive inflammation which in turn induces
pre-malignancy.

Pre-malignancy models

Early evidence from the K14-HPV16 model (these RAG-1
knockout (KO) mice in which carcinogenesis is initiated
by HPV lack T and B cells) has shown that the lack of
an adaptive immune response results in failure to initiate
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leucocyte infiltration during pre-malignancy [24] and this
halts progression towards carcinogenesis. Adoptive trans-
fer of B lymphocytes or serum from HPV16 mice into
HPV16/RAG1—/—mice resulted in significant infiltration
of CD45 +leucocytes, macrophages and granulocytes in the
dermal stroma as well as detectably higher levels of serum Ig
which then enhanced malignant progression. In this model of
squamous carcinogenesis, B cells were shown to play a role
in activating Fcy receptors (FcyRs) on resident and recruited
myeloid cells likely via circulating immune complexes (CIC)
detected in the serum of HPV16 mice and formed from
IgG bound to cognate HPV 16 antigens. These CICs were
localised to both the epidermal and dermal components of
neoplastic skin. The recruitment of these chronically acti-
vated leucocytes was dependent on FcyR expression [25], as
shown by the reduced level of inflammatory cell infiltration
in neoplastic skin in FcyR—/— KO mice. Subsequently it
was shown in K14-HPV 16 mice that premalignant dysplasia
could be prevented through B-cell depletion [26]. Admin-
istration of anti-CD20 monoclonal antibodies depleted B
cells in peripheral blood and SLOS with resultant reduced
levels of circulating IgG, immune complex deposition and
trafficking of myeloid cells (CD11+), CD45 +leucocytes,
mast cells and GR1 + cells to neoplastic skin [26].

In a DMBA/TPA murine model of skin carcinogen-
esis adoptive transfer of B cells from DMBA/TPA wild
type (WT) mice into TNF-a knockout mice significantly
increased papilloma development (p <0.05), an effect not
seen when B cells from the TNF-a knockout mice were
transferred to RAG2—/— mice [27]. TNF-a is a potent
inflammatory cytokine and tumour promotor, Bregs are
known producers of TNF-a. Selective TNF-a deletion in
CD19 +-Cre B cells significantly reduced papilloma devel-
opment compared to B cells from WT mice (p <0.002).
TNF-a knockout mice showed increased levels of IFN-y and
CD8+T cell skin infiltration, but also a significant reduction
in the number of splenic CD19+ CD21hi, IL-10 producing
Bregs compared with WT mice (p <0.01). Further experi-
mental data showed that TNF-a blockade of LPS-induced
B-cell activation significantly reduced IL-10 production with
no difference in IL-2, -4, -5, -12 or IFN-y. The results of this
study identify Bregs as contributory to squamous carcino-
genesis, with their activity likely regulated by TNF-alpha
with Bregs themselves acting as a cellular source of TNF-a.

The impact of B cells in established cancer appears to be
very different to their role in pre-malignant disease.

Established cancer models

B-cell depletion using anti-CD20 in a B16 melanoma
murine model resulted in increased tumour burden and the
development of pulmonary metastasis [28]. CpG (TLR 9
ligand) primed B cells caused tumour regressions in a B-cell

deficient melanoma model [29]. CpG treatment of B cells
induced higher expression of MHC class I and II as well
as CD20. It was also noted that in the mice that underwent
adoptive B-cell transfer, the lung tumours expressed signifi-
cantly lower levels of BCL-2 (an anti-apoptotic protein) and
increased levels of TRAIL (TNF-related-apoptosis-induc-
ing-ligand, a pro-apoptotic protein), TRAIL expression is
highest in germinal centre B cells and thus the upregulation
in these murine lung tumours is likely B-cell driven [29].

