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Abstract 

In this work, studies on the mechanism of lithium ion intercalation (Li+) in vanadium pentoxide thin 
films (V2O5) were performed. The intercalation was induced by electrochemical experiments and the 
conditions and parameters used were optimised to allow structural, optical and electrical 
characterisation. Rutherford Backscattering Spectrometry (RBS) and Nuclear Reaction Analysis 
(NRA) ion beam techniques, performed at the Centre for Nuclear Technologies (CTN/IST), were 
used to locate and quantify the presence of Li+ ions in the crystalline structure of the material. In 
addition, the effect of pre-lithiation by ion implantation on V2O5 thin films was studied. 

V2O5 thin films were deposited by electron beam assisted evaporation (EBPVD) on glass 
substrates with an ITO layer. The samples were subjected to cyclic voltammetry (CV) and 
chronoamperometry (CA) as a procedure for intercalating Li+ ions in the V2O5 structure. Optical 
characterization by visible spectroscopy revealed a recovery of the film’s initial transmittance state 
after the sample was subjected to five cycles of CV. The corresponding I(V) curves displayed a 
comparable symmetry of peak anodic and cathodic currents indicating reversibility of Li+ 
intercalation. The X-Ray Diffractograms (XRD) of these samples showed the presence of an 
orthorhombic structured V2O5 with a preferential orientation in the (0 0 1) plane. The intercalation 
resulted in an increase in interplanar spacing of 3% along the lattices’ c-axis, which varied 
proportionally with the applied voltage. RBS and NRA spectra revealed distinct peaks, characteristic 
of 7Li+ ions and it was possible to quantify Li as an atomic percentage of the samples’ composition 
along its depth. It was also observed that the depth profile for Li extended beyond the ITO layer. 
The electro-optical characterisation of Li+ ion implantation found a reduction in the samples’ 
intercalation reversibility, with depth profiles suggesting Li entrapment.  

It was possible to quantify and detect the presence of Li+ ions and correlate these results 
with the structural expansion induced by the intercalation. 
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Resumo  

Neste trabalho, foram realizados estudos sobre o mecanismo da intercalação de iões de lítio (Li+) 
em filmes finos de pentóxido de vanádio (V2O5). A intercalação foi induzida por experiências 
eletroquímicas e as condições e parâmetros utilizados foram otimizados para possibilitar 
caracterizações estruturais, óticas e elétricas. As técnicas de feixe de iões espectrometria de 
retrodispersão de Rutherford (RBS) e análise de reações nucleares (NRA), efetuadas no Centro de 
Tecnologias Nucleares (CTN/IST), foram utilizadas para localizar e quantificar a presença de iões 
de Li+ na estrutura do material. Adicionalmente foi estudado o efeito da pré-litiação no V2O5 
efetuada pela técnica da implantação iónica.  

Os filmes de V2O5 foram depositados por evaporação térmica por feixe de eletrões (EBPVD) 
em substratos de vidro com uma camada de ITO. As amostras foram submetidas às técnicas de 
voltametria cíclica (CV) e cronoamperometria (CA) para intercalar iões de Li+ na estrutura do V2O5. 
A caracterização ótica por espectroscopia do visível revelou uma recuperação da transmitância 
inicial após as amostras terem sido submetidas a cinco ciclos de CV. As curvas I(V) 
correspondentes exibiram uma simetria comparável das correntes de pico nos sentidos anódicos e 
catódicos, que indicou reversibilidade da intercalação de Li+. Os difratogramas de raios X (DRX) 
mostraram a presença de um V2O5 de estrutura ortorrômbica com orientação preferencial no plano 
(0 0 1). A intercalação resultou no aumento do espaçamento interplanar de 3% ao longo do eixo c 
da rede cristalográfica, que variou proporcionalmente com a tensão aplicada. Os espectros de RBS 
e NRA revelaram picos distintos, característicos dos iões 7Li+ e foi possível quantificar Li como uma 
percentagem atómica da composição das amostras ao longo da profundidade. Foi também 
verificado um prolongamento de Li para além do V2O5 no perfil de profundidade da amostra. A 
caracterização eletro-óptica das amostras implantadas deu uma intercalação menos reversível, os 
perfis de profundidade foram sugestivos de um aprisionamento de Li. 

Foi possível quantificar e detetar a presença de iões de Li+ e correlacionar estes resultados 
com a expansão estrutural induzida pela intercalação. 
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Motivation and objectives 

The increased awareness on environmental issues has resulted in a greater demand of energy 
saving applications and materials. Smart windows, batteries, sensors, displays, electrochromic 
devices and catalysts are some examples of applications that have been a focus for development to 
meet these demands [1–4]. Ion intercalation is a mechanism common to all these applications that 
rely on charge movement for their functions. It consists of the chemical insertion of a  molecule or 
ion in to an oxide host matrix [5]. Therefore, to promote and control the ion movement and diffusion 
of ions between the ion source and the matrix, it is of great importance to acquire knowledge on 
how to optimize the performance of these applications. Electrochromism was a specific focus of this 
study as it is a phenomenon that presents visible evidence of intercalation: a reversible change in 
colour. The most commonly studied materials in this field include NiO, V2O5 and most notably WO3 
that exhibits good stability and transmittance modulation in the infrared spectral region [6–10]. Of 
these, V2O5 was considered of high interest since its intercalation mechanism is also prominent in 
Li-ion batteries as a cathode due to its high capacity, low cost and abundance [11–15]. Lithium on 
the other hand is the most popular choice as charge carrier as it contributes to a high density 
energy and lightweight configuration [16,17].  

Typical electro-optical measurements performed to test electrochromism indicate charge 
insertion and a corresponding transmittance variation. However these measurements have a 
limitation in that charge quantities are estimated by current-voltage responses [18] and the location 
of the ions within a typical two-electrode setup is not obtainable by these methods. Analytical 
techniques such as scanning electron microscopy (SEM), x-ray fluorescence (XRF) and x-ray 
photoelectron spectroscopy (XPS) are used to measure elemental compositions; however, Li 
phases have proven to be problematic to identify [19,20]. Ion beam techniques such as RBS and 
NRA can be used to measure light elements and depth profiles in thin films [21–24] . A combination 
of both techniques is often used to provide improved measurement accuracy for thin film 
compositions [25]. There are few studies of RBS and NRA on V2O5 thin films [26–30] and as such 
there is the possibility to explore the correlation of Li depth profiling with electro-optical and namely 
structural characterisation, such as the variation of lattice parameters. Pre-lithiation is a process 
often employed in applications involving intercalation. For smart windows and batteries, it can 
compensate for ion loss during the first cycle of intercalation due to the formation of a solid 
electrolyte interphase. This loss of ions permanently decreases the available energy and reduces 
the devices’ performance [9,31,32]. Ion implantation is often used in semiconductors for surface 
modification and selective impurity doping [33]. An experiment will be carried out to verify the impact 
of pre-lithiation by ion implantation on the thin film samples. 

Initially, an investigation needs to be performed on how to obtain and optimise crystalline 
V2O5 thin films for structural characterisation by XRD. Their deposition will be performed by EBPVD, 
followed by an annealing to guarantee the crystallinity of the film. The XRD analysis will dictate the 
optimal annealing temperature for subsequent tests. Li intercalation will be induced by 
electrochemical techniques: chronoamperometry and cyclic voltammetry. The scan rate and voltage 
sweep need to be adjusted for each set of samples in order to obtain a consistent electrochromic 
behaviour, which is quantified by transmittance measurements using optical spectroscopy. 
Intercalated V2O5 thin film samples will then be submitted to XRD once more to understand the 
influence of Li insertion on the V2O5 structure to correlate electric parameters with lattice variations. 
RBS and NRA will be performed on these intercalated samples to quantify and locate the presence 
of Li that was electrochemically inserted. This quantification will serve as means for understanding 
depth profiling of the intercalated species and as a correlation with the lattice modifications. Finally, 
a set of samples will be pre-lithiated by 7Li (Lithium-7) ion implantation. The same procedures and 
measurements will be carried out as a first glimpse to understand if there is any benefit or use of 
V2O5 pre-lithiation on its electro-optical and structural properties. 



