
 

João Pedro Sequeira Lavadinho 

Licenciatura em Engenharia de Micro e Nanotecnologias 

 

 

 

 

 

Production and characterization of 

thermoresponsive magnetic membranes 

 

 

Dissertação para Obtenção do Grau de Mestre em 
Engenharia de Micro e Nanotecnologias 

 

 

 

 

Orientador: Doutora Paula Isabel Pereira Soares, Investigadora 

em Pós-doutoramento, DCM – FCT/UNL 

Co-orientador: João Paulo Borges, Professor Associado com 

Agregação, Universidade Nova de Lisboa 

 

 

 

 

 

Júri: 

Presidente: Doutor Hugo Manuel Brito Águas, Professor Associado, FCT-UNL 

Arguente: Doutor Jorge Alexandre Monteiro Carvalho Silva, Professor Auxiliar, 

FCT-UNL 

Vogal:  Doutora Paula Isabel Pereira Soares, Investigadora em 

Pós – Doutoramento, FCT-UNL 

 

 

 

 

 

Outubro 2019 



ii 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Production and characterization of thermoresponsive magnetic membranes 

Copyright © João Pedro Sequeira Lavadinho, Faculdade de Ciências e Tecnologia, Universidade 

Nova de Lisboa. 

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo 

e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos 

reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser 

inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com 

objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e 

editor. 



iv 

 

  



v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Learning is the only thing the mind never exhausts, 

 never fears, and never regrets.” 

Leonardo da Vinci 

  



vi 

 

 

  



vii 

 

Acknowledgements 

Este trabalho marca o fim de mais uma jornada. Jornada essa que só foi possível com os 

contributos de várias pessoas. 

Primeiramente agradeço ao Professor Rodrigo Martins e à Professora Elvira Fortunato pela 

criação do curso de Micro e Nanotecnologias, o que me permitiu desenvolver os meus conhecimentos 

num local tão privilegiado como o Departamento de Ciências dos Materiais da Faculdade de Ciências 

e Tecnologias da Universidade Nova de Lisboa. 

De seguida, agradeço à minha orientadora, Doutora Paula Soares por toda a ajuda e 

principalmente pelas correções dos textos incompletos e por me ter dado na cabeça quando mais 

precisei. Agradeço também a disponibilidade que sempre teve para me orientar nos resultados e para 

me iluminar e guiar nos passos seguintes do trabalho. 

Agradeço também ao Professor João Paulo Borges todas as mini ajudas que ia dando ao longo 

dos dias, por todas as críticas construtivas aos resultados e pela oportunidade de participar em 

actividades do laboratório de Biomateriais, nomeadamente a Ciência Viva. 

Um especial agradecimento ao Ricardo, pois sem ele tinha ficado perdido nos resultados. 

Agradeço também pelas correções todas aos textos e por toda a ajuda no laboratório. 

Quero também agradecer à Catarina Chaparro por toda a ajuda no laboratório e por todas as 

explicações sobre as NPs. 

Agradeço Deneb Menda por todas as horas de análise de SEM, pela paciência que teve para 

mim e por todas as noites de diversão em que se juntou a nós. (teşekkür ederim). 

Aos companheiros com quem dividi laboratório e trabalho para não ficarmos sobrecarregados e 

não ficarmos entediados sem ninguém para falar, David, José, Pedro, Margarida e Cezar. 

Um especial agradecimento à Adriana e à Barbara por toda a ajuda e por toda a partilha de 

nanopartículas. 

Quero também agradecer à Sofia por todas as vezes que me aturou no laboratório só porque 

sim e por toda a ajuda que me deu durante o curso. Os teus apontamentos salvaram-me de mais 3 

anos cá! 

À Íris, com acento!, por todas as conversas filosóficas sem nexo, por todas as dúvidas de 

química e de bio, por me teres feito rever 80% do curso para um parágrafo da tua introdução, por todos 

os jantares que (eu queria dizer ofereceste) trocaste e por todas as correções da tese. 

À Sílvia por todas as horas que passámos a relaxar e a tentar esquecer os problemas da 

faculdade, pelas nossas fantásticas noites de comédia, por todas as festas em que foste a minha 

companhia e por todas as tardes no mininova a tentar relaxar antes do trabalho. 

À minha evil twin, Chica, por todas as conversas, por todas as horas de procrastinação, todas 

as horas de diversão e todas as festas. 

Ao Gui e ao Bolacha pelas horas no K e no Rosana em que me salvaram de conversas de 

maquilhagem e vestidos e por todas as noites no VII com esquemas malucos para no fim ser uma 

resolução básica. 

Quero agradecer à Bea por todas as horas de estudo e pelos fantásticos relatórios em que davas 

um jeito nos meus tópicos e magicamente aparecia um texto gigante e bem escrito. 



viii 

 

Também quero agradecer aos meus amigos da terrinha, que apesar de não nos vermos sempre, 

temos sempre tema de conversa e vontade de estar uns com os outos: Luís, Maria, Magaz, Saquete, 

Ana, Corado, Atípica, Jorge e Soraia. 

De seguida quero agradecer a toda a OHANA por terem feito destes 6 anos os melhores da 

minha vida, pelos fantásticos jantares no sushi e na churrasqueira, pelas horas em festas , por toda a 

ajuda que me deram durante o curso e em especial durante a tese, por aqueles espetaculares traçar 

de capas e batismos com algo que nem eu sei o que era (e prefiro não saber), mas sobretudo por 

serem quem são e terem estado sempre cá. 

Por último, e talvez o agradecimento mais importante, quero agradecer aos meus pais por todo 

o apoio e sacrifícios que fizeram para eu poder estar aqui, sei que não foi fácil. Quero ainda agradecer 

a minha irmã por todo o apoio que me deu ao longo destes anos. 

Este trabalho foi financiado utilizando fundos concedidos pela FEDER através do Programa 

COMPETE 2020 e Fundos Nacionais, através da FCT – Fundação para a Ciência e Tecnologia, ao 

abrigo do projeto POCI – 01-0145-FEDER-007688 (Referencia UID/CTM/50025) e PTDC/CTM-

CTM/30623/2017 (DREaMM). 