In a4T1 breast cancer model treatment with an anti-CD20
antibody resulted in massive cancer growth and metastasis.
Eradication of CD20MB cells, enriched for a select popula-
tion of CD20"° Bregs which escaped CD20-directed deple-
tion and thus significantly suppressed CD4 +and CD8+T
cell activity thus abrogating anti-tumour responses [23]. Tar-
geted delivery of CpG-ODN to CXCRS5 expressing cells,
reversed the phenotype of these tumour evoked Bregs (which
upregulated CD20) and restored effector B-cell responses.
This was demonstrated by a complete abrogation of tumour
metastasis in anti-CD20 treated 4T1.2 cancer bearing mice
after adoptive transfer of CpG treated B cells [30]. Using
the same murine model, Tao et al. demonstrated that IL-10
inhibition significantly augmented the therapeutic efficacy
of adoptive B-cell transfer, as demonstrated by increased
trafficking of CD8 + T cells into the tumour microenviron-
ment as well as in vitro antigen-specific B-cell dependent,
FasL-mediated tumour cell killing [31]. Activated B cells
from this model produce IgG and mediate complement-
dependent tumour cell lysis in vitro [32]. Finally, the use of
intra-tumoural TLR9 immune stimulation in combination
with PD-1 blockade has demonstrated clinical efficacy in
advanced melanoma, with increased B-cell infiltration noted
on post-treatment tumour biopsies [33]. Phase I clinical trial
data from patients with metastatic solid tumours showed a
non-significant increase in TLR9-expressing naive B cells
during therapy [34].

Tumour infiltrating B lymphocytes in human
lung cancer

Table 1 summarises studies that have identified TIL-Bs
in tissue and examined their associated prognostic sig-
nificance. These studies largely focus on NSCLC which is
where the correlation between TIL-Bs and disease-specific
outcome has been shown to be strongest by comparison
with other forms of Lung cancer. However, groups have
investigated the immune milieu in large cell carcinoma and
Small Cell Lung Carcinoma (SCLC). In the former, Eerola
et al. have demonstrated that TIL-Bs do correlate with bet-
ter overall survival [35], whereas in SCLC, B-cell infiltra-
tion is significantly reduced compared with CD8 + T cell

@ Springer
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and Macrophage infiltration and TIL-B number has not
been shown to associate with survival (p =0.634 by log
rank) [36].

In Table 1, the majority of studies have used a combina-
tion of immunofluorescence or immunohistochemistry to
identify these cells in tissue. Of the 28 studies identified,
18 have used IHC as a primary method, mRNA sequencing
has been employed in 4 studies and 2 have employed qt-
PCR [37-41]. An anti-BCL-6 antibody and an anti-CD21
antibody were utilised to identify Germinal Centre B cells
and mature B cells, respectively. Immunohistochemistry was
used to determine B-cell density, location and phenotype
within NSCLC tissue [8]. Studies have utilised PCR micro-
array and Mrna-sequencing techniques to identify primarily
humoral immunity related gene signatures in NSCLC speci-
mens [42, 43]. CD20 + B-cell infiltration has been shown to
be positively prognostic in NSCLC by a number of different
groups [38—43]. Disease-free and overall survival was signif-
icantly higher in non-smokers with non-squamous NSCLC
[45]. Significantly improved survival has also been shown in
large cell carcinomas with higher degrees of CD20 + B-cell
infiltration [35]. Associations have been made between TLS
(GCs forming as ectopic foci of follicular B cells and clus-
ters of mature DC-Lamp™® Dendritic cells and T cells in
cancer tissue, in response to antigen stimulation) in NSCLC
and improved long-term survival. The presence of both
types of antigen-presenting cells and mature dendritic cells
in these TLS strongly predicts the outcome of patients [7,
44]. A low density of both follicular B cells and mature
dendritic cells allows the identification of patients at high
risk of poor survival. A higher prevalence of intra-tumoural
GC formation was found in NSCLC stage I tumours com-
pared with higher stage (II-IV) tumours (p <0.02) [8]. In
a recent study [49] the expression of a tumour-induced
plasmablast-like B-cell signature (TIPB) was significantly
correlated with the expression of CD8a signatures and the
density of CD8 4+ cells. High expression of the TIPB signa-
ture was correlated with overall survival in the melanoma
TCGA data set. Importantly, a cohort of melanoma patients
treated with anti-CD20 antibodies, showed significant on-
treatment down-regulation of the TIPB signature: the signa-
ture was highly correlated with tumour inflammatory score,
interferon gamma and T cell effector signatures all of which
significantly decreased on anti-CD20 therapy. There was a
marked depletion in both CD4 + and CDS8 + cell density at
the invasive tumour-stroma margin and a reduction in the
TLS area, an effect which was prolonged. In support of this
data suggesting the importance of B cells in a successful
anti-cancer immune response, long-term follow-up of CD20
depletion with Rituximab in patients with lymphoma, it was
shown that CD20 depletion was an independent risk factor
for the development of secondary solid tumour malignancy
in both univariate and multivariate analyses [50].

