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Abstract. This paper provides a dynamical frame to study non-autonomous

parabolic partial differential equations with finite delay. Assuming monotonic-
ity of the linearized semiflow, conditions for the existence of a continuous sep-
aration of type II over a minimal set are given. Then, practical criteria for the

uniform or strict persistence of the systems above a minimal set are obtained.

1. Introduction

In this paper we investigate some qualitative properties of the skew-product semi-
flows generated by the solutions of non-autonomous parabolic partial functional
differential equations (PFDEs for short) with finite delay and boundary conditions
of Neumann, Robin or Dirichlet type. In this non-autonomous framework the phase
space is a product space Ω×C, where the base Ω is a compact metric space under
the action of a continuous flow σ : R× Ω → Ω, (t, ω) 7→ ω·t and the state space C
is an infinite dimensional Banach space of continuous functions. The skew-product
semiflow τ : R+×Ω×C → Ω×C, (t, ω, φ) 7→ (ω·t, u(t, ω, φ)) is built upon the mild
solutions of the associated abstract Cauchy problems (ACPs for short) with delay.
We assume that the flow in the base is minimal.

This formalism permits to carry out a dynamical study of the solutions of non-
autonomous differential equations in which the temporal variation of the coefficients
is almost periodic, almost automorphic or, more generally, recurrent. Frequently,
Ω is obtained as the hull of the non-autonomous function defining the differential
equations, although the approach considered here is more general. The references
Ellis [1], Johnson et al. [4], Sacker and Sell [18, 19], and Shen and Yi [20], and
references therein, contain ingredients of the theory of non-autonomous dynamical
systems which will be used throughout this work.

The main issue in the paper is the persistence of the systems of parabolic PFDEs.
Persistence is a dynamical property which has a great interest in mathematical
modelling, in areas such as biological population dynamics, epidemiology, ecology
or neural networks. In the field of monotone dynamical systems, different notions of
persistence have been introduced, with the general meaning that in the long run the
trajectories place themselves above a prescribed region of the phase space, which
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we take to be a minimal set K ⊂ Ω × C. In many applications this minimal set
is Ω× {0}, so that, roughly speaking, uniform or strict persistence means that the
solutions eventually become uniformly strongly or strictly positive, respectively.

In [15] Obaya and Sanz showed that in the general non-autonomous setting, in
order that persistence can be detected experimentally, this notion should be con-
sidered as a collective property of the complete family of systems over Ω. We follow
this collective approach to develop dynamical properties of persistence with impor-
tant practical implications. Our study intends to extend the theory of persistence
written in Novo et al. [12] and Obaya and Sanz [14] for non-autonomous ODEs,
FDEs with delay and parabolic PDEs to parabolic PFDEs, considering also the
cases of Robin or Dirichlet boundary conditions.

We briefly explain the structure and contents of the paper. Some basic concepts
in the theory of non-autonomous dynamical systems are included in Section 2. Sec-
tion 3 is devoted to describe the dynamical scenario in which the parabolic problems
are immersed, distinguishing the case of Neumann or Robin boundary conditions,
and the Dirichlet case. We analyze the regularity properties and the long-term be-
haviour of the solutions that determine the topological structure of omega-limit sets
and minimal sets. We follow arguments in the line of Martin and Smith [7, 8] and
Wu [24] to extend previous results given in Novo et al. [10] for Neumann boundary
conditions, to the case of Robin and Dirichlet boundary conditions. We also study
the consequences of the so-called quasimonotone condition in the problems.

In Section 4, under regularity conditions in the reaction terms in the equations,
we build the variational problems along the semiorbits of τ , whose mild solutions
induce the linearized skew-product semiflow. Then, in the linear and monotone
setting, we consider continuous separations of type II and the associated principal
spectrums, which can be determined by Lyapunov exponents. The classical concept
of continuous separation given by Poláčik and Tereščák [17] in a discrete dynamical
setting, and then extended to a continuous setting by Shen and Yi [20], has proved
to be widely applicable in non-autonomous ODEs and parabolic PDEs, but not in
equations with delay. Later, Novo et al. [11] introduced a variation of this notion,
and called it continuous separation of type II, in order to make it applicable to
delay equations. The results in Novo et al. [12] and Obaya and Sanz [14, 15] show
its importance in the dynamical description of non-autonomous FDEs with finite
delay, and now it becomes relevant in reaction-diffusion systems with delay.

Finally, in Section 5 we consider regular and quasimonotone parabolic PFDEs.
Assuming the existence of a minimal set K for τ with a flow extension, we first
establish an easy criterion for the existence of a continuous separation of type II
over K in terms of the irreducibility of a constant matrix calculated from the
partial derivatives of the reaction term in the equations, with respect to the non-
delayed and delayed state components. A key fact is that in the general case,
after a convenient permutation of the variables in the system, the constant matrix
mentioned before has a block lower triangular structure, with irreducible diagonal
blocks. This permits to consider a set of lower dimensional linear systems with
a continuous separation, for which the property of persistence depends upon the
positivity of its principal spectrum. In this situation, a sufficient condition for the
presence of uniform or strict persistence in the area above K is given in terms of
the principal spectrums of an adequate subset of such systems in each case.
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2. Some preliminaries

In this section we include some basic notions in topological dynamics for non-
autonomous dynamical systems.

Let (Ω, d) be a compact metric space. A real continuous flow (Ω, σ,R) is defined
by a continuous map σ : R × Ω → Ω, (t, ω) 7→ σ(t, ω) satisfying σ0 = Id, and
σt+s = σt ◦σs for each t, s ∈ R, where σt(ω) = σ(t, ω) for all ω ∈ Ω and t ∈ R. The
set {σt(ω) | t ∈ R} is called the orbit of the point ω. A subset Ω1 ⊂ Ω is σ-invariant
if σt(Ω1) = Ω1 for every t ∈ R, and it is minimal if it is compact, σ-invariant and
it does not contain properly any other compact σ-invariant set. Every compact
and σ-invariant set contains a minimal subset. Furthermore, a compact σ-invariant
subset is minimal if and only if every orbit is dense. We say that the continuous
flow (Ω, σ,R) is recurrent or minimal if Ω is minimal.

A finite regular measure defined on the Borel sets of Ω is called a Borel measure on
Ω. Given µ a normalized Borel measure on Ω, it is σ-invariant if µ(σt(Ω1)) = µ(Ω1)
for every Borel subset Ω1 ⊂ Ω and every t ∈ R. It is ergodic if, in addition,
µ(Ω1) = 0 or µ(Ω1) = 1 for every σ-invariant Borel subset Ω1 ⊂ Ω.

Let R+ = {t ∈ R | t ≥ 0}. Given a continuous compact flow (Ω, σ,R) and a
complete metric space (C, d), a continuous skew-product semiflow (Ω × C, τ, R+)
on the product space Ω× C is determined by a continuous map

τ : R+ × Ω× C −→ Ω× C
(t, ω, φ) 7→ (ω·t, u(t, ω, φ))

which preserves the flow on Ω, denoted by ω·t = σ(t, ω) and referred to as the base
flow . The semiflow property means that τ0 = Id, and τt+s = τt ◦ τs for all t, s ≥ 0,
where again τt(ω, φ) = τ(t, ω, φ) for each (ω, φ) ∈ Ω×C and t ∈ R+. This leads to
the so-called semicocycle property:

u(t+ s, ω, φ) = u(t, ω·s, u(s, ω, φ)) for t, s ≥ 0 and (ω, φ) ∈ Ω× C . (2.1)

The set {τ(t, ω, φ) | t ≥ 0} is the semiorbit of the point (ω, φ). A subset K of
Ω × C is positively invariant if τt(K) ⊆ K for all t ≥ 0 and it is τ -invariant if
τt(K) = K for all t ≥ 0. A compact positively invariant set K for the semiflow is
minimal if it does not contain any nonempty compact positively invariant set other
than itself. The restricted semiflow on a compact and τ -invariant set K admits
a flow extension if there exists a continuous flow (K, τ̃ ,R) such that τ̃(t, ω, φ) =
τ(t, ω, φ) for all (ω, φ) ∈ K and t ∈ R+.

Whenever a semiorbit {τ(t, ω0, φ0) | t ≥ 0} is relatively compact, one can con-
sider the omega-limit set of (ω0, φ0), formed by the limit points of the semiorbit as
t→ ∞. The omega-limit set is then a nonempty compact connected and τ -invariant
set. An important property of an omega-limit set is that semiorbits admit back-
ward extensions inside it. Therefore, the sufficient condition for such a set to have
a flow extension is the uniqueness of backward orbits (see [20] for more details).

In this paper we will sometimes work under some differentiability assumptions.
More precisely, when C is a Banach space, the skew-product semiflow τ is said to be
of class C1 when u is assumed to be of class C1 in φ, meaning thatDφu(t, ω, φ) exists
for any t > 0 and any (ω, φ) ∈ Ω × C and for each fixed t > 0, the map (ω, φ) 7→
Dφu(t, ω, φ) ∈ L(C) is continuous in a neighborhood of any compact setK ⊂ Ω×C,
for the norm topology on L(C); moreover, for any ϕ ∈ C, lim t→0+ Dφu(t, ω, φ)ϕ =
ϕ uniformly for (ω, φ) in compact sets of Ω× C.
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In that case, whenever K ⊂ Ω×C is a compact positively invariant set, we can
define a continuous linear skew-product semiflow called the linearized skew-product
semiflow of τ over K,

L : R+ ×K × C −→ K × C
(t, (ω, φ), ϕ) 7→ (τ(t, ω, φ), Dφu(t, ω, φ)ϕ) .

We note that Dφu satisfies the linear semicocycle property:

Dφu(t+ s, ω, φ) = Dφu(t, τ(s, ω, φ))Dφu(s, ω, φ) for t, s ≥ 0 , (ω, φ) ∈ K. (2.2)

Finally, we include the definition of monotone skew-product semiflow. A Banach
space X is ordered if there is a closed convex cone, i.e., a nonempty closed subset
X+ ⊂ X satisfying X++X+ ⊂ X+, R+X+⊂ X+ and X+∩(−X+) = {0}. If besides
the positive cone has a nonempty interior, IntX+ ̸= ∅, X is strongly ordered. The
(partial) strong order relation in X is then defined by

v1 ≤ v2 ⇐⇒ v2 − v1 ∈ X+ ;

v1 < v2 ⇐⇒ v2 − v1 ∈ X+ and v1 ̸= v2 ;

v1 ≪ v2 ⇐⇒ v2 − v1 ∈ IntX+ .

(2.3)

The relations ≥, > and ≫ are defined in the obvious way. If C is an ordered Banach
space, the skew-product semiflow (Ω× C, τ,R+) is monotone if

u(t, ω, φ) ≤ u(t, ω, ϕ) for t ≥ 0, ω ∈ Ω and φ, ϕ ∈ C with φ ≤ ϕ .

Note that monotone semiflows are forward dynamical systems on ordered Banach
spaces which preserve the order of initial states along the semiorbits.

