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Abstract

Grasp quality metrics aim at quantifying different aspects of a grasp configuration between a specific robot hand and
object. They produce a numerical value that allows to rank grasp configurations and optimize based on them. Grasp
quality metrics are a key part of most analytical grasp-planning approaches. Additionally, they are often used to generate
ground-truth labels for synthetically generated grasp exemplars required for learning-based approaches. Recent studies
have highlighted the limitations of grasp quality metrics when used to predict the outcome of a grasp execution on a
real robot. In this paper, we systematically study how well seven commonly-used grasp quality metrics perform in the
real world. To this end, we generated two datasets of grasp candidates in simulation, each one for a different robotic
system. The quality of these synthetic grasp candidates is quantified by the aforementioned metrics. For validation,
we developed an experimental procedure to accurately replicate grasp candidates on two real robotic systems and to
evaluate the performance of each grasp. Given the resulting datasets, we trained different classifiers to predict grasp
success using only grasp quality metrics as input. Our results show that combinations of quality metrics can achieve up
to a 85% classification accuracy for real grasps.

Keywords: Grasping, Grasp simulation, Machine learning, Prediction model, Real grasp execution.

1. Introduction

Grasp quality metrics are computational tools that eval-
uate grasp configurations consisting of contact points be-
tween the robot end-effector and the object surface. These
metrics quantify grasp quality based on the measured forces
and torques exerted at the contact points. Desirable prop-
erties of a grasp that are evaluated by existing quality
metrics are force-closure, equilibrium, dexterity, stability
and others [43, 37].

Grasp quality metrics aspire to predict the outcome
of a grasp on a specific object when executed with a real
robotic system. They are central to analytic approaches in
grasp planning, which are formulated as an optimization
problem over grasp configurations given the object and
robot hand dynamic models [5]. Another common use of
grasp quality metrics is to generate the ground- truth la-
bels for synthetically generated grasp configurations. The
resulting data sets are then used for learning-based ap-
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proaches in grasp planning e.g. [18, 27, 28]. Unlike ana-
lytic approaches, learned grasp planning models often take
partial sensory data as input instead of full 3D object mod-
els. They are also able to generalize over objects that the
trained model has not yet seen.

Multiple studies have emphasized the limitations of
classic grasp quality metrics when predicting grasp suc-
cess in the real world [2, 44, 9, 18]. First, quality metrics
rely on precise models of robot hands and objects. These
are not always available, in particular for the wide variety
of objects that exist in the real world. Second, the desired
contacts have to be precisely achieved for the grasp quality
metric to be valid. This is challenging due to the inherent
inaccuracy of robot control, noise in sensor measurements
and other sources of uncertainty. And third, individual
quality metrics typically focus only on specific aspects of
the physical interaction. Real executions are however af-
fected by a variety of aspects that may not be taken into
account by a particular metric. Thus, grasp configurations
may fail in the real world despite a high-quality value. For
example, most commonly used quality metrics consider
only the moment after which contact is established be-
tween robot hand and object. However, when establishing
the grasp and lifting the object other aspects will have a
large influence on the success of the grasp.

The main contribution of this work is to evaluate to
what extent grasp metrics obtained in simulation transfer
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to the real world. Prior work [2, 44, 18] has typically
only analyzed the ε-metric by [13]. In this paper, we ana-
lyze seven quality metrics as proposed in [40] and validate
them against grasp executions on two different real robotic
platforms. Our aim is to find one metric or a combination
of metrics that can most accurately predict grasp success
in the real world. This has implications for both, analyt-
ical grasp planning methods as well as learning-based ap-
proaches that are trained on synthetically generated grasp
exemplars.

For this purpose, we execute and monitor a set of
grasps on two real robotic setups. These grasps were gener-
ated and evaluated in simulation. In this way, we obtained
two large grasp databases, one for each robotic platform.
Each grasp is labelled with a success label from the real
execution as well as with the values from the seven grasp
quality metrics. These databases contain more than 1700
real grasps. We designed an experimental protocol to pre-
cisely replicate simulated grasps in the real world. We
3D printed highly accurate replicas of those virtual ob-
jects. For executing the grasp, we use the real-time visual
tracking and motion generation system proposed in [19]
to achieve the desired, synthetic grasp configuration as
precisely as possible. We further re-evaluate the recorded
grasp configuration in simulation to eliminate remaining
inconsistencies.

Given these datasets, we numerically analyse the pre-
dictive power of individual metrics. We also use them
as input to linear and non-linear classifiers to understand
to what extend combinations of grasp quality metrics im-
prove grasp success prediction. The best binary classi-
fication model achieves a 80% accuracy when predicting
for similar grasps and 70% when predicting for completely
novel grasps. These scores increase to 85% and 80% when
using a cascaded classifier.

In our previous work [38], we studied the same quality
metrics using ground-truth labels provided by physics sim-
ulation. This metric was proposed in [18] and was found to
be highly correlated with human labels as opposed to the
aforementioned, classic ε-metric of grasp quality. In this
work, we collected grasp success labels in the real world for
the same grasp configurations. This allowed us to validate
the labels from physics simulation and human subjects col-
lected in [18]. We found that both are good at rejecting
bad grasps, but have a low success rate when predicting
good ones.

This paper is organized as follows. Section 2, presents
related work that develops similar or alternative approaches
to the problem of grasp synthesis. Section 3 describes the
foundations of this work. The detailed methodology for
data acquisition is explained in Section 4. Specifically,
it describes the robotic platforms, grippers, objects and
experimental protocol followed to execute and record ex-
perimental grasps. In Section 5, we describe the proper-
ties of the experimental grasp databases. 1 Sections 6,
and 7 present the analyses and results to answer the core
questions of this paper. Each section includes a detailed

discussion of the results. Finally, Section 8 provides the
conclusions and future lines of this work.

2. Related work

Several works have evaluated the predictions of pop-
ular quality metrics and have compared them with the
outcomes from experiments with real robots. Some re-
sults showed that highly-ranked grasp using the ε-metric
perform poorly when executed in real experiments [2, 10],
and they are very sensitive to position inaccuracy [44].
Incidentally, the ε-metric is not considered in this paper
because in a previous work [40] was found to be highly
correlated with other metrics, in especial QC2 in table 1.

Some approaches have been proposed to address these
limitations. From an analytical side, some authors have
tried to create global metrics that combine existing qual-
ity metrics. An analytical correlation study showed the
existence of at least seven independent metrics [40] but
no combination rule was proposed. A common approach
has been the parallel combination of metrics, that is, ev-
ery grasp is evaluated by a set of metrics, and the values
obtained are combined, usually by addition, to produce
a unique evaluation index [6, 1]. Different normalization
procedures can be applied to every metric for their combi-
nation, as well as different weighting coefficients [8]. The
limitation of parallel combinations is that there are no
clear rules to choose and weigh the importance of every
metric. Hester et al. [16] propose a serial approach where
one metric is used to generate and select a subset of grasp
configurations, and a second metric is used to rank them.

There have also been some attempts to build more re-
alistic and robust metrics. Kappler et al. [18] propose a
physics metric that requires a complete dynamic simula-
tion of the execution of a grass configuration. Others have
proposed metrics like the probability of force closure [20],
or a pose error robust metric [44] which apply probabilistic
principles to address several sources of uncertainty in the
executions of grasps and incorporate thme in the metric.