Finally, the prognostic impact of follicular B cells was
evaluated in two patient cohorts; early stage untreated
NSCLC and advanced stage NSCLC treated with neoad-
juvant chemotherapy. “Foll-B-Hi” patients had signifi-
cantly prolonged survival in early stage disease, (97% DFS
at 4 years compared with 62% in the “Foll-B-Lo” group),
and in advanced stage disease, a benefit was demonstrated
albeit not significant (56 month median DFS compared with
23 months in the “Foll-B-Lo” group). The global increase
in follicular B-cell density was associated with an overall
increase in mature DC density. When the combined immune
populations were taken into account and correlated with
survival, “Foll-B-Hi/mDC-Lamp"" patients had the high-
est median survival, 100% of early stage patients (p <0.04)
and 55% of advanced disease patients (p =0.007) were alive
after a follow-up of 50 and 60 months, respectively [44].
“Foll-B-Lo/mDC-Lamp™©” patients had the worst prognosis.

Some studies have not demonstrated a prognostic impact
of B-cell density on NSCLC outcomes [48, 51-54]. How-
ever, it may be that the lack of prognostic impact may relate
to the high density of Bregs in such studies and it would
appear to be essential that Breg density be considered sepa-
rately [48, 51, 52]. An explicit analysis of whether Breg
density is negatively prognostic for outcome, however, has
not been performed. Finally, the prognostic impact may
be dependant not only on enumeration of the appropriate
B-cell subsets (TIMPs, follicular) but also by enumeration of
tumour-associated B cells in the appropriate compartment,
as opposed to analysis of un-segmented tumoural B-cell den-
sity. Most B cells are found at the invasive tumour-stroma
margin, and it is here that the cancer cells are likely to polar-
ise B cells to the immune-stimulatory TIPB phenotype.

B-cell functionality: human NSCLC
Antibody specificity and antigen presentation

Tumour antigen-specific B-cell responses are evidenced by
the production of tumour-specific antibody and the oligo-
clonality of TIL-Bs in the TLS [55]. B cells cultured from
TLS’ have been shown to produce tumour-specific IgG and
IgA antibodies [44]. LAGE-1 was identified as the most
immunogenic tumour antigen in NSCLC, followed by
MAGE family antigens, p53 and NY-ESO-1 [44]. Plasma
cell and Ig expression associates favourably with outcome
in NSCLC [43, 56, 57]. IgG4 + plasma cell infiltration cor-
relates favourably with prognosis [57].

In NSCLC tissue TIL-Bs present antigen to CD4 + TILs
with resultant effector responses [55]. CD4 + T cells, B
cells and DCs were co-cultured together with protein +co-
stimulation with an anti-CD40/anti-CD28 antibody. Anti-
HLA-DR, -DP and —-DQ was used to block MHC class II
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antigen presentation. T cell responses were stratified accord-
ing to “activated” (spontaneous presentation of antigen to
CD4+T cells), “antigen-associated” (presentation of anti-
gen following re-stimulation by the antigen itself) and “non-
responsive”. Activated TIL-Bs (CD19+CD20+CD69+C
D27 +CD21 +) and antigen-associated B cells mediated an
effector T-cell response (IFN-y producing CD4 + T cells).
Conversely, exhausted phenotype TIL-Bs (CD19 +CD20+
CD69 + CD27T — CD21-) were associated with a regula-
tory T-cell phenotype (Foxp3+ CD4 +TILs) [55]. Exhausted
TIL-Bs were still able to antigen present but controlled host
damage from chronic antigen exposure by inducing a Treg
phenotype and ultimately dampening anti-tumour immunity
[55].

Immunosuppression
In NSCLC, significantly higher frequencies of peripheral

Bregs (CD19 +CD24" CD27+) and CD19+IL-10+B
cells were detected compared with healthy controls [58].

Table 2 Human breg phenotypes in cancer and disease

IL-10+ B-cell infiltration has positively correlated with
CD25 + Treg expression and advanced clinical stage [59].
Multiple subsets exist with similarities in effector func-
tion and phenotype; in humans Brl cells (CD19 4+ CD25"
CD71M) are strongly IL-10 positive. The differentiation
of activated B cells into plasma cells is controlled by the
expression of transcription factors, IRF4 and BLIMP-1
which are also critical for B-cell suppressive functions and
some T cell suppressive functions (IRF4 expression in Tregs
is dependent on Foxp3) [92]. B cells that co-express IRF4
and BLIMP-1 are the main source of B-cell derived IL-10
in vivo, and plasma cells are, therefore, a significant con-
tributor, however, not all plasma cells produce IL-10 [60].
Currently, the signals that are required for differentiation
into these regulatory B cells are not known.