3. Skew-product semiflows induced by parabolic PFDEs with delay

In this section we consider time-dependent families of initial boundary value (IBV
for short) problems given by systems of parabolic PFDEs with a fixed delay (just
taken to be 1) over a minimal flow (Ω, σ,R), with Dirichlet, Neumann or Robin
boundary conditions. More precisely, for each ω ∈ Ω we consider the IBV problem

∂yi
∂t

(t, x) = di∆yi(t, x) + fi(ω·t, x, y(t, x), y(t− 1, x)) , t > 0 , x ∈ Ū ,

αi(x) yi(t, x) + δi
∂yi
∂n

(t, x) = 0 , t > 0 , x ∈ ∂U,

yi(s, x) = φi(s, x) , s ∈ [−1, 0] , x ∈ Ū ,

for i = 1, . . . , n, where ω·t denotes the flow on Ω; U , the spatial domain, is a
bounded, open and connected subset of Rm (m ≥ 1) with a sufficiently smooth
boundary ∂U ; ∆ is the Laplacian operator on Rm and d1, . . . , dn are positive con-
stants called the diffusion coefficients; the map f : Ω×Ū×Rn×Rn → Rn, called the
reaction term, with components f = (f1, . . . , fn) satisfies the following condition:

(C) f(ω, x, y, ỹ) is continuous, and it is Lipschitz in (y, ỹ) in bounded sets,
uniformly for ω ∈ Ω and x ∈ Ū , that is, given any ρ > 0 there exists an
Lρ > 0 such that

∥f(ω, x, y2, ỹ2)− f(ω, x, y1, ỹ1)∥ ≤ Lρ (∥y2 − y1∥+ ∥ỹ2 − ỹ1∥)

for any ω ∈ Ω, x ∈ Ū and yi, ỹi ∈ Rn with ∥yi∥, ∥ỹi∥ ≤ ρ , i = 1, 2;
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∂/∂n denotes the outward normal derivative at the boundary; and the boundary
conditions are called Dirichlet boundary conditions if δi = 0 and αi ≡ 1, Neumann
boundary conditions if δi = 1 and αi ≡ 0, or Robin boundary conditions if δi = 1
and αi ≥ 0 is sufficiently regular on ∂U, for i = 1, . . . , n.

Let C(Ū) be the space of continuous real maps on the closure of U , endowed with
the sup-norm, which we just denote by ∥ · ∥. If every δi = 1, that is, with Neumann
or Robin boundary conditions, the initial value φi lies in the space C([−1, 0]×Ū) ≡
C([−1, 0], C(Ū)) of the continuous maps on [−1, 0] taking values in C(Ū), whereas
with Dirichlet boundary conditions φi should in addition satisfy the compatibility
condition φi(0) ∈ C0(Ū), the subspace of C(Ū) of functions vanishing on ∂U .

The former family can be written for short for y(t, x) = (y1(t, x), . . . , yn(t, x)) as
∂y

∂t
(t, x) = D∆y(t, x) + f(ω·t, x, y(t, x), y(t− 1, x)) , t > 0 , x ∈ Ū ,

ᾱ(x) y(t, x) + δ
∂y

∂n
(t, x) = 0 , t > 0 , x ∈ ∂U,

y(s, x) = φ(s, x) , s ∈ [−1, 0] , x ∈ Ū ,

(3.1)

for each ω ∈ Ω, where D and ᾱ(x) respectively stand for the n×n diagonal matrices
with entries d1, . . . , dn and α1(x), . . . , αn(x); δ = 1 for Neumann or Robin boundary
conditions and δ = 0 for Dirichlet boundary conditions; and φ is a given map in
the space C([−1, 0], C(Ū ,Rn)), which can be identified with C([−1, 0]× Ū ,Rn).

Using results by Martin and Smith [7, 8] and Travis and Webb [22], the construc-
tion of a locally defined continuous skew-product semiflow linked to time-dependent
families of IBV problems given by systems of parabolic PFDEs with (possibly vari-
able) finite delay has been explained in Novo et al. [10] in the case of Neumann
boundary conditions. In fact, the problem with Robin boundary conditions ad-
mits a common treatment. Notwithstanding, the problem with Dirichlet boundary
conditions is more delicate.

In any case, the main idea is to immerse the family of problems with delay (3.1)
into a family of retarded abstract equations in an appropriate Banach space B,{

z′(t) = Az(t) + F (ω·t, zt) , t > 0 ,
z0 = φ ∈ C([−1, 0], B) ,

(3.2)

where for each t ≥ 0, zt is the map defined by zt(s) = z(t + s) for s ∈ [−1, 0],
and then use the semigroup theory approach. On the space of continuous functions
C([−1, 0], B) the sup-norm will be used and it will be denoted by ∥ · ∥C .

When it’s time to choose a Banach space, it is important to have in mind the kind
of results that one wants to obtain. On the one hand, we want a strongly continuous
semigroup of operators, so that the induced skew-product semiflow is continuous.
On the other hand, in Section 5 we will be working with some strong monotonicity
conditions, so that we need a cone of positive elements in the Banach space with
a nonempty interior. For this reason, in the Dirichlet case we skip to work in
C0(Ū), since the natural cone of positive elements has an empty interior, and we
better choose an intermediate space; more precisely, a domain of fractional powers
associated to the realization of the Dirichlet Laplacian in Lp(U). Nice sections
dedicated to these spaces can be found in Henry [3], Lunardi [6] or Pazy [16].

At this point it seems convenient to present the Neumann and Robin cases, and
the Dirichlet case separately.
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3.1. The case of Neumann or Robin boundary conditions. In this case for
each component i = 1, . . . , n we consider on the space C(Ū) the differential operator
A0
i zi = di∆zi with domain D(A0

i ) given by{
zi ∈ C2(U) ∩ C1(Ū)

∣∣∣ A0
i zi ∈ C(Ū) , αi(x) zi(x) +

∂zi
∂n

(x) = 0 ∀ x ∈ ∂U

}
.

Then, the closure Ai of A0
i in C(Ū) is a sectorial operator and it generates an

analytic semigroup of bounded linear operators (Ti(t))t≥0, which is usually just
written down as (etAi)t≥0, and etAi is compact for any t > 0 (for instance, see
Smith [21]). Besides, the semigroup is strongly continuous, that is, Ai is densely
defined.

On the product Banach space E = C(Ū)n ≡ C(Ū ,Rn) endowed with the norm
∥(z1, . . . , zn)∥ =

∑n
i=1 ∥zi∥, we consider the operator A = Πni=1Ai with domain

D(A) = Πni=1D(Ai), which is sectorial and generates an analytic semigroup of
operators (etA)t≥0, with e

tA = Πni=1e
tAi , and etA is compact for any t > 0.

Let us define F : Ω× C([−1, 0], E) → E, (ω, φ) 7→ F (ω, φ) by

F (ω, φ)(x) = f(ω, x, φ(0, x), φ(−1, x)) , x ∈ Ū (3.3)

and consider the retarded abstract problems on E given in (3.2). As explained in
Novo et al. [10], with condition (C) on f , mild solutions of these ACPs with delay,
that is, continuous solutions of the integral equations

z(t) = etA z(0) +

∫ t

0

e(t−s)A F (ω·s, zs) ds , t ≥ 0 , (3.4)

permit us to set a locally defined continuous skew-product semiflow

τ : U ⊆ R+ × Ω× C([−1, 0], E) −→ Ω× C([−1, 0], E)
(t, ω, φ) 7→ (ω·t, zt(ω, φ)) ,

for an appropriate open set U , where as usual zt(ω, φ)(s) = z(t+ s, ω, φ) for every
s ∈ [−1, 0], for t ≥ 0. Besides, for any t > 1 the section map τt is compact,
meaning that it takes bounded sets in Ω×C([−1, 0], E) into relatively compact sets
(see Proposition 2.4 in Travis and Webb [22]), and if a solution z(t, ω, φ) remains
bounded, then it is defined on the whole positive real line and the semiorbit of
(ω, φ) is relatively compact.

It is well-known that we have to impose some extra conditions on the map f
in (3.1) in order to gain regularity in the solutions of the associated ACPs (3.2).
For completeness, we include the definition of what we call a classical solution.
Different names for the same concept are sometimes found in the literature.

Definition 3.1. A map z ∈ C1((0, T ], E) ∩ C((0, T ], D(A)) ∩ C([0, T ], E) which
satisfies (3.2) for 0 < t ≤ T is a classical solution on [0, T ].

The following condition is often referred to as a time regularity condition.

(Cθ(t)) f(ω·t, x, y, ỹ) is θ-Hölder continuous in t (for some θ ∈ (0, 1)) in bounded
sets of Rn × Rn uniformly for ω ∈ Ω and x ∈ Ū ; that is, given any r > 0
there exists an lr > 0 such that

∥f(ω·t, x, y, ỹ)− f(ω·s, x, y, ỹ)∥ ≤ lr |t− s|θ , t, s ≥ 0 ,

for any ω ∈ Ω, x ∈ Ū and y, ỹ ∈ Rn with ∥y∥, ∥ỹ∥ ≤ r .

We include a short proof of the following result, which follows from Theorem 4.1
in Novo et al. [10].
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Theorem 3.2. Assume conditions (C) and (Cθ(t)), for some θ ∈ (0, 1/2), on the
map f in (3.1). Then, for fixed ω ∈ Ω and φ ∈ C([−1, 0], E):

(i) The mild solution of (3.2) is classical for t ≥ 1, provided that it is defined.
(ii) If φ : [−1, 0] → E is θ-Hölder continuous and besides φ(0) ∈ C2θ(Ū ,Rn),

then the mild solution of (3.2) is a classical solution on intervals [0, T ] as
long as it is defined.

Proof. (i) Assume that the mild solution z(t) = z(t, ω, φ) of (3.2) is defined for
t ∈ [0, T ], and let g(t) = F (ω·t, zt) for t ∈ [0, T ]. Then, if T > 1, for any ε > 0, it is
well-known that z ∈ Cθ([ε, T ], E), meaning that it is θ-Hölder continuous in t (see
Lunardi [6]), so that under conditions (C) and (Cθ(t)), g is θ-Hölder continuous on
[1+ε, T ]. The classical theory for the nonhomogeneous equation z′(t) = Az(t)+g(t)
then says that z(t) is a classical solution on [1, T ] (see Henry [3] or Lunardi [6]).

For (ii), note that with Neumann of Robin boundary conditions, z ∈ Cθ([0, ε], E)
if and only if φ(0) ∈ C2θ(Ū ,Rn), provided that θ < 1/2 (for instance, see Lu-
nardi [6]), and then just argue as before. �

Still an additional condition has to be imposed on f in order to have classical
solutions y(t, x) of the IBV problems with delay (3.1):

(Cθ(x)) f(ω, x, y, ỹ) is θ-Hölder continuous in x (for some θ ∈ (0, 1)) in bounded
sets of Rn × Rn uniformly for ω ∈ Ω; that is, given any r > 0 there exists
an lr > 0 such that for any ω ∈ Ω and y, ỹ ∈ Rn with ∥y∥, ∥ỹ∥ ≤ r,

∥f(ω, x2, y, ỹ)− f(ω, x1, y, ỹ)∥ ≤ lr ∥x2 − x1∥θ , x1, x2 ∈ Ū .

Note that the classical space where one looks for solutions is C1,2([a, b]× Ū ,Rn),
for appropriate time intervals [a, b]. We are going to use some optimal regularity
results of solutions of IBV problems contained in Lunardi [6]. Nevertheless, since
we are just interested in the C1,2 regularity of solutions, we are not going to pay
the due attention to the optimal regularity there proved. Some classical references
for regularity results are Friedman [2] and Ladyzhenskaja et al. [5].

Theorem 3.3. Assume conditions (C), (Cθ(t)) and (C2θ(x)) on the map f in (3.1),
for some θ ∈ (0, 1/2), with Neumann or Robin boundary conditions. For fixed ω ∈ Ω
and φ ∈ C([−1, 0], E), assume that the mild solution z(t) = z(t, ω, φ) is defined on
a time interval [0, T ] and set y(t, x) = z(t)(x) for t ∈ [0, T ] and x ∈ Ū , as well as
y(s, x) = φ(s, x) for s ∈ [−1, 0] and x ∈ Ū . Then:

(i) If T > 1, for any ε > 0 the map y ∈ C1,2([1 + ε, T ] × Ū ,Rn) is a solution
of the IBV problem (3.1) for 1 + ε < t ≤ T .

(ii) If φ ∈ Cθ,2θ([−1, 0]× Ū ,Rn), then, for any ε > 0, y ∈ C1,2([ε, T ]× Ū ,Rn)
is a solution of the IBV problem (3.1) for ε < t ≤ T .