 

1 
 

 Lithiation and Characterisation by Ion Beam Techniques of V2O5 Thin Films 

1. Introduction 

 
1.1. Vanadium Oxides 

The principal oxides of vanadium occur in the oxidation states of V2+ to V5+, which are in the forms 
of vanadium monoxide (VO), vanadium sesquioxide (V2O3), vanadium dioxide (VO2), and vanadium 
pentoxide (V2O5) [34]. Vanadium pentoxide (V2O5) is an n-type semiconductor (at room 
temperature) that is considered as a material for intercalation, due to its layered structure and its 
unique electronic, chemical and optical properties [27,34,35]. V2O5 has attracted significant attention 
in chemical sensors, electrochemical supercapacitors, secondary lithium ion batteries [36], solar cell 
windows and electrochromic displays. The strong interest in V2O5 originates from its ability to 
incorporate large amounts of Li+ ions, offering high energy density. Additionally, it exhibits high 
theoretical discharge capacity and charge storage, accompanied by unique variable optical 
properties [35]. 

Thin V2O5 films can be processed using a wide range of approaches such as sol-gel, 
radiofrequency magnetron sputtering and chemical vapour deposition. The parameters used in each 
deposition technique strongly influence the characteristics of the film such as structure, crystallinity 
and morphology [34], [35], which in turn influence the resulting electrochemical and electrochromic 
performance of the grown materials.  

V2O5 is the most stable oxide in the V–O system due to having the highest oxidation state. It 

crystallizes with an orthorhombic unit cell structure belonging to the Pmnm space group with lattice 
parameters a = 11.510 Å, b = 3.563 Å, and c = 4.369 Å, where the b and c axes are often 
interchanged. It has a layer-like structure and it is composed of distorted trigonal shapes of O atoms 
around V atoms [34]. 
 

 

Figure 1 – Representation of the crystalline structure of V2O5. It consists of linked VO5 square 

base pyramidal units. V atoms are represented as light brown spheres, O atoms as red [37]. 

The reference axes indicate the lattice parameters. 

The tetrahedra share edges to form (V2O4)n zigzag double chains along the (001) direction and are 
cross-linked along the (100) direction through shared corners [34,39]. In this structure, the 
tetrahedra have a short (1.58 Å) vanadyl bond, a [VO]2+ group, and four O atoms at distances 
ranging from 1.78 to 2.02 Å. The sixth O atom in the coordination tetrahedron lies along the vertical 
axis opposite to the V–O bond at a distance of 2.79 Å [34]. From this structure it is assumed that 
only weak Van der Waal's type interactions exist between the layers [39].  
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1.2. Lithium Intercalation and Electrochromism in V2O5 

Electrochromic (EC) materials are based on the intercalation of ions in its structure, the application 
of an electric potential triggers an oxidation-reduction (redox) reaction that is responsible for the 
reversible colour change of the material. This response can be induced by electrochemical 
experiments such as chronoamperometry (CA) and cyclic voltammetry (CV), where a current is 
measured corresponding to the ion movement to and from the EC material’s structure.  

In a two-electrode setup, the typical configuration involves the conductive layer as the 
working electrode (WE) where the prominent cell reaction takes place. A counter electrode (CE) is 
used to close the circuit and it is usually made of an inert material. Since the CE is only a pathway 
for the electrochemical reaction, its total surface area must be greater than the area of the WE as to 
not be a limiting factor in the kinetics of the electrochemical process [40]. This procedure is similar 
to that occurring in lithium ion batteries. The exact distribution of the intercalated ions inside the film 
and the whole electrochromic device, however, is not known in detail. The complete device is 
typically a configuration of separate layers on top of a transparent substrate, with a liquid or solid 
electrolyte in between. This is followed by a conductive layer such as ITO and the EC material on 
the surface acting as the Li+ insertion matrix [41].  
 

 

Figure 2 – a) Representation of a two electrode setup. The arrows indicate the direction of 

charge carrier flow during intercalation in to the electrochromic material, deposited on the WE 

[42]; b) Cyclic voltammogram obtained from applying a voltage sweep and measuring the 

electric current between electrodes over the course of multiple cycles [43]. 

The voltammogram is useful for understanding the intercalation mechanism occurring within the 
setup. A current peak corresponds to a redox reaction; they are observed in both the cathodic and 
anodic region. The peak symmetry indicates equivalent flow of charge carriers moving in and out 
during redox. The cathodic peak corresponds to a reduction on the working electrode whereas 
oxidation occurs at the anodic peak [44]. The minimum and maximum points indicate that the 
reduction and oxidation respectively have reached the fastest reaction rate. At these points, the 
concentration gradient of carriers near the electrode is able to feed the reaction process. As the 
voltage becomes more negative (or positive for the anodic region), the supply of ions in the solution 
has become diffusion limited, resulting in a current drop. 

One of the main goals of electrochromism studies is to optimize the characteristic 
parameters: optical density (ΔOD), colour efficiency (CEff), response or colouration and bleaching 
times (tc and tb, respectively) and cyclic stability. Tungsten oxide (WO3) is the most studied inorganic 
compound in these applications. It presents ideal electrochromic features such as low response 
times, high colouring efficiency and long life [45]. The intercalation of Li+ ions in V2O5, as well as of 
different transition metal oxides, leads to a change in its colour state, a process that is of value in 
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thin-film electrochromic devices. This process consists of the reversible reduction of V5+to V4+, given 
by the redox reaction: 
 V2O5 +xLi+ +xe− → LixV2O5 1 
 
Where x is the insertion ration of lithium per mole of V2O5. Insertion of more than one Li per mole of 
V2O5 has been reported to induce irreversible structural changes [45,46]. Li+ ion-based electrolytes 
are ideal for electrochemical reactions because they grant long term stability on EC devices and 
because of the higher ionic diffusion coefficient in ECs compared to other metal cations. One of the 
limiting factors to the process of charge transport and consequent response time is the movement 
of the ions   between electrodes. 
 
 
1.3. Lithiation and Detection of Li by Ion Beam Techniques 

Ion implantation is a process of material surface modification by which ions of a material are 
implanted into another solid material, resulting in a change of the materials' physical and chemical 
surface properties. The technique involves a source of ions (where ions can be produced from the 
desired element), an accelerator (where ions are electrostatically accelerated to high energy) and a 
target for the ions to penetrate into. The ion energy, as well as the ion species and target structure 
determines the obtained features and the ion penetration depth in the solid [48]. Implantation depths 
range from approximately 0.1 to 0.3 μm and a much lower substrate temperature of about 200 ° C is 
required. Dosage of ions ranges from 1015 to 1018 at/cm2 depending on the ion species, component 
material and intended properties. Another advantage resides in the ability to implant ions in the 
substrate material that would not usually diffuse or that are insoluble. Ion implantation is a batch 
process and has a treatment time of about 2 to 10 hours. The process is more reproducible and 
controllable compared to other conventional surface treatments [49].  

After ion implantation, the component surface requires no further treatment prior to use, 
although it has been observed that annealing treatments aid in removing surface damage caused 

during the implantation procedure as well as 
improving stability of electrical properties [50]. This 
technique has the advantage of being reproducible 
(the control variables are well defined). Also, it can in 
theory deploy any element on any substrate so the 
potential for applicability is numerous [51]. The 
controlled variables are the amount of Li+ ions 
introduced and the energy with which the ions are 
implanted in the EC material structure. The expected 
result is the variation of the depth reached by the ions 
as a consequence of the variation in the diffusion 
coefficient.  

Rutherford backscattering spectrometry is a commonly used technique in nuclear physics for 
the assessment of close surface layers in materials. At energies in the MeV range (typically 0.5 – 4 
MeV), a target is bombarded with ions and the energy of the backscattered projectiles is recorded 
with an energy-sensitive detector, typically a solid-state detector. RBS enables quantitative 
determination of material composition and profile depth of individual components. It is a quantitative 
technique without the need for reference samples, non-destructive, has an adequate depth 
resolution (in the order of nm) and a great sensitivity to heavy parts-per-million (ppm) elements. The 
analysed depth for incident He-ions is typically about 2 μm and for incident protons about 20 μm. 
The disadvantage of RBS is the low sensitivity for light elements, which is evaded by combining with 
other nuclear-based techniques such as NRA or Elastic Recoil Detection Analysis (ERDA) [52]. 

