Journal homepage http://revistas.unitru.edu.pe/index.php/SSMM

SELECCIONES MATEMÁTICAS Universidad Nacional de Trujillo ISSN: 2411-1783 (Online) 2019; Vol. 06(2): 320 - 328

COMMUNICATION

Estimación de la radiación solar diaria para la ciudad de Bagua, región Amazonas, Perú.

Estimation of daily solar radiation for the city of Bagua, Amazonas region, Perú.

Lenin Quiñones H.*^(D), Miguel Barrena G[†], Wildor Gosgot A[‡], Rolando Salas L[§], and Manuel Milla P[¶]

and IVIAIIUEI IVIIIIA F.

Received, Jul. 22, 2019

Accepted, Dec. 02, 2019

How to cite this article:

Quiñones L., et al. *Estimación de la radiación solar diaria para la ciudad de Bagua, región Amazonas, Perú*. Selecciones Matemáticas. 2019; 6(2):320-329. http://dx.doi.org/10.17268/sel.mat.2019.02.18

Resumen

La radiación solar que llega a la tierra, es la fuente de energía renovable fundamental en la naturaleza, por ende, conocer la radiación solar local es esencial para muchas aplicaciones. El objetivo de este estudio fue modelar el comportamiento de la radiación solar diaria en la ciudad de Bagua, el cual nos permita planificar y diseñar estrategias orientadas hacia el aprovechamiento de la fuente primaria de energía renovable. Para ello, se ha empleado el modelo de Fernández-Zayas, el cual considera los parámetros del promedio mensual de la radiación solar global máxima y la longitud del día solar. La metodología es del tipo analítica y consistió en tres fases: La primera, recolección y depuración de datos de la estación meteorológica de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas que se encuentra en el área de estudio; en la segunda, se implementó el modelo utilizando la interfaz MATLAB/GUI, obteniendo la simulación de radiación solar; y en la tercera, se validó el modelo mediante los estadísticos de bondad de error y la tabla t. La estimación de la radiación solar diaria se calculó y se discutió. Los resultados obtenidos son útiles para cualquier aplicación de la energía solar en la ciudad de Bagua, región Amazonas, Perú.

Palabras clave. Radiación solar, simulación, Matlab, Amazonas.

Abstract

The solar radiation that reaches the earth is the fundamental source of renewable energy in nature, therefore, knowing the local solar radiation is essential for many applications. The objective of this study was to model the behavior of daily solar radiation in the city of Bagua, which allows us to plan and design strategies oriented towards the use of the primary source of renewable energy. For this, the Fernández-Zayas model has been used, which considers the parameters of the monthly average of the maximum global solar radiation and the length of the solar day. The methodology is of the analytical type and consisted of three phases: The first, data collection

^{*}Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. (lenin.quinones@untrm.edu.pe).

[†]Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. (miguel.barrena@untrm.edu.pe)

[‡]Instituto de Investigación para el Desarrollo Sustentable en Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. (wildor.gosgot@untrm.edu.pe)

[§]Instituto de Investigación para el Desarrollo Sustentable en Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. (rolando.salas@untrm.edu.pe)

[¶]Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú (manuel.milla@untrm.edu.pe)

and filtering of the meteorological station of the Toribio Rodríguez de Mendoza National University of Amazonas that is located in the study area; in the second, the model was implemented using the MATLAB / GUI interface, obtaining the simulation of solar radiation; and in the third, the model was validated by error goodness statistics and table t. The estimate of daily solar radiation was calculated and discussed. The results obtained are useful for any application of solar energy in the city of Bagua, Amazonas region, Peru.

Keywords. Solar radiation, Simulation, Matlab, Amazonas.

1. Introducción. La radiación solar que llega a la tierra, es la fuente de energía renovable fundamental en la naturaleza; y es una de las más importantes fuentes de energías alternativas que se viene empleando [6]. Conocer la radiación solar local es esencial para muchas aplicaciones, incluyendo diseño arquitectónico, sistemas de energía solar, diseñar modelos de crecimiento de cultivos y particularmente para estimar la evapotranspiración en el diseño de sistemas de irrigación [3].