 



ix 

Abstract 

In the last years, the electrospinning technique has proven to be very advantageous to produce 

polymeric membranes since it originates nanometric fibres with a high surface area/volume ratio. As a 

result, electrospun nanofibers have been used for different biomedical applications, particularly in the 

development of multifunctional devices. To increase membrane functionality additional materials such 

as magnetic nanoparticles (MNPs) that respond to external stimuli can be combined with electrospun 

fibres. The incorporation of these nanoparticles into electrospun fibres produces a multifunctional 

system that can be used for cancer theranostic applications. 

The main objective of this work was to process a thermoresponsive polymer, polyacrylamide 

(PAAm), using electrospinning and to incorporate MNPs by their addition to the precursor solution. 

These membranes will have the ability to respond to two different external stimuli, magnetic field and 

temperature, being suitable for magnetic hyperthermia application. 

In the first phase, an optimization study of the electrospinning parameters was made to obtain 

monodisperse fibres of PAAm. MNPs were synthesized by chemical precipitation technique and then 

stabilized with oleic acid or dimercaptosuccinic acid to avoid their aggregation. Later the MNPs were 

added to the precursor polymeric solution and composite membranes were produced, which were 

characterized in terms of its mechanical properties, and swelling ability. They were also analysed in 

terms of morphology, chemical properties and structurally by SEM, FTIR and XRD, respectively. 

PAAm fibres with an average diameter of around 200 nm containing iron oxide nanoparticles 

were produced. This was confirmed by TEM and EDS analysis showing the presence of NPs and iron 

in the fibres, respectively. The incorporation of MNPs provided fibre reinforcement by increasing the 

Young’s modulus. Through magnetic hyperthermia measurements, it was possible to obtain a 

temperature variation of 1.1ºC, demonstrating the potential of this dual-stimuli responsive membranes 

for magnetic hyperthermia applications. 

 

 

Keywords: Magnetic hyperthermia, superparamagnetic nanoparticles, polyacrylamide, 

thermoresponsive; magnetic nanocomposites. 
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Resumo 

Nos últimos anos, a técnica de eletrofiação provou ser muito vantajosa na produção de 

membranas poliméricas, uma vez que origina fibras nanométricas com uma elevada relação 

superfície/volume. Como resultado, as nanofibras electrofiadas têm sido usadas para diferentes 

aplicações biomédicas, particularmente no desenvolvimento de dispositivos multifuncionais. Para 

aumentar a funcionalidade da membrana, materiais adicionais que respondem a estímulos externos 

podem ser combinados com fibras electrofiadas como por exemplo nanopartículas magnéticas 

(MNPs). A incorporação destas nanopartículas nas fibras produz um sistema multifuncional que pode 

ser usado para aplicações de teragnóstico do cancro. 

O principal objetivo deste trabalho foi processar um polímero com resposta térmica, a 

poliacrilamida (PAAm), usando eletrofiação e incorporar MNPs por adição à solução precursora. Estas 

membranas terão a capacidade de responder a dois estímulos externos diferentes, campo magnético 

e temperatura, sendo adequadas para aplicação de hipertermia magnética. 

Na primeira fase, foi realizado um estudo de otimização dos parâmetros de eletrofiação para 

obter fibras monodispersas da PAAm. As MNPs foram sintetizadas pela técnica de precipitação 

química e depois estabilizados com ácido oleico ou ácido dimercaptosuccínico para evitar a sua 

agregação. Posteriormente, as MNPs foram adicionadas à solução polimérica precursora e foram 

produzidas membranas compósitas as quais foram caracterizadas em termos das suas propriedades 

mecânicas e capacidade de inchamento. Foram também analisadas em termos de morfologia, 

propriedades físico-químicas e estruturalmente por SEM, FTIR e DRX, respetivamente. 

Foram produzidas fibras PAAm com um diâmetro médio de cerca de 200 nm contendo 

nanopartículas de óxido de ferro. Foi confirmado pelas análises de TEM e EDS, mostrando a presença 

de NPs e ferro nas fibras, respetivamente. A incorporação das MNPs provocou um reforço às fibras 

aumentando o módulo de Young. Através de medidas de hipertermia magnética, foi possível obter uma 

variação de temperatura de 1,1ºC, demonstrando o potencial dessas membranas com resposta a dois 

estímulos para aplicações de hipertermia magnética. 

 

 

Palavras – chave: Hipertermia magnética; nanopartículas superparamagnéticas; poliacrilamida; 

resposta térmica; nanocompósitos magnéticos.





xiii 

Contents 

Acknowledgements ......................................................................................................................vii 

Abstract ........................................................................................................................................ ix 

Resumo ........................................................................................................................................ xi 

List of Figures ............................................................................................................................. xv 

List of Tables .............................................................................................................................. xvii 

1 Introduction .......................................................................................................................... 1 

1.1 Thermoresponsive polymers ........................................................................................... 1 

1.2 Electrospinning ................................................................................................................ 2 

1.3 Magnetic Nanoparticles ................................................................................................... 3 

1.3.1 Superparamagnetic effect ....................................................................................... 3 

1.3.2 Magnetic Hyperthermia based on MNPs ................................................................ 4 

1.3.3 Magnetic composite membranes ............................................................................ 5 

2 Materials and Methods ........................................................................................................ 7 

2.1 Superparamagnetic Iron Oxide Nanoparticles (SPIONs)................................................ 7 

2.1.1 Synthesis ................................................................................................................. 7 

2.1.2 Characterization ...................................................................................................... 7 

2.2 Polymeric solution ........................................................................................................... 7 

2.3 Electrospinning ................................................................................................................ 7 

2.3.1 Crosslinking ............................................................................................................. 7 

2.4 Incorporation of Nanoparticles ........................................................................................ 8 

2.5 Membrane Characterization ............................................................................................ 8 

2.6 Swelling ........................................................................................................................... 8 

2.7 Viscosity tests .................................................................................................................. 8 

3 Results and Discussion ....................................................................................................... 9 

3.1 Thermoresponsive electrospun membranes ................................................................... 9 

3.1.1 Polymeric solution ................................................................................................... 9 