The difficulty of finding reliable grasp success met-
rics and their assumptions of full object knownledge has
boosted the development of data-driven approaches for
grasp planning [5]. These solutions require the existence
of datasets of labelled grasps. Some works execute and au-
tomatically label grasp candidates in simulation [18, 36].
This allows to efficiently generate large amounts of grasp
data points to train prediction models. However, there
is no clear validation of the resulting ground-truth labels
against real-world grasp success.

Following these trend of creating synthetic datasets,
Mahler et al. [27] built Dex-Net, a database with 2.5M
simulated grasps that are evaluated with the probability
of force closure metric. This database was used for ro-
bust grasp planning. In follow-up work [28], the authors
extended this database to 6.7M grasp samples and evalu-
ated the trained models on a real robot. More than 10.000
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object models were used to create the database and experi-
ments resulted in a 99% classification precision. Compared
to the work presented in this paper, Mahler et al. [28]
present results on 2-finger grasps and only with a single
robot gripper. We evaluate grasp metrics on two different,
three-fingered robotic hands. Also, we directly validate the
metrics against real grasps to understand their prediction
accuracy.

Recently, Bousmails et al. [7] created synthetic images
of virtual scenes with random object shapes and combined
them with real-world images in training datasets. The pa-
per studies the option for randomization to transfer models
trained on synthetic images to real world cases. Their re-
sults indicate that combining synthetic and real data can
reduce drastically the number of required real experiments,
while maintaining similar success ratios.

These approaches use simulation to bootstrap the con-
struction of training datasets for learning approaches. Most
of these cases replicate on simulation situations of the real
world with either synthetic images or arrangements of ob-
ject shapes, and record this raw data without any interme-
diate representation. The consequence is that huge num-
ber of simulations are necessary, in the order of hundreds
of thousands or millions. Realistic grasp quality metrics
can be an optimal intermediate representation of the me-
chanical and kinematic properties of a grasp configuration,
almost independent of the shape of the object and the de-
sign of the hand, and thus reduce the number of simula-
tions required.

Another trend to annotate synthetic data is to ask hu-
mans for the evaluation of grasps before executing them.
This is based on the assumption that humans intuitively
know how a successful grasp looks like [2]. These meth-
ods differ in which data is presented to humans, either
RGB-D images with areas indicating the existence of po-
tential grasps regions [23], or visualizations of robot hand
configurations over target objects [18]. An open question
about these approaches is whether human predictions can
be fully trusted.

Finally, an important trend is to collect large grasp
datasets on real robots where the grasp success is auto-
matically labelled. The goal is to train models with these
datasets to establish a relationship between raw sensory in-
put (e.g. an RGB image) and a successful grasp. Morales
et al. [32] proposed a first version of this idea in form of an
active learning approach to choose the next grasp, given
the accumulated experience from previous trials.

In a more recent work, Levine et al. [24] executed,
recorded and automatically labelled more than 1.7 mil-
lion grasp attempts in two experiments using an auto-
matic robot farm composed of similar manipulator robot
cells. Deep learning techniques were used to establish a
relation between RGB images from scenes and successful
sequences of gripper actions. Similar to [34], this work
was an ambitious attempt to use raw input data to learn
a grasp execution procedure, avoiding any type of label-
ing bias. The work was constrained to two-finger grippers

and no previous models of the objects were required. The
results demonstrated that effective control sequences can
be learned, novel objects can be grasped successfully, and
knowledge can be transferred between different robot se-
tups. However, it also was a very expensive grasp labeling
procedure. Simulation in the spirit of [28, 18, 7] would
have been an option to have a cheaper and faster labeling
procedure.

We use experimental data from a real robot to ana-
lyze how well individual or combinations of grasp quality
metrics can predict grasp success. To this end, we build a
large database of grasps that are evaluated on two robotic
platforms as well as in simulation. Since our approach is
based on quality metrics and contact points, results are
not restricted to two-finger grippers. We question the reli-
ability of simplified physics engines and human judgment
based on the analysis of a previous database.

3. Foundations

The work presented in this paper is based on the meth-
ods and results described in our prior work. A short sum-
mary of them is presented here for the reader convenience.

3.1. A physics metric

[18] proposes a physics metric that consists of a full
dynamic simulation of a grasp when closing the fingers
on the target object. The main hypothesis of this work is
that physical forward simulation of grasps is more suitable
for automatic labeling of data than the classical and most
common Ferrari & Canny [13] metric. The final label of
each grasp was computed by averaging over the physically-
simulated outcomes of 30 grasps on a slightly perturbed
object pose around the original, reference pose. This mim-
ics noise in perception and actuation of a robot. For the
computation of the physics metric gravity force was not
considered and no support plane was present in the simu-
lated scene.

For reference, this physics metric will be reported in
the results section. It is a good indication of the prediction
performance of grasp stability that can be achieved when
investing in a computationally expensive simulation.

3.2. Human oracle

To validate the hypothesis explained in the previous
subsection, grasps labelled automatically in simulation with
the physics metric are compared against the answers of
human subjects on a subset of the generated grasps. The
authors assume that human subjects are perfect oracles
and therefore use them to validate the physics metrics.

Using the Amazon Mechanical Turk (AMT), human
subjects were presented a subset of grasps and were asked
to use their judgment to estimate whether a grasp would
succeed or not. Several images of a robot gripper config-
ured in a grasping pose on a target object were shown to
human subjects who evaluated them as Stable, Unstable,
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or Unknown in the case that the human was unsure of the
outcome of the grasp.

Each grasp was evaluated by at least 5 humans and
the average of valid evaluations were used to set a grasp as
successful or not. It is important to note that the subjects
from AMT are likely lacking any kind of experience in
robotic grasping. Thus, their assessment on grasping is
based on their own experience in human manipulation and
not on their knowledge of kinematics of typical robotic
hands.

The comparison results show that the labels based on
the physics simulation are closer to human judgment and
are therefore considered more realistic. Kappler et al. [18]
also showed that physics-based labels were easier to learn
from. However, physics simulation is also orders of magni-
tude more expensive than computing the classic metrics.

3.3. A selection of quality metrics

In previous work [40], we performed a statistical analy-
sis of ten quality metrics. We recorded the values of these
metrics on simulated grasps computed on more than a
hundred objects with seven hand models. The analysis
consisted of (i) establishing an upper and lower bound to
normalize the metrics, (ii) measuring the stability of the
metrics in the presence of small disturbances, and most
importantly (iii) visualizing the correlation between dif-
ferent metrics. This last analysis allowed to discard three
metrics, reducing the initial set to seven. These seven in-
dependent metrics will be used in this article (see Tables
1 and 2).

3.4. Prior databases

In this work, we use the following database containing
thousands of grasps:

Physics metric DB : [18] generated a large-scale grasp
database on a wide variety of objects in simulation us-
ing OpenRave [10]. The grasps were generated by sam-
pling grasp candidates uniformly around the object sur-
face. Altogether, it contains approximately half a mil-
lion grasps generated on more than 600 different object
models with the BarretHand. [3]. Each of them is eval-
uated with the Physics Metric and with the ε-metric
averaged over 30 grasp trials on a slightly perturbed ob-
ject pose.

Human labelled DB Some of the grasps on the Physics
Metric DB were labelled by humans. The resulting
database contains 4752 grasps applied to a wide vari-
ety of different objects (616) with a known 3D shape
model.