La radiación solar global es rutinariamente medida en muchas estaciones meteorológicas, sin embargo, esto conlleva un alto costo, mantenimiento y requerimientos para la calibración especializada de los equipos de medición. En ese sentido en la ausencia de la medición directa, una práctica común es estimar este parámetro mediante modelos matemáticos, los cuales son basados en la medida de los datos relevantes de estas localizaciones, los mismos que pueden ser: parámetros meteorológicos, climatológicos y geográficos [10]. De acuerdo a los parámetros empleados en el modelo, estos modelos se clasifican en cuatro categorías [8]: Basados en el sol, basados en la nube, basados en la temperatura y modelos basados en otros parámetros meteorológicos. También se han propuesto tres metodologías basadas en modelamiento matemático para estimar la radiación solar global [25] La primera está compuesta por modelos de transferencia de irradiación, replicando procesos físicos. La segunda metodología, explota las relaciones empíricas entre el radio de la radiación solar global en una superficie horizontal de la tierra por un lado y el porcentaje posible de la luz del sol por otro [27]. La tercera metodología, ha sido recientemente introducida y consiste en emplear técnicas de inteligencia artificial, tal como las redes neuronales artificiales (RNA) [7,20]. Existen múltiples estudios, donde se revisan cronológicamente los diferentes modelos para estimar la radiación solar global, disponibles en la literatura [8,12,19,27]. Los mismos que han sido empleados y validados en diversas

solar global, disponibles en la literatura [8, 12, 19, 27]. Los mismos que han sido empleados y validados en diversas partes del mundo, tales como en Sri Lanka [22], Irán [8, 21], Egipto [11], Nigeria [1], China [17], España [3, 19], Turquía [6, 12], Cuba [13], Argentina [15], Ecuador [16] y Bolivia [24]

El objetivo de este estudio fue modelar el comportamiento de la radiación solar diaria en la ciudad de Bagua, el cual nos permita planificar y diseñar estrategias orientadas hacia el aprovechamiento de la fuente primaria de energía renovable.

2. Materiales y métodos. La metodología empleada es de tipo analítica y consistió en tres fases:

- (1) Recolección y exclusión de data, obtenida de la estación meteorológica de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, ubicada en la ciudad de Bagua.
- (2) Implementación del modelo propuesto por Fernández-Zayas, empleando el software Matlab.
- (3) Validación del modelo, para la ciudad de Bagua de la región Amazonas, consistiendo en comparar los residuos obtenidos entre los datos dados por el modelo y por los datos recolectados en campo, además del estadístico t.

2.1. Área de estudio. La Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), a través del Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), cuenta con estaciones meteorológicas automáticas en la región Amazonas, ubicadas en las provincias de Bongará, Chachapoyas, Luya, Rodríguez de Mendoza y Bagua, ver Figura 2.1.

Se emplearon los datos obtenidos en la estación meteorológica de la UNTRM, ubicada en la Ciudad de Bagua, cuya latitud 5°38'39.28"S, longitud 78°30'40.79.º y una elevación de 470 m.s.n.m.

2.2. Matriz de datos.

2.2.1. Criterios para la recolección de datos. Los datos empleados en la presente investigación se obtuvieron en la región Amazonas entre enero a diciembre del 2018. Los datos de radiación solar global fueron registrados con una frecuencia de una hora. Los datos son recolectados, además de procesados por el INDES-CES.

2.2.2. Criterios para exclusión y perdida de datos. Los datos de radiación fueron sujetos a un control de calidad, y fueron evaluados con el objetivo de eliminar inconsistencias y otras asociadas a las técnicas de medición [25]. Los criterios empleados fueron:

• Para encontrar valores erróneos de la radiación solar global, el índice de claridad diaria (K_t) fue aplicado como un indicador de la condición del cielo. Este se define como la relación de la radiación global diaria

FIGURA 2.1. Ubicación de las estaciones meteorológicas de la UNTRM

en una superficie horizontal (H) a la radiación extraterrestre diaria en una superficie horizontal (H_0) [5]. Es decir:

Los límites superiores e inferiores para el índice representan un cielo claro y un cielo completamente nublado, respectivamente. Los valores de 0.015 y 1.00 son los umbrales superiores e inferiores de K_t , respectivamente. Por esta razón, los datos fueron eliminados si los valores del índice de cielos claros están fueron de los rangos establecidos previamente.

• Si los datos consecutivos perdidos fueron menores que tres en un día, se aplicó la interpolación lineal para encontrar esos valores perdidos y reponer los valores en la tabla de datos [9]. Por el contrario, si estos fueron más que tres datos consecutivos en un día de pérdida o valores incorrectos, el dato de este día fue eliminado.