Numerous studies have phenotypically characterised vari-
ous Breg subsets in health and disease, this is displayed in
Table 2 [58, 59, 61-80]. The findings from these studies of
human Bregs in cancer underscores the ability of different
Breg subsets to mediate immunosuppression in support of

Phenotype Mechanism of suppression Disease process Author
CD19+ CD24hi CD38hi (Immature IL-10, PD-L1 SLE Blair et al. [61]
subtype)
CDl1d SLE Bosma et al. [62]
IL-10, TGF-P, CD40/CD40L Hepatocellular carcinoma Shao et al. [63]
TGE-P Breast cancer, Gastric cancer Olkhanud et al. [64], Wang et al. [65]
1IL-10 Non-small cell lung cancer, Liu et al. [59], Qian et al. [66], Zhou
Oesophageal cancer, Ovarian et al. [58], Wei et al. [67]
cancer
CD19+CD5+ IL-10, STAT3 Lung, Prostate cancer Zhang et al. [68]
IL-10, TGF-P Breast cancer Lee-Chang et al. [69]
CD19+CD5+CD1dhi IL-10 Chronic inflammation within gut- Yanaba et al. [70], Mizoguchi et al.
associated lymphoid tissue [71]
CD19+CD35+ IL-35 Pancreatic Cancer Wang et al. [72], Pylayeva-Gupta
et al. [73]
CD19+CD24hi CD27+ (B10 cells) IL-10 SLE, Rheumatoid arthritis, primary Iwata et al. [74]

CD19+CD38+CDl1d+1gM+CD1
47+ (GrB + B cells)

IL-10, GranzymeB

CD19 +CD25hi CD71hi CD73lo IL-10, IgG4
(Brl subtype)

CD19+CD24hi CD27int CD38hi  IL-10
(Plasmablast subtype)

CD39+CD73+ Adenosine

(iBreg subtype) TGE-P, IDO

CD19+TIM-1+ IL-10

Sjogren’s Syndrome, Multiple
sclerosis, Autoimmune vesiculob-
ullous skin disease

Breast, Ovarian, Cervical, Colorec-
tal, Prostatic carcinomas

Human model of allergic inflam-
mation in response to bee venom
antigen

Healthy human donor peripheral
blood

Healthy human donor peripheral
blood

Healthy human donor peripheral
blood

HIV-1 Infection

Lindner et al. [75]

van de Veen et al. [76]

Matsumoto et al. [77]

Saze et al. [78]

Nouel et al. [80]

Liu et al. [79]

MEDLINE Search 2000-2019 retrieved the papers populating Table 2
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tumour growth through a variety of mechanisms; suppres-
sive cytokine production (IL-10, TGF-p, IL-35), suppression
of T cells and NK cells and the expansion of suppressive
Tregs and myeloid-derived suppressor cells [30], expression
of inhibitory ligands such as PD-L1 to dampen anti-tumour
immunity [81] and STAT3 mediated promotion of angio-
genesis and Treg augmentation [22, 68, 82]. It is unclear
whether Bregs enhance tumour progression directly or if an
increase in the Breg population is merely reflective of the
immune response being mounted against the tumour [83].

B-cell milieu in NSCLC

B cells can exist in a continuum of naive cells to terminally
differentiated plasma cells within the TME and more specifi-
cally within the TLS [44]. Determining the ratio between
these so-called “anti-tumour” TLS derived TIL-Bs and the
“pro-tumour”, inhibitory Bregs is important to understand
the biology and long-term outcome from this disease. This
balance is likely influenced by the microenvironmental cues
which play a role in determining B-cell polarity. CXCL13
and Lymphotoxin have been identified as two factors critical
to the formation and development of lymphoid follicles in
the gut [84], and in lung cancer, B cells produce CXCL13
and Lymphotoxin via TLR4 signalling which acts as a posi-
tive feedback loop to support the formation and high density
of TLS [85, 86]. CXCRS5 expressing B cells stimulated by
CXC13 coupled CpG-ODN can trigger the cytolytic effect
of CD8+T cells leading to the abrogation of metastasis in
4T1.2 tumour-bearing mice [23]. Resveratrol, Lipoxin, Glu-
cosides of Pacony have also inhibited Bregs through STAT3
and/or ERK inactivation leading to a reduction in IL-10 and
TGF-B levels thus exerting an anti-tumour effect [87]. B-cell
homeostasis and thus polarity will largely be determined
by the degree of inflammation within the tumour, factors
such as tissue hypoxia, intra-tumoural vascularity, cytokine
milieu and cellular infiltration are all factors which are likely
to exert control over the pro versus anti-tumour B-cell bal-
ance but as yet there is little evidence describing the Breg/B
effector ratio in tumour biology, and this is likely due to the
transient inducible nature of Bregs.