Quality Metrics DB Rubert el al. [40] simulated over
900.000 grasps configurations on a set of 126 object mod-
els using 7 robot hands. For each grasp, the seven qual-
ity metrics were computed. This database was later ex-
tended [39] to evaluate the quality metrics of the grasps

Table 1: Quality Metrics

Name Description Formula

QA1 Smallest singular value of
G [25]

σmin(G)

QB1 Distance between the cen-
troid of the contact poly-
gon and the center of mass
of the object [11, 35]

1− distance(p, pc)

distancemax

QB2 Area of the grasp polygon
[31]

Area(Polygon(p1, ...pn))

Areamax

QB3 Shape of the grasp poly-
gon [21]

1− 1

θmax

nf∑
i=1

|θi − θ̄|

QC2 Volume of the convex hull
[30]

Volume(CW )

Volumemax

QD1 Posture of manipulator
joints [26]

1− 1

nq

nq∑
i=1

(
yi − ai
ai − yiM

)2

QD2 Inverse of the condition
number of GJ [41, 22]

σmin(GJ)

σmax(GJ)

See table 2 for the definition of the terms in the formulas.

included in the two previous databases. This ensures
that all the grasp candidates included in the present pa-
per have their quality metrics calculated.

4. Robot setup and protocol

In order to have data from real robot experiments, we
define a protocol to execute and record the results of ex-
haustive experiments. This section describes the two robot
setups on which we carry out the experiments and the pro-
tocol applied to acquire the experimental data.

4.1. Robotic platforms

4.1.1. Apollo

Apollo1 (see Fig. 3) is a dual-arm manipulation plat-
form used to study active perception, grasping, and manip-
ulation. It has two arms, hands with tactile sensors, and an
active vision head. The robot has two KUKA lightweight
robot arms (7 DOFs), two Barrett hands, and a Sarcos
head featuring different vision sensors, including an Asus
Xtion PRO.

1Apollo Robot: https://am.is.tuebingen.mpg.de/pages/

robots
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4.1.2. Tombatossals

Tombatossals (see Fig. 4) is a multipurpose humanoid
torso aimed at performing research on autonomous grasp-
ing and manipulation tasks in unstructured household sce-
narios. The humanoid torso is composed of two arms, two
hands and a head for a total of 29 DOF. Both arms are
Mitsubishi PA10-7C, 7 DOFs industrial manipulators with
position repeatability of 0.1mm. Each arm weights 40-kg
and has a 10-kg payload.

Tombatossals has a Barrett Hand on its right arm and
a Schunk SDH Hand on the left arm. Both hands are
equipped with tactile sensors from Weiss Robotics.2 The
head is composed of a TO40 pan-tilt-vergence system and
a Kinect. More details on Tombatossals are described in
[12].

4.2. Robotic Grippers

The Barrett and Schunk SDH grippers (see Fig. 5) are
used to perform the real experiments. The Barrett hand
has a weight of 980 g. Its payload is 6 kg. It has three

2Weiss Robotics sensors: http://www.weiss-robotics.de/

Table 2: Notation

G Grasp matrix
σmin Minimum singular value
σmax Maximum singular value
p Centroid of contact polygon
pc Object centre of mass
pi Vertex of the grasp polygon
pip Projected vertex of the grasp polygon on

a plane
θmax Sum of differences between the internal

angles when the polygon has the most ill-
conditioned shape and those of a regular
polygon

θi Inner angle at the vertexi of the grasp
polygon

θ̄ Average angle of all inner angles of the
grasp polygon

CW Convex hull of the primitive wrenches
nq Number of joints of the hand
ai Middle range position of a joint
yi Angle of joint i
yiM Maximum angle limits of joint i
GJ Grasp Jacobian matrix
distancemax Maximum distance from the object’s

centre of mass to any point in the ob-
ject’s contour

Areamax Maximum possible area of the hand, cal-
culated as the area of the polygon when
the hand is fully opened

V olumemax Maximum volume of the convex hull of
the primitive wrenches

Figure 3: The Apollo robot system.

Figure 4: The Tombatossals robot system.

fingers with two joints each. Two of them have an extra
degree of freedom, with 180 degrees of lateral mobility
supporting a large variety of grasp types. All joints have
high-precision position encoders. It has 3 fingertip torque
sensors, one per finger.

The Schunk SDH hand weights 1.95 Kg. It has 3 fin-
gers with two links each. Two fingers can rotate up to
90◦in reverse. It features high flexibility in terms of shape,
size and position of the objects to be gripped. It has 6 tac-
tile sensors for pressure and surface recognition.

When performing a grasp, all the fingers of the robot
hands are closed simultaneously until contact is detected
with any of the links. The corresponding joint is then
blocked. If no contact was yet detected with a distal joint,
it continues to close until contact is sensed. For the Barrett
hand, a strain gauge in the finger knuckle is used to detect
collisions. In the case of the Schunk SDH, there are tactile
sensors for detecting the contact on each link of the hand.

4.3. Objects

Our experiments with the Apollo platform consider up
to 9 different physical objects. These objects are created
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Table 3: Glossary

For a better understanding of the experiments and results, the
main definitions used through the paper are detailed here:

Pose: a 7-dimensional vector containing a 3D vec-
tor (x, y, z)T representing location and a quaternion
(w, ax, ay, az)T representing orientation.

Grasp: a pose, a robot gripper configuration and an object
id. The pose indicates the position of the gripper relative
to the object before closing its fingers. The gripper con-
figuration determines the type of gripper and joint angles
before starting the grasps.

Quality metrics (QM): a set of 7 independent metrics
used to evaluate the quality of a grasp. They are com-
puted using the simulator Openrave [40]. See Subsection
3.3 and Table 1 for a short description of them.

Physics metric score: obtained by evaluating a grasp us-
ing a dynamic simulation [18]. Its outcome is binary: Sta-
ble, Unstable. See Subsection 3.1.

Human-labelled grasp: grasp evaluated by human sub-
jects on Amazon Mechanical Turk. The grasp is labelled
with a binary value, Stable or Unstable. See subsection 3.2.

Candidate grasp: a grasp generated in simulation for
which quality metrics are computed. In some cases, the
physics metric and/or a human label has also been ob-
tained and are part of the candidate grasp data.

Experimental grasp: a candidate grasp executed on a real
robot following the protocol explained in Subsection 4.4.
Each experimental grasp has an associated candidate grasp
and a gravity vector. The unavoidable uncertainty when
executing a grasp with a real robot causes the candidate
and experimental grasps to be slightly different. There-
fore, after each grasp execution the gripper configuration
and object poses are recorded and then re-evaluated with
OpenHand[40] to obtain their quality metrics (QM). See
Subsection 4.4 for the full experimental protocol.

An experimental grasp consists of a candidate grasp, a
gravity vector, a final gripper configuration and object
pose, a set of QM values, and an experimental score.

(a) Gravity 0,0,-1 (b) Gravity 0,-1,0 (c) Gravity 0,0,1

Figure 1: Example of an object with three different gravity vectors.
World frame is showed as a reference for the normal gravity vector
(0,0,-1).

Experimental score: experimental grasps are assigned a
score which consists of a binary value, Stable or Unstable.

See Subsection 4.4.
Grasp cluster: a set of experimental grasps which have the

same candidate grasp and the same gravity vector. A clus-
ter typically contains from 3 to 5 experimental grasps.

three-tier experimental score: experimental grasps in
the same cluster might have different experimental scores.
If all the grasp in a cluster are scored as Stable, they are
considered Robust experimental grasps; if all are scored Un-
stable, they are considered Futile; and if there is a mix of
Stable and Unstable scores in a cluster, they are considered
Fragile.

Gravity Vector: represents the direction of gravity relative
to the object frame. For example, a bottle in its natural
pose will have a gravity vector [0,0,-1]. If it is upside down
it will be [0,0,1]. Each experimental grasp has an associ-
ated gravity vector.