2.2.3. Matriz de información para la verificación. El total del conjunto de datos empleados fueron los concernientes a un total de noventa (90) días, siendo esta la población. El modelo matemático fue verificado para un tamaño de muestra, igual que la población.

2.3. Modelo empleado. Un modelo para estimar la radiación solar diaria H(t), para un determinado tiempo, lo describe Fernández-Zayas en sus notas de sistemas solares activos [14]. Dicho modelo puede escribirse de la

siguiente manera:

(2.2)
$$H(t) = H_m \left[\cos\left(\frac{180t}{N}\right) \right]^2$$

Donde: H_m es la radiación solar global máximo promedio mensual (W/m^2) , t es la hora solar verdadera. (Es "0" al medio día solar verdadero, es -2 a las 10:00 h. es 3.5 a las 15:30 h) y N es la longitud del día solar. La N depende de la declinación solar (δ) y de la latitud del lugar (ϕ) .

(2.3)
$$N = \frac{2}{15} \arccos\left[-\tan(\delta)\tan(\phi)\right]$$

La declinación solar varía día con día (n) y puede expresarse mediante la ecuación de Cooper (1965):

(2.4)
$$\delta = \left[23,45 \sin\left(\frac{2\pi(284+n)}{365}\right) \right]$$

2.4. Implementación del modelo. Toda la programación de la interfaz gráfica de usuario (GUI) se realizó en una computadora con una distribución Windows a 64 bits.

La GUI se realizó con el comando "guide" de MatLab, el cual crea dos archivos: El primer archivo *.fig ("fig file"), en donde pueden insertarse ejes, botones, deslizadores, texto de edición, menús, etc. Cada uno de los cuales tienen ciertas propiedades y realiza una función determinada. El segundo archivo *.m donde se encuentran todas las acciones de cada elemento de la GUI, además se puede acceder del archivo *.fig al *.m, mediante ("Callback Function") de cada elemento.

2.5. Comportamiento del modelo. Se basó en la bondad de la estimación de la radiación solar global real frente a la radiación solar global estimada, para lo cual se empleó los siguientes test de errores estadísticos: El coeficiente de determinación (R^2) , error medio sesgo (MBE), error absoluto sesgo (MABE) y la raíz del error cuadrático medio (RMSE). Estos indicadores de desempeño fueron calculados usando las siguientes ecuaciones:

(2.5)
$$R^{2} = 1 - \frac{\sum_{i=1}^{k} (H_{ic} - H_{im})^{2}}{\sum_{i=1}^{k} (H_{ic} - H_{m})^{2}}$$

(2.6)
$$MBE = \frac{1}{k} \sum_{i=1}^{k} (H_{ic} - H_{im})$$

(2.7)
$$MABE = \frac{1}{k} \sum_{i=1}^{k} |H_{ic} - H_{im}|$$

(2.8)
$$RMSE = \sqrt{\frac{\sum_{i=1}^{k} (H_{ic} - H_{im})^2}{k}}$$

Donde H_{im} es el *i* valor medido; H_{ic} es el *i* valor calculado, H_m es el valor medio de los valores calculados y *k* es el número total de observaciones.

Los errores estadísticos y el coeficiente de determinación fueron calculados con el objetivo de determinar, en cuanto los resultados del modelo resultan significativamente diferentes a los datos observados. Valores pequeños de MBE, MABE y RMSE indican las mejores aproximaciones de los datos observados. Un valor de $R^2 = 1$ indica la representación perfecta de la tendencia de los datos observados por los valores calculados.

Se realizó la prueba de t-Student, para determinar si existen diferencias significativas entre la radiación solar global real y la estimada. Se recomienda que el estadístico t se use junto con el cuadrado medio de la raíz y los errores de sesgo de la media para evaluar de manera más confiable el rendimiento de un modelo [23]. El estadístico t permitió determinar si las estimaciones del modelo son estadísticamente significativas a un nivel de confianza particular, $\alpha = 0.05$.