3.1.2 Electrospinning parameters optimization .............................................................. 10 

3.1.3 PAAm membranes crosslinking ............................................................................ 13 

3.2 Magnetic Nanoparticles ................................................................................................. 16 

3.3 Magnetic Membranes characterization ......................................................................... 18 

3.3.1 Thermogravimetric Analysis (TGA) ....................................................................... 21 



xiv 

 

3.3.2 Stress tests ............................................................................................................ 22 

3.3.3 Swelling ................................................................................................................. 25 

3.3.4 Magnetic Hyperthermia ......................................................................................... 26 

4 Conclusion ......................................................................................................................... 29 

5 References ........................................................................................................................ 31 

6 Supporting Information ...................................................................................................... 35 

 

  



xv 

 

List of Figures 

Figure 1.1 - Polyacrylamide chemical structure [13]. .................................................................... 1 

Figure 1.2 - Schematic illustration of the electrospinning apparatus [8]. ...................................... 2 

Figure 1.3 - Important parameters obtained from a magnetic hysteresis loop. The saturation 

magnetization, Ms, remaining magnetization, Mr, and coercivity, Hc [29]. ............................................. 4 

Figure 3.1 - Viscosity variation as a function of shear rate for PAAm solutions in water with 

different polymer concentrations (w/w) (For most values the standard deviation is negligible and is 

represented where it does not.). ............................................................................................................. 9 

Figure 3.2 - Viscosity variation as a function of polymer concentration in solutions for a constant 

shear rate of 1 s-1. (For all samples, except the 6 wt.%, the standard deviation is negligible). ............ 10 

Figure 3.3 - SEM image for fibres produced using the following parameters 0.25 ml.h -1; 15 cm 

and 15 kV for the 4 wt.% PAAm solution in water and its diameters and variations (30 fibres were 

measured using ImageJ software). ....................................................................................................... 12 

Figure 3.4 - SEM image for fibres produced using the following parameters 0.25 ml.h -1; 15 cm 

and 15 kV for the 4 wt.% PAAm solution in water. ............................................................................... 12 

Figure 3.5 - SEM image for fibres produced according to parameters 0.25 ml.h -1; 15 cm and 

15 kV for the 4 wt.% PAAm solution in water/ethanol and its diameters and variations (30 fibres were 

measured using ImageJ software). ....................................................................................................... 12 

Figure 3.6 - SEM image for fibres produced according to parameters 0.25 ml.h -1; 15 cm and 

20 kV for the 4 wt.% PAAm solution in water/ethanol. .......................................................................... 13 

Figure 3.7 – Non-crosslinked polyacrylamide electrospun membrane before (left) and after (right) 

contact with water. ................................................................................................................................ 13 

Figure 3.8 - Schematic representation of crosslinking of polymer chains (adapted from [47]). . 14 

Figure 3.9 - Crosslinking reaction between PAAm and GA [17]. ................................................ 14 

Figure 3.10 - Effect of crosslink on polymeric membranes for several times: 1 h (left); 2 h (centre); 

5 h (right) and at various temperatures: a) 80 °C; b) 100 °C; c) 120 °C; d) 140 °C; e) 150 °C. ........... 15 

Figure 3.11 - Membrane after 2 h at 80 ºC (left) and after 1 h at 120 °C (left). .......................... 16 

Figure 3.12 - FTIR analysis for PAAm before and after crosslinking reaction with glutaraldehyde.

 .............................................................................................................................................................. 16 

Figure 3.13 - XRD diffractogram of pristine nanoparticles, oleic acid-coated nanoparticles and 

DMSA coated nanoparticles.................................................................................................................. 18 

Figure 3.14 - TEM image of A) dimercaptosuccinic acid-coated magnetite and B) oleic acid-

coated magnetite nanoparticles and the respective size distribution of nanoparticles. ........................ 18 

Figure 3.15 - SEM image of PAAm 4 wt.% in water fibres containing NPs - DMSA produced with 

optimized parameters (0.3 ml.h-1; 15 cm; 15 kV) and respective diameter variation (30 fibres were 

mediated using ImageJ software). ........................................................................................................ 19 

Figure 3.16 - SEM image of PAAm 4 wt.% fibres containing NPs - OA produced with optimized 

parameters (0.3 ml.h -1; 15 cm; 15 kV) and respective diameter variation (30 fibres were mediated using 

ImageJ software). .................................................................................................................................. 20 

Figure 3.17 - EDS analysis of membranes containing NPs – DMSA (A) and NPs – OA (B). .... 20 



xvi 

 

Figure 3.18 - TEM images for PAAm fibres incorporating NPs - OA (left) and NPs - DMSA (right).

 .............................................................................................................................................................. 21 

Figure 3.19 - FTIR analysis of composite membranes containing NPs compared to membrane of 

plain PAAm. .......................................................................................................................................... 21 

Figure 3.20 - Thermogravimetric analysis of plain PAAm membranes before and after 

crosslinking, composite PAAm membranes with iron oxide NPs incorporated and nanoparticles coated 

with DMSA and OA. .............................................................................................................................. 22 

Figure 3.21- Stress curves for the different polyacrylamide membranes: 4 wt.% polyacrylamide; 

PAAm 4 wt.% crosslinked; PAAm 4 wt.% with NPs - OA and PAAm 4 wt.% with NPs – DMSA. ........ 23 

Figure 3.22 – Young’s module of each membrane type. ............................................................ 24 

Figure 3.23 - Ultimate tensile strength of each membrane type. ................................................ 24 

Figure 3.24 - Swelling ratio curves of plain PAAm membranes and composite membranes at 

different times. Samples A) were performed at a constant temperature of 37.5 ° C. Samples B) were 

performed at room temperature. ........................................................................................................... 25 

Figure 3.25 - Temperature variation for DMSA and OA coated nanoparticles in suspension and 

composite membranes of PAAm with NPs incorporated produced using two different solvent systems: 

water and water/ethanol (8:2). The tests were performed for 10 min for a magnetic flux of 300 Gauss at 

418.5 kHz (five tests were performed for each measure). .................................................................... 27 

Figure 6.1 - SEM image of fibres produced with 4 wt.% PAAm solution in water using parameters: 

0.25 ml.h -1; 15 cm and 15 kV, without humidity control (Initial humidity: 36%; Final humidity: 48%). 