Average Grasp: consists of the common candidate grasp,
the gravity vector, and the average of the QM values of
the experimental grasps contained in the cluster. It is also
assigned an experimental score, which is the most frequent
experimental score among the experimental grasps of the
cluster. The candidate grasp may also be labelled with the
physics metrics score and/or a human label.

The diagram in Fig. 2 summarizes the relationship between
candidate grasps, experimental grasps, grasp clusters and
average grasps.

KNN, CT, GP and NN: Abbreviations of the four clas-
sification approaches used in this paper: KNN stands for
K-Nearest Neighbors, CT for Classification Trees, GP for
Gaussian Process and NN for Neural Networks. Full de-
scription of them is given in the Appendix A.

Input Signal: a set or subset of quality metrics, object
properties and gravity vector related to an experimental
grasp. This input signal is used by the classification meth-
ods to train and test different prediction models.

Figure 2: Relationships between candidate grasps, experimental
grasps, grasp clusters and average grasps.
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(a) Barrett hand (b) Schunk SDH hand

Figure 5: The two robotic grippers used to collect the experimental
data.

using 3D printing technology and cover different weights,
dimensions and shapes. Figure 6 shows the objects with
their names.

(a) Bottle 1 (b) Bottle 2 (c) Camera

(d) Lemon (e) Bowl 1 (f) Bowl 2

(g) Toaster (h) Jar 1 (i) Jar 2

Figure 6: Object used for the experiments with the Apollo robot
system. Subcaptions show the names of the objects.

In the experiments with Tombatossals we use only two
different objects. Both objects were printed twice, using
different percentages for the infill. This provided iden-
tical object shapes but with different weights (light and
heavy). Objects printed with different weights are bottle 1
and toaster.

4.4. Experimental protocol

To obtain the experimental score of a candidate grasp,
it is necessary to evaluate it on a real robotic platform. For
the purpose of the experiments, we use only one arm and

one hand on each robotic platform. Prior to any experi-
ment, a set of grasp candidates with a hand on a specific
object has been simulated. The purpose of the experiment
is to execute the candidate grasp on the real object with
a real robot hand as precisely as possible.

To perform each experiment, we apply the following
experimental protocol:

Step 1: place the object The target object is manually
placed by a human operator on a table in front of the
robot inside its reachable workspace.

Step 2: move the arm/gripper to an initial pose.
The gripper is placed initially in a top-left position from
the robot’s point of view such that it does not occlude
the objects.

Step 3: detect and track the object pose. The ob-
ject is visually recognized and tracked during grasping
approach using the Bayesian filtering methods imple-
mented in [17]. In our experiment we employ the Parti-
cle Filter as proposed by [45].

Step 4: move the arm/gripper to the grasp target
pose next to the object. During this step, there
are two cases to consider: in the first case, the robot
may correctly bring its hand to the grasp pose with-
out disturbing the pose of the object. In that case, the
experiment continues with the next step. In the sec-
ond case, while aligning the robot hand with the de-
sired grasp pose, the robot may hit the object during
the movement, the object pose may be unstable prior to
grasping, the motion planner may not have converged
and the robot moves the hand to a wrong pose or the
object tracking fails and loses the object. In those cases
the execution is considered invalid and the procedure is
aborted. The object is repositioned by the human op-
erator on the table and a new execution is attempted.
Figure 7 illustrates an example of an Invalid attempt.

Figure 7: Example of a failed execution. The gripper pushes the
object when approaching to the grasp pose.

Step 5: close the hand. The robot hand starts closing
its fingers until a minimum strain or contact is detected.
We determined strain and force thresholds on each joint
to ensure the gripper applies enough pressure on the
object and not just touches it. Tactile sensors are used
in the Tombatossals platform and a strain gauge in the
Apollo platform to detect such contacts.
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While the fingers are closing, the object may also top-
ple over, leading to a failed grasp. This execution is
also considered invalid and the procedure is aborted. In
some cases, the object moves when the fingers close but
a grasp is still achieved. However, the resulting config-
uration of the gripper relative to the object may differ
significantly from the attempted candidate grasp. In
such cases, the human operator also aborts and restarts
the procedure.

Step 6: move the gripper up. The joints of the fingers
are locked and the arm moves up the gripper 15cm for
small/medium objects. If the object falls or slips during
this movement, the grasp is labelled as Unstable.

Step 7: hold the object for three seconds. The arm
keeps the pose for 3 seconds. If the object remains in
the gripper motionless for this time, the grasp is labelled
Stable. If this time has expired and the object is not in
the gripper, the grasp is considered Unstable. Figures 8
and 9 illustrates two examples of successful and unsuc-
cessful experimental grasps. Both experimental grasps
correspond to the same candidate grasp.

In the last two steps, the grasp execution is labelled
by a human operator who continuously monitors the
execution.

Figure 8: Example of a stable grasp execution.

Figure 9: Example of an Unstable grasp execution.

Step 8: place down the object on the table. The
arm moves down to the initial grasping pose. A margin
of +2cm is applied in the Z axis to avoid the object
hitting the table surface.

Step 9: release the object.
Step 10: move the arm/gripper back to the initial

pose.

At the end of the protocol an experimental grasp is ob-
tained and labelled as Stable/Unstable. Gripper configu-
ration and object poses before and after closing the fingers
are recorded as part of the experimental grasp data.

For every object, several candidate grasps are selected
and tested using this protocol according to certain criteria.
First of all, a candidate grasp must be feasible, that is,
the object must be reachable by the robot arm/gripper
without colliding with the table. In case that a candidate
grasp is not reachable, it can be attempted on a different
pose of the object. In any case, if possible, each selected
candidate grasp will be tested on different poses of the
object.

5. Experimental databases

Several experimental grasp databases have been col-
lected using the experimental protocol explained in the
previous section. To collect these databases, exhaustive
tests on the available object models are carried out. For
each object, several grasp candidates are selected and ex-
ecuted up to five times; if the execution results consis-
tently in a Stable or Unstable result, the candidate grasp
is attempted three times; if the results vary, the candidate
grasp is executed five times. Each candidate grasp results
in up to 5 experimental grasps, which conform a grasp
cluster. In some cases, candidate grasps are used several
times on the same object but having different gravity vec-
tors (object poses), consequently forming different grasp
clusters. Using this procedure two databases have been
built:

Apollo experimental database. This database contains
1349 experimental grasps. These grasps were performed
with the Apollo robotic platform and the Barrett hand
on 9 different object models. On average, 50 candidate
grasps are tested and 150 different experimental grasps
are attempted with each object. Due to the exceptional
cases in the experimental protocol, out of the 1349 ex-
perimental grasps attempted, 243 (18%) were not valid
and, thus, discarded. Our final database contains 1106
Stable/Unstable experimental grasps: 830 of them had
been previously evaluated with the physics metric, 600
were human labelled and 324 have both.

In addition to this, for 183 grasps the object’s tracking
procedure failed and it was not possible to record the
final object and gripper configurations. For these grasps,
the evaluation with QM using the final contact points
was not possible. In total, 923 grasps were evaluated
with quality metrics after their execution.

Tombatossals experimental database. This database
contains experimental grasps executed with the Tombat-
ossals robotic platform using the Schunk SDH gripper.
Experimental grasps on this database are obtained from
two different objects, each one printed twice, resulting in
a light and heavy version. The purpose of this database
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is to analyze the influence of the object’s weight in the
grasp success and whether the prediction, combined with
quality metrics, can benefit from it. Up to 100 candidate
grasps are evaluated using the above protocol.