L. Quiñones, et. al.- Selecciones Matemáticas. 2019; 06(02): 320-328.

FIGURA 3.1. Interfaz gráfica del software para estimar la radiación solar diaria

FIGURA 3.2. Simulación de la radiación solar desde el 22 al 30 de agosto del 2018

3. Resultados y discusión.

3.1. Software para la estimación de la radiación solar diaria. Se obtuvo una interfaz gráfica que permite estimar la radiación solar global diaria para la ciudad de Bagua, para ello, como entrada se necesita el día del año que se quiere calcular, ver Figura 3.1. El modelo ha sido implementado en lenguaje .m del Matlab. Esta herramienta computacional es muy empleada para este tipo de estudios [2, 4, 18, 26].

3.2. Simulación del modelo. En la Figura 3.2, se observa el comportamiento de la radiación solar diaria para nueve días, desde el veintidós hasta el treinta de agosto, se muestra tanto la radiación solar recolectada en campo como la estimada por el modelo.

En la Figura 3.3 y Figura 3.4, se observa el comportamiento de la radiación solar, tanto la registrada en campo como la estimada por el modelo, para el ocho de enero y el dos de febrero del 2018.

3.3. Ajuste del modelo. En la Tabla 3.1, se muestran los diferentes estadísticos empleados para estimar el margen de error y la confiabilidad del modelo matemático, empleado para la ciudad de Bagua.

FIGURA 3.3. Simulación de la radiación solar para la fecha 08/01/2018

FIGURA 3.4. Simulación de la radiación solar para la fecha 02/02/2018

Cuadro 3.1: Comparación estadística entre los valores modelados y estimados.

Día	R^2	MBE	MABE	RMSE	t-Student	
8/01/2018	0.8077	116.1361	135.9943	167.6285	0.0042	
9/01/2018	0.5788	90.43014	158.0686	193.4636	0.0789	
12/01/2018	0.5961	107.1407	160.5157	197.8998	0.0371	
16/01/2018	0.7088	23.1651	136.9414	164.7139	0.6171	
17/01/2018	0.3894	192.7862	206.4257	281.1885	0.0048	
21/01/2018	0.5435	132.1101	162.8171	200.4132	0.0075	
24/01/2018	0.821	131.0022	139.6314	186.5063	0.0035	
26/01/2018	0.7257	42.9187	112.7129	144.1844	0.2813	
27/01/2018	0.868	-11.9147	85.1614	114.4891	0.7121	
28/01/2018	0.4781	41.9643	151.5329	199.3275	0.4514	
Sigue en la página siguiente.						