Figure 3 - Representation of an 

ion-implanted surface [69]. 
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2. Materials and Methods  

 
2.1. Vanadium Oxide Deposition 

The VOx thin films were deposited on glass substrates covered with indium tin oxide (ITO) layers, a 
transparent conductive oxide (TCO) that will act as the working electrode. The deposition was 
performed by EBPVD at DCM/CEMOP using 99.9% purity VO2 pellets (provided by Super 
Conductor Materials, P.O.#: PO/2-13-12 Lot#: 19092-12-01-01/4) as the evaporation material.  
 
 
2.2. Surface Treatments and Characterisation 

The deposited samples were annealed using a Nabertherm Muffle furnace L 3/12. The samples 
were placed inside the furnace, which was set to heat up at a rate of 10 ºC/min, up to 450 ºC. The 
temperature remained constant for one hour, followed by a cool down period until room temperature 
was re-established. Optical profilometry measurements were performed after each deposition using 
an Ambios XP-Plus 200 Stylus profilometer, to determine the V2O5 thin film thickness. 
 
 
2.3. Structural Characterisation 

Structural characterisation of the samples was conducted by XRD using a PANalytical MPD 
X’Celerator Diffratometer. The diffractograms were obtained in the 10 - 70 2θ range, using a step of 
0.0167º in 2θ. 
 
 
2.4. Optical and Electrochemical Characterisation 

A Gamry Reference 600+ potentiostat was used to conduct CV and CA. The two-electrode setup 
consisted of the conductive ITO layer as working electrode, Pt wire as counter electrode and a liquid 
electrolyte containing the Li+ ions for intercalation.  
 

  

Figure 4 – Two electrode setup for electrochemical processes: a) Initial setup with front view 

of the sample. The yellow V2O5 film is exposed to a circular area (0,883 cm2) of electrolyte. 

The green wire (1) is connected to the working electrode (ITO) and the red (2) to the counter 

electrode (Pt wire), submersed in electrolyte; b) Complete setup for electro-optical 

measurements. The optical fibres are aligned with the circular areas where the thin film is 

exposed to electrolyte. 

aaa)))   bbb)))   

111   222   



 

5 
 

 Lithiation and Characterisation by Ion Beam Techniques of V2O5 Thin Films 

aaa)))   

bbb)))   

The typical procedure for testing the electrochromic properties of the V2O5 samples started with a 
CV, set at a scan rate of 25 mV/s with voltages ranging from -3 V to 3 V, for at least one cycle. This 
was done to prevent subsurface phenomena, the formation of a solid electrolyte interface, which 
interferes with the electrochromic properties of the material [53]. Following the CVs, several CA 
were carried out using a voltage sweep of -5 V to 5 V for 180 seconds.  

Optical measurements were obtained simultaneously with the electrochemical experiments, 
using an OceanOptics USB4000 spectrometer in the 400 to 1000 nm wavelength range to obtain 
the transmittance through the electrochromic thin films. A custom-made ceramic cell was used to 
hold the sample in contact with the electrolyte, while allowing for optical measurements of the area 
in contact. These electrochemical experiments were performed using a liquid electrolyte solution of 
0.5 M lithium perchlorate in propylene carbonate (LiClO4-PC). The solution was prepared by adding 
5.32 g of LiClO4 to 100 mL of PC. The mixture was left on a magnetic stirrer at medium stirring rate 
for one hour. 
 
 
2.5. Ion Beam Techniques 

Ion beam techniques were used in this work to pre-lithiate and characterize the V2O5 thin films. 
These measurements were performed at the Accelerator and Radiation Technologies Laboratory 
(LATR) at CTN/IST (Lisbon, Portugal).  
 
 
2.5.1. RBS and NRA 
 
The stoichiometry and thickness of the targets were determined by means of RBS and NRA. These 
measurements were carried out at the 2.5 MV Van de Graaff accelerator of the LATR at CTN/IST. 
Three RBS detectors are placed symmetrically, two at 165° with respect to the beam direction (D1 
and D3) and one at 140° (D2). The data analysis of the RBS spectra was performed with the NDF 
code. 
 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

Figure 5 – a) RBS chamber with three detectors and the sample holder inserted, b) RBS line setup and 

c) Diagram of the Van de Graaf Accelerator. 

 

ccc)))   
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bbb)))   

a) 

The beam enters the RBS/Channeling beam line after passing through a 25° analyzing magnet and 
through a pair of slits. The energy calibration of the accelerator is done using the calibration of this 
magnet. Three silicon detectors can be located in the chamber, where the scattered particles are 
detected. These are placed at θ = -140° (RBS2), θ = -165° (RBS1) and θ = +165° (ERD) with 
respect to the beam axis (figure 2 c). The lower scattering angle is used to avoid scattering particles 
from the chamber in the spectrum [55]. 
 
 
2.5.2. Ion Implantation 
 
The implantation of 7Li was done at the Danfysik 1090 High Current Implanter at LATR/CTN. The 
source of ions is the model 921A High Current Source Ion (Chordis). The maximum acceleration 
voltage is 210 kV (50 kV at the extraction and 160 kV at the throttle tube) with currents up to 10 mA, 
target temperature between -150 and 600 °C, implanted area up to 40x40 cm2 and magnetic beam 
focusing and sweeping. Lithium-7 ions were implanted to a fluence of 1x1016 at/cm2, with 
implantation energy of 100 keV in three V2O5/ITO samples.  

 

 

 

 

 

 

 

Figure 6 – a) Scheme of the Danfysic Ion Implanter at LATR/CTN and b) photograph of the 

target chamber. The samples are attached to the round metal support. 

 
The analyzing magnet consists of a 90° double magnet with a mass resolution 𝑚/∆𝑚 from 150 to 
250. The ion beam is focused by the focusing magnets, which are a triplet of magnetic quadrupoles. 
The samples are placed in the implantation chamber and mounted on a large metal target support 
with two rotating axes [55]. 
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3. Results and Discussion  

 
3.1. Crystallisation of V2O5 Thin Films: A Structural Characterisation 

VOx thin films were produced using EBPVD deposited on ITO coated glasses. Due to the 
evaporation mechanism, the films are amorphous in the as-deposited state. In order to produce 
V2O5 thin films, the samples were annealed in air at different temperatures. Since V2O5 has one of 
the more stable stoichiometry of vanadium oxides, the annealing in an oxidizing atmosphere (air) 
promotes the crystallisation to orthorhombic V2O5. To characterize the temperature at which V2O5 is 
formed a sample was analysed in the heating chamber of the XRD system to allow the in-situ 
characterisation and tune the crystallisation behaviour of vanadium oxide. In this configuration, the 
sample is positioned in a platinum foil that is heated while performing the XRD scans. 

Figure 7 – In-situ XRD analysis of VOx films: a) XRD scans at different filament temperatures 

and b) a close-up of the same XRD analysis in the 19º - 22º 2Theta range for the high-end 

temperatures 

These in-situ preliminary tests were performed to visualize the crystallisation of the VOx structure, as 
well as to verify the annealing temperature ranges where the newly obtained V2O5 structure was 
visible using XRD. An intense peak at position 2Theta = 46.2º is consistent throughout every scan 
and represents the Pt foil sample holder in the XRD system. Below 300 ºC, the films are amorphous 
and only ITO related peaks at 30.1º are visible in the diffractograms. At 350 ºC a new phase is 
present, as seen by the reflection at 2Theta = 21.3 º that disappears at 450 º C. For temperatures 
above 450 ºC the detected peaks can all be matched to orthorhombic V2O5 phase. Figure 6 a) 
shows the formation of a peak around the position 2Theta = 19.8º at 450 ºC which then increases in 
intensity for subsequent annealing temperatures. Figure 6 b) emphasizes this diffraction peak to 
show the increase in intensity. 