This database contains more than 600 experimental grasps,
distributed as shown in Table 4.

Table 4: Tombatossals experimental database

Binary score Three-tier score
Stable Unstable Robust Futile Fragile

Toaster 127 204 48 132 151
Bottle 1 156 129 78 39 168
Total 283 333 126 171 319

Dataset distribution of grasps and scores among different objects.
The columns regarding the three-tier score will be described in sub-
section 7.3.

6. Reliability of physics and human labels

In previous works [18, 40], we employed a simplified
physics simulation to annotate simulated grasps with suc-
cess labels. We used humans as oracles of grasp success
and analyzed the correlation between the labels generated
by humans, physics, and a classic metric. We found that
humans correlate much more strongly with the physics
metric than with the classical metric. Assuming that hu-
mans are perfect oracles, we concluded that the physics
metrics generates more realistic labels. However, we had
not yet validated the metrics or humans labels against the
real grasp outcomes. Humans evaluate grasps from simu-
lated images and they do not receive any hint about object
surfaces, object orientation or gravity. This section anal-
yses how reliable the physics metric and the human labels
from our previous work [18] are.

In this analysis, we use the Apollo experimental database,
which contains grasps that are labelled with real grasp out-
comes, human labels and the physics metric. The Apollo
database contains many experimental grasps that are the
result of executions of the same candidate grasp, we call
them grasp clusters. In order to have a single experimental
score for each candidate grasp, all the experimental grasps
in a grasp cluster are summarized in a single average grasp.
For the present analysis, an average grasp inherits the hu-
man label and physics metric score from the original grasp
candidate. It is assigned the most common experimental
score from all the experimental grasps in the same cluster.

Taking the above into account, the Apollo database
consists of 343 average grasps, from which 105 have been
labelled only by humans, 176 are scored only with the
physics metric, and 62 are scored with both approaches.
A total of 167 grasps has been scored by humans. This
number is reduced to 89 because grasps that were scored by

humans as Unknown (see section 3.2) cannot be matched
as Stable or Unstable and are then discarded.

6.1. Results

Table 5 shows the results of the prediction accuracy of
the three scores: experimental score, human labeling and
physics metric labeling. To calculate each cell, the grasps
that are labelled using both approaches are considered.
The number represents the percentage of those grasps that
has the same label, either Stable or Unstable. This number
is the same as the accuracy.

A more detailed analysis of the predictive capability of
Human Oracle and Physics metric is shown in Table 6.

Table 5: Predictive accuracy of Human oracle and the Physics Metric
over experimental scores.

Humans Physics Experimental
Humans 1.00
Physics 0.85 1.00
Experimental 0.61 0.64 1.00

For each cell, the number indicates the percentage of grasps that have
the same label, either Stable or Unstable. For example, in the case
of the Human vs. Experimental pairing, 61% of all the experimental
grasps that have also been labelled by Humans have the same score.
This would be equivalent to the accuracy of the Human labelling
predicting experimental results.

Table 6: Score report on the accuracy of human labelling and Physics
metric. to predict the grasp success on real experiments.

Experimental Human Labelling
Score Precision Recall f1-Score Support

Unstable 1.00 0.03 0.05 36
Stable 0.60 1.00 0.75 53

avg/total 0.76 0.61 0.47 89

Experimental Physics Metric Scoring
Score Precision Recall f1-Score Support

Unstable 0.78 0.53 0.63 129
Stable 0.55 0.80 0.65 94

avg/total 0.68 0.64 0.64 223

The upper table shows results for human labels. Lower table shows
results for the physics metric. For the meaning of Precision, Recall,
f1-score and Support, see Appendix A.5.

Finally, figure 10 illustrates an example of a grasp pos-
itively assessed by both, physics and human, evaluation,
but unsuccessful in real world experiments.

6.2. Detailed discussion

Results show that neither the human labels nor the
physics metric from [18] are good choices for accurately
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Figure 10: Comparison between Physics/human prediction and real
grasp execution. The human oracle and physics metric classify this
grasp as successful, but it does not work in real world. Above, images
from simulation, below images recorded from real experiments.

predicting the outcome of real grasp executions. The hu-
man labels for the grasp candidates have 61% accuracy
while the physics metric shows similar accuracy, 64%.

In the case of human labeling, the most relevant num-
ber is the low recall of the Unstable grasps. This indicates
that human labelled as Stable most of the actually Unsta-
ble. In the few cases that a grasp was human labelled as
Unstable, they were correct. These numbers indicate that
human labeling is too “optimistic”.

The presented results show a first evidence that pro-
viding grasp success labels is difficult even for human an-
notators. The reasons for this may be manifold. The sim-
ple physics environment used in [18] may not align well
enough with the reality to accurately predict grasp suc-
cess in the real world. Furthermore, the resulting grasps
were presented to human annotators without physical ref-
erence, such as, for example, a supporting plane or a grav-
ity direction. Another explanation might be related to the
insufficient ability of the actual gripper to adapt to loose
conditions. All this may explain the reduced correlation
between real grasp outcomes and these two types of la-
bels. This suggests that more careful analysis is required
of what is required for humans or physics to produce more
accurate predictions of grasp outcomes.

7. Quality metrics as stability predictors

The main question we address in this work is whether
a single quality metric or a combination of them can be
a good predictor of the execution of a grasp on a real
robot. To answer, we make use of the large databases of
experimental grasps that have been gathered on the Apollo
and Tombatossals platforms.

In order to build prediction combinations we employ
four classification and learning techniques (described in
Appendix A) and consider several types of input vectors
as classification vectors. The purpose is to explore which

Table 7: Classification results with random sampling of Train and
Test sets

Clas. CrossVal Test
CT 0.75 ± 0.06 0.77
GP 0.74 ± 0.06 0.78
Knn 0.77 ± 0.07 0.80
NN 0.75 ± 0.06 0.78

The Train and Test set are sampled randomly. Table in the left shows
the accuracy after training the classification methods and applying
a cross-validation measurement. Graph in the right shows a blue
column with the accuracy on the Test set and red line Train ± std.
deviation of the accuracy.

combination of dataset, input vector and classification me-
thod is able to produce the best results.

For each analysis, the samples in each dataset are split
between the Train set (around 80% of the samples), which
is used to train the classification methods, and the Test
set (around 20% of the samples), which is used to measure
the classifier. In addition, the Train set is also split into
sub-folders to perform a cross-validation.

7.1. Analyses and results

The first analysis consists in training the four classifica-
tion methods with the full dataset of experimental grasps.
The grasps contained in the Test and Train sets are se-
lected randomly. The input vector for each experimental
grasp is composed of the values of all the quality metrics,
and the experimental score, which is the value that has to
be predicted. Results are shown in table 7.

The data samples contained in the experimental dataset
can be naturally grouped in clusters composed of exper-
imental grasps derived from the same candidates grasps.
Intuitively, it can be argued that these experimental grasps
might be very similar, and thus the Train and Test are
not fully independent and the trained classification meth-
ods can overfit the data. To analyze this effect we carry
out an alternative approach for the training. In this case,
the experimental grasps in the data set are grouped in
grasp clusters. The Train, Test and folders for the cross-
validation are composed of whole grasp clusters, which are
selected randomly. Results are shown in table 8.