Proof. For the continuous map h(t, x) = f(ω·t, x, y(t, x), y(t−1, x)), (t, x) ∈ [0, T ]×
Ū , we consider the IBV problem on [0, T ]× Ū ,

∂y

∂t
(t, x) = D∆y(t, x) + h(t, x) , 0 < t ≤ T, x ∈ Ū ,

ᾱ(x) y(t, x) +
∂y

∂n
(t, x) = 0 , 0 < t ≤ T, x ∈ ∂U,

y(0, x) = φ(0, x) , x ∈ Ū .

(3.5)

Note that in both items y(t, x) = z(t)(x) is C1 in t because z(t) is a classical
solution, by Theorem 3.2. Therefore, it remains to check the C2 regularity in x.
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By Theorem 5.1.17 in [6], y(t, x) ∈ Cθ,2θ([δ, T ]× Ū) for any δ > 0 (condition (C)
on f is enough for this). Then, fixed ε > 0, h(t, x) ∈ Cθ,2θ([1 + ε

2 , T ] × Ū), and
from Theorem 3.2, z(1 + ε

2 ) ∈ D(A), so that the boundary condition is fulfilled at
t = 1+ ε

2 . Then, we can apply Proposition 7.3.3 (iii) in [6] to the IBV problem (3.5)

for 1 + ε
2 < t ≤ T with initial condition y(1 + ε

2 , x) = z(1 + ε
2 )(x) for x ∈ Ū , to

deduce that y ∈ C1,2([1 + ε, T ]× Ū ,Rn). The proof of (i) is finished.
Recall that φ(0) ∈ C2θ(Ū ,Rn) is the necessary and sufficient condition to guaran-

tee that y(t, x) ∈ Cθ,2θ([0, T ]× Ū). With the assumption φ ∈ Cθ,2θ([−1, 0]× Ū ,Rn)
in (ii), h(t, x) ∈ Cθ,2θ([0, T ] × Ū). Arguing as in the previous paragraph, we can
deduce that y ∈ C1,2([ε, T ]× Ū ,Rn) for any ε > 0. The proof is finished. �

3.2. The case of Dirichlet boundary conditions. This time, for each compo-
nent i = 1, . . . , n we consider on the space C(Ū) the differential operator A0

i zi =
di∆zi with domain D(A0

i ) = {zi ∈ C2(U) ∩ C0(Ū) | A0
i zi ∈ C0(Ū)}. The closure

Ai of A0
i in C(Ū) is a sectorial operator which generates an analytic semigroup

of bounded linear operators (etAi)t≥0, with etAi compact for any t > 0 (see Lu-
nardi [6] or Smith [21]), but now the semigroup is not strongly continuous, since

D(Ai) = C0(Ū). As in Section 3.1, A = Πni=1Ai is the sectorial operator with
domain D(A) = Πni=1D(Ai) on the product Banach space E = C(Ū)n ≡ C(Ū ,Rn),
and etA is compact for any t > 0.

In this case, we also consider for each component i the realization of the Dirichlet
di-Laplacian on the Banach space Lp(U) for a fixed m < p < ∞, that is, the
operator Ai,p : D(Ai,p) ⊂ Lp(U) → Lp(U) defined by Ai,pzi = di∆zi (in a weak
sense) for zi ∈ D(Ai,p). This operator is sectorial, densely defined and 0 ∈ ρ(Ai,p).
Then, for α ∈ (1/2 + m/(2p), 1), let Eαi := D(−Ai,p)α = Rg(−Ai,p)−α be the
domain of fractional power α of −Ai,p, which is a Banach space with norm ∥zi∥α =
∥(−Ai,p)α zi∥p and satisfies Eαi ↪→ C1(Ū) (see Theorem 1.6.1 in Henry [3]). Besides,
Eαi is an intermediate space in the class Jα between Lp(U) and D(Ai,p), that is, we
have continuous embeddings D(Ai,p) ↪→ Eαi ↪→ Lp(U) and there exists a constant
ci > 0 such that ∥zi∥α ≤ ci ∥Ai,pzi∥αp ∥zi∥1−αp for any zi ∈ D(Ai,p). Also the
following estimate holds, which will be used later on:

∥(−Ai,p)α etAi,p∥L(Lp(U)) ≤Mα t
−α e−wt , t > 0 , (3.6)

for some w > 0 and Mα > 0 (see Theorem 6.13 in Pazy [16]).
In all, D(Ai) ↪→ D(Ai,p) ↪→ Eαi ↪→ C1(Ū) ↪→ C(Ū) ↪→ Lp(U) and Eαi as an

intermediate space in the class Jα between C(Ū) and D(Ai).
This time, we consider on the product Banach space Lp(U)n ≡ Lp(U,Rn) with

norm ∥(z1, . . . , zn)∥p =
∑n
i=1 ∥zi∥p, the operator Ap = Πni=1Ai,p with domain

D(Ap) = Πni=1D(Ai,p) and the bounded linear operator (−Ap)−α = Πni=1(−Ai,p)−α.
We also consider the product Banach space Eα = Πni=1E

α
i endowed with the norm

∥(z1, . . . , zn)∥α =
∑n
i=1 ∥zi∥α. Thanks to Hölder’s inequality, it is immediate to

check that Eα is an intermediate Banach space between E and D(A) in the class
Jα. In fact, because of the continuous embeddings, (etA)t≥0 is an analytic semi-
group of bounded linear operators on Eα and besides in this case:

lim sup
t→0+

∥etA∥L(Eα) <∞ . (3.7)

Furthermore, it is easy to check that the semigroup of operators (etA)t≥0 is strongly
continuous on Eα, that is, D(A) is dense in Eα: just take any z ∈ Eα, that is,
z = (−Ap)−α y for some y ∈ Lp(U,Rn) and since (−Ap)−α commutes with etAp ,
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∥etAz − z∥α = ∥etAp(−Ap)−α y − (−Ap)−α y∥α = ∥etApy − y∥p → 0 as t → 0+,

since (etAp)t≥0 is strongly continuous in Lp(U,Rn). In particular, Eα ↪→ D(A) =
C0(Ū ,Rn). Finally, etA : Eα → Eα is compact for any t > 0. This follows
from Eα ↪→ E, the compactness of e(t/2)A : E → E and the boundedness of
e(t/2)A : E → Eα because Eα is an intermediate space in the class Jα.

On this occasion, we consider F : Ω × C([−1, 0], Eα) → E, (ω, φ) 7→ F (ω, φ)
defined as in (3.3), and the retarded ACPs on Eα given in (3.2). Although there
are some results for these problems in the α-norm (e.g., see Travis and Webb [23]),
here we opt to apply the “method of steps” to get existence and uniqueness of
mild solutions of (3.2), arguing on [0, 1] first, then on [1, 2], and so on. In this way
we can apply the well-established theory for semilinear ACPs with nonlinearities
defined in intermediate spaces (for instance, see Chapter 7 in Lunardi [6]). So, for

fixed ω ∈ Ω and φ ∈ C([−1, 0], Eα), let us define the map F̃ : [0, 1] × Eα → E by

F̃ (t, v)(x) = f(ω·t, x, v(x), φ(t − 1, x)) for any x ∈ Ū , for the map f in (3.1). It

is easy to check that condition (C) on f is transferred to the map F̃ , in the sense

that F̃ is continuous and it is Lipschitz in v in bounded sets of Eα, uniformly for
t ∈ [0, 1]; that is, given R > 0 there exists a CR > 0 such that for t ∈ [0, 1],

∥F̃ (t, v2)− F̃ (t, v1)∥ ≤ CR ∥v2 − v1∥α for any ∥v1∥α, ∥v2∥α ≤ R . (3.8)

With these conditions, the standard theory for the semilinear ACP in Eα,{
z′(t) = Az(t) + F̃ (t, z(t)) , t > 0 ,
z(0) = φ(0) ∈ Eα ,

(3.9)

with A sectorial and densely defined, says that the problem admits a unique mild
solution z = z(t, ω, φ) ∈ C([0, δ], Eα) for a certain δ = δ(ω, φ) ∈ (0, 1], that is, z is
a continuous solution of the integral equation

z(t) = etA z(0) +

∫ t

0

e(t−s)A F̃ (s, z(s)) ds , t ∈ [0, δ] .

Compare with (3.4) to see that z is also a mild solution of (3.2) on [0, δ].
Whenever the mild solution is globally defined on [0, 1], then we consider the

ACP (3.9) on [1, 2] with F̃ (t, v)(x) = f(ω·t, x, v(x), z(t− 1, ω, φ)(x)) for any x ∈ Ū ,

and z(1) = z(1, ω, φ) ∈ Eα. Now F̃ is continuous and satisfies (3.8) on [1, 2],
and once more the problem admits a unique mild solution. Both solutions stuck
together give the mild solution on [0, 1 + δ′], and note once more that z is a mild
solution of (3.2) too. This procedure can be iterated, as long as the mild solution
is defined.

Standard arguments using a generalized version of the Gronwall’s lemma (see
Lemma 7.1.1 in Henry [3]) permit to see that the mild solution z(t, ω, φ) depends
continuously on the initial condition φ, and also on ω ∈ Ω (note that the map F
depends on both ω and φ). Therefore, mild solutions of the ACPs permit us to set
a locally defined continuous skew-product semiflow

τ : U ⊆ R+ × Ω× C([−1, 0], Eα) −→ Ω× C([−1, 0], Eα)
(t, ω, φ) 7→ (ω·t, zt(ω, φ)) ,

for an appropriate open set U , where zt(ω, φ)(s) = z(t+s, ω, φ) for every s ∈ [−1, 0].
Also here, if a solution z(t, ω, φ) remains bounded, then it is defined on the whole
positive real line and the semiorbit of (ω, φ) is relatively compact: see the arguments
in the proof of Proposition 3.1 in Novo et al. [10].
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Note that we can also consider F : Ω × C([−1, 0], E) → E defined as in (3.3),
and solve the retarded ACP (3.2) for any φ ∈ C([−1, 0], E) (with φ(0) ∈ C0(Ū ,Rn)
if continuity of the mild solution up to t = 0 is wanted). Then, since Eα is an
intermediate space between E and D(A), from (3.4) it follows that for t > 1,
zt(ω, φ) ∈ C([−1, 0], Eα) (see Proposition 4.2.1 in Lunardi [6]). In fact, one can
prove that for t > 1, the section semiflow τt : Ω×C([−1, 0], E) → Ω×C([−1, 0], Eα)
is compact on its domain: argue as in Proposition 2.4 in Travis and Webb [22].

We finish this section with some results on regularity of solutions. A classical
solution is defined exactly as in Definition 3.1.

Theorem 3.4. Assume conditions (C) and (Cθ(t)), for some θ ∈ (0, 1/2), on the
map f in (3.1). Then, for fixed ω ∈ Ω and φ ∈ C([−1, 0], Eα):

(i) The mild solution of (3.2) is classical for t ≥ 1, provided that it is defined.
(ii) If φ : [−1, 0] → E is θ-Hölder continuous, then the mild solution of (3.2)

is a classical solution on intervals [0, T ] as long as it is defined.

Proof. The proof follows the same lines as that of Theorem 3.2. Just recall that
Eα ↪→ D(A) = C0(Ū ,Rn), and that with Dirichlet boundary conditions the mild
solution z ∈ Cθ([0, ε], E) if and only if φ(0) ∈ C2θ

0 (Ū ,Rn) (see [6]). Since φ(0) ∈
Eα ↪→ C1(Ū ,Rn), and θ < 1/2, we can give it for granted. The proof is finished. �

Theorem 3.5. Assume conditions (C), (Cθ(t)) and (C2θ(x)) on the map f in (3.1),
for some θ ∈ (0, 1/2), with Dirichlet boundary conditions. For fixed ω ∈ Ω and
φ ∈ C([−1, 0], Eα), assume that the mild solution z(t) = z(t, ω, φ) is defined on a
time interval [0, T ] and set y(t, x) = z(t)(x) for t ∈ [0, T ] and x ∈ Ū , as well as
y(s, x) = φ(s, x) for s ∈ [−1, 0] and x ∈ Ū . Then:

(i) If T > 1, for any ε > 0 the map y ∈ C1,2([1 + ε, T ] × Ū ,Rn) is a solution
of the IBV problem (3.1) for 1 + ε < t ≤ T .