Average diameter: 277±115 nm. ........................................................................................................... 36 

Figure 6.2 - Example of a beaded membrane produced with the 3 wt.% PAAm solution in 

water/ethanol, through the parameters 0.25 ml.h -1; 15 cm; 15 kV. ...................................................... 36 

Figure 6.3 - Example of a beaded membrane produced with the 5 wt.% PAAm solution in 

water/ethanol, through the parameters 0.25 ml.h -1; 15 cm; 15 kV. ...................................................... 38 

Figure 6.4 - SEM image of fibres produced by 4 wt.% PAAm solution in water using parameters 

0.4 ml.h -1; 15 cm; 15 kV. ...................................................................................................................... 39 

 

  



xvii 

 

List of Tables 

Table 3.1- Electrospinning conditions selected from samples obtained with a 4 wt.% PAAm 

solution in water and the respective mean fibre diameter and standard deviation obtained from SEM 

analysis. ................................................................................................................................................ 11 

Table 3.2 - Electrospinning conditions selected from samples obtained with a 4 wt.% PAAm 

solution in water/ethanol and the respective mean fibre diameter and standard deviation obtained from 

SEM analysis. ....................................................................................................................................... 11 

Table 6.1 - Results of parameter combinations tested in the electrospinning technique. .......... 35 

Table 6.2 - Parameters used for Water/Ethanol (8:2) + 3 wt.% PAAm solution. ........................ 35 

Table 6.3 - Parameters used for Water/Ethanol (8: 2) + 4 wt.% PAAm solution. ....................... 37 

Table 6.4 - Parameters used for Water/ Ethanol (8: 2) + 5 wt.% PAAm solution. ...................... 37 

Table 6.5 - Parameters used for Water + 3 wt.% PAAm solution............................................... 38 

Table 6.6 - Parameters used for Water + 4 wt.% PAAm solution............................................... 39 

Table 6.7 - Parameters used for Water + 5 wt.% PAAm solution............................................... 40 





xix 

List of Abbreviations 

DMSA   Dimercaptosuccinic acid 

E    Young's modulus 

EDS   Energy Dispersive Spectroscopy 

FAPLCS   Self-aggregating polymeric folate-conjugated N-palmitoyl chitosan 

FTIR   Fourier Transform Infrared spectroscopy 

Hc   Coercive field 

HCl   Hydrochloric acid 

IONPs   Iron Oxide Nanoparticles 

LCST   Lower critical solution temperature 

MNPs   Magnetic nanoparticles 

Mr   Remaining magnetization 

MRI   Magnetic Resonance Imaging 

Ms   Saturation Magnetization 

NPs   Nanoparticles 

NPs – OA  Nanoparticles with Oleic Acid 

NPs – DMSA  Nanoparticles with Dimercaptosuccinic acid 

OA   Oleic Acid 

PAAm   Polyacrylamide 

SEM   Scanning Electron Microscopy 

SPIONs   Superparamagnetic iron oxide nanoparticles 

Tc   Currie temperature 

TEM   Transmission Electron Microscopy 

TGA   Thermogravimetric analysis 

UCST   Upper critical solution temperature 

UV-Vis   Ultraviolet - Visible 

XDR   X-ray Diffraction 

 

  



xx 

 

 

  



xxi 

 

Motivation 

Cancer is a disease in which a group of cells by a mutation on their DNA show uncontrolled 

growth, invading and destroying adjacent tissues. These cells can also travel to other areas of the body 

through the circulatory and lymphatic systems resulting in metastases [1]. 

According to the World Health Organization, cancer accounted for about 9.6 million deaths in 

2018, i.e., approximately one in six deaths was due to cancer and the number of patients is expected 

to increase by 70 % over the next two decades. This raise is due to the increase in health risk factors 

that have been noted in recent years, such as smoking, poor diets and lack of physical activity. Thus, it 

is important that this disease can be correctly and early diagnosed to be properly treated to cure the 

patient or considerably prolong his life [1-2]. 

Most conventional treatments, such as chemotherapy and radiotherapy, are based on the use of 

ionizing radiation to destroy tumour tissues by killing them or make them stop their reproductive cycle. 

These treatments, however, often affect the surrounding tissues. Techniques that act at the cellular 

level rather than at the tissue level are then required [3]. An alternative treatment option is hyperthermia, 

which is defined by National Cancer Institute of the United States as a type of treatment in which the 

body tissue is exposed to high temperatures to damage and kill cancer cells or to make cancer cells 

more sensitive to the effects of radiation and certain anticancer drugs [4]. Typically, hyperthermia is 

clinically used in combination with radiotherapy or chemotherapy, thus decreasing the later side-effect 

through a dose reduction. The use of this technique is of great value in the treatment of cancer disease, 

but the biggest challenge of this technique is the localized temperature increase. The use of magnetic 

nanoparticles is an advantage to this problem because the heating is done by applying an alternating 

magnetic field to NPs located in the tumour [5]. The hyperthermia technique increases the blood flow 

in the tumour area which in return increases the amount of oxygen in that area. Radiotherapy, on the 

other hand, depends on the formation of oxygen free radicals. By combining the two techniques it is 

possible to receive a lower radiation dosage to achieve the same treatment result with fewer side 

effects [6]. 

Current state of the art focuses on developing new or improved cancer treatment option. One of 

the options is to use multifunctional devices such as dual-responsive devices. In these systems it is 

possible to combine multiple functions in the same device. A typical combination is the use of treatment 

and diagnostic moieties, producing a theragnostic device. 

This Master thesis is integrated into project DREaMM (Ref. PTDC/CTMCTM/30623/2017) that 

aim to develop a nanofibrous system with dual-responsive capabilities. This system is based on 

magnetic nanoparticles incorporated in thermoresponsive microgels or nanofibers produced by 

electrospinning. Therefore, the main objective of this Master thesis is to produce thermosensitive 

polyacrylamide fibres using electrospinning technique, followed by the incorporation of Fe3O4 

nanoparticles inside the nanofibers. With this architecture a dual-responsive system is produced with 

application in magnetic hyperthermia. For the optimization of electrospinning parameters, studies will 

be performed by varying one parameter at a time to obtain the finest possible fibres. For the 

development of the multifunctional composite system, this topic contains several sub-goals to achieve 

the main goal: 
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• Production and characterization of PAAm membranes with incorporated Fe3O4 

nanoparticles. 