Día	R^2	MBE	MABE	RMSE	t-Student
29/01/2018	0.5393	-31.8714	211.2857	242.0767	0.64
30/01/2018	0.5435	71.718	158.9571	195.8108	0.1794
31/01/2018	0.3375	73.947	207.9843	246.3032	0.2769
2/02/2018	0.807	-43.0021	132.2786	155.5144	0.3107
4/02/2018	0.614	45.119	150.6481	184.2043	0.3789
5/02/2018	0.535	-4.1997	179.9286	203.3792	0.9418
6/02/2018	0.433	229.4464	238.4386	305.848	0.0013
7/02/2018	0.704	201.8738	211.7557	258.5444	0.0005
8/02/2018	0.2978	193.8351	231.5543	295.877	0.0078
19/03/2018	0.178	157.0488	245.0414	300.6475	0.0453
24/03/2018	0.6941	-64.7	178.0871	204.0462	0.2505
25/03/2018	0.5612	188.6769	199.1014	259.0791	0.0018
26/03/2018	0.8348	164.1966	170.1243	208.9057	0.0004
27/03/2018	0.6673	123.4317	152.6343	200.6775	0.0141
30/03/2018	0.7142	120.502	144.1071	187.1536	0.0091
31/03/2018	0.726	-43.6171	165.5	199.9159	0.4353
4/04/2018	0.6704	-30 9557	159 0714	182.3247	0 5449
5/04/2018	0.8932	-7 7457	80 8629	109 2888	0.8018
6/04/2018	0.7231	42.3971	130.7143	157.6413	0.3324
9/04/2018	0.8563	189 9013	194 1701	231 765	0.0002
12/04/2018	0.3505	-10 5557	130 7986	169 6789	0.8257
23/04/2018	0.7557	106 1243	110 8314	161 3898	0.0237
15/05/2018	0.7301	105.8816	150 7820	206 528	0.7301
16/05/2018	0.7371	212 4023	217 75	200.528	0.7391
1/06/2018	0.6210	212.4023	145.0542	280.0007	0.0777
2/06/2018	0.0319	120 0201	143.9343	240.2160	0.0270
2/00/2018 5/06/2018	0.2629	130.0291 56 1290	195.6271	249.2109	0.1262
5/00/2018	0.759	30.1389	98.19	139.2493	0.1502
0/00/2018	0.8522	-40.0789	114.0357	133.3319	0.2010
//06/2018	0.833	-43./813	11/.225/	141.2798	0.261
8/06/2018	0.6706	-9.8/89	84.9057	103.0409	0.7354
9/06/2018	0.0700	133.933	149.7080	194.7278	0.0040
10/06/2018	0.8201	82.8599	104.9057	131.321	0.0117
1//06/2018	0.632	51.1/59	132.3143	158.1158	0.2393
18/06/2018	0.7197	-8.83	130.7143	155.2044	0.8404
19/06/2018	0.892	-58.9094	105.76	126.2994	0.0797
28/06/2018	0.7832	68.2031	90.7357	129.8889	0.0444
3/07/2018	0.7822	5.6879	112.1814	132.3263	0.8791
6/07/2018	0.8634	-36.8769	84.7343	114.3508	0.2411
7/07/2018	0.8077	-24.2744	119.68/1	143.0372	0.5454
8/07/2018	0.907	89.9701	93.0471	120.9273	0.0015
9/07/2018	0.6759	121.3599	136.4557	180.0023	0.0058
11/07/2018	0.4915	118.7903	170.4114	205.0872	0.0237
14/07/2018	0.5529	80.7706	152.3329	191.838	0.1181
15/07/2018	0.6435	50.8853	102.8229	158.4624	0.2432
16/07/2018	0.5689	76.8594	145.22	172.0167	0.095
17/07/2018	0.7625	71.4801	109.52	140.0404	0.0519
21/07/2018	0.7772	91.6706	108.4843	144.1541	0.0108
22/07/2018	0.8255	113.3779	115.7386	150.0158	0.0011
23/07/2018	0.6902	97.7143	129.0443	163.8599	0.019
24/07/2018	0.7316	-37.4388	128.8529	157.0994	0.3924
25/07/2018	0.7706	-61.5909	142.4657	169.0359	0.1818
26/07/2018	0.8163	-30.938	112.8329	136.5569	0.4168
27/07/2018	0.742	-3.9662	115.2229	137.2547	0.9186
28/07/2018	0.7861	0.1734	123.54	149.3643	0.9186
29/07/2018	0.847	-64.2616	115.3643	137.6019	0.0792

Sigue en la página siguiente.

L. Quiñones, et. al.- Selecciones Matemáticas. 2019; 06(02):320-328.

Día	R^2	MBE	MABE	RMSE	t-Student
31/07/2018	0.8639	182.663	185.5971	226.7872	0.0003
1/08/2018	0.7586	93.4452	122.3471	155.7286	0.018
3/08/2018	0.5211	43.028	165.5071	193.6662	0.4261
4/08/2018	0.5575	128.2482	179.2557	212.481	0.0172
5/08/2018	0.6743	115.1054	160.6843	186.6313	0.0143
6/08/2018	0.5227	131.9092	176.68	217.7679	0.0167
7/08/2018	0.5516	184.1344	196.6743	253.2158	0.0021
8/08/2018	0.7695	63.8607	109.9771	137.1185	0.0802
9/08/2018	0.753	126.1596	157.9571	187.312	0.0059
10/08/2018	0.4358	122.7469	169.7886	226.5095	0.0369
13/08/2018	0.7772	85.5092	103.0686	146.0801	0.0219
14/08/2018	0.9057	-33.6141	79.9814	99.907	0.2201
15/08/2018	0.6883	158.7624	180.04	220.8258	0.0025
17/08/2018	0.4612	72.0894	178.9771	209.3676	0.2089
18/08/2018	0.8586	29.9671	82.73	99.3741	0.2747
20/08/2018	0.5727	96.8008	156.9343	190.5028	0.0531
22/08/2018	0.553	0.9959	175.6429	201.3746	0.986
23/08/2018	0.8605	-75.5509	134.6457	163.3	0.0825
24/08/2018	0.7709	-74.2376	160.8286	185.5138	0.1394
25/08/2018	0.9147	-35.0643	91.09	123.8479	0.3065
26/08/2018	0.8055	92.8205	112.6957	146.8691	0.0115
27/08/2018	0.8808	93.1339	97.6871	131.4105	0.0031
28/08/2018	0.8716	-4.5483	90.6729	119.7547	0.8931
29/08/2018	0.5516	67.1968	158.6657	187.1402	0.1887
30/08/2018	0.7102	145.5134	153.33	202.5372	0.0026