(ii) If φ ∈ Cθ([−1, 0], E), then for any ε > 0 the map y ∈ C1,2([ε, T ] × Ū ,Rn)
is a solution of the IBV problem (3.1) for ε < t ≤ T .

Proof. The proof follows the same lines as that of Theorem 3.3. For the continuous
map h(t, x) = f(ω·t, x, y(t, x), y(t − 1, x)) for (t, x) ∈ [0, T ] × Ū , consider the IBV
problem (3.5) but with boundary condition y(t, x) = 0 for 0 < t ≤ T , x ∈ ∂U .

This time by Theorem 5.1.11 in [6], y(t, x) ∈ Cθ,2θ([ε, T ]×Ū) for any ε > 0. Since
we are working on Eα with α > 1/2, φ(0) ∈ Eα ↪→ C2θ

0 (Ū ,Rn) and then in fact
y(t, x) ∈ Cθ,2θ([0, T ]× Ū). Therefore, the map h(t, x) ∈ Cθ,2θ([1, T ]× Ū). Besides,
since for any t ≥ 0, z(t) ∈ Eα ↪→ C0(Ū ,Rn), we have that z(t)(x) = 0 for any
t ≥ 0 and any x ∈ ∂U . With these conditions we can apply Proposition 7.3.2 (iii)
in [6] to the IBV problem for 1 < t ≤ T with initial condition y(1, x) = z(1)(x) for
x ∈ Ū , to get that y ∈ C1,2([1 + ε, T ]× Ū ,Rn) and (i) is proved.

With the assumptions in (ii), and the fact that φ(s) ∈ Eα ↪→ C2θ(Ū ,Rn) for
any s ∈ [−1, 0], now h(t, x) ∈ Cθ,2θ([0, T ] × Ū). Once more Proposition 7.3.2 (iii)
in [6] implies that y ∈ C1,2([ε, T ]× Ū ,Rn). The proof is finished. �

3.3. Monotone skew-product semiflows induced by quasimonotone par-
abolic PFDEs. In this section we are concerned with the classical quasimono-
tone condition which renders the skew-product semiflow induced by mild solutions
monotone. We state this result, together with a technical inequality which will be
fundamental in Section 5.
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First of all, we describe the cones of positive vectors in the spaces we are deal-
ing with. In the case of Neumann or Robin boundary conditions, C([−1, 0], E)
is a strongly ordered Banach space with positive cone C+([−1, 0], E) = {φ ∈
C([−1, 0], E) | φ(s) ∈ E+ for s ∈ [−1, 0]} where E+ = {z ∈ E | z(x) ≥ 0 for x ∈ Ū}
and Rn+ = {y ∈ Rn | yi ≥ 0 for i = 1, . . . , n}. Note that we can trivially identify

IntC+([−1, 0], E) = {φ ∈ C([−1, 0]× Ū ,Rn) | φ(s, x) ≫ 0 for s ∈ [−1, 0] , x ∈ Ū} .
In the case of Dirichlet boundary conditions, C([−1, 0], Eα) is a strongly ordered

Banach space with C+([−1, 0], Eα) = {φ ∈ C([−1, 0], Eα) | φ(s) ∈ Eα+ for s ∈
[−1, 0]} , where the positive cone in Eα is Eα+ = {z ∈ Eα

∣∣ z(x) ≥ 0 for x ∈ Ū}.
Besides, Eα+ has a nonempty interior, since{

z ∈ Eα+
∣∣ z(x) ≫ 0 for x ∈ U and

∂z

∂n
(x) ≪ 0 for x ∈ ∂U

}
= IntEα+ ,

and IntC+([−1, 0], Eα) = {φ ∈ C([−1, 0], Eα) | φ(s) ∈ IntEα+ for s ∈ [−1, 0]} ̸= ∅.
To unify the writing, Eγ will stand for the Banach space E in the problem with

Neumann or Robin boundary conditions, and for Eα in the problem with Dirichlet
boundary conditions; and Cγ for the space C([−1, 0], Eγ) with the sup-norm ∥ · ∥Cγ .
Also, the order relations in Eγ and Cγ will just be denoted by ≤, < and≪ according
to (2.3), but have in mind the different spaces involved in each case.

Proposition 3.6. Assume hypotheses (C) and (Cθ(t)), for some 0 < θ < 1/2, on
the map f in (3.1), plus the quasimonotone condition:

(QM) If y, ỹ, u, ũ ∈ Rn with y ≤ u, ỹ ≤ ũ and yi = ui for some i ∈ {1, . . . , n},
then fi(ω, x, y, ỹ) ≤ fi(ω, x, u, ũ) for any ω ∈ Ω and x ∈ Ū .

Besides, in the Dirichlet case assume further:

(DM) f(ω, x, 0, 0) = 0 for any ω ∈ Ω and x ∈ ∂U .

Then:

(i) The induced skew-product semiflow on Ω×Cγ is monotone, that is, if φ,ψ ∈
Cγ with φ ≤ ψ, then zt(ω, φ) ≤ zt(ω, ψ) for any ω ∈ Ω and any t ≥ 0 where
both terms are defined.

(ii) Given ω ∈ Ω and φ,ψ ∈ Cγ with φ ≤ ψ such that z(t, ω, φ) and z(t, ω, ψ)
are defined for t ∈ [0, β] for some β > 0, there exists an L = L(ω, φ, ψ, β) >
0 such that for each i = 1, . . . , n, and for each t ∈ [0, β],

zi(t, ω, ψ)− zi(t, ω, φ) ≥ e−Lt etAi (ψi(0)− φi(0)) .

Proof. (i) For each fixed ω ∈ Ω, it follows from the results in Martin and Smith [7, 8].
(ii) We include the proof for the sake of completeness, although the result in the

Neumann case follows from Lemma 4.3 in Novo et al. [10]. First of all, observe
that if ω ∈ Ω, and φ,ψ ∈ Cγ with φ ≤ ψ and ∥φ(s)(x)∥, ∥ψ(s)(x)∥ ≤ ρ for any
s ∈ [−1, 0] and x ∈ Ū , then, for any t ∈ R and x ∈ Ū ,

fi(ω·t, x, ψ(0)(x), ψ(−1)(x))− fi(ω·t, x, φ(0)(x), φ(−1)(x)) ≥
− L (ψi(0)(x)− φi(0)(x)) , (3.10)

for the constant L = Lρ > 0 provided in (C). To see it, just subtract and add
the term fi(ω·t, x, ϕ(0)(x), φ(−1)(x)) for the map ϕ ∈ Cγ defined by ϕi = ψi and
ϕj = φj if j ̸= i, which satisfies φ ≤ ϕ ≤ ψ, and then apply (QM) and (C).

Now, let us fix φ,ψ ∈ Cγ with φ ≤ ψ and such that z(t, ω, φ) and z(t, ω, ψ) are
defined for t ∈ [0, β], and let ρ > 0 be such that sup{∥z(t, ω, φ)(x)∥, ∥z(t, ω, ψ)(x)∥ |
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t ∈ [−1, β], x ∈ Ū} < ρ. Then take L = Lρ the constant given in (C), which
obviously depends on ω, φ, ψ and β.

As a first step, we consider the particular case when φ,ψ ∈ Cθ([−1, 0], E), and
φ(0), ψ(0) ∈ C2θ(Ū ,Rn) in the Neumann or Robin cases. Then, either Theorem 3.2
or Theorem 3.4 applies to get that the mild solutions z(t, ω, φ) and z(t, ω, ψ) are
classical solutions on [0, β], so that for each fixed i = 1, . . . , n we can consider the
map on [0, β], with values in D(Ai) for t > 0, defined by vi(t) = eLt (zi(t, ω, ψ) −
zi(t, ω, φ)). Then, for t > 0, and for F : Ω×Cγ → E defined in (3.3), we have that

v′i(t) = Lvi(t) +Aivi(t) + eLt(Fi(ω·t, zt(ω, ψ))− Fi(ω·t, zt(ω, φ))).
Now, for any t ∈ (0, b], since zt(ω, φ) ≤ zt(ω, ψ) by (i), and by the choice of
ρ, (3.10) applies and we can write v′i(t) ≥ Lvi(t) + Aivi(t) − Lvi(t) = Aivi(t), so
that gi(t) = v′i(t)−Aivi(t) ≥ 0. Now, (etAi)t≥0 is a positive semigroup of operators
in C(Ū) in the Neumann or Robin cases, and in C0(Ū) in the Dirichlet case (for

instance, see Smith [21]). Besides, in the Dirichlet case, D(Ai) = C0(Ū) and (DM)
is assumed, so that gi(t) = Lvi(t)+e

Lt(Fi(ω·t, zt(ω, ψ))−Fi(ω·t, zt(ω, φ))) ∈ C0(Ū)
for t > 0. Finally, since v′i(t) = Aivi(t) + gi(t), we can write

vi(t) = etAi vi(0) +

∫ t

0

e(t−s)Ai gi(s) ds ≥ etAi vi(0) = etAi(ψi(0)− φi(0)) ,

from where the searched inequality immediately follows.
In the general case, note that the set of Hölder continuous maps Cθ([−1, 0], Eγ),

with φ(0) ∈ C2θ(Ū ,Rn) in the Neumann or Robin cases, is dense in Cγ , and in
the Dirichlet case Cθ([−1, 0], Eα) ⊂ Cθ([−1, 0], E). Then, for φ,ψ ∈ Cγ as before,
we can take sequences {φn}, {ψn} as in the first step with φn → φ and ψn → ψ,
φn ≤ φ ≤ ψ ≤ ψn for any n ≥ 1 and such that ∥z(t, ω, φn)(x)∥, ∥z(t, ω, ψn)(x)∥ ≤ ρ
for any t ∈ [0, β], x ∈ Ū and n ≥ 1. Then, the proof is finished by applying the
first step to the pairs φn, ψn and taking limits as n→ ∞. �

Note that the standard parabolic maximum principle implies that etAi is strong-
ly positive for t > 0, i.e., if zi > 0, then etAizi ≫ 0. Then, in the situation of the
previous result, if φi(0) < ψi(0) for some i, it is zi(t, ω, φ) ≪ zi(t, ω, ψ) for t > 0.

4. The linearized semiflow and Lyapunov exponents

In this section we build the linearized semiflow under regularity conditions in the
problems. Besides, when the semiflow is also monotone, we present the concept of
a continuous separation of type II and of the related principal spectrum, and show
how the latter can be calculated in terms of some Lyapunov exponents.

From now on, we use the unified notation introduced in Section 3.3 to include
any of the boundary conditions, but whenever it is convenient to make a distinction,
we will write C = C([−1, 0], E) with sup-norm ∥ · ∥C in the Neumann and Robin
cases, and Cα = C([−1, 0], Eα) with sup-norm ∥ · ∥Cα in the Dirichlet case.

In the case of Neumann boundary conditions, the next result can be found in
Novo et al. [10], and it can be trivially extended to the case of Robin boundary
conditions. The proof is inspired in the proof of Theorem 3.5 in Novo et al. [10].