For ensuing annealing studies, samples of layered glass, ITO and VOx were annealed in a 
muffle furnace at different temperatures to ensure the crystallisation of the films as V2O5. A 
temperature range of 350 ºC to 500 ºC was considered for following annealing studies to observe 
the effect of temperature on the structure of the VOx samples to draw further conclusions regarding 
the crystallisation. In figure 7 the XRD pattern obtained from a sample submitted to a thermal 
treatment of 1 hour at 450 ºC in the furnace is presented. 
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Figure 8 – XRD scan of annealed sample in the furnace at 450 ºC 

The results shown are similar to those shown in figure 7, which were obtained in the heating 
chamber of the XRD system. The diffraction peaks correspond to an orthorhombic V2O5 phase (a = 
11.516 Å, b = 3.5656 Å and c = 4.3727 Å; PDF 00-041-1426) and were assigned to the planes: (2 0 
0) at 2Theta = 15.4º, (0 0 1) at 20.2º, (1 0 1) at 21.7º, (1 1 0) at 26.2º, (3 0 1) at 31.1º and (0 0 2) at 
41.1º. These values are consistent with reported V2O5 depositions on ITO using EBPVD [56,57]. 
There are additional diffraction peaks at 2Theta of 30.2º and 50.6º that correspond to the (2 2 2) 
and (4 4 0) planes of ITO layer (In2O3; PDF 00-006-0416) beneath the V2O5 film, respectively.  

A XRD scan was also performed on a sample submitted to an annealing at 500 ºC as a 
means of comparing the effect of furnace annealing on the structure of the orthorhombic V2O5 thin 
films. This comparison showed no significant difference between the two samples. Since the 
substrates used in this project are glass coated with ITO, a maximum temperature of 450 ºC (for 1 
hour) was chosen to produce the V2O5 thin films used to study the lithium intercalation. 
 
 
3.2. Lithium Intercalation by Electrochemical Processes 

 
3.2.1. Optical Characterisation of V2O5 Films 
 
After the annealing the thin films changed from a dark grey colour to yellow, typical of V2O5 films. An 
optical characterisation was performed in order to extract the band gap of these films, presented in 
figure 8. 

Figure 8 a) represents a typical transmittance spectrum obtained for the post-annealed V2O5 
samples throughout this investigation. The %T increases the most at wavelengths from 430 nm to 
550 nm, from 8.3% to 60.7% (ΔT% = 52.4%), which suggests this is the region of the material’s 
optical band gap, where a carrier transition occurs. It represents the threshold where photons with 
sufficiently low wavelengths have enough energy to be absorbed in the thin film. [58] The spectrum 
follows a similar tendency to that obtained by other authors using annealed V2O5 thin films [56]. The 
optical band gap is determined in graph b) by plotting Tauc’s law: 
 

𝛼 ℎ 𝑣 =  𝐴 (ℎ 𝑣 − 𝐸𝑔)
𝑛
 2 
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Figure 9 - Optical characterisation of V2O5 and ITO thin films: a) Transmittance spectrum of in 

the 250 nm to 700 nm wavelength interval (UV-VIS region) and b) the corresponding Tauc plot 

used for extrapolating the optical band gap 

   
Where 𝛼 is the absorption coefficient (cm-1); ℎ 𝑣 is the photon energy (eV); 𝐸𝑔 is the optical band 

gap (eV); 𝐴 is an intrinsic energy constant of the material and n which depends on the transition. 

The exponent, 𝑛, can assume the value of 2, 3, 1/2 or 3/2 for indirect allowed, indirect forbidden, 
direct allowed and direct forbidden transitions, respectively [7]. For V2O5 thin films, particularly those 
deposited by EBPVD, Ramana, C. V. e Hussain, O. M. reported that a direct forbidden transition 

with 𝑛 = 3/2, resulted in the closest fitting to Tauc’s law in order to determine the optical band gap 
[59]. Krishnakumar, S., e Menon, C. S. justify this fitting on the idea that “the coordination number of 
the vanadium ion in the vanadate glass is the same as that in crystalline V2O5.” Thus, this similarity 
suggests that similar transitions take place in both crystalline and amorphous V2O5.  

For these samples, a direct allowed transition (n = 1/2) was considered using the first slope 
of figure 8 a). Vanadium oxides of different oxidation states present distinct electronic transitions 
[60], which can be verified by the two distinct slopes from the Tauc plot. An Eg = 2.48 eV was 
determined for the V2O5 Tauc plot. The optical band gap in literature for a direct allowed transition is 
reported as 2.58 eV for V2O5 thin films deposited by EBPVD at 400ºC [34]. The experimental values 
are in good agreement with literature, an experimental error of 3.9% was obtained. 
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3.2.2. Electrochemical Characterisation of V2O5 Films  
 
In the electrochemical characterisation of the V2O5 thin films, samples were subjected to cyclic 
voltammetry scans (CV) as a way to verify the occurrence of oxidation-reduction reactions. In order 
to choose a setup for redox reactions to occur, different variables were tested: the scan rate and 
voltage range. The procedure consisted of two electrodes, using a Pt wire as the counter electrode. 
These experiments were performed on films analogous to those reported in the previous chapter 
and are presented in figure 9. Different scan rates and voltage ranges were tested to optimize the 

measurements. 

Figure 10 – a) Cyclic voltammograms showing the effect of scan rate on the redox reactions 

of V2O5 thin films ; b) Cyclic voltammogram of a V2O5 film at a scan rate of 100 mV/s. The 

arrows denote the scan direction. 

 
Figure 9 a) shows the effect of the scan rate on the voltammogram of the thin film. The higher scan 
rate resulted in more defined symmetrical peaks at -1 and 1V, as well as higher currents when 2 V 
were applied. In figure 9 b), three cycles are presented and  there are three peaks denoted by 
arrows in both upwards and downwards swept voltages. The symmetry indicates the reversibility of 
lithium intercalation and deintercalation in the negative and positive voltages, respectively. The 
positions of the peaks on this voltammogram are found at larger voltages than the ones found in 
literature (between -1 to 1 V for other V2O5 thin films deposited on conductive layers) [61]. Several 
factors influence the effective voltage range: the electrode configuration being used, the thin film 
thickness and type of deposition used to make the film.  

The negative sweep from 0 V to -4 V leads to lithium intercalation, as the voltage goes to 
positive values the de-intercalation occurs. The most intense current peak at 2.1 V represents the 
majority of the oxidation reaction occuring in the film. The symmetrical peaks located near 1 V and -
1 V, with respect to the origin, are also related to the oxidation/reduction of V2O5. For the majority of 
the analysed samples, the most intense peaks near ±2 V were present while the others were not 
always clear. Different voltage sweeps were tested from ±1 V to ±5 V, the peak near 2 V was 
always the more prominent so the voltage sweeps were kept between ±4 V and the scan rate at 100 
mV/s. Published works also refer the presence of two-step electrochromism from yellow to green 
and green to blue [62], as can be verified in figure 9 b) due to the presence of several current 
peaks. The voltage ranges used in the electrochemical measurements throughout this work varied 
for each set of samples and had to be adjusted accordingly. 
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3.2.3. Electro-optical Characterisation 
 
The main objective of this study was to interpret and quantify the optical changes that occurred to 
the electrochromic V2O5 thin films, simultaneously while submitting the samples to cyclic 
voltammetry and chronoamperometry. The optical transmittance of the samples was measured in-
situ with the electrochemical tests. 