• Study of the mechanical, morphological and swelling properties of composite 

membranes. 

• Study of magnetic hyperthermia to evaluate the viability of the composite in cancer 

therapy. 
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1 Introduction 

1.1 Thermoresponsive polymers 

Thermoresponsive polymers are a class of "smart" materials that can respond to a temperature 

variation. These materials are widely used in biomedical applications, such as drug delivery and tissue 

engineering. There are two types of thermoresponsive polymers: those that react to a decrease in 

temperature and have a lower critical solution temperature (LCST); and polymers that respond to a 

temperature increase above a certain value having an upper critical solution temperature (UCST)[7–9]. 

The rationale of using thermoresponsive polymers for drug delivery applications comes from the need 

to deliver the drugs in the right area, at the right time, and at the right concentration. Therefore by using 

thermoresponsive polymers for this purpose ensures that the loaded drug is only released upon trigger 

by an external stimulus, such as a variation of temperature [10]. 

In tissue engineering, thermoresponsive polymers are mainly used in two situations: as 

substrates that enable cell growth and proliferation, and as injectable gels. In the first, the thermal ability 

of the polymer is used to regulate the cells attachment and detachment from a surface. The application 

for the second case involves the encapsulation of cells in a three-dimensional structure. That will allow 

the delivery of encapsulated cells to deliver nutrients, drugs, and growth factors to defects of any shape 

using minimally invasive techniques [11]. 

Polyacrylamide (PAAm) is a biocompatible thermoresponsive polymer with an UCST around 

35 ºC (close to body temperature). Above the critical temperature, polyacrylamide is completely 

miscible with the solvent [10]. This polymer has a linear amorphous structure (Figure 1.1) and it is water-

soluble, being used both at industrial and biomedical level. This compound is a strong candidate for 

biomedical applications including controlled drug delivery due to the proximity of its transition 

temperature to the body temperature. Its use in the paper industry is also wide, as well as in water 

treatment and oil removal on rocks [12]. 

 

Figure 1.1 - Polyacrylamide chemical structure [13]. 

In biomedical uses, polyacrylamide has several advantages over other biomaterials: its stability 

with pH variations and its mechanical stability makes this polymer an excellent enzyme immobilizer and 

drug distributor. Polyacrylamide is also used to remove extracorporeal toxins, passing blood through a 

polyacrylamide membrane, due to their non-degradation with plasma (applicable to all blood flow) 

[14,15]. 

Polyacrylamide can be processed by electrospinning to produce thermoresponsive nanofibers 

for biomedical applications [16]. Lu et al. [17] produced PAAm fibres with diameters between 267 nm 
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and 2.8 µm with good thermal stability, good water affinity, good absorption rate and very good tensile 

strength. The membranes were capable of encapsulating b-galactosidase enzymes which allowed 

efficient diffusion of substrate and released products into surrounding media. Gavini et al. [18] 

incorporated diclofenac sodium salt into polyacrylamide hydrogels for drug delivery and performed in 

vitro release testing and swelling properties for different crosslink types. They concluded that the drug 

became more stable the lower the crosslinking degree, thus showing that this polymer can be used in 

drug delivery. 

 

1.2 Electrospinning 

Electrospinning is a technique that uses electrostatic forces to produce nanofibrous membranes 

with a diameter up to a few micrometres using a polymer solution, a collector, and a strong electric field 

(Figure 1.2) [19]. This allows the production of membranes with specific characteristics such as 

controlled porosity and high surface-to-volume ratio [20]. The setup includes a spinneret, a high voltage 

supply (usually one that provides continuous current), a grounded collector, and a syringe with a desired 

solution connected to a syringe pump. In this setup, because the metallic rim and needle are connected 

to the electrode, and the collector is grounded, an electromagnetic field is formed by the difference in 

potential between the needle and collector being this field uniformized by the rim. Electrostatic forces 

are formed, and the positive charges gather in the solution droplet at the tip of the needle. Then, due to 

an excess of positive charges, they repel one another such that it comes to a point where the 

electrostatic forces surpass surface tension and the droplet is stretched [19]. This allows the production 

of membranes with specific characteristics such as high surface-to-volume ratio [20]. As the jet goes 

from the needle to the collector, due to the vapour pressure, the solvents of the solution will evaporate 

and only the polymer will remain in the fibre. The polymer thread will then reach the collector and be 

deposited upon it. After some time, the fibres overlap, and a membrane is produced. The membrane is 

then removed from the collector, and, if there are remnants of solvent in it, it will dry. Other processes 

such as cross-linking and other alterations to the membrane can be made as well [14, 16]. 

 

Figure 1.2 - Schematic illustration of the electrospinning apparatus [8]. 
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Electrospinning parameters can be exploited to tailor the type of fibres desired. Some of the 

parameters are temperature, humidity, voltage, the distance between the needle and the collector, 

concentration of polymer in the solution, type of solvent, type of collector, needle gauge, flow rate [9]. 

Since electrospinning technique was discovered, many polymers have been used and for various 

uses, such as tissue regeneration or the production of metal nanofibers for use in solar cells or even as 

reinforcement of other structural materials [21]. Nowadays, many different types of biomolecules have 

been incorporated into scaffolds of electrospun nanofibers [21]. 

 

1.3 Magnetic Nanoparticles 

Magnetic nanoparticles can be characterized as a type of nanomaterial able to respond to a 

magnetic field. These nanoparticles can be applied in industrial [22] and environmental catalysis [23], 

magnetic resonance imaging [24], biomedicine [22], data storage [25], micro and nanofluidic [26], etc. 

They become especially important in the medical field, where they can be used as contrast agents in 

magnetic resonance imaging, controlled drug delivery and tumour therapy through magnetic 

hyperthermia treatments [4]. Rudakov et al. [27] encapsulated SPIONs into carbon nanocages, creating 

a material with high saturation magnetization showing that the composite has applications in various 

areas such as drug delivery, superconductors, etc. 