Theorem 4.1. Consider the family of IBV problems with delay (3.1), ω ∈ Ω and
assume that the map f(ω, x, y, ỹ) is continuous and of class C1 in the y and ỹ
variables. Then, the skew-product semiflow generated by mild solutions on Ω ×
Cγ , τ(t, ω, φ) = (ω·t, zt(ω, φ)) is of class C1 with respect to φ. Furthermore, for
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each ψ ∈ Cγ , Dφzt(ω, φ)ψ = vt(ω, φ, ψ) for the mild solution v(t, ω, φ, ψ) of the
associated variational retarded ACP along the semiorbit of (ω, φ),{

v′(t) = Av(t) +DφF (ω·t, zt(ω, φ)) vt , t > 0 ,
v0 = ψ ∈ Cγ ,

(4.1)

which is defined for t in [0, b), the maximal interval of definition of z(t, ω, φ).

Proof. We write the proof for the case of Dirichlet boundary conditions. Recall
that F : Ω×Cα → E is defined in (3.3) and that z(t, ω, φ) is a mild solution of the
retarded ACP (3.2). In this case with fixed delay,

[DφF (ω·t, zt(ω, φ)) vt](x) = Dyf(ω·t, x, z(t, ω, φ)(x), z(t− 1, ω, φ)(x)) v(t)(x)

+Dỹf(ω·t, x, z(t, ω, φ)(x), z(t− 1, ω, φ)(x)) v(t− 1)(x) , x ∈ Ū . (4.2)

By the C1 character of f(ω, x, y, ỹ) in (y, ỹ), we can argue as in the previous
sections to get the existence of a unique mild solution of (4.1), denoted by v(t) =
v(t, ω, φ, ψ). By linearity of the problem, v exists in the large, i.e.,

v(t) = etA ψ(0) +

∫ t

0

e(t−s)ADφF (ω·s, zs(ω, φ)) vs ds , for any t ∈ [0, b) . (4.3)

Let us fix a t > 0, and let us first check that for ω ∈ Ω and φ, ψ ∈ Cα,
Dφzt(ω, φ)ψ exists, provided that zt(ω, φ) exists, and Dφzt(ω, φ)ψ = vt(ω, φ, ψ),
and second that the map Ω× Cα → L(Cα), (ω, φ) 7→ Dφzt(ω, φ) is continuous.

First of all, note that fixed t > 0 and (ω, φ) ∈ Ω× Cα such that zt(ω, φ) exists,
and given ψ ∈ Cα, the solution z( · , ω, φ+εψ) of (3.2) with initial data z0 = φ+εψ
is also defined on [0, t], provided that |ε| ≤ ε0 for a sufficiently small ε0. We want
to prove that there exists the limit

lim
ε→0

zt(ω, φ+ εψ)− zt(ω, φ)

ε
= vt(ω, φ, ψ) .

For convenience, we will get to this by proving that limε→0 h
ε(t) = 0 for the map

hε(s) =
1

ε
sup
r∈[0,s]

∥z(r, ω, φ+ εψ)− z(r, ω, φ)− ε v(r, ω, φ, ψ)∥α , s ∈ [0, t] .

Let us call gε(r) = z(r, ω, φ+εψ)−z(r, ω, φ)−ε v(r, ω, φ, ψ) for r ∈ [0, s] and recall
that ∥z∥α = ∥(−Ap)α z∥p, for any z ∈ Eα.

Having in mind (3.4) and (4.3) we write for r ∈ [0, s],

gε(r) =

∫ r

0

e(r−l)A
[
F (ω·l, zl(ω, φ+ εψ))− F (ω·l, zl(ω, φ))

− εDφF (ω·l, zl(ω, φ)) vl(ω, φ, ψ)
]
dl ,

and the term F (ω·l, zl(ω, φ + εψ)) − F (ω·l, zl(ω, φ)) can be written, applying the
mean value theorem to F , as∫ 1

0

DφF (ω·l, λ zl(ω, φ+ εψ) + (1− λ) zl(ω, φ))(zl(ω, φ+ εψ)− zl(ω, φ)) dλ .
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Consequently, for any r ∈ [0, s] we can write

gε(r) =

∫ r

0

e(r−l)A
(∫ 1

0

DφF (ω·l, λ zl(ω, φ+ εψ) + (1− λ) zl(ω, φ)) g
ε
l dλ

)
dl

+ ε

∫ r

0

e(r−l)A
(∫ 1

0

[
DφF (ω·l, λ zl(ω, φ+ εψ) + (1− λ) zl(ω, φ))

−DφF (ω·l, zl(ω, φ))
]
vl(ω, φ, ψ) dλ

)
dl .

From this, taking into account that:

- there exists an M ′
α > 0 such that

∥(−Ap)α erA z∥p ≤M ′
α r

−α ∥z∥ for any z ∈ E and r > 0, (4.4)

because of (3.6) and the continuous embedding E ↪→ Lp(U,Rn);
- ∥vl(ω, φ, ψ)∥Cα ≤ K1 for some K1 > 0 and for any l ∈ [0, t] ;
- supλ∈[0,1] ∥DφF (ω·l, λ zl(ω, φ + εψ) + (1− λ) zl(ω, φ))∥L(Cα,E) ≤ K2 for some

K2 > 0, for any l ∈ [0, t] and for small enough |ε|, because of the continuity of DφF
in Ω× Cα and the compactness of {zl(ω, φ) | l ∈ [0, t]} for the norm in Cα;

- limε→0 α
ε(s) = 0 uniformly for s ∈ [0, t], where

αε(s) =M ′
αK1 sup

r∈[0,s]

∫ r

0

(r − l)−α
(∫ 1

0

∥DφF (ω·l, λ zl(ω, φ+ εψ) + (1− λ) zl(ω, φ))

−DφF (ω·l, zl(ω, φ))∥L(Cα,E) dλ
)
dl ;

- the map hε(l) is nondecreasing for l ∈ [0, t], hence, for s ∈ [0, t],

sup
r∈[0,s]

∫ r

0

M ′
α (r − l)−αK2 h

ε(l) dl =

∫ s

0

M ′
α (s− l)−αK2 h

ε(l) dl ;

we obtain that for any s ∈ [0, t],

hε(s) =
1

ε
sup
r∈[0,s]

∥gε(r)∥α ≤ αε(s) +

∫ s

0

M ′
α (s− l)−αK2 h

ε(l) dl ,

and applying the generalized Gronwall’s lemma, we get that for any s ∈ [0, t],

hε(s) ≤ αε(s) + θ

∫ s

0

H(θ(s− l))αε(l) dl ,

where the constant θ depends on the constants M ′
αK2 and on 1− α, and the map

H(s) behaves like s−α

Γ(1−α) as s→ 0+ (see Lemma 7.1.1 in Henry [3] for more details).

From here, we can deduce that limε→0 h
ε(t) = 0, as we wanted to see.

To finish the proof, let us fix a t > 0 and let us check the continuity of the map
Ω × Cα → L(Cα), (ω, φ) 7→ Dφzt(ω, φ). So, let us take {(ωn, φn)}n≥1 ⊂ Ω × Cα
with (ωn, φn) → (ω, φ) and let us see that

∥Dφzt(ωn, φn)−Dφzt(ω, φ)∥L(Cα) = sup
∥ψ∥≤1

∥vt(ωn, φn, ψ)− vt(ω, φ, ψ)∥Cα

≤ sup
∥ψ∥≤1

sup
s∈[0,t]

∥v(s, ωn, φn, ψ)− v(s, ω, φ, ψ)∥α → 0 as n→ ∞ .

The general arguments are similar to the ones used before. Using (4.3), we first
apply the generalized Gronwall’s inequality to prove that ∥vs(ω, φ, ψ)∥Cα is uni-
formly bounded for s ∈ [0, t] and ∥ψ∥ ≤ 1. Note that (3.7) is needed at this point.
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Then, again using (4.3) for v(s, ωn, φn, ψ) − v(s, ω, φ, ψ), a further application of
the generalized Gronwall’s inequality, together with (4.4) and the facts that:

- sup
s∈[0,t]

sup
n≥1

∥DφF (ωn·s, zs(ωn, φn))∥L(Cα,E) <∞ ;

- lim
n→∞

sup
s∈[0,t]

∥DφF (ωn·s, zs(ωn, φn))−DφF (ω·s, zs(ω, φ))∥L(Cα,E) = 0 ;

- l ∈ [0, t] 7→ sup
r∈[0,l]

sup
∥ψ∥≤1

∥v(r, ωn, φn, ψ)− v(r, ω, φ, ψ)∥α is nondecreasing;

permits to see that the above limit is 0. The proof is finished. �

In the conditions of the previous result, if there is a compact positively invariant
set K ⊂ Ω × Cγ for τ (e.g., if there is a bounded solution z(t, ω, φ) and K is the
omega-limit set of (ω, φ)), one can build the linearized skew-product semiflow over
K:

L : R+ ×K × Cγ −→ K × Cγ
(t, (ω, φ), ψ) 7→ (τ(t, ω, x), vt(ω, φ, ψ)) ,

with vt(ω, φ, ψ) = Dφzt(ω, φ)ψ, and v(t, ω, φ, ψ) is the mild solution of the vari-
ational retarded ACP (4.1) along the semiorbit of (ω, φ). Note that, because of
boundedness of K, the semiflow inside K is globally defined.

It is important to note that, if K is τ -invariant and compact, in the Dirichlet
case K can be equally considered with either the topology of Ω× Cα or of Ω× C.

Proposition 4.2. If K is a compact τ -invariant subset of Ω×C, then K ⊂ Ω×Cα
and the restriction of both topologies on K agree.

Proof. Since τt(K) = K for any t ≥ 0 and τt : Ω × C → Ω × Cα is compact for
t > 1, K is relatively compact in Ω × Cα; and it is closed because the inclusion
Ω × Cα ↪→ Ω × C is continuous. Thus, the identity map with the two topologies
i : (K,Ω × Cα) → (K,Ω × C) is a homeomorphism, as it is continuous, bijective
and (K,Ω× Cα) is compact. �

Closely related to the classical concept of a continuous separation in the terms
given by Poláčik and Tereščák [17] and Shen and Yi [20], Novo et al. [11] introduced
the concept of a continuous separation of type II, which is the appropriate one if
there is delay in the equations. We include the definition here, since it is going to
be crucial in the study of persistence properties in Section 5.

When the skew-product semiflow τ is monotone and of class C1 in φ, we say that
a compact, positively invariant set K ⊂ Ω× Cγ admits a continuous separation of
type II if there are families of subspaces {X1(ω, φ)}(ω,φ)∈K and {X2(ω, φ)}(ω,φ)∈K
of Cγ satisfying the following properties.

(S1) Cγ = X1(ω, φ)⊕X2(ω, φ) and X1(ω, φ), X2(ω, φ) vary continuously in K;
(S2) X1(ω, φ) = span{ψ(ω, φ)}, with ψ(ω, φ) ≫ 0 and ∥ψ(ω, φ)∥Cγ = 1 for any

(ω, φ) ∈ K;
(S3)’ there exists a t0 > 0 such that if for some (ω, φ) ∈ K there is a ϕ ∈ X2(ω, φ)

with ϕ > 0, then Dφzt(ω, φ)ϕ = 0 for any t ≥ t0;
(S4) for any t > 0, (ω, φ) ∈ K,

Dφzt(ω, φ)X1(ω, φ) = X1(τ(t, ω, φ)) ,

Dφzt(ω, φ)X2(ω, φ) ⊂ X2(τ(t, ω, φ)) ;
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(S5) there are M > 0, δ > 0 such that for any (ω, φ) ∈ K, ϕ ∈ X2(ω, φ) with
∥ϕ∥Cγ = 1 and t > 0,

∥Dφzt(ω, φ)ϕ∥Cγ ≤M e−δt ∥Dφzt(ω, φ)ψ(ω, φ)∥Cγ .

The precise meaning of the continuous variation expressed in (S1) has been ex-
plained in Obaya and Sanz [14].