Li+ ion intercalation was conducted in a LiClO4-PC electrolyte solution using samples with an 
average thickness of 140 nm. The spectrophotometer was used to assess the optical characteristics 
of the films. Initially, the sample was intercalated with Li+ (“coloured”) by applying a 
chronoamperometric signal of -3 V for 180 s and then deintercalated (“bleached”) by applying the 
reverse procedure; +3 V for another 180 s. The optical transmittance spectra were obtained after 
each measurement and are presented in the figure 10.  
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Figure 11 - V2O5 optical transmittance in the UV-Vis-NIR spectral regions 

 
From the initial to coloured state (at -2 V), there was a significant drop in transmittance with a 24.6% 
difference (85.5% to 60.9%) in the 600 nm wavelength. Qualitatively, the tested area of the V2O5 
film changed from a dark yellow colour to cyan blue. When the sample was further biased with -3 V, 
a different transmittance curve (named “coloured 2”) was obtained, compared to the previous 
coloured state. This curve shifted to 67.0% transmittance at λ = 600 nm, while showing recovery to 
the initial state in the infrared region, from λ = 815 nm onwards. The initial and bleached optical 
states are identical which indicates the V2O5 recovered to its original oxidation state of V5+ as well as 
electrochromic reversibility for the first cycles. There are variations in the transmission spectra for 
different intercalation voltages, indicating different colours being produced by the intercalation of Li+ 
ions. These changes have been reported in other papers [8].  

CV scans were then performed while recording the transmittance at fixed wavelengths (λ1 = 
440 nm, λ2 = 510 nm, λ3 = 550 nm and λ4 = 650 nm) shortly before the conclusion of each individual 
electrochemical step. The graphs in figure 11 present the results of a sample submitted to five 
consecutive CV cycles. 
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Figure 12 - a) Optical transmittance for wavelengths λ1, λ2, λ3 and λ4 over five CV cycles. The 

letters c and b denote coloured and bleached, respectively. ; b) The corresponding CV cycles of 

the V2O5 film at a scan rate of 100 mV/s and ±3 V  voltage range. The arrows denote the scan 

direction. 

As can be observed on figure 11 a), there is an abrupt change in the transmittance at all measured 
wavelengths when the voltage reaches -1.5 V, corresponding to Li+ intercalation. This step is 
maintained until the voltage reaches positive values, near +1 V. From the matching CV data (shown 
in figure 11 b) the electrochemical behaviour also indicates the main oxidation/reduction peaks near 
±2 V indicating the correlation between the Li+ mobility in the thin film and the optical 
measurements. The consecutive CVs are similar indicating, that the process is reversible.  

For these sets of samples, the peak at 2 V is more prominent and the pattern is similar to the 
one presented on figure 10, although not all peaks are visible. Repeated chronoamperometry scans 
were performed between the ±2 V voltage ranges for steps of 180 s. The same wavelengths were 
used to measure transmittance over time. 
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Figure 13 – Optical transmittance for wavelengths λ1, λ2, λ3 and λ4 over five repeating 

chronoamperometry scans. The letters c and b denote coloured and bleached, respectively. 

 
From the graph in figure 12, it is possible to obtain the electrochromic parameters by finding the 
time required to reach the coloured and bleached state (tc and tb, respectively). These parameters 
are presented in Table 1. 
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Table 1 - Electrochromic parameters obtained from chronoamperometric measurements. The 

parameters obtained for λ3 = 550 nm are highlighted. 

 

λ (nm) Tc (%) Tb (%) tc (s) tb (s) ΔOD (λ) CE (cm2/C) Q (mC) 

550 67.00 81.00 41 20 0.08 5.06 
16.3 

650 54.20 79.90 27 81 0.17 10.30 

 
The coloured and bleached transmittance (wavelength dependent), Tc and Tb respectively, are 
found as the furthest points in each step before the voltage is inverted. The corresponding 
colouration and bleaching times (tc and tb) are found as the time taken for the transmittance to go 
from Tb–10%ΔT to Tc+10%ΔT and vice versa for tb. The variation in optical density, ΔOD, is given 
by: 

 
𝛥𝑂𝐷 (𝜆) = 𝑙𝑜𝑔 (

𝑇𝑏(𝜆)

𝑇𝑐(𝜆)
) 3 

With the ΔOD calculated from equation 2, the colouration efficiency (CE) of the EC material is given 
as the variation in optical density per unit of inserted charge: 

 
𝐶𝐸 (𝜆) =  

𝛥𝑂𝐷 (𝜆)

𝑄
 4 

   
The accumulated charge is obtained by finding the integral of the current measured at each voltage 
step. Since V2O5 goes through many coloured states and the bleached state is not transparent 
(unlike other electrochromic materials) the optical density and the coloration efficiency were 
emphasized for the 550 nm wavelength as that is the standard for characterising electrochromic 

devices. A ΔOD = 0.08 and CE = 4.66 cm2/C were obtained ( = 550 nm). A CE = 22.8 cm2/C has 

been reported for V2O5 thin films prepared by sol-gel, annealed at 450 ºC and %T measured at  = 
600 nm [63]. The difference is a considerable 79.6%, however the preparation procedures for the 
thin films were widely different. There are few reports on the CE of V2O5, as this material doesn’t 
have a clear transmittance modulation like the one observed in WO3 [9], where the initial state is 
transparent. 
 
 
3.2.4. Combined Structural and Electro-optical Measurements 
 
A set of experiments were carried out to understand the effect of electrochemical intercalation on 
the structural properties of the material. A sample was measured at the XRD to verify the V2O5 
peak’s positions and the crystallinity of the film prior to any test. Lithium was then inserted 
electrochemically by applying a negative bias through the ITO and measured again ex-situ on the 
XRD. A similar procedure was performed to deintercalate the Li ions. The XRD scans are presented 
on figure 13. 
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Figure 14 – XRD scans of a V2O5 sample after each applied voltage in the 2Theta = [16.5,21]º 

range 

 
The sample was initially intercalated (-4.0 V) the main peak on V2O5 disappears and new small 
peaks near 16.7º, 18º, and 18.9º appear indicating the formation of a possible lithium vanadate. 
When applying the reverse voltage, the diffraction peak near 2Theta = 19.8º appears and then by 
forcing a more positive voltage (+5 V) the peak returns to the initial position of the (100) V2O5 plane. 
The position of the peak may indicate the presence of Li+ ions inside the lattice, and after +4.5 V the 
lithium was not totally extracted from the film. The intensity decreases indicating loss of crystallinity 
due to the Li+ ion movement. This behaviour was already reported by other authors [64]. Since 
these scans were performed ex-situ, the sample had to be dried off after each electrochemical 
experiment to remove liquid electrolyte from the thin film. This procedure is not ideal as it can harm 
the thin film surface, affecting the thin film’s ability to intercalate the Li+ ions. 

To verify and characterize the structural response to the intercalation of Li+ ions, it was 
fundamental that the initial V2O5 was as similar as possible for each measurement. A sample 
composed of six different ITO electrodes, under the same V2O5 thin film, was tested 
electrochemically and each electrode was intercalated at different voltages. This sample was 
analysed by XRD and the results are presented in figure 14. As it can be seen, the most intense 
diffraction peak located at 2Theta = 19.8º goes through a shift to lower angles as the voltage 
applied to the electrode is decreased (to further negative values), being possible to conclude that 
the Li+ ions are being intercalated in the structure of V2O5. This suggests that the ion quantity is 
correlated with the peak position, resulting in an expansion of the crystalline structure along the c-
axis.  

The graph in figure 14 b) represents the relationship between the applied voltage (that 
induces intercalation) and the corresponding interplanar distance calculated for the crystallographic 
c-axis. These values are extracted from the respective XRD scans obtained in graph a) and using 
Bragg’s law: 
 

2𝑑𝑠𝑖𝑛𝜃 =  𝑛𝜆 
5 
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Figure 15 – Ex-situ XRD scans of a six-electrode configuration sample: a) XRD scans in the 

2Theta 18 to 21.5º range and b) the corresponding interplanar distance (crystallographic c 

parameter) of the V2O5 in each electrode. The red markers indicate the values obtained for non-

intercalated V2O5. 

Where d is the interplanar distance, θ is the incident angle of the x-ray, λ is the wavelength of the x-
ray and n represents the order of diffraction. For these measurements, n = 1 is considered as the 
first order of the reflection planes is the most prominent. A photograph of the sample is also 
presented where it is possible to qualitatively observe the yellow colour of the V2O5 thin film (initial 
state), as well as the change from green to progressively darker blues, from the electrode with an 
applied voltage of -0.5 V (from the left) to the electrode submitted to -3 V (furthest to the right). The 
greatest shift in 2Theta (20.3º to 19.8º) and interplanar distance (0.008 nm difference) was 
observed from the initial state to -0.5 V. From these results it was concluded that the potential 
applied on the electrodes resulted in a shift of the highest intensity diffraction peak, which can be 
correlated with the lithiation in the films. A similar trend was observed in isolated samples (with 
different applied potentials) as a confirmation experiment for the structural characterisation. 
 