Xiao at al. [28] developed a new method of magnetic resonance imaging with iron oxide 

nanoparticles incorporated into N-palmitoyl chitosan micelles. Its tumour targeting ability has been 

demonstrated in vitro and in vivo. The study indicates that self-aggregating polymeric folate-conjugated 

N-palmitoyl chitosan (FAPLCS)/SPION micelles can potentially serve as safe and effective Magnetic 

Resonance Imaging (MRI) contrast agents for detecting tumours that overexpress folate receptors. 

Magnetic iron oxide nanoparticles ranging in size from 1 - 100 nm can be easily manipulated 

through an external magnetic field and subsequently used for cancer treatments. However, due to their 

oxidation, they must be coated to prevent the changes in oxidation states, and thus, the chemical 

stability of the particles. This coating allows their incorporation into the fibres produced by the 

electrospinning technique [27]. 

 

1.3.1 Superparamagnetic effect 

One of the types of magnetism in materials is superparamagnetism, which usually occurs in iron 

oxide nanoparticles below a critical size. Figure 1.3 shows the hysteresis cycle (magnetization vs field) 

of a magnetic material. The application of a sufficiently large magnetic field causes a rearrangement in 

the spins that align with the field. The maximum magnetization value achieved is called saturation 

magnetization, Ms. As the field magnitude decreases the spins stop aligning with the field and the total 

magnetization decreases. The magnetization value when the field is null is called the remaining 

magnetization, Mr. The coercive field, Hc, is the magnitude of the field that must be applied in the 

opposite direction to bring the magnetization of the sample back to zero [29].  
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Figure 1.3 - Important parameters obtained from a magnetic hysteresis loop. The saturation magnetization, Ms, 

remaining magnetization, Mr, and coercivity, Hc [29]. 

Below a critical diameter (Dc) of a few dozen nanometres, the formation of multiple domains is 

energetically unfavourable. For this reason, below Dc the particles have only one domain, so the change 

of magnetization will occur through the spins giving greater coercivities. The smaller the particle, the 

more spins will be affected by thermal fluctuations and the system becomes superparamagnetic. In 

addition to size, temperature must also be higher than a specific temperature called lockout 

temperature, TB, defined by Eq 1.1: 

𝐾 = 25 𝑘𝐵
𝑇𝐵

𝑉
     Eq. 1.1 

Where K is the magnetic anisotropy constant, kB is the Boltzmann constant and V the volume of 

a single nanoparticle. [9-10]. 

 

1.3.2 Magnetic Hyperthermia based on MNPs 

Magnetic hyperthermia is a treatment technique in which heat is used as a therapeutic agent. 

This type of treatment consists of raising the temperature of the cancerous tissue above a therapeutic 

value, usually 42.5 °C, keeping the tissues adjacent to the tumour below the temperature that may 

cause pain, or even be detrimental to their functioning. This is possible due to the higher sensitivity that 

tumour cells have to temperature relative to healthy cells. 

Hyperthermia treatments have been used for several years to treat cancer. Hippocrates treated 

tumours by cauterization with a hot iron. More recently MNPs such as magnetite have been used for 

the practice of hyperthermia due to their non-toxicity, their biocompatibility and the fact that they 

increase the temperature in the presence of alternating magnetic fields [10 - 11]. 

Magnetic hyperthermia involves the localized application of MNPs and the application of an 

external magnetic field that will lead to heat generation by the NPs. This magnetic field has the 

advantage of not being absorbed by the tissues, allowing deep penetration into them [4]. There are two 

ways for NPs to generate heat from an alternating magnetic field: through Néel and Brownian 

relaxations. The first case is due to the internal rotation of the particle's internal dipole, while the second 
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case refers to the physical rotation of the nanoparticle [31]. In the superparamagnetic state, the 

magnetic moments of the NPs fluctuate around a magnetization axis, so each of the magnetic 

nanoparticles (MNPs) will have a high magnetic moment that continuously changes its direction. When 

applying a magnetic field, MNPs have a rapid response to field variations with no remnant magnetization 

or coercivity. It can then be said that in this state an MNP behaves like an atom with a giant spin [32]. 

The first time this technique was used was in 1957 by Gilchrist et.al. [33]. In this study, iron oxide 

nanoparticles were injected in the intestinal wall of dogs with the expectation that the particles would 

accumulate in regional lymph nodes. These nodes were dissected and exposed to an alternating 

magnetic field with 1.6 – 2 kA/m and a frequency of 1.2 MHz and it was verified that the temperature 

raised 14 ºC in 3 minutes, verifying both the presence of the NP and the heating of those particles when 

exposed to the magnetic field. 

Murakami et al. [34] incorporated magnetite nanoparticles into hydroxyapatite for use in bone 

cancer hyperthermia treatments, achieving very promising results in the use of this technique. 

 

1.3.3 Magnetic composite membranes 

Magnetic polymer composites represent a type of functional materials in which magnetic 

nanoparticles are inserted into the polymeric structure. In recent years they have attracted a lot of 

interest due to their potential in applications such as cell separation, medical diagnostics, drug delivery, 

high data storage capacity, among others [35].  

Wang et al. [36] used poly(acrylic acid)-coated magnetic particles in a polyethylene oxide 

suspension and a polyvinyl alcohol coating in electrospinning. The produced fibres showed 

superparamagnetic properties, showing deflection when exposed to a magnetic field. The extent of this 

deflection was correlated with the strength of the magnetic field. In a similar study, Gupta et al. [37] 

used MnZnFe-Ni superparamagnetic particles in a segmented polyester-based polyurethane (Estane). 

The produced fibres showed superparamagnetic behaviour with no remnant magnetization. 

Sasikala et al. [38] created a new magnetic fibre for endoscopic hyperthermia treatments and 

localized drug delivery. using iron oxide nanoparticles (IONPs) as a drug distributor and bortezomib as 

a pharmaceutical agent. The fibres were made by electrospinning the poly(lactic-co-glycolic acid) 

(PLGA) polymer and dopamine-conjugated NPs for bortezomib aggregation. The device has shown 

very promising results in the treatment of intravenous cancers. 