The interplay of B cells and checkpoint
blockade

Immune checkpoint blockade antibodies have improved
cancer therapy by overcoming the inhibition of T cell
effector functions, yet a significant proportion of patients
still do not respond to such therapies. In the first study to
investigate whether B-cell density impacts outcome with
checkpoint blockade, B-cell content was determined in

34 melanoma patients undergoing PD-1 blockade mono-
therapy and evaluated for response [88]. Dichotomising
the patients at the median of CD20 positive cells in at
least one histospot there was no difference in response or
survival between those with high and low B-cell density.
The comments made earlier about enumeration of spe-
cific B-cell populations in specific microenvironmental
segments made earlier also apply here. B-cell depletion
in the MC38 (colon carcinoma) and YUMMER1.7 (mela-
noma) models did not impact the efficacy of anti-PD-1
treatment. Anti-PD-1 outcomes were similar in muMT
mice (mice lacking B cells) and WT mice bearing MC38
tumours [88]. Larger data sets in other cancers need to
be interrogated to fully understand whether there is any
impact of specific intra-tumoural B-cell populations on
the outcome of checkpoint blockade. This is particularly
the case given earlier data showing that clinical benefit
with ipilimumab was greater in melanoma patients with
sero-positivity against NY-ESO [89]: as mentioned above,
the CTags appear to be potent immunogens stimulating
antibody responses. Furthermore, gene-expression profil-
ing in urothelial carcinoma and melanoma patients under-
going both anti-PD-1/PD-L1 and anti-CTLA4 therapy
identified a memory B-cell (MBL) signature which was
significantly and reproducibly elevated in patients showing
clinical benefit [90]. It significantly outperformed other
immune cell signatures and remained significantly asso-
ciated with outcome when including tumour mutational
burden, copy number aberration burden and checkpoint
expression. Samples enriched for an innate PD-1 resist-
ance scores had significantly lower levels of MBL scores.
The MBL score positively correlated with BCR heavy
chain expression and the expression of T cell activation
genes, MHC class II and genes responsible for B-cell pro-
liferation and activation within the TME. Finally, high
expression of the TIPB signature was associated with
improved survival in melanoma patients treated with anti-
PD-1, and plasmablast-like and naive B-cell frequencies
were significantly higher in patients responding to immune
checkpoint blockade [49]. The use of anti-PD-1 treatment
in murine models has shown to increase total IgG and
OVA-specific IgG production in OVA-immunised mice
[91]. The enhanced humoural response in these mice is
thought to be mediated by CD4 +ICOS + T cells which are
presumably of the T follicular helper (Tth) phenotype that
go on to augment terminal B-cell differentiation in the ger-
minal centre [91]. PD-1/PD-L1 interactions between Tth
and Bregs control this axis [92, 93] and by blocking this
checkpoint, Tth cells are released from Breg-induced sup-
pression. This demonstrates the importance of heterogene-
ity of the B-cell repertoire and how checkpoint blockade
can impact downstream immune responses by targeting
select populations. Importantly, none of the above studies
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have examined B-cell density as predictive of response to
checkpoint blockade in NSCLC or to combination chemo/
immunotherapy which has become a 1Ist line standard of
care in this disease.

Given that PD-1 is expressed on B cells and can limit
B-cell responsiveness [94, 95], and furthermore, the cer-
tain autoimmune conditions are mediated via auto-antibody
formation, the association of B-cell sub-populations with
checkpoint blockade toxicity has become a focus of inves-
tigation. Das et al. demonstrated in melanoma patients, a
detectable decline in circulating B-cell numbers together
with an increase in CD21%° B cells and plasmablasts after
the first cycle of combination checkpoint blockade therapy
[96]. These treatment induced changes in B-cell numbers
preceded and correlated with both the frequency and tim-
ing of immune related adverse events (irAE). Early B-cell
changes correlated with a higher rate of grade 3 or higher
irAEs 6 months after starting treatment. Contrastingly,
several groups have shown through case report series’ that
B-cell depletion therapy using Rituximab successfully
treated B-cell-mediated irAEs in NSCLC [97, 98], SCLC
[99], Melanoma [100] and Urothelial Carinoma [101]. This
recapitulates the idea of B-cell enumeration and selective
targeting of certain microenvironmental B-cell popula-
tions. Bregs which by nature are immunosuppressive and
dampen down inflammation would limit anti-tumour activity
in response to PD-1 blockade but effector B-cell popula-
tions with robust humoural responses and T cell activation
mechanisms are driving autoimmunity and irAE in response
to PD-1 blockade. These intriguing analyses need to be vali-
dated, extended and applied to other cancers amenable to
checkpoint blockade and the mechanisms underlying these
observations identified.