A slightly similar approach to the same problem men-
tioned above is to create a synthetic dataset composed of
average grasps. An average grasp is a summary of the

Table 8: Classification results with cluster-based sampling of Train
and Test sets

Clas. CrossVal Test
CT 0.71 ± 0.08 0.74
GP 0.71 ± 0.07 0.71
Knn 0.71 ± 0.06 0.70
NN 0.72 ± 0.11 0.71

The Train and Test set are sampled using clusters. Table in the
left shows the accuracy after training the classification methods and
applying a cross-validation measurement. The graph in the right
shows a blue column with the accuracy on the Test set and a red
line with the Train ± std. deviation of the accuracy.
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(a) Experimental grasps (b) Averaged grasps

(c) Experimental grasps (d) Averaged grasps

(e) Experimental grasps (f) Averaged grasps

Figure 11: Maps of values for metrics QA3 vs QB1, QB2 and QB3.
Plots on left columns show the data from experimental grasps dataset
(923 grasps); plots on the right column show data from average
grasps dataset (343 grasps).

experimental grasps in a cluster. It is composed of the
averages of the values of the quality metrics of the exper-
imental grasp in the cluster and the most frequent exper-
imental score. This approach also addresses the possible
problem mentioned above, but in a different way, since the
averaging of the experimental scores filters out some de-
tailed data. Many clusters are composed of both Stable
and Unstable scores. When averaging, only one score is
chosen as the representative score of a cluster. This pro-
duces a lot of information, but also reduces the amount of
data necessary for training the classification method and
helps to improve the categories in the data sets. The latter
can be observed in the plots of figure 11, which show the
scatter distribution of the experimental scores of the ex-
perimental and average grasps for several quality metrics.

Table 9 shows the results of training the classification
methods using averaged grasps.

The previous analyses use the values of the seven se-
lected quality metrics for each experimental grasp. The
next analysis considers whether fewer quality metrics are
able to provide similar performance to the use of all of
them. The first analysis in this line is shown in table 10.
It shows the performance of the CT classification method

using a single quality metric. The Test and Train datasets
are composed of experimental grasp selected at random,
and the input vectors are composed of the value of the
quality metric and the experimental score.

A further analysis seeks for the combination of quality
metrics that provides the best performance results. Simi-
larly to the previous experiment, the full dataset of exper-
imental results are used, and Train and Test are selected
randomly. For each combination of metrics the input vec-
tor consists of the values of these quality metrics and the
experimental score. Table 11 show results of the combina-
tions with the highest performance. On this occasion the
KNN classification method is used.

7.2. Detailed discussion

A first technical conclusion that can be drawn from the
results is related to the performance of the classification
methods. Tables 7, 8, and 9 do not provide any strong evi-
dence of the superiority of any method. KNN and CT seem
to provide slightly better results but the differences are not
significant. To avoid unnecessary calculations, these for-
mer methods are used in the next analyses. The predictive
accuracy varies between 70% and 80% depending on the
classification metric and the Train or Test datasets.

Regarding the predictive capability of individual qual-
ity metrics, none of them individually reaches the perfor-
mance of using all of them together (see table 10). Only
the metric QD1 is clearly superior to the others. However,
when metrics are combined, the performance quickly im-
proves. As table 11 shows combinations of 3 or 4 metrics
that are able to obtain similar results to those using all
the metrics (last line of the table). The accuracy of the
predictions reaches a maximum around 80%.

There are several additional questions that need to be
addressed to better limit the generality of our results. In
the first place, there might be a risk of over-fitting in the
classification methods. The results in table 8 are obtained
removing whole grasp clusters from the Train test. This
ensures that the methods are tested against experimental
grasps corresponding to grasp candidates not considered
in the Train test. The comparison with the results on
table 7 shows that the results are slightly worse but still
in the range error, so no over-fitting seems to be happen-
ing. These results also show that the trained classification

Table 9: Classification results with random sampling of Train and
Test sets from averaged grasp dataset

Clas. CrossVal Test
CT 0.73 ± 0.08 0.83
GP 0.72 ± 0.08 0.74
Knn 0.74 ± 0.07 0.77
NN 0.77 ± 0.08 0.72

The Train and Test set are sampled randomly from the averaged
grasp dataset. Table in the left shows the accuracy after training the
classification methods and applying a cross-validation measurement.
The graph in the right shows a blue column with the accuracy on the
Test set and red line with the Train ± std. deviation of the accuracy.
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Table 10: Classification performance of individual metrics

Metric CrossVal Test
QA1 0.62 ± 0.05 0.64
QB1 0.58 ± 0.03 0.60
QB2 0.60 ± 0.03 0.64
QB3 0.64 ± 0.04 0.66
QC2 0.58 ± 0.03 0.64
QD1 0.69 ± 0.07 0.72
QD2 0.55 ± 0.06 0.59
QM 0.77 ± 0.07 0.80

Table on the left shows the classification accuracy of each of the metrics
using the CT classification method. It has been trained using the full
experimental grasp dataset. The graph on the right shows the cross-
validation average training accuracy ± std (red line) and the accuracy
with the Test set (blue bar).

Table 11: Classification performance of combinations of quality met-
rics

Metrics Used CrossVal Test
(QA1, QD1) 0.73 ± 0.07 0.78
(QA1, QC2, QD1) 0.74 ± 0.07 0.81
(QB1, QB3, QD1) 0.75 ± 0.03 0.80
(QA1, QC2, QD1, QD2) 0.75 ± 0.05 0.81
(QA1, QB1, QB3, QD1, QD2) 0.76 ± 0.06 0.81
(QB1, QB2, QB3, QC2, QD1) 0.77 ± 0.04 0.81
(QA1, QB1, QB2, QC2, QD1, QD2) 0.78 ± 0.04 0.81
(QA1, QB1, QB2, QB3, QC2, QD1, QD2) 0.77 ± 0.07 0.80

Summary of best training results obtained using different combina-
tions of metrics as input feature vector. In each line the table shows
the best combination with two metrics, three metrics and so on. The
classification method used is KNN.

methods are able to generalize to new grasp candidates.
When removing whole grasp clusters from the training

set, an accuracy of around 70% is obtained. This would
be the case when new grasp candidates, never seen during
classification, are attempted. An 80% would be achieved
when grasps similar to those used during the training are
attempted.

A few other works study the combination of metrics
and provide performance results of grasp executions. None
of them, though, relate systematically and precisely the
prediction made on virtual models with the results of the
executed grasps on a real robot. In the most related one,
[15], human operators guide the robot hand to stable grasp
configurations from the operators point of view, which
then executed on the real robot. These grasps are, then,
recorded and quality metrics are computed on a simulation
with the virtual model of the objects. For their analyses,
quality metrics are combined using a Principal Compo-
nents Analysis and a Gaussian Process is used for training
a classification model.

Their results showed that combining metrics improve
performance with respect a single metric up to a 66%. And
the trained model showed a classification performance of
56% of True Positve Rate with a 15% of False Positive
Rate. Other works reported a 76% [32] and 81% [42] suc-
cess rate, but using a lot less ofexperimental cases and
only using visual data from the target objects for grasp
planning. It is unclear how these magnitudes could be

compared to our results.
Finally, the question of whether the experimental database

used was large enough is addressed in the results of table
9. These are obtained by training the classification with a
dataset of averaged grasps which about a third of the size
of the whole database. The results are similar to those in
table 7. Hence, our conclusion is that the original database
contained enough samples.

7.3. A three-tier experimental score

An important observation during the realization of the
experiments is that there are candidate grasps that after
being executed several times have been always Stable, and
others Unstable regardless of the pose of the target object.
And there exist a third type grasp clusters with a mix
of Stable and Unstable experimental grasps. In order to
handle this notion we propose a three-tier scoring: Robust,
Fragile and Futile grasps.