For convenience, we also recall some definitions of Lyapunov exponents. The
standard definition of superior and inferior Lyapunov exponents at ∞ of each
(ω, φ, ψ) ∈ K × Cγ is as follows (for instance, see Sacker and Sell [18]):

λi(ω, φ, ψ) = lim inf
t→∞

log ∥vt(ω, φ, ψ)∥Cγ

t
, λs(ω, φ, ψ) = lim sup

t→∞

log ∥vt(ω, φ, ψ)∥Cγ

t
;

the Lyapunov exponents of each (ω, φ) ∈ K are defined by

λi(ω, φ) = lim inf
t→∞

log ∥Dφzt(ω, φ)∥L(Cγ)

t
, λs(ω, φ) = lim sup

t→∞

log ∥Dφzt(ω, φ)∥L(Cγ)

t
;

and the lower and upper Lyapunov exponents of K are respectively the numbers:
αK = inf(ω,φ)∈K λi(ω, φ) and λK = sup(ω,φ)∈K λs(ω, φ).

When the linearized semiflow L is monotone and K is a minimal set with a flow
extension and a continuous separation of type II, these exponents play a funda-
mental role in the determination of the principal spectrum Σp (see Mierczyński and
Shen [9]), that is, the Sacker-Sell spectrum (see [18, 19]) of the restriction of L to
the one-dimensional invariant subbundle∪

(ω,φ)∈K

{(ω, φ)} ×X1(ω, φ) .

More precisely, Σp = [αK , λK ] and besides, if X1(ω, φ) = span{ψ} for the vector
ψ = ψ(ω, φ) ≫ 0 in (S2), then λi(ω, φ) = λi(ω, φ, ψ) and λs(ω, φ) = λs(ω, φ, ψ)
(see Proposition 4.4 in Novo et al. [12] for the result in an abstract setting). Since
principal spectrums are going to be the dynamical objects in order to determine the
persistence of the systems in Section 5, it is good to know that in the Dirichlet case
the Lyapunov exponents can be calculated with the sup-norm in C = C([−1, 0], E),
which is much easier to deal with numerically than the sup-norm in Cα.

Proposition 4.3. Assume that the map f(ω, x, y, ỹ) in (3.1) is continuous and of
class C1 in the y and ỹ variables. Let K ⊂ Ω×Cγ be a compact positively invariant
set and consider the linearized semiflow L over K. Then, in the case of Dirichlet
boundary conditions, for any (ω, φ) ∈ K and ψ ∈ Cα one can calculate:

λi(ω, φ, ψ) = lim inf
t→∞

log ∥vt(ω, φ, ψ)∥C
t

, λs(ω, φ, ψ) = lim sup
t→∞

log ∥vt(ω, φ, ψ)∥C
t

.

In particular, if λi(ω, φ, ψ) = λs(ω, φ, ψ), then

λ(ω, φ, ψ) = lim
t→∞

log ∥vt(ω, φ, ψ)∥C
t

.

Proof. Let us omit the dependence of vt on (ω, φ, ψ) to simplify the writing, and

set λ̃s = lim supt→∞
log ∥vt∥C

t . Since Cα ↪→ C, it is clear that λ̃s ≤ λs. To see that

also λs ≤ λ̃s, let us take a sequence tn ↑ ∞ such that λs = limn→∞
log ∥vtn∥Cα

tn
.

Since for each n ≥ 1 there exists a t1n ∈ [tn − 1, tn] such that ∥vtn∥Cα = ∥v(t1n)∥α,
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we have that λs = limn→∞
log ∥v(t1n)∥α

t1n
. Now, for the map F : Ω× Cα → E defined

in (3.3), we can write by the variation of constants formula (3.4),

v(t1n) = eA v(t1n − 1) +

∫ 1

0

e(1−s)ADφF (ω·(t1n − 1 + s), zt1n−1+s(ω, φ)) vt1n−1+s ds .

Now, note that we can also consider F as defined on Ω×C with values in E. Then,
taking M = sup{∥DφF (ω̃, φ̃)∥L(C,E) | (ω̃, φ̃) ∈ K} <∞, we can apply (4.4) to get

∥v(t1n)∥α ≤M ′
α ∥v(t1n − 1)∥+

∫ 1

0

M ′
α (1− s)−αM ∥vt1n−1+s∥C ds .

As before, for each n ≥ 1, there exists a t2n ∈ [t1n − 2, t1n] such that ∥vt1n−1+s∥C ≤
∥v(t2n)∥ for any s ∈ [0, 1], and in particular ∥v(t1n − 1)∥ ≤ ∥v(t2n)∥. Then,

∥v(t1n)∥α ≤M ′
α ∥v(t2n)∥+

∫ 1

0

M ′
α (1− s)−αM ∥v(t2n)∥ ds =

(
1+

M

1− α

)
M ′
α ∥v(t2n)∥ ,

for any n ≥ 1. Since ∥v(t2n)∥ ≤ ∥vt2n∥C , we can easily conclude that

λs = lim
n→∞

log ∥v(t1n)∥α
t1n

≤ lim
n→∞

log ∥vt2n∥C
t2n

≤ lim sup
t→∞

log ∥vt∥C
t

= λ̃s .

Let us now deal with λ̃i = lim inft→∞
log ∥vt∥C

t . Once more the inequality λ̃i ≤ λi
is clear, so that it remains to prove that λi ≤ λ̃i. This time we take a sequence

tn ↑ ∞ such that λ̃i = limn→∞
log ∥vtn∥C

tn
. Now, arguing as in the first paragraph,

associated with the sequence {tn + 2}n≥1 we can find a sequence {t2n}n≥1 with

t2n ∈ [tn − 1, tn + 2] such that ∥vtn+2∥Cα ≤ c ∥v(t2n)∥ for c = (1 + M
1−α )M

′
α > 0 and

for any n ≥ 1. Note that if we prove that ∥v(t2n)∥ ≤ c̃ ∥vtn∥C for every n ≥ 1, for a
certain c̃ > 0, we are done, since then:

λi = lim inf
t→∞

log ∥vt∥Cα

t
≤ lim
n→∞

log ∥vtn+2∥Cα

tn + 2
≤ lim
n→∞

log ∥vtn∥C
tn

= λ̃i .

For that, once more we use the variation of constants formula to write, for r ∈ [0, 2],

v(tn + r) = erA v(tn) +

∫ r

0

e(r−l)ADφF (ω·(tn + l), ztn+l(ω, φ)) vtn+l dl .

Then, consider the map hn(s) = sup
r∈[−1,s]

∥v(tn + r)∥ defined for s ∈ [0, 2]. Note

that if for some s ∈ [0, 2], hn(s) = ∥v(tn + r0)∥ for some −1 ≤ r0 ≤ 0, then
hn(s) ≤ ∥vtn∥C . Else, hn(s) = sup

r∈[0,s]

∥v(tn + r)∥ and we can bound

hn(s) ≤M0 ∥vtn∥C +

∫ s

0

M0M hn(l) dl

for the constants M0 = max{1, sups∈[0,2] ∥esA∥L(E)} and M the same as before, so

that this inequality holds for any s ∈ [0, 2]. Applying the Gronwall’s lemma, we
obtain hn(s) ≤ c̃ ∥vtn∥C for an appropriate c̃ > 0 independent of n ≥ 1, for any
s ∈ [0, 2]. In particular ∥v(t2n)∥ ≤ hn(2) ≤ c̃ ∥vtn∥C for every n ≥ 1. The proof is
finished. �
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5. Persistence for quasimonotone systems of parabolic PFDEs

In this section the properties of uniform and strict persistence are studied for quasi-
monotone and regular parabolic problems of type (3.1), ω ∈ Ω. More precisely, we
assume the following conditions on f :

(C1) f(ω, x, y, ỹ) is continuous and of class C1 in (y, ỹ).
(C2) The maps Dyf(ω·t, x, y, ỹ) and Dỹf(ω·t, x, y, ỹ) are Lipschitz in (y, ỹ) in

bounded sets, uniformly for ω ∈ Ω and x ∈ Ū .
(C3) f(ω·t, x, y, ỹ) as well as the maps Dyf(ω·t, x, y, ỹ) and Dỹf(ω·t, x, y, ỹ) sat-

isfy conditions (Cθ(t)) and (C2θ(x)), for some θ ∈ (0, 1/2).
(C4) Quasimonotone condition: for any (ω, x, y, ỹ) ∈ Ω× Ū × Rn × Rn,

∂fi
∂yj

(ω, x, y, ỹ) ≥ 0 for i ̸= j and
∂fi
∂ỹj

(ω, x, y, ỹ) ≥ 0 for any i, j .

As proved in Theorem 4.1, with (C1) the skew-product semiflow τ(t, ω, φ) is of
class C1 in φ. Condition (C2θ(x)) in (C3) is required so that the solutions of the
IBV problems with delay, as well as those of the linearized problems, are smooth
enough in order to apply the classical parabolic maximum or minimum principles;
see Theorems 3.3 and 3.5. Finally, note that (C4) is the usual way to write the
quasimonotone condition (QM) under regularity assumptions.

First of all, by linearizing the problems, in the Dirichlet case we can now es-
tablish the monotonicity of the skew-product semiflow removing condition (DM) in
Proposition 3.6. Recall that Cα = C([−1, 0], Eα).

Proposition 5.1. Consider the family of parabolic problems with delay (3.1), ω ∈ Ω
with Dirichlet boundary conditions and assume that f satisfies (C1)-(C4). Then:

(i) The induced skew-product semiflow on Ω × Cα is monotone, that is, if
φ,ψ ∈ Cα with φ ≤ ψ, then zt(ω, φ) ≤ zt(ω, ψ) for any ω ∈ Ω and any
t ≥ 0 where both terms are defined.

(ii) Given ω ∈ Ω and φ,ψ ∈ Cα with φ ≤ ψ such that z(t, ω, φ) and z(t, ω, ψ)
are defined for t ∈ [0, β] for some β > 0, there exists an L = L(ω, φ, ψ, β) >
0 such that for each i = 1, . . . , n, and for each t ∈ [0, β],

zi(t, ω, ψ)− zi(t, ω, φ) ≥ e−Lt etAi (ψi(0)− φi(0)) .

Proof. Note that with any boundary conditions, by the regularity assumptions on
f we can consider the linearized IBV problem of (3.1) along the semiorbit of each
fixed (ω, φ) ∈ Ω× Cγ ,

∂u

∂t
= D∆u+ g(τ(t, ω, φ), x, u(t, x), u(t− 1, x)) , t ∈ (0, β] , x ∈ Ū ,

ᾱ(x)u(t, x) + δ
∂u

∂n
(t, x) = 0 , t ∈ (0, β] , x ∈ ∂U,

u(s, x) = ψ(s, x) , s ∈ [−1, 0] , x ∈ Ū ,

(5.1)

provided that the mild solution z(t, ω, φ) is defined on the interval [0, β], where the
map g : (Ω× Cγ)× Ū × Rn × Rn → Rn, linear in (u, v), is defined by (see (4.2))

g(ω, φ, x, u, v) = Dyf(ω, x, φ(0)(x), φ(−1)(x))u+Dỹf(ω, x, φ(0)(x), φ(−1)(x)) v .

Under assumptions (C1)-(C4) on f , it is easy to check that g satisfies all the
conditions in order to apply Proposition 3.6 to each linearized problem along the
orbit of (ω, φ) if φ ∈ Cθ([−1, 0], E). Let us now restrict to the Dirichlet case.