Conclusions

Studies in mouse models of pre-malignancy suggest that
B-cell-mediated inflammation may be important in promot-
ing the progression to invasive malignancy. Given the huge
promise of reversing the pre-malignant phenotype to reduce
the cancer burden, there is an urgent need to understand the
role of B cells in human metaplasia, dysplasia and in situ
cancer and how they mediate progression through these
stages to decide whether B-cell-directed strategies may be
of value in reducing the progression of pre-malignancy.
Studies examining B cells with a regulatory phenotype
(Bregs) consistently suggest that Breg infiltration may
enhance tumour progression. The factors that induce Bregs
in human malignancy need to be defined. Specifically
are there particular microbes, TLR ligands or cancer cell
produced cytokines in the TME that polarise B cells to a
Breg phenotype [14, 102]. Currently used B-cell depleting
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antibodies cannot distinguish between effector and regu-
latory B-cell subsets; therefore, meticulous phenotypic
characterisation and study of this subset in the TME [14,
102] is required to identify Breg specific targets that can
be exploited to selectively deplete Breg populations but
more fundamentally to fully understand the role of Bregs in
human cancer. There are some current potential anti-Breg
strategies. In vivo murine studies have displayed selective
Breg depletion using LXA4 without affecting conventional
B-cell proliferation, differentiation and germinal centre
formation thus promoting anti-tumour responses [87]. An
alternate to Breg depletion would be repolarisation of this
subpopulation into B effector cells, as has been shown with
TLR9 ligands in vitro [22, 23]. Adoptive transfer of CpG-
pulsed B cells with effector phenotypes into patients with
established cancer could be employed to shift the balance
in favour of an anti-tumour B-cell response within the TME.

More work is needed to understand the anti-tumour
impact of antibodies against tumour associate antigens,
particularly CTags which appear to be strong immuno-
gens, and to identify new humoural immunity targets.
The disappointing results of the MAGRIT trial vaccinat-
ing NSCLC patients in the adjuvant setting [103] should
not be taken as suggesting that harnessing the anti-tumour
antibody response should be deprioritised: mono-epitopic
vaccination as cancer therapy has a long history of fail-
ure. Multi-valent vaccines, preferably against personalised
B-cell antigens, are one option. Building on the model of
the chimaeric antigen receptor T cells (CART), highly spe-
cific B-cell receptors to critical tumour antigens could be
cloned into autologous B cells and transferred into patients
with resultant high specificity and high affinity anti-tumour
Ig production. Alternatively, antibodies could be produced
ex vivo and adoptively transferred. Given the role of B-cell
PD-1 expression in mediating B-cell hypo-responsiveness,
the role of PD-1 blockade in augmenting these strategies
should be explored, as a research priority. Understanding
B-cell biology will help to refine the understanding behind
the effects of checkpoint blockade on the immune milieu.
Toxicity from these therapies is the Achilles heel of this
treatment strategy. As was alluded to earlier, work in mice
and humans has demonstrated that PD-L1™ Bregs play a role
in the suppression of humoral immunity through Tth cell
regulation; moreover, these cells are resistant to classical
anti-CD20 therapy [93]. Firmly understanding the ontogeny
of these B cells and their relationship to other B-cell subsets,
including other Breg phenotypes is of paramount importance
if we hope to be able to refine therapeutic strategies so as to
augment anti-tumour protective immunity and dampen down
autoimmune and hence toxic responses.

Finally, large scale prospective and careful B-cell sub-
type specific and microenvironment segment specific
analyses are required in lung cancer and in other cancers
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to clarify the role of B cells in modulating the responsive-
ness to checkpoint blockade and in mediating the toxicity to
these therapies. These studies will define the role of B-cell-
targeted strategies in augmenting the activity of, reducing
resistance to and the ameliorating toxicity of this crucial
class of anti-cancer agents.
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