A Robust experimental grasp is a grasp that belongs
to a cluster where all of them have been scored as Stable
grasps; a Futile experimental grasp belongs to a cluster
where all of them have been scored as Unstable; and a
Fragile grasp belongs to grasp cluster with Stable and Un-
stable grasp.

We carry out an analysis to find out whether the clas-
sification methods described in the previous sections are
able to discriminate grasps based on this three-tier scoring.
For this analysis, we chose the Tombatossals experimen-
tal database. In this database, all experimental grasps hs
been labelled with the binary experimental score. In order
to carry out the analysis, experimental grasps scores are
post-processed and all of them are assigned a three-tier
score depending on the distribution of Unstable and Stable
in their grasp clusters. The distribution of experimental
grasp in these thew grades is described in table 4.

Table 12 reports the accuracy results of the classifica-
tion methods after training. Only two methods are re-
ported, KNN and CT, since they consistently offered the
best results in our previous analysis. For this case, the
Train and Test were built randomly selecting experimen-
tal grasps from the database. Table 13 reports a similar
analysis but in this case whole-grasp clusters have been
selected to be part of the Train and Test set. This allows
testing the classification methods with grasp candidates
that have not been included in the Train set.

Table 12: Classification results using binary score and three-tier
scorem for random Train and Test datasets

Binary Score three-tier score
Classifier Train ± Std Test Train ± Std Test
K-Nearest Neighbours 0.70 ± 0.08 0.72 0.83 ± 0.04 0.83
Classification Trees 0.68 ± 0.05 0.65 0.86 ± 0.04 0.86

The Train and Test datasets are created by randomly selecting experi-
mental grasps from the Tombatossals database. Mean and standard de-
viation accuracy are computed applying a 10 fold-cross validation on the
Train set. In the third column the accuracy of the trained classificator
on the Test set is reported.
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Table 13: Classification results using binary score and three-tier score
for clustered Train and Test datasets.

Binary Score three-tier score
Classifier Train ± Std Test Train ± Std Test
K-Nearest Neighbors 0.63 ± 0.06 0.59 0.75 ± 0.15 0.75
Classification Trees 0.70 ± 0.10 0.81 0.78 ± 0.11 0.81

The Train and Test datasets are created by randomly selecting whole
grasps clusters from the Tombatossals database. Mean and standard de-
viation accuracy are computed applying a 10 fold-cross validation on the
Train set. In the third column the accuracy of the trained classificator
on the Test set is reported.

Finally, an analysis of the accuracy of classification
methods trained with samples using a single quality met-
ric is presented in table 14. In this case the data for the
Train and Test datasets are selected randomly from the
Tombatossals experimental database.

Table 14: Classification results of individual metrics using binary
score and three-tiers score

Binary Score Three-tier score
Metric Train ± Std Test Train ± Std Test
QA1 0.71 ± 0.05 0.69 0.67 ± 0.09 0.68
QB1 0.60 ± 0.07 0.48 0.55 ± 0.04 0.56
QB2 0.59 ± 0.06 0.52 0.54 ± 0.04 0.52
QB3 0.54 ± 0.06 0.45 0.53 ± 0.01 0.48
QC2 0.60 ± 0.04 0.56 0.55 ± 0.03 0.52
QD1 0.73 ± 0.06 0.66 0.72 ± 0.04 0.73
QD2 0.55 ± 0.07 0.52 0.51 ± 0.02 0.50

Train and Test datasets are created by randomly selecting experi-
mental grasps from the Tombatossals database. CT has been used
as classification method. Mean and standard deviation accuracy are
computed applying a 10 fold-cross validation on the Train set. In
the third column the accuracy of the trained classificator on the Test
dataset is reported.

7.4. Discussion on the three-tiers score

Results on tables 12 and 13 show that classification
methods trained with a three-tier experimental score show
better accuracy than those trained with the binary score.
It shows up to a 10% accuracy increase, 75% - 80% ac-
curacy in the case of clustered datasets and up to 86% in
the case of random datasets. This supports the claim that
a three-tier scoring approach could be useful to identify
those candidate grasps which are definitely good or bad.

In the case of using single metrics for the training, the
results (table 14) do not show any significant improvement
from a binary to a three-tier scoring. The conclusion is
that single metrics are limited for distinguishing between
good and bad grasps.

8. Conclusions

This paper has presented a series of analyses of the
predictive capability of quality metrics. To achieve this,
we have created a protocol to execute and score candidate
grasps computed on simulation on a real robot platform
that has been implemented on two robot setups. Following

this protocol, two datasets of experimental grasps executed
on the real robots, evaluated on simulation and labelled by
human subjects, have been created.

These datasets have allowed us to address and carry
out several analyses comparing their simulated and real
executions. The results of these analyses are described in
sections 6 and7. Each section includes a detailed discus-
sion of the results. The most relevant conclusions are:

• A combination of quality metrics can predict with
an accuracy up to 80% when presenting candidate
grasps already experienced, or up to 70% if new
grasps are presented.

• No individual metric can deliver such performance.

• A combination of 3 quality metrics is enough to achieve
an 80% accuracy.

• A three-tier scoring strategy allows achieving an 85%
accuracy.

• Grasps in our human-labelled database are not reli-
able to predict the success of a grasp. Future works
should be careful when collecting human labeling for
the purpose of prediction.

9. Limitations and future work

The presented work has some limitations. First, only
two manipulators were used to perform the experiments
and evaluate grasps. Generalizing the results on predic-
tion models to other grippers should be done carefully,
since results may vary. It is open to discussion whether
the results using each or both grippers to obtain exper-
imental grasps could lead to different prediction models.
Most of the quality metrics, except QD1 and QD2, are
independent from gripper kinematics and depend on the
contact points only. However the different kinematics of
a gripper produces a different set of simulated candidate
grasps. This has been be mitigated by the exhaustive gen-
eration of candidate grasps which covers the whole space
of possibilities. In addition, when the grasps are executed,
different experimental success rates could be obtained for
different hands. The question of how the gripper designs
produce different outputs and which parts of the design
of a gripper could be modified to improve the results of
experiments deserves definitively a deeper research.

Second, we used a reduced number of objects to per-
form the real experiments; although different shapes were
tested, an extended study with more objects should be
done. Third, the human-labelled datasets used were con-
strained by the goals and conditions in which they were
obtained. In order to draw general conclusions about the
predictive ability of human subjects, a more appropriate
dataset should be collected following a careful protocol.

Fourth, an hypothesis that we considered at the be-
ginning of the experiments is the influence of the physical
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context, such as gravity and supporting surfaces. Some in-
formation regarding this contextual information was reg-
istered during the execution of the experimental grasps,
i.e. the gravity vector. However, no conclusion could be
drawn regarding the impact of contextual information be-
cause there was not enough data. An ad hoc experiment
on the impact of context information should be done. The
data used for this purpose in this work proved to be insuf-
ficient.

Fifth, the real grasps executions were restricted to an
environment with a table holding the object prior to the
grasp. Repeating these experiments in other environments
with different restrictions or without restrictions is advis-
able. Finally, the prediction models were generated using
a few different types of classification methods. A wider
study with these data can be done using other algorithms
or methods, as it could provide better results.

As future work, we suggest extending this study us-
ing other grippers and object models. It would provide a
wider view of the predictive capability of combined or in-
dependent quality metrics. The generalization capability
of the classification methods for different robot hands is
still to be measured.

Also, it would be desirable to come up with new grasp
metrics, that are able to achieve much higher success rates.
A promising approach to obtain better metrics could be de-
rived from real experimental data and learning approaches,
in way similar to [28], bootstrapped by training on virtual
environments.