PERSISTENCE IN QUASIMONOTONE PARABOLIC PFDES WITH DELAY 19

Arguing as in the proof of Proposition 3.6 (ii), we just need to consider ω ∈ Ω and
φ,ψ ∈ Cα with φ ≤ ψ such that φ, ψ ∈ Cθ([−1, 0], E), and z(t, ω, φ) and z(t, ω, ψ)
are defined for t ∈ [0, β] for some β > 0: in the general case, we can approximate
φ and ψ by θ-Hölder continuous maps. Besides, we can assume without loss of
generality that also z(t, ω, λψ+(1−λ)φ) is defined for t ∈ [0, β] for every λ ∈ (0, 1).
Then, thanks to Theorem 4.1 we can write for any t ∈ (0, β],

zt(ω, ψ)− zt(ω, φ) =

∫ 1

0

Dφzt(ω, λψ + (1− λ)φ) (ψ − φ) dλ (5.2)

whereDφzt(ω, λψ+(1−λ)φ) (ψ−φ) = vt(ω, λψ+(1−λ)φ,ψ−φ) for the mild solution
v of the variational retarded ACP along the semiorbit of (ω, λψ + (1 − λ)φ) with
initial condition ψ − φ (see (4.1)), which is just the ACP built from the linearized
IBV problem, to which Proposition 3.6 applies. Therefore (i) immediately follows,
since Dφzt(ω, λψ + (1− λ)φ) (ψ − φ) ≥ 0 for any λ ∈ [0, 1].

Now, to see (ii) just write

zi(t, ω, ψ)− zi(t, ω, φ) =

∫ 1

0

vi(t, ω, λψ + (1− λ)φ,ψ − φ) dλ , (5.3)

recall that v is linear with respect to the initial value, and apply Proposition 3.6 (ii)
to the linearized problem for each λ ∈ [0, 1]. �

In the next result conditions are given to provide the existence of a continuous
separation of type II over a minimal setK ⊂ Ω×Cγ : see Section 4 for the definition.

Theorem 5.2. Consider the family of parabolic problems with delay (3.1), ω ∈ Ω
with f satisfying conditions (C1)-(C4), and assume that there exists a minimal set
K ⊂ Ω× Cγ for the induced skew-product semiflow τ . For the n× n real matrices

Dyf(ω, x, y, ỹ) = [aij(ω, x, y, ỹ)] , Dỹf(ω, x, y, ỹ) = [bij(ω, x, y, ỹ)] (5.4)

define

āij = sup{aij(ω, x, φ(0, x), φ(−1, x)) | (ω, φ) ∈ K, x ∈ Ū} for i ̸= j , and āii = 0 ,

b̄ij = sup{bij(ω, x, φ(0, x), φ(−1, x)) | (ω, φ) ∈ K, x ∈ Ū} for i ̸= j , and b̄ii = 0 ,

and consider the matrix

Ā+ B̄ = [āij + b̄ij ] . (5.5)

Then, if the matrix Ā+ B̄ is irreducible,

(i) there exists a t∗ ≥ 1 such that for each (ω, φ) ∈ K the linear operator
Dφzt∗(ω, φ) satisfies the following dichotomy property: given ψ ∈ Cγ with
ψ > 0, either Dφzt∗(ω, φ)ψ = 0 or Dφzt∗(ω, φ)ψ ≫ 0;

(ii) provided that K admits a flow extension, there is a continuous separation
of type II over K.

Proof. This result is Theorem 5.1 in Novo et al. [10] for the case of Neumann
boundary conditions. The proof for Robin or Dirichlet boundary conditions follows
step by step the same arguments, so that we only make some remarks.

First of all, note that in the minimal set K there are backwards extensions of
semiorbits, and this implies that if (ω, φ) ∈ K, φ ∈ Cγ has some specific regularity
properties; more precisely φ ∈ C1,2([−1, 0]×Ū ,Rn). This follows from Theorem 3.3
or Theorem 3.5, moving backwards in the semiorbit with t > 2 and then gaining
regularity by coming back forwards.
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Second, when we look at the family of linearized IBV problems along the semior-
bits of (ω, φ) ∈ K, the map g in (5.1) satisfies conditions (C), (Cθ(t)) and (C2θ(x))
uniformly for (ω, φ) ∈ K, and Proposition 3.6 (ii) is repeatedly used.

Finally, (ii) follows from the abstract Theorem 5.4 in Novo et al. [11] provided
that the operators Dφzt(ω, φ) are eventually compact, which happens for t > 1. �

Before we state the main result, we give the appropriate definitions of uniform
and strict persistence in the area above a compact τ -invariant set K ⊂ Ω × Cγ ,
which were introduced in Novo et al. [12] and in Obaya and Sanz [14], respectively.

Definition 5.3. Let K ⊂ Ω× Cγ be a compact τ -invariant set for the continuous
and monotone semiflow τ .

(i) The semiflow τ is said to be uniformly persistent (u-persistent for short) in
the region situated strongly above K if there exists a ψ0 ∈ Cγ , ψ0 ≫ 0 such that
for any (ω, φ) ∈ K and any ϕ ≫ φ there exists a time t0 = t0(ω, φ, ϕ) such that
zt(ω, ϕ) ≥ zt(ω, φ) + ψ0 for any t ≥ t0.

(ii) The semiflow τ is said to be strictly persistent at 0 (s0-persistent for short)
in the region situated above K if there exists a collection of strictly positive maps
ψ1, . . . , ψN ∈ Cγ , ψi > 0 for every i, such that for any (ω, φ) ∈ K and any
ϕ ≥ φ with ϕ(0) > φ(0) there exists a time t0 = t0(ω, φ, ϕ) such that zt(ω, ϕ) ≥
zt(ω, φ) + ψi for any t ≥ t0, for one of the maps ψ1, . . . , ψN .

Theorem 5.4. Consider the family of problems with delay (3.1), ω ∈ Ω with f
satisfying conditions (C1)-(C4), and assume that there exists a minimal set K ⊂
Ω×Cγ for the induced skew-product semiflow τ which admits a flow extension. For
each (ω, φ) ∈ K consider the linearized IBV problem of (3.1) along the semiorbit
of (ω, φ), given in (5.1), and calculate the matrix Ā+ B̄ = [āij+ b̄ij ] given in (5.5).

Without loss of generality, we can assume that the matrix Ā+ B̄ has the form
Ā11 + B̄11 0 . . . 0
Ā21 + B̄21 Ā22 + B̄22 . . . 0

...
...

. . .
...

Āk1 + B̄k1 Āk2 + B̄k2 . . . Ākk + B̄kk

 (5.6)

with irreducible diagonal blocks, denoted by Ā11 + B̄11, . . . , Ākk + B̄kk, of size
n1, . . . , nk respectively (n1 + · · ·+ nk = n).

For each j = 1, . . . , k, let us denote by Ij the set formed by the nj indexes
corresponding to the rows of the block Ājj+B̄jj, and let Lj be the linear skew-product
semiflow induced on K×C([−1, 0],Πi∈IjE

γ
i ) by the solutions of the nj-dimensional

linear systems for (ω, φ) ∈ K given by

∂u

∂t
= Dj∆u+Ajj(ω·t, x, z(t, ω, φ)(x), z(t− 1, ω, φ)(x))u(t, x)

+Bjj(ω·t, x, z(t, ω, φ)(x), z(t− 1, ω, φ)(x))u(t− 1, x) , t > 0 , x ∈ Ū ,

ᾱj(x)u+ δ
∂u

∂n
= 0 , t > 0 , x ∈ ∂U,

u(s, x) = ψj(s, x) , s ∈ [−1, 0] , x ∈ Ū ,

(5.7)

for the corresponding diagonal blocks Ajj and Bjj of Dyf and Dỹf in (5.4), respec-
tively, for Dj and ᾱj(x) respectively the nj × nj-diagonal matrices with diagonal
entries di and αi(x) for i ∈ Ij, and initial value ψj ∈ C([−1, 0],Πi∈IjE

γ
i ). Then,
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Kj = K × {0} ⊂ K × C([−1, 0],Πi∈IjE
γ
i ) is a minimal set for Lj which admits a

continuous separation of type II. Let Σjp be its principal spectrum.

If k = 1, i.e., if the matrix Ā+ B̄ is irreducible, let I = J = {1}. Else, let

I = {j ∈ {1, . . . , k} | Āji + B̄ji = 0 for any i ̸= j},
J = {j ∈ {1, . . . , k} | Āij + B̄ij = 0 for any i ̸= j},

that is, I is composed by the indexes j such that any block in the row of Ājj + B̄jj,
other than itself, is null, whereas J contains those indexes j such that any block in
the column of Ājj+ B̄jj, other than itself, is null. Then, some sufficient conditions
for uniform and strict persistence at 0 are the following:

(i) If Σjp ⊂ (0,∞) for any j ∈ I, then τ is uniformly persistent in the area
situated strongly above K.

(ii) If Σjp ⊂ (0,∞) for any j ∈ J , then τ is strictly persistent at 0 in the area
situated above K.

Proof. We skip some details in the proof, since it often follows arguments in the
proofs of Theorem 5.8 in Novo et al. [12] and Theorem 5.3 in Obaya and Sanz [14]
for delay equations without diffusion, for (i) and (ii) respectively.

Note that a convenient permutation of the variables takes the matrix Ā + B̄
into the form (5.6), and āij , b̄ij ≥ 0 because of (C4) and the definition. Also,
we maintain the notation introduced in Theorem 4.1 for the variational problems.
Besides, for any map v, let us denote vj = (vi)i∈Ij , for j = 1, . . . , k.

To see (i), we distinguish three cases.
(A1): k = 1, that is, Ā+ B̄ is an irreducible matrix. Then Theorem 5.2 says that
K admits a continuous separation of type II, and since Σ1

p ⊂ (0,∞), the abstract
Theorem 4.5 in [12] implies that τ is u-persistent in the area strongly above K.
(A2): k > 1 and Ā+B̄ is a reducible matrix with a block diagonal structure. In this
case the argument goes exactly as in case (C2) in the proof of Theorem 5.8 in [12]
for delay equations without diffusion. The key is to apply Theorem 4.5 in [12] to
each of the uncoupled linear skew-product semiflows Lj , which admit a continuous
separation of type II and have positive principal spectrums. In all, we find a map
ψ0 ≫ 0 and a t0 > 0 such that Dφzt(ω, φ)ψ0 ≫ 2ψ0 for t ≥ t0 and (ω, φ) ∈ K.
Then, Theorem 3.3 in [12] provides the u-persistence in the zone strongly above K.
(A3): k > 1 and Ā + B̄ is a reducible matrix with a non-diagonal block lower
triangular structure, that is, at least one of the non-diagonal blocks in (5.6) is not
null. This time we combine the arguments in case (C3) in the proofs of Theorem 5.6
for PDEs and Theorem 5.8 for delay equations in [12]. As in case (A2), the aim
is to find a map ψ ≫ 0 and a t1 > 0 such that Dφzt(ω, φ)ψ ≫ 2ψ for t ≥ t1 and
(ω, φ) ∈ K, so that Theorem 3.3 in [12] applies. Note that, since for j ∈ I the
systems (5.7) are uncoupled, arguing as in (A2) we already have the appropriate

maps ψj0 ≫ 0 for j ∈ I and the appropriate t0 > 0, so that if ψ ≫ 0 with ψj = ψj0
for j ∈ I, then vjt (ω, φ, ψ) ≫ 2ψj for t ≥ t0 and (ω, φ) ∈ K, for each j ∈ I. That
is, it remains to adequately complete the other components of ψ ≫ 0.