Se ha empleado la prueba t, debido a que es una prueba paramétrica de comparación de dos muestras relacionadas [23], su función ha sido comparar dos mediciones de puntuaciones y determinar que la diferencia no se deba al azar (que la diferencia sea estadísticamente significativa). Cuarenta y tres (43) días resultaron con probabilidades superiores a 0.05, que indica la no diferencia entre los valores reales y los estimados, lo cual se traduce en que el modelo representa un buen ajuste y evidencia que sirve con fines de pronóstico, además treinta y nueve (39) las probabilidades son inferiores a 0.05, ver los valores de negro en la Tabla 1, es porque existen diferencias significativas entre los valores reales y los estimados, esto es, el modelo no describe eficientemente el comportamiento de la radiación solar diaria; es decir, el 56 % de los datos fueron estimados correctamente por el modelo. El R^2 , refleja la bondad del ajuste del modelo de Fernández-Zayas a la radiación solar diaria de la ciudad de Bagua. Cincuenta y uno (51) resultados de coeficiente de determinación son mayores que cero puntos setenta (0.70), siendo el 57 %, por tanto, el 43 % de los datos modelados están más cerca de cero, esto conlleva a deducir que el modelo no está ajustado y menos fiable. Los errores estadísticos fueron calculados, en cuanto a los resultados del modelo se concluye que estos resultan significativamente diferentes a los datos observados, esto debido a que se han obtenido valores altos de MBE, MABE y RMSE.

4. Conclusiones. Un método simple para estimar la radiación solar global diaria para la ciudad de Bagua se ha desarrollado y probado. Para ello, se ha modelado el comportamiento de la radiación solar, mediante el modelo de Fernández-Zayas; el software Matlab, se ha empleado para la implementación del modelo matemático y la simulación de la radiación solar. Finalmente se ha utilizado los test de los errores estadísticos (R^2 ,MBE, MABE y RMSE), además de la tabla t, para estimar el margen de error y la confiabilidad del modelo matemático empleado. El modelo describe eficientemente el comportamiento de la radiación solar diaria el 56 %, con bondad del ajuste del 57 % y errores estadísticos muy altos. Por lo tanto, es necesario modelar la radiación solar diaria con más precisión, esto conllevaría a emplear otros modelos o proponer uno nuevo. Por consiguiente, llenaría un vacío teórico sobre radiación solar local diaria, siendo esencial conocer esta variable, para muchas aplicaciones.

5. Agradecimientos. Este trabajo fue apoyado por el laboratorio de Geomática del INDES-CES, para la recolección de los datos y la georreferenciación de las once estaciones meteorológicas de la UNTRM, además de las orientaciones pertinentes.

Los autores agradecen al Proyecto "Creación de los servicios del centro de investigación en climatología y energías

alternativas de la Universidad Nacional Toribio Rodríguez De Mendoza, Región Amazonas (PROCICEA)", por el apoyo logístico en la elaboración, postulación y publicación del presente trabajo de investigación.

ORCID and License

Lenin Quiñones Huatangari https://orcid.org/0000-0002-0953-328X, Miguel Barrena Gurbillón https://orcid.org/0000-0002-4200-4101, Wildor Gosgot Angeles https://orcid.org/0000-0002-7301-2809, Rolando Salas lópez https://orcid.org/0000-0003-2184-6761, Manuel Emilio Milla Pino https://orcid.org/0000-0003-3931-9804.

This work is licensed under the Creative Commons Attribution-NoComercial-ShareAlike 4.0.