Matos [31] incorporated SPIONs into cellulose acetate fibres for magnetic hyperthermia 

applications producing membranes with embedded NPs, obtaining variations of about 0.6 ºC for low 

concentrations of NPs and showing that the used composite does not present cytotoxicity. 

As shown by these examples, the combination of smart materials, electrospinning and magnetic 

properties of some particles can lead to the development of new and versatile systems that allow the 

use of magnetic hyperthermia in a system that can be activated at a certain temperature, being then 

“switched” on whenever necessary. 
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2 Materials and Methods 

2.1 Superparamagnetic Iron Oxide Nanoparticles (SPIONs) 

2.1.1 Synthesis 

Iron oxide nanoparticles were synthesized by chemical co-precipitation using an adapted method 

from Soares et al. [39]. Ferrous and ferric chlorides FeCl3.6H2O: 5 mmol and FeCl2.4H2O: 2,5 mmol 

(Alfa Aesar and Sigma-Aldrich, respectively) were each dissolved in 50 ml of ultrapure (Milli – Q) water 

and mechanically stirred. 10 ml of 25 % ammonia (Sigma – Aldrich) solution was added to the mixture 

and allowed to stir for 5 min. Finally, 60 ml of ultrapure water was added to stop the reaction.  

The iron content in the iron oxide nanoparticles was determined using the 1,10-phenanthroline 

colourimetric method [39,40]. The nanoparticles were stabilized with oleic acid (OA) (Panreac) and 

dimercaptosuccinic acid (DMSA) (Acros organics 98%). After the addiction, both solutions were left to 

react in an ultrasonic bath for 3 h. The solutions were left on dialysis until reaching a pH of 7. 

2.1.2 Characterization 

The X-ray diffraction analysis was performed at room temperature using an X’Pert PRO 

PANAlytical X-ray powder diffractometer (Cu K-alpha radiation) operating at a voltage of 45 kV, with an 

angle range between 15º and 80º and a step size of 0.033º. 

Fourier transform infrared (FTIR) spectroscopy was performed using a FTIR spectrometer 

(Thermo Nicolet 6700) in the wavenumber range 4000– 500 cm-1. 

The morphological evaluation of the nanoparticles was assessed using a transmission electron 

microscope (TEM) (Hitachi H-8100 II with LaB6 thermionic emission and 2.7 Å peer resolution) 

2.2 Polymeric solution 

Two solvent systems were used for the precursor solutions: ultrapure water (Mili-Q), and 

ultrapure water/ethanol (Sigma-Aldrich) in a ratio (8:2) (w/w). Various quantities of polyacrylamide (BDH 

laboratory reagents) were tested: 2 %, 3 %, 4 %, 5 % and 6 % (w/w). All solutions were stirred 

overnight. 

2.3 Electrospinning 

For all the solutions described above, 1 ml of each was transferred to a 1 ml syringe (Braun, Bad 

Arolsen, Germany) with a 27 G needle and electrospun with different parameters. The voltage was 

varied between 15 and 20 kV using a Glassman EL 30 kV source. The flow rate was between 0.15 and 

0.25 ml.h -1 using a KDS100 – KD Scientific pump, and the distance between 15 and 20 cm. For all 

samples, the temperature was kept below 30 °C and the humidity below 35 %. 

2.3.1 Crosslinking 

As the polymer used is water-soluble, it is necessary to crosslink the resulting fibrous 

membranes. For this, an adaptation of the procedure of Lu et al. was used [17]. PAAm membranes 

were immersed in a glutaraldehyde (GA) solution. 10 wt.% of 50 % aqueous GA (Sigma-Aldrich) and 

4 wt.% of hydrochloric acid (HCl) 37 % (v/v) were diluted in ethanol 99.99 % (Sigma-Aldrich). Each 

membrane was placed between two glasses to prevent shrinking and heated for 2 h at 80 ºC. The 
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membranes were washed in ethanol to remove the residual GA and left for 24 h in water to remove 

residual HCl and hydrate for better handling. 

2.4 Incorporation of Nanoparticles  

For the preparation of the magnetic membranes, nanoparticles were added directly to the 

precursor solution in a ratio of 2 wt.% to the polymer mass used. An electrospinning technique flow rate 

adjustment was required. 

2.5 Membrane Characterization 

Fibre morphology and diameters were analysed by scanning electron microscopy (SEM) analysis 

using the Carl Zeiss Auriga SEM equipment. The samples were coated with gold and palladium and 

were placed under vacuum in the apparatus. Backscattering electrons were used at an acceleration 

voltage of 15 kV. With an energy dispersive spectroscopy (EDS) analysis performed by an equipment 

coupled with Sem belonging to Oxford Instruments EDS. 

To evaluate the young’s Modulus, the samples were cut into rectangles with dimensions of 20 x 

10 mm and the thickness measured with a digital micrometre (Mitutoyo 0 - 25 mm). The assays were 

performed on a 20 N load cell Rheometric Scientific uniaxial machine operable with the "Minimat" 

software (Minimat Control Software Version 1.60 February 1994 (c) P.L. Thermal Science 1984-94 

Rheometric Scientific Ltd.). A velocity of 1 mm.min -1 was applied. 

The X-ray diffraction analysis was performed at room temperature using a X’Pert PRO 

PANAlytical X-ray powder diffractometer (Cu K-alpha radiation) operating at a voltage of 45 kV, with an 

angle range of 15° to 80° and a step size of 0.033. 

The mass loss according to the temperature variation was evaluated by thermogravimetric 

analysis using the NETZSCH STA 449F3 equipment, in a range of 25 to 400 ºC for 10 min with nitrogen 

flow alone. 

To evaluate the thermal behaviour of the membranes, the equipment NanoScale Biomagnetics, 

DM100 Series was used for 10 min with a magnetic flux density of 300 Gauss and a frequency of 

418,5 kHz. 

To evaluate the presence of NPs in the fibres, the same TEM parameters were used for the 

morphology of the NPs. 

2.6 Swelling 

The swelling was performed with phosphate buffer solution (PBS) at 5, 10, 30 min and 1, 2 and 

4 h at 37 ºC with mechanical agitation and at room temperature. Samples were weighed before and 

after dipping to assess mass variation. 