Since 1 ∈ I, we move forwards filling the gaps, so take l = min{j ∈ {2, . . . , k} |
j /∈ I} ≥ 2. Then, at least one of the blocks to the left of Āll + B̄ll is not null, that
is, there exists an m < l, m ∈ I such that Ālm + B̄lm ̸= 0, so that āi1k + b̄i1k > 0
for some i1 ∈ Il and k ∈ Im. For u(t, x) = v(t, ω, φ, ψ)(x) ≥ 0 by Proposition 3.6,
from (5.1), the block lower triangular structure of the linearized systems, condition
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(C4), and since k ∈ Im with m ∈ I, we have that

∂ui1
∂t

(t, x) = di1∆ui1(t, x) +

i1∑
j=1

(
ai1j(·)uj(t, x) + bi1j(·)uj(t− 1, x)

)
≥ di1∆ui1(t, x) + 2 ai1k(·) (ψm0 )k(0, x) + 2 bi1k(·) (ψm0 )k(−1, x) + ai1i1(·)ui1(t, x)

for t ≥ t0 and x ∈ Ū , where (·) stands for (ω·t, x, z(t, ω, φ)(x), z(t − 1, ω, φ)(x)).
Then, we consider the auxiliar family of scalar parabolic PDEs for (ω, φ) ∈ K,

∂h

∂t
= di1∆h+ 2 ai1k(·) (ψm0 )k(0, x) + 2 bi1k(·) (ψm0 )k(−1, x) + ai1i1(·)h(t, x)

for t > 0, x ∈ Ū , with boundary condition αi1(x)h(t, x) + δ ∂h∂n (t, x) = 0 for t > 0

and x ∈ ∂U . Since āi1k + b̄i1k > 0 means that ai1k(ω1, x1, φ1(0, x1), φ1(−1, x1)) +
bi1k(ω1, x1, φ1(0, x1), φ1(−1, x1)) > 0 for some (ω1, φ1) ∈ K and x1 ∈ U , and
(ψm0 )k(0, x1), (ψ

m
0 )k(−1, x1) > 0, one can apply the same dynamical argument used

in Theorem 5.6 in [12] to conclude that there exist a ti1 > 0 and a map ψ0i1 ∈ Eγi1
with ψ0i1 ≫ 0 such that h(t, · , ω, φ, 0) ≫ 2ψ0i1 for any (ω, φ) ∈ K and t ≥ ti1 .
Note that a version of Lemma 2.11 (ii) in Núñez et al. [13] for Dirichlet boundary
conditions in the intermediate space Eαi1 has been used. Finally, consider ψ0i1 ∈
C([−1, 0], Eγi1) the identically equal to ψ0i1 map, which satisfies ψ0i1 ≫ 0, and

take any initial condition ψ ≫ 0 with ψj = ψj0 for j ∈ I and ψli1 = ψ0i1 . Then,
comparing solutions of the two previous problems (see Martin and Smith [7, 8]), we
can conclude that (vli1)t(ω, φ, ψ) ≫ 2ψli1 for t ≥ t0 + ti1 + 1 and (ω, φ) ∈ K, and
we are done with the component i1 ∈ Il.

The argument for the rest of components in Il, if any, is similar and relies on the
irreducibility of the block Āll+ B̄ll; and for the remaining blocks, if any, is just the
same. The proof of (i) is finished.

To see (ii) we consider again three cases, in accordance with Theorem 5.3 in [14].
(B1): k = 1, that is, Ā+ B̄ is an irreducible matrix. By (i), we already know that
τ is u-persistent. To see that it is also s0-persistent, take ψ0 ≫ 0 the map given in
Definition 5.3 (i) and t∗ ≥ 1 the time given in Theorem 5.2 (i). Now take (ω, φ) ∈ K
and ϕ ≥ φ with ϕ(0) > φ(0). Then, ϕi(0) > φi(0) for some i and Proposition 3.6 (ii)
applied to the linearized systems implies that vi(t, ω, φ, ϕ − φ) ≫ 0 for any t > 0.
Then it cannot be Dφzt∗(ω, φ) (ϕ−φ) = 0, and necessarily Dφzt∗(ω, φ) (ϕ−φ) ≫ 0.
By continuity, Dφzt∗(ω, λϕ + (1 − λ)φ) (ϕ − φ) ≫ 0 for λ ∈ [0, ε] for a certain
ε > 0, and using (5.2), zt∗(ω, ϕ) ≫ zt∗(ω, φ). To finish, apply the u-persistence to
(ω·t∗, zt∗(ω, φ)) ∈ K together with the semicocycle property (2.1).

Now, for k > 1, take ϕ ≥ φ with ϕ(0) > φ(0) and distinguish two possibilities:
(B2): k > 1 and ϕi(0) > φi(0) for some i ∈ Ij with j ∈ J . In this case we follow
the arguments in case (C2) in the proof of Theorem 5.3 in [14] for delay equations
without diffusion. Basically, a family of nj-dimensional systems of nonlinear par-
abolic PFDEs with delay over the base flow in K is built, in such a way that it
is a minorant family for the components yj(t, x) = zj(t, ω, φ)(x), and besides the
linearized systems along the orbits in a minimal set are precisely the systems (5.7),
with irreducible matrix Ājj + B̄jj . Then, to this family case (B1) applies, and

thus there exist a ψj0 ∈ C([−1, 0],Πi∈IjE
γ
i ), ψ

j
0 ≫ 0 and a tj0 > 0, associated to

its u-persistence. Then, using standard arguments of comparison of solutions, one
can check that zt(ω, ϕ) ≥ zt(ω, φ) + ψj for any t ≥ tj0, for the map ψj ∈ Cγ de-

fined by ψjj = ψj0 and ψmj = 0 if m ̸= j, which satisfies ψj > 0. Just remark
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that the maps {ψj}j∈J built in this way are the appropriate collection required in
Definition 5.3 (ii).
(B3): k > 1 and ϕl(0) = φl(0) for any l ∈ J . Then, consider i such that ϕi(0) >
φi(0) with i ∈ Ij for some j /∈ J . Now we distinguish two situations:
(B3.1): There exists an m ≥ 1 such that Āj+m,j + B̄j+m,j ̸= 0 with j +m ∈ J . In
this case we search for a time t1 > 0 such that zj+m(t1, ω, ϕ) > zj+m(t1, ω, φ), for
then we can apply case (B2) together with the semicocycle relation (2.1).

As a first step, let us study the components vjt (ω, φ, ϕ−φ). Write Lj(t, ω, φ, ψ
j) =

(τ(t, ω, φ), wt(ω, φ, ψ
j)) for the linear skew-product semiflow induced by the solu-

tions of (5.7) for (ω, φ) ∈ K and ψj ∈ C([−1, 0],Πi∈IjE
γ
i ). By condition (C4), a

comparison of solutions argument says that vjt (ω, φ, ϕ− φ) ≥ wt(ω, φ, ϕ
j − φj) for

t ≥ 0. Besides, applying Proposition 3.6 (ii) to Lj , since ϕ
j
i (0) > φji (0), we get that

wi(t, ω, φ, ϕ
j −φj) ≫ 0 for any t > 0. Therefore, it must be wt∗(ω, φ, ϕ

j −φj) ≫ 0
for t∗ ≥ 1 the time given in Theorem 5.2 (ii) for Lj . Then, the linear semicocycle
property (2.2) and Proposition 3.6 (ii) imply that wt(ω, φ, ϕ

j − φj) ≫ 0 for t ≥ t∗,

so that also vjt (ω, φ, ϕ− φ) ≫ 0 for t ≥ t∗.
Finally, take i1 ∈ Ij+m and k ∈ Ij such that āi1k + b̄i1k > 0. Then, for

u(t, x) = v(t, ω, φ, ϕ−φ)(x) recall that with (C4), u(t, x) ≥ 0 by Proposition 3.6 (i),
and since k ∈ Ij , uk(t, x) > 0 for any t ≥ t∗ − 1 and x ∈ U . Now, arguing
as in the proof of Theorem 5.1 in Novo et al. [10], associated to the minimal set
K and to the open set Ui1k = {(ω̃, φ̃) ∈ Ω × Cγ | ai1k(ω̃, x, φ̃(0, x), φ̃(−1, x)) +
bi1k(ω̃, x, φ̃(0, x), φ̃(−1, x)) > 0 for some x ∈ U}, there exists a T0 > 2 such that
for any (ω̃, φ̃) ∈ K there is a t0 ∈ (2, T0) such that τ(t0, ω̃, φ̃) ∈ Ui1k. Applying this
property to τ(t∗, ω, φ) ∈ K there exist a t0 ∈ (2, T0) and an x0 ∈ U such that

ãi1k + b̃i1k := ai1k(ω·(t∗ + t0), x0, z(t∗ + t0, ω, φ)(x0), z(t∗ + t0 − 1, ω, φ)(x0))

+ bi1k(ω·(t∗ + t0), x0, z(t∗ + t0, ω, φ)(x0), z(t∗ + t0 − 1, ω, φ)(x0)) > 0 .

Now, by (C4), on the one hand ui1(t, x) satisfies the following parabolic inequality

∂ui1
∂t

(t, x) ≥ di1∆ui1(t, x) + ai1i1(ω·t, x, z(t, ω, φ)(x), z(t− 1, ω, φ)(x))ui1(t, x)

for t > t∗ and x ∈ Ū , together with the corresponding boundary condition. Then,
if it were ui1(t∗ + t0, x0) = 0, the minimum principle for scalar parabolic PDEs
would say that ui1(t, x) = 0 for any (t, x) ∈ [t∗, t∗ + t0] × Ū , so that in particular
∆ui1(t∗ + t0, x0) = 0 and ∂tui1(t∗ + t0, x0) = 0. But on the other hand, then

∂ui1
∂t

(t∗ + t0, x0) ≥ ãi1k uk(t∗ + t0, x0) + b̃i1k uk(t∗ + t0 − 1, x0) > 0 ,

a contradiction. Therefore, ui1(t∗ + t0, x0) > 0, so that vi1(t∗ + t0, ω, φ, ϕ− φ) > 0
and by Proposition 3.6 (ii), vi1(t, ω, φ, ϕ − φ) ≫ 0 for any t > t∗ + t0. Take
such a t1 > t∗ + t0 and use relation (5.3) together with a continuity argument to
conclude that zi1(t1, ω, ϕ) ≫ zi1(t1, ω, φ), so that zj+m(t1, ω, ϕ) > zj+m(t1, ω, φ),
as we wanted.
(B3.2): For any m ≥ 1 such that Āj+m,j + B̄j+m,j ̸= 0, j +m /∈ J . In this case,
we take the greatest m ≥ 1 such that Āj+m,j + B̄j+m,j ̸= 0 and we argue as in case
(B3.1) to find a t1 > 0 such that zj+m(t1, ω, ϕ) > zj+m(t1, ω, φ). Since j +m /∈ J ,
again there is an l ≥ 1 such that Āj+m+l,j+m + B̄j+m+l,j+m ̸= 0. If for some
such l ≥ 1, j +m + l ∈ J we fall again in case (B3.1), and if not, we are again in



24 R. OBAYA AND A.M. SANZ

case (B3.2) and we just iterate the procedure. Since k ∈ J , in a finite number of
iterations we fall in case (B3.1). The proof is finished. �
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[17] P. Poláčik, I. Tereščák, Exponential separation and invariant bundles for maps in ordered
Banach spaces with applications to parabolic equations, J. Dynamics Differential Equations

5 (2) (1993), 279–303.
[18] R.J. Sacker, G.R. Sell, A spectral theory for linear differential systems, J. Differential

Equations 27 (1978), 320–358.
[19] R.J. Sacker, G.R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J.

Differential Equations 113 (1994), 17–67.
[20] W. Shen, Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-Product

Semiflows, Mem. Amer. Math. Soc. 647, Amer. Math. Soc., Providence, 1998.
[21] H.L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive

and Cooperative Systems, Amer. Math. Soc., Providence, 1995.
[22] C.C. Travis, G.F. Webb, Existence and stability for partial functional differential equations,

Trans. Amer. Math. Soc. 200 (1974), 395–418.

[23] C.C. Travis, G.F. Webb, Existence, stability, and compactness in the α-norm for partial
functional differential equations, Trans. Amer. Math. Soc. 240 (1978), 129–143.



PERSISTENCE IN QUASIMONOTONE PARABOLIC PFDES WITH DELAY 25

[24] J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Math-

ematical Sciences 119, Springer-Verlag, New York, 1996.
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