Referencias

- Akpabio, L. E., Etuk, S. E. Relationship between global solar radiation and sunshine duration for Onne, Nigeria. Turkish Journal of Physics, 2003; 27(2):161-167.
- [2] Al Shamisi, M. H., Hejase, A. H. Using MATLAB to develop artificial neural network models for predicting global solar radiation in Al Ain City–UAE. En Engineering education and research using MATLAB. IntechOpen.
- [3] Almorox, J. Y., Hontoria, C. Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management. 2004; 45(9-10):1529–1535.
- [4] Altas, I. H., Sharaf, A. M. A photovoltaic array simulation model for matlab-simulink GUI environment. International Conference on Clean Electrical Power. 2007; 341–345.
- [5] Badescu, V. Modeling Solar Radiation at the Earth Surface. Springer 1.a ed, 2008.
- [6] Bakirci, K. Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy. 2009; 34(4):485–501.
- [7] Benghanem, M., Mellit, A., Alamri, S. N. ANN-based modelling and estimation of daily global solar radiation data: A case study. Energy conversion and management. 2009; 50(7):1644–1655.
- [8] Besharat, F., Dehghan, A. A., Faghih, A. R. Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews. 2013; 21:798–821.
- [9] Chapra, S. C., Canale, R. P. Métodos numéricos para ingenieros. McGraw-Hill, 2007.
- [10] Davies, J. A., Schertzer, W., Nunez, M. Estimating global solar radiation. Boundary-layer meteorology. 1875; 9(1):33-52.
- [11] El-Sebaii, A. A., Trabea, A. A. Estimation of global solar radiation on horizontal surfaces over Egypt. Egypt. J. Solids. 2005; 28(1):163–175.
- [12] Ertekin, C., Yaldiz, O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Conversion and Management. 2000; 41(4)):311–330.
- [13] Fernández, G. M., Montejo, I. B., Castro, D. M. Evaluacion de un metodo de estimacion de la radiacion solar a partir de registros heliograficos en las provincias habaneras. Revista Cubana de Meteorología. 2003; 10(1).
- [14] Fernández, J. L. Cálculo de la Radiación Solar Instantánea en la República Mexicana. Universidad Nacional Autónoma de México, 1983.
- [15] Grossi, H. Distribución de la radiación solar global en argentina. Análisis de información Energías Renovables y Medio Ambiente. 2003; 4):13-17.
- [16] Hernández, O. A., Peralta, T. M., Correa, J. M. La radiación solar global en la provincia de Loja, evaluación preliminar utilizando el método de Hottel Ingenius. 2014; 11:25–31.
- [17] Jin, W.Yezheng, Z., Gang, Y. General formula for estimation of monthly average daily global solar radiation in China. Energy Conversion and Management. 2005; 46(2):257–268.
- [18] Keller, B., Costa, A. M. A Matlab GUI for calculating the solar radiation and shading of surfaces on the earth. Computer Applications in Engineering Education. 2011; 19(1):161–170.
- [19] Martínez, A., Ortega, J., Juan, J., Pajuelo, J., Moreno, M. Modelos de estimación de radiación solar global con limitación de datos y su distribución espacial en Castilla-La Mancha. Información Técnica Económica Agraria. 2012; 108(4):426–449.
- [20] Rehman, S., Mohandes, M. Modelos de estimación de la radiación solar para el altiplano central de Bolivia. Energy Policy. 2008; 36(2):571–576.
- [21] Sabziparvar, A. A., Shetaee, H. Estimation of global solar radiation in arid and semi-arid climates of East and West Iran. Energy. 2008; 32(5):649–655.
- [22] Samuel, T. Estimation of global radiation for Sri Lanka. Journal of Solar Energy Science and Engineering. 1991; 47(5).
- [23] Stone, R. J. Improved statistical procedure for the evaluation of solar radiation estimation models. Solar energy. 1993; 51(4):289–291.
- [24] Torrez, R., Burgoa, A., Ricaldi, E. Estimation of global solar radiation in arid and semi-arid climates of East and West Iran. Revista Boliviana de Física. 2013; 23:1562-3823.
- [25] Tymvios, F. S., Jacovides, C. V., Michaelides, S. C., Scouteli, C. Comparative study of Angstrom's and artificial neural networks methodologies in estimating global solar radiation. Solar energy. 2005; 78(6):752–762.
- [26] Yang, J., Meng, B., Li, N. Resources calculation of solar radiation based on matlab. Energy Engineering. 2011; 1:35–38.
- [27] Yorukoglu, M., Celik, A. N. A critical review on the estimation of daily global solar radiation from sunshine duration. Energy Conversion and Management. 2006; 47(15-16):2441–2450.

328