Finally, a more ambitious experiment to answer the
question of whether humans are good grasp stability ora-
cles stills remains to be done.

Appendix A. Classification Methods

This appendix provides a brief description of the dif-
ferent methods used for classification, and in particular,
the hyper-parameters required by each of them.

We aim to find a model y = f(x; w) that can pre-
dict binary grasp success y given an input feature vector
x consisting of several grasp features, typically the values
of the quality metrics calculated for that grasp configu-
ration. Our approach is to learn a binary classifier from
experimental data which minimizes the following equation:

min
w

∑
(x,y)∈D

1− l(f(x; w), y) (A.1)

where w denotes the parameter vector of the classifier
and

l(f(x; w), y) =

{
1, if f(x; w) = y

0, otherwise
(A.2)

Every classifier considered in this chapter minimizes a
loss in this setting. For various reasons, the exact loss

formulations may vary per method, e.g. through different
regularizers or by dropping the indicator function in order
to get gradients.

Given an experimental data set D, we train four differ-
ent classifiers using SciKit-Learn [33]. The hyper-parameter
search for each method is done using a grid search and
cross-validation. Details are presented in each subsection.
A more in-depth description of the classification methods
used in this chapter can be found in [4].

Appendix A.1. k-Nearest neighbors

K-Nearest Neighbors (KNN) is a non-parametric ap-
proach. It makes no assumptions about the distribution
that generates the data. Instead, it classifies a test data
point based on the class membership of its K nearest
neighbors in the feature space. To define distances, we
assume that this space is Euclidean.

Formally, KNN uses Bayes theorem to model the pos-
terior probability of a grasp being successful or not

P (y = c|x) = Kc/K (A.3)

where Kc is the number of data points belonging to class
c among the K nearest neighbors of x and c corresponds
to the grasps success category, i.e: Stable or Unstable. To
classify a data point, we maximize this posterior distribu-
tion over the binary class labels.

K is the hyperparameter in this classification method.
In general, a larger K suppresses the effects of noise but
makes the classification boundaries less distinct. We used
a validation set to find the optimal K for our data set.
KNN is well suited for our relatively low-dimensional fea-
ture space. However, in its most basic form, the inference
of this method does not scale well with the number of data
points and the dimension of the feature space.

Two different weighting functions were considered dur-
ing the training: uniform and distance. The former as-
signs uniform weights to each neighbor. The latter assigns
weights proportional to the inverse of the distance from the
query point. We tested a K ranging from 1 to 20. The best
performance corresponded to a distance weighting with a
value of 5 for K.

The distance weighting function is:

f(x; w) =

√√√√ k∑
1

(xi − yi)2 (A.4)

Appendix A.2. Classification trees

Classification Trees (CTs) in a non-parametric approach.
A CT is a binary tree that divides the input feature space
at each node j into two regions according to whether xi ≤
θj or xi > θj . θj is a parameter of the model. These sub-
regions are independently subdivided further by moving
down in the tree until a leaf node is reached.

Each leaf node of the tree encodes a region Rτ in the
feature space. This region containsNτ training data points
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associated with class labels yn. Let us assume that a test
data point with features x ended up in the leaf node cor-
responding to Rτ . The probability P (y = c|x) is then the
fraction of data points labelled with c in that region.

P (y = c|x) = mc,τ with mc,τ =
1

Nτ

∑
(xn,yn)∈Rτ

1(yn, c)

(A.5)

For the final classification of a test data point, we again
maximize P (y = c|x) over the class labels c.

To learn a CT, we need to find the optimal split pa-
rameters θj at each node of the tree. This is done by a
standard greedy strategy where at each new node, we op-
timize a certain criteria over a set S of candidate pairs of
input features xi and thresholds θj . The criteria has to
capture the purity of class labels within the sub-region Rτ
resulting from a candidate split of the input region. In this
work, we chose the Gini impurity g(Rτ ):

min
sτ∈S

g(Rτ ) with g(Rτ ) = 1−
∑

c∈{0,1}

m2
c,τ (A.6)

The more nodes are added, the deeper the tree and
therefore also the more complex the decision rule. To avoid
overfitting, we have found a maximum tree depth = 5 us-
ing the validation set. We have further investigated using
entropy as an impurity measure with no significant differ-
ence in the results.

Appendix A.3. Gaussian processes

A Gaussian Process (GP) is a probabilistic, non-parametric
method defined as a collection of a finite number of ran-
dom variables with a joint Gaussian distribution. In our
case, this collection consists of the grasps in the training
data D = {x, y}‖D‖. In the following, we summarize the
data in the matrix X and the labels in the vector y. A
GP can be seen as a distribution over functions with a
mean µ and covariance Σ. If we want to query the label
y0 of a test data point with feature vector x0, we have
f(x0) ∼ N(µ,Σ) with

µ =k(x0,X)T [K(X,X) + σ2
MI]−1y (A.7)

Σ = k(x0,x0)−k(x0,X)T [K(X,X) + σ2
MI]−1k(x0,X).

(A.8)

σ2
M is the variance of the noise on the target values.

The entries of the covariance matrix K(X,X)p,q at row
p and column q are defined based on a covariance func-
tion k(xp,xq) with some hyperparameters θ. We use the
squared exponential covariance function

k(xp,xq) = σ2
l exp(

−(xp − xq)
TL−1(xp − xq)

2
) (A.9)

where the hyperparameters are σl, the signal variance, and
L, the identity matrix multiplied with the length scale
l. We optimize these hyperparameters in the standard
way by maximizing the marginal likelihood. To compute
P (y0 = c|x0), we squash f(x0) through the logistic func-
tion (A.10).

σ(a) =
1

1 + e−a
(A.10)

Appendix A.4. Artificial neural networks

Artificial neural networks (ANN) are nonlinear func-
tions that map from the input feature vector x to the bi-
nary labels y. They are organized in multiple layers. Ex-
cept from the input layer, each layer takes the output of
the previous layer as input, potentially transformed with
some non-linear function. For a binary classification, the
output of the last layer is transformed using the logistic
function (A.10). To classify a test data point with, for
instance, a two-layer network, we need to compute

P (y = c|x) = σ
(∑

j = 0Mw
(2)
cj h

(∑
i = 17w

(1)
ji xi

))
(A.11)

where h(·) refers to the logsig transfer function of the out-
put from the first layer. The superscript (1) and (2) indi-
cates the different weights of each layer.

Up to 12 different algorithms and 100 hidden layers for
training the Neural Network were tested using the Matlab
Neural Network Toolbox[29].

The best one was Bayesian Regularization [14], with
layer size 17. It relies on the Levenberg-Marquardt al-
gorithm to learn the optimal weights w(l) for each layer.
The validation set is used for early stopping and manual
network structure optimization.

Appendix A.5. Evaluation metrics for classifiers

To compare the different classification methods, the
reporting uses the following measures:

Accuracy: Percentage of count of correct predictions
against the number of total samples, i.e. the count of
true positives (tp) and true negatives (tp).

Precision: Ratio tp/(tp + fp) where fp is the number
of false positives. Intuitively, it measures the capability
of the classifier to avoid labeling a negative as a positive
sample.

Recall: Ratio tp/(tp+fn) where fn the number of false
negatives. Intuitively, recall measures the capability of
a classifier to find all the positive samples.

f1-score: Harmonic mean of precision and recall: F1 =
2 ∗ (precision ∗ recall)/(precision + recall). It reaches
its maximum at 1 and minimum at 0.

Support: The number of occurrences of each label.
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