 
3.2.5. Quantification of Li+ Ions by RBS and NRA Techniques 
 
After the characterisation of the thin film given in the previous chapter, a series of experiments were 
conducted at CTN/IST to detect the presence of Li+ ions in this same sample. RBS and NRA 
measurements were performed in a Van de Graaff accelerator where an H+ beam with 2.0 MeV of 
energy was directed to the sample. 

The protons from the beam can undergo an elastic collision with the samples’ surface and 
are backscattered with different energies, which depend on the kinematic factor of the collision 
given between the two interacting atoms. Some of these backscattered particles are detected by a 
particle detector, placed at an angle of 165º for this setup. This elastic collision analysis is referred 
to as RBS analysis. Nuclear reactions can also occur between the incident proton and lithium atoms 
(7Li and 6Li) present in the samples. In the case of 7Li, two high energy alpha (4He) particles can be 
produced. For this particular proton-lithium nuclear reaction, the emitted alpha particle is scattered 
with energy of 7.54 MeV and is also detected by the same particle detector. This analysis involving 
nuclear reactions is referred to as NRA.  

RBS and NRA spectra were obtained for each electrode of the previously mentioned six 
electrode sample, where each electrode was electrochemically biased with a different voltage. The 
spectrum for the electrode subjected to –3 V is presented in figure 15 a) and b), where it is possible 
to observe the presence of the elements in the analysed sample.  
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The energies of the particles backscattered by elastic collisions depend both upon the mass of 
atoms from which they scatter (kinematic factor) as well as the depth at which a collision occurs 
(energy loss factor). Energy barriers are present, which reveal elastic collisions beyond the samples’ 
surface. The width of these barriers gives a measure of the depth at which the collisions occurred. 
In figure 15 b), at energies above 7 MeV, a peak is observed which corresponds to the alpha 
particles produced by the nuclear reaction with 7Li atoms. This peak is an evidence of the interaction 
with Li atoms, and the area of the peak can be directly correlated with the quantity of 7Li in the 
sample. The energy dispersion (given by the peak width) is associated with the depth distribution of 
the intercalated Li atoms in the sample. 

Analysis with fitting software was performed to extract the film’s composition that best 
describes the spectra. From these fits, it was possible to find the film’s stoichiometry and the Li 
content in each electrode. The fitting of the data obtained from the RBS and NRA measurements, 
shown in figures 15 a) and b), were performed using the NDF software [54]. A bulk density of 3.357 
g/cm3 [65] was assumed for the V2O5 thin film.  

The depth profile in figure 15 c) graphically illustrates the atomic percentages of the present 
elements in the samples, determined from the individual fit on the RBS spectra of each electrode. 
These Li depth profiles suggest that lithium ions diffuse further inside the sample towards the ITO 
layer and glass substrate. A bias of -1 V was enough for the Li+ ions to reach a depth of up to 391 
nm (well inside the glass substrate), followed by a decrease to 363 and 279 nm at -2.5 V and -3 V, 
respectively. The total Li in the sample and V2O5 thin film was calculated considering the average 
percentage natural abundance of the two occurring isotopes on Earth, Li-6 and Li-7, with 7.42% and 
92.58% respectively [66]. The Li quantities detected in the six-electrode sample are summarised in 
Table 2.  
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Figure 16 – a) RBS spectrum of the 

electrode biased with -3 V, showing the 

more abundant elements present in the 

sample, b) NRA spectrum of the measured 

electrode and c) graphic representation of 
7Li atomic percentage as a function of 

depth obtained by fitting the spectra. 
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Table 2 – 7Li and total Li quantities and C-axis interplanar distance for the respective voltages, 

detected by RBS and NRA in the six-electrode sample. 

Electrode 
Voltage 

(V) 

7Li quantity  
(1015 at/cm2) 

Total Li 
quantity 

(1015 at/cm2) 

C-axis 
Interplanar 
distance (Å) 

E1 -0.5 22.20 23.94 4.486 

E2 -1.0 44.00 47.44 4.495 

E3 -1.5 50.93 54.91 4.508 

E4 -2.0 51.50 55.53 4.552 

E5 -2.5 58.80 63.40 4.591 

E6 -3.0 56.40 60.81 4.627 

 
 
From the values obtained in Table 2, it can be seen that the Li quantity increases with more 
negative voltages. This is expected, as more negative potentials resulted in higher currents (as 
seen from the CV data in chapter 3.2.2.) which attract more Li+ ions from the electrolyte solution to 
the cathode. Only electrode “E5” doesn’t follow this tendency, as it had a higher quantity of Li than 
electrode “E6”. However, from the depth profile in figure 15 c), it can be observed qualitatively that 
E6 has the most 7Li within the depth corresponding to the V2O5 thin film. This suggests that the 
more negative potentials are more effective at attracting Li+ ions towards the thin film itself for 
intercalation. Since the reduction peak seen during CV starts at -1 V and continues through to -3 V, 
the resulting current can be correlated with an increased intercalation of Li+ ions, which induces the 
redox reaction where LixV2O5 is obtained.  

The interplanar distances along the C-axis are shown in the last column as it can be related 
to the Li quantification. The increased Li+ intercalation resulted in a greater phase of LixV2O5 that 
can contribute to the lattice expansion, when compared to the x-ray diffractograms obtained for 
regular V2O5. It is suspected that the quantities of Li detected within higher depths are associated 
with Li diffusion into the glass substrate. 
 
 
3.3. Ion Implantation of Lithium 

One of the main objectives was to investigate the effect of sample lithiation by ion implantation on 
the structural, optical and electrochemical properties of the V2O5 samples. An attempt was also 
made to quantify the presence and quantity of Li+ ions in the samples’ layers by RBS. A simulation 
was performed in the MonteCarlo SRIM program, assuming a 200 nm thick film of V2O5 deposited 
on a 300 nm In2O3 film, to guarantee that the implantation distribution peak was on the V2O5 layer. 
For the 7Li+ ion implantation, energy of 20 keV and a fluence of 1x1016 at/cm2 were used to 
introduce lithium ions in the samples.  

The theoretical Li+ profiles for three different fluencies are presented in figure 16 a), obtained 
with the SRIM software. For this study, four samples were considered: two samples already 
annealed at 450 ºC i.e. crystalline V2O5 and two amorphous samples (VOx). The ion implantation 
was performed in two samples; one with crystalline V2O5 (annealed) and another in the amorphous 
phase. For clarity, these were named as c-V2O5(Li) and a-VOx(Li), respectively.  

The latter sample was then annealed after the implantation. This method was used to verify 
the effect of the thermal treatment on 7Li+ ion intercalation. Non-implanted VOx (a-VOx) and 
crystalline V2O5 (c-V2O5) samples were considered for comparison. All four samples in this chapter 
had approximately the same thickness of 300 nm. 
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Figure 17 – MonteCarlo SRIM simulated 7Li+ implantation profiles on a V2O5 layer deposited 

over In2O3: a) Li+ ion depth distribution for three different fluencies and b) Visual simulation of 

the 7Li+ ion implantation on the V2O5/In2O3 layers. Image taken from the SRIM software. 

 
3.3.1. Structural Characterisation 
 
After the 7Li+ implantation, the samples were measured in the XRD to understand the structural 
impact of the implantation on the thin film. Sample a-VOx (Li) was measured before and after the 
thermal treatment. The scans in figure 17 show that both the implanted (c-V2O5(Li)) and non-
implanted (c-V2O5), crystalline V2O5 samples present the typical V2O5 phases observed in the 
previous chapters. The diffractograms are very similar between the two samples, with just an 
observable difference in intensity at 2Theta = 20.2º, where the highest intensity diffraction peak is 
located. This indicates that sample c-V2O5 (Li) is less crystalline than the standard V2O5, which 
could be explained by the damaging effect of the implantation procedure on the crystal structure of 
the thin film.  
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Figure 18 – XRD analysis of the samples in the ion implantation chapter with: a) Full 2Theta 

range of the scan (10º to 50º) and b) Inset graph of the highest intensity peak within a 2Theta 

= 18.5º to 21.5º range. 
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The expected result was a shift of this peak to lower 2Theta values, similar to those observed in 
chapter 3.5 where the samples were biased with different voltages to induce Li+ intercalation. One 
possibility is that the fluence chosen for the ion implantation didn’t present a sufficient quantity of 
Lithium to induce a significant structural change within the thin film. The amorphous sample a-
VOx(Li) presented a flat set of diffraction peaks, with considerably reduced intensity at 2Theta = 
20.2º. This sample was unable to turn crystalline with the thermal treatment, which suggests the 
implantation procedure inhibits the crystallisation. 

The two amorphous samples were 
also scanned to verify the effect of the 
thermal treatment after the ion implantation, 
as shown in figure 17. Before annealing, both 
a-VOx(Li) and a-VOx show the typical 
diffractogram for amorphous VOx, with the 
peaks at 2Theta = 30.5º and 36º 
corresponding to the ITO layer beneath the 
VOx thin film. After the thermal treatment, an 
intense peak appeared at 2Theta = 20.2º for 
the non-implanted sample, indicating the 
formation of the typical V2O5 phase. This 
diffraction peak can also be observed for the 
implanted sample, a-VOx(Li), however with a 
much lower intensity. As seen with figure 18, 
the implantation was associated with a 
reduced ability of the sample to crystallize 
using the same thermal treatment procedure. 

 
 

 
 
3.3.2. Electro-optical Characterisation 
 
The implanted samples were tested for their electro-optical performance, since lithium intercalation 
is strongly related to the V2O5 thin film’s optical response.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20 – Optical transmittance of the sample c-V2O5(Li): a) in the UV-Vis-NIR spectral 

region, showing different coloured and bleached cycles and b) Wavelengths λ1, λ2, λ3 and λ4 

over five repeating chronoamperometry scans. The letters c and b denote coloured and 

bleached, respectively.  
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The optical %T curves in graph a) of figure 19 reveals that the implanted V2O5 sample was unable 
to recover from its initial colour, where each chronoamperometry cycle distanced itself further from 
the initial %T spectra. From the intersection point at λ = 650 nm until 1000 nm, the 1st bleached 
cycle’s %T decreased relative to the initial point by up to a 25% transmittance decrease at 1000 nm 
(33% difference for the 3rd bleached cycle). This point is further emphasized by comparison 
between the coloured spectra represented above; each bleached state recovered less than 5% 
transmittance in the 600 nm to 1000 nm wavelength, compared to their previous coloured cycles. In 
the 440 nm to 600 nm wavelength, there was no significant recovery as the curves are almost 
overlaid.  

The graph in figure 19 b) further proves a continuously less stable optical response over 
time. Instead of a back and forth %T cycle seen in the electro-optical characterisation chapter and 
other reported stable electrochromic V2O5 thin films [10,11], the %T measured at wavelengths λ1 
and λ2 show a clear tendency to increase (approximate 40% and 30% increase in %T for λ1 and λ2 
over 1800 s, respectively) whereas wavelength λ4 decreased by approximately 15% transmittance 
in that time frame. The %T at λ3 was the most constant, with a 7.5% transmittance increase. This 
can also be seen in graph a), where the %T curves of different cycles (corresponding to different 
%T measurements over time) intersect at a wavelength of 585 nm, close to λ3 = 550 nm. 

This inability to recover and further distancing from the initial optical properties with each 
chronoamperometry cycle suggests an irreversible Li+ ion intercalation within the implanted V2O5 
thin film. It is possible that the ion implantation procedure caused structural damage in the V2O5 
layer, resulting in reduced ion mobility and entrapment of the Li+ ions within the thin film. It is 
common to subject implanted materials to an annealing treatment as an attempt to revert the 
structural damage [68]. 

The graph in figure 20 a) shows the optical transmittance spectra for an amorphous VOx 
sample, a-VOx(Li), which was annealed after the Li+ implantation. 

Figure 21 – Optical transmittance of the sample a-VOx(Li): a) in the UV-Vis-NIR spectral 

region, showing overlapped coloured and bleached cycles and b) Wavelengths λ1, λ2, λ3 and λ4 

over five repeating chronoamperometry scans. The letters c and b denote coloured and 

bleached, respectively. 

 
The coloured and bleached state %T spectra obtained for the annealed a-VOx(Li) sample 
(implanted while amorphous) also showed a similar tendency of the sample’s inability to recover 
from the bleached to initial state. Graph a) emphasizes this behaviour, especially since recurring 
chronoamperometry cycles resulted in similar %T for both positive and negative bias. For the 
negative potential, which promoted lithium intercalation, a %T of 33.7% was obtained at 600 nm. 
The %T consistently increased to 40.8% at the same wavelength during the positive potential 
(deintercalation) for five chronoamperometry cycles.  
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bbb)))   

This sample was annealed after the ion implantation; this procedure is common for removing 
superficial damage which could improve Li+ mobility within the thin film. This idea could explain the 
consistent results for the transmittance measurements, when compared to the c-V2O5(Li) sample. 
Electro-optical characterisation was also carried out on the c-V2O5 sample (non-implanted and 
crystalline) and the results can be found in figure 24 of the appendix. These results followed the 
same trend of losing the ability to optically recover to its initial %T state; it is suspected that a 
contamination occurred on the VO2 pellets used for the thin film deposition. 
 
 
3.3.3. Li+ Ion Quantification by RBS/NRA Techniques 
 
The Li+ ion implanted samples were returned to CTN/IST for RBS measurements in order to 
determine the quantity of Li and draw comparisons with the regular samples (not subjected to ion 
implantation) from chapter 3.2. The three depths profiles in figure 21 a) represent different RBS 
measurements and were processed using the NDF software to obtain fitting curves for their 
respective spectra (figure 29 in the appendix). The first profile was obtained from measuring a 
region of the samples’ V2O5 film that was only exposed to the Li+ ion implantation. Since the entire 
surface area (covered by the V2O5 film) was exposed to the implantation, any point could be chosen 
outside of the area where Li+ ion intercalation was performed. This measurement point is indicated 
as number one on the photograph in figure 21 b), for visual aid. This profile indicates a 
homogeneous distribution of 2.8% 7Li along the depth of the V2O5 layer. The RBS measurements 
labelled as numbers two and three were performed on the green coloured circular areas of the 
samples c-V2O5(Li) and a-VOx(Li), respectively. 
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Figure 22 – a) Graphic representation of 7Li atomic percentage as a function of depth, for the 

samples subjected to ion implantation and b) photograph of the sample holder in the Van de 

Graaff accelerator’s RBS line.  

These are the areas where Li+ ion intercalation (by electrochemical procedures) was carried out, 
subsequent to the Li+ ion beam implantation. Near the surface (down to 40 nm in depth), the second 
profile indicates 30% 7Li for the crystalline sample (c-V2O5(Li)), compared to 15% for the sample 
implanted while amorphous (a-VOx(Li)). There is a decrease to similar 7Li percentages after 40 and 
60 nm depth for profiles, two and three respectively, to 5.0 and 7.5% 7Li. However, it is worth noting 
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that the second profile displays a more uneven distribution compared to the third. This could be due 
to the annealing treatment that the sample a-VOx(Li) received after the ion beam implantation 
procedure (which has been shown to “enhance recombination of vacancies and interstitial defects in 
amorphous silicon [68]), in order to obtain a sample with a crystalline V2O5 film that could be studied 
by DRX. 
 

Table 3 – 6Li, 7Li and total Li quantities for each sample in the ion implantation experiment, 

detected by RBS and NRA. The labels 1, 2 and 3 correspond to the RBS measurements 

performed on the sample in figure 21 b). 

RBS 
measurements 

6Li quantity  
(1015 at/cm2) 

7Li quantity  
(1015 at/cm2) 

Total Li quantity 
(1015 at/cm2) 

1 0.00 98.00 98.00 

2 15.05 185.60 200.65 

3 17.44 215.10 232.54 

 
 
For these measurements, 6Li quantities were also obtained so the total Li quantity can be 
determined by adding the quantities of both isotopes. On Table 3, it can be noted that no 6Li was 
detected for measurement 1. These were carried out in a region where only 7Li+ ion implantation 
was performed. Measurements 2 and 3 show higher quantities of Li as expected, due to the Li+ 
intercalation. The difference between these two is suspected once more to be a consequence of the 
annealing treatment, resulting in the recombination of vacancies for more Li to be stored. Compared 
to the non-implanted samples in chapter 3.2.5, the quantities of Li are higher by almost two orders 
of magnitude. The implantation was a contributing factor, as can be seen from the 98.00x1015 
at/cm2 of 7Li obtained in measurement 1. However, this doesn’t explain the entire difference.  

It is suspected that the electrochemical procedure could also have affected these values. This is 
because more CV and CA cycles were performed as an attempt to characterise these samples from 
an electro-optical perspective. As a consequence, it is possible that the procedure decreased the 
mobility of Li+ ions within the thin film, resulting in some Li being trapped in the V2O5 layer which 
was unable to be removed electrochemically. This idea can be correlated with the %T 
measurements over time by CA displayed in figure 19 b), where it was seen that resulting cycles 
had consecutively greater variations from the initial %T state. 
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4. Conclusions and Future Perspectives 

The main objective of this study was to identify and quantify the intercalation of Li+ ions in the V2O5 
thin film structure. Amorphous VOx thin films were deposited by EBPVD on glass substrates coated 
with an ITO layer. Crystalline V2O5 thin films were obtained from a thermal treatment in a muffle 
furnace at 450 ºC for 1h as these presented clear diffraction peaks in the XRD scans, notably a 
recurring peak for orthorhombic V2O5 at position 2Theta = 19.8º.  

Optical spectroscopy was performed on the thin films in the visible wavelength spectrum to 
obtain transmittance spectra. A band gap of Eg = 2.48 eV was determined for the direct allowed 
transition of a standard V2O5 sample, with a difference of 3.9% from literature. Cyclic voltammetry 
and chronoamperometry measurements were carried out to understand the redox reactions taking 
place in the thin film. From these, it was concluded that a safe voltage range of ±3 V would be 
effective for Li+ ion intercalation. Symmetrical reduction and oxidation peaks were observed to occur 
with maximums at ±2 V indicating that the majority of the Li+ ion intercalation in the V2O5 thin film 
took place at those voltages. These electrochemical techniques were then combined with in-situ 
optical spectroscopy to correlate the electro-optical behaviour of the samples, such as the effect of 
voltage on the colour and transmittance. These tests confirmed electrochromic recovery for five 
chronoamperometry cycles since the initial and final transmittance curves were identical. When the 
samples were subjected to -2 V and -3 V they showed different transmittance curves and colours on 
the tested area of the thin film, demonstrating the several oxidation states of vanadium. A 
colouration efficiency of 4.66 cm2/C was obtained at λ = 550 nm, which differed by a significant 
79.6%. There are few reports on this subject for V2O5 and the experimental conditions were 
significantly different. 

XRD was conducted on V2O5 samples subjected to electrochemical techniques (CA and 
CV), as a means of understanding the effect of Li+ ion intercalation on the structure of the thin films. 
From the initial state to the most negative voltage of -3 V, the most intense diffraction peak at 
2Theta = 21.8º disappeared, with new peaks at positions 16.7º, 18º, and 18.9º being formed. These 
indicate the formation of a LixV2O5 phase, which then returned back to its initial position when the 
voltage was reverted for Li+ deintercalation. It was possible to determine a lattice expansion along 
the c-axis as voltage was decreased to more negative values; this expansion is related to the 
increased formation of the LixV2O5 phase in the thin film. 

RBS and NRA measurements were performed to quantify the 7Li and total Li in the sample. 
An increasing trend in Li quantity was observed for these measurements, which supports the 
expansion determined by XRD structural characterisation. Additionally, it was possible to see the 
distribution of 7Li along the samples’ depth, which showed Li reaching the glass substrate. It was 
suggested that this could be diffusion of ions that didn’t undergo intercalation with the V2O5 thin film, 
however it was also observed that the electrodes with more negative voltages had greater quantities 
of Li inside the V2O5, suggesting these were more effective for inducing Li+ intercalation. It was 
possible to quantify and detect the presence of Li in the V2O5 thin films, showing that ion beam 
techniques could be of interest for characterisation of intercalation-based materials for applications 
in electrochromism and even batteries. For future works, it would be of interest to determine specific 
quantities inside each layer of the typical setup consisting of a substrate, conductive layer and ion 
storage material such as the vanadium pentoxide used. Quantification of the 7Li+ ion implanted 
samples showed much greater quantities of Li compared to the non-implanted six-electrode sample. 
This difference can be explained by the implantation, which contributes a part of the existing Li. It 
was also suggested that the difference in experimental procedure for the electrochemical 
techniques saturated the implanted samples with Li, making it difficult to reverse the intercalation for 
their removal to recover the V2O5 to its initial state. 
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6. Appendix 

6.1. Appendix A – Structural Characterisation 

Appendix A contains an additional graph regarding the crystallisation study on V2O5 thin films. XRD 
was performed on two samples subjected to annealing temperatures of 450 ºC and 500 ºC, in order 
to understand if higher temperature treatments resulted in a more crystalline film with higher 
intensity peaks. 
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Figure 23 - XRD scans of annealed samples in the muffle furnace at 450 ºC and 500 ºC 

Each electrode had its transmittance measured ex-situ, after the chronoamperometry, shown in 
figure 23.  
 
6.2. Appendix B – Optical and Electro-optical Characterisation 

Appendix B contains additional transmittance measurements obtained for electro-optical 
characterisation. Figure 23 shows attempted measurements on the six electrode samples’ V2O5 film 
after intercalation was performed on each electrode. The curves present an overall decrease in %T 
along the wavelength spectrum of 400 – 1000 nm, it is in agreement with the ideas presented for 
this experiment. However, the measurements were considered unreliable as it was difficult to 
guarantee that the optical fibre was aligned with the small width (approximately 2 mm) of each 
individual electrode.  
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Figure 24 - V2O5 optical transmittance in the UV-Vis-NIR spectral regions for each biased 

electrode. 
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Figure 24 contains the electro-optical measurements for the crystalline V2O5 test sample used 
during the experiments with the 7Li implanted samples from chapter 3.3. This sample was not 
subjected to implantation. 

Figure 25 - Optical transmittance of the sample c-V2O5: a) in the UV-Vis-NIR spectral region, 

showing overlapped coloured and bleached cycles and b) Wavelengths λ1, λ2, λ3 and λ4 over 

five repeating chronoamperometry scans. The letters c and b denote coloured and bleached, 

respectively. 

 
6.3. Appendix C - 7Li+ quantification by RBS and NRA 

Appendix C contains the RBS and NRA spectra obtained for the 7Li+ quantification experiments. 
Figures 25 to 29 display the spectra obtained for the remaining electrodes of the six-electrode 
sample discussed in chapter 3.2.5. The 7Li depth profiles and quantities were thus determined. 
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Figure 26 - RBS spectrum of the electrode biased with -0.5 V and b) NRA spectrum of the 

measured electrode. 
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Figure 27 - RBS spectrum of the electrode biased with -1.0 V and b) NRA spectrum of the 

measured electrode. 
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Figure 28 - RBS spectrum of the electrode biased with -1.5 V and b) NRA spectrum of the 

measured electrode. 
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Figure 29 - RBS spectrum of the electrode biased with -2.0 V and b) NRA spectrum of the 

measured electrode. 
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Figure 30 - RBS spectrum of the electrode biased with -2.5 V and b) NRA spectrum of the 

measured electrode. 
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