2.7 Viscosity tests 

Viscosity tests for all of the above solutions were performed on a HAAKE MK500 rheometer 

ranging from 1 to 512 rpm. All tests were performed at room temperature (approx. 25 °C). 
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3 Results and Discussion 

3.1 Thermoresponsive electrospun membranes 

3.1.1 Polymeric solution 

The viscosity of the precursor solution is one of the most important parameters in the 

electrospinning technique. On one hand, very low viscosity does not produce continuous or soft fibres; 

on the other hand, very high viscosity results in difficult jet ejection forming a droplet on the needle tip 

[9]. In order to assess the change in viscosity over time as a function of the effect of increasing polymer 

concentration in the solution, viscosity tests were performed at different shear rates. To assess the 

viscosity of the solutions according to the polymer concentration, various PAAm solutions in water were 

prepared by varying the amount of polymer to obtain solutions with concentrations of 2 %, 3 %, 4 %, 

5 % and 6 % (w/w). This is represented in Figure 3.1 where it can be seen that viscosity increases with 

increasing concentration. This result is in agreement with the results obtained by Kulicke et al. [16], 

where it was confirmed that for the same polymer molecular weight, an increase in the polymer 

concentration will make the solution more viscous at the same shear rate. 

 

Figure 3.1 - Viscosity variation as a function of shear rate for PAAm solutions in water with different polymer 

concentrations (w/w) (For most values the standard deviation is negligible and is represented where it does not.). 

In Figure 3.2 it is represented the viscosity variation for all solutions at a shear rate of 1 s-1. With 

this comparison it is possible to verify a linear increase in viscosity, as expected, as the variation of 

polymer concentration in the solution is also linear, as expected for polyacrylamide [41]. 
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Figure 3.2 - Viscosity variation as a function of polymer concentration in solutions for a constant shear rate of 

1 s-1. (For all samples, except the 6 wt.%, the standard deviation is negligible). 

3.1.2 Electrospinning parameters optimization 

In the beginning of this thesis, a study was conducted to find the optimal parameters to 

electrospun polyacrylamide in order to obtain a thermoresponsive nanofibrous membrane. To study the 

influence of each parameter on fibre morphology, several conditions were used, varying only one factor 

at time for each polymer concentration in both solvents (Table 6.2, Table 6.3 and Table 6.4 for 

ethanol/water solvents and Table 6.5, Table 6.6 and Table 6.7 for water solvent.) The results for each 

parameter can be seen in Table 6.1 in supporting information but the humidity control in the 

electrospinning chamber was disregarded, resulting in thicker fibres due to incomplete evaporation of 

the solvent (Figure 6.1). The study was then restarted considering the humidity control and with same 

parameters. Solutions with polymer amounts of 2 and 6 wt.% did not produce fibres, due to the low and 

high viscosity, respectively. The 3 and 5 wt.% solutions produced fibres with beads (Figure 6.2 and 

Figure 6.3) when analysed under the optical microscope. The 4 wt.% PAAm solution using both water 

or water/ethanol as solvent produced non-defective and monodisperse fibres when observed by optical 

microscopy. For this reason, only fibres produced by those solutions were taken to morphological 

analysis through SEM and were used in this work.  

Table 3.1 and Table 3.2 show the selected electrospinning conditions used to make fibres from 

the 4 wt.% PAAm solution using water or water/ethanol as solvent, respectively. In the same tables, it 

is possible to observe the combination of parameters of the two solutions, which yielded monodisperse 

and defect-free fibres and were taken to SEM for morphological analysis (Figure 3.3 to 3.6). The fibres 

were then measured using ImageJ software and the optimal parameters were selected according to the 

smallest mean fibre diameter and standard deviation. 

By analysing the average fibre diameter of the membranes produced by the solution whose 

solvent was only water (Table 3.1) and also based on the surface morphology, it can be verified that 

there is no significant variation in the average diameters of the produced fibres. In the solution 
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containing the two solvents, it is possible to verify that for a greater distance the average diameter 

increases, however, by analysing the standard deviation it is possible to verify that the average fibre 

diameters do not significantly change. 

Table 3.1- Electrospinning conditions selected from samples obtained with a 4 wt.% PAAm solution in water and 

the respective mean fibre diameter and standard deviation obtained from SEM analysis. 

Rate 

(ml.h -1) 

Distance 

(cm) 

Voltage 

(kV) 

Temperature 

(ºC) 

Humidity 

(%) 

Diameter 

(nm) 

Standard 

deviation (nm) 

0.2 

15 

15 28 32 215 58 

17.5 28 32 216 92 

20 24 35 239 103 

0.25 

15 28.4 33 201 74 

17.5 29 31 212 73 

20 26 35 202 42 

 

Table 3.2 - Electrospinning conditions selected from samples obtained with a 4 wt.% PAAm solution in 

water/ethanol and the respective mean fibre diameter and standard deviation obtained from SEM analysis. 

Rate 

(ml.h-1) 
Distance (cm) Voltage (kV) 

Temperature 

(ºC) 

Humidity 

(%) 
Diameter 

(nm) 

Standard 

deviation 

(nm) 

0.2 

15 

15 23.9 34 292 80 

17.5 23.8 34 269 42 

20 23.8 35 244 60 

0.25 

15 21.7 35 244 58 

17.5 22.1 35 254 52 

20 21.7 35 260 73 

20 

15 22.1 35 334 84 

17.5 22.4 34 333 90 

20 22.4 34 281 59 

 

Comparing the average fibre diameter of the membranes produced using different solvent 

systems, it can be seen that the solution containing the water/ethanol has thicker fibres. This fibre 

diameter increase is caused by the reduced conductivity, the increase of solution viscosity and solvent 

evaporation rate due to the boiling point of ethanol [42].  

Figure 3.3 and Figure 3.4 shows SEM images of the PAAm membranes obtained using the 

following parameters 0.25 ml.h -1; 15 cm and 15 kV for the 4 wt.% PAAm solution in water. It is possible 

to verify that the fibres are free of defects and are dispersed randomly showing a good uniformity in the 

diameters, which vary between 100 and 400 nm. 

Figure 3.5 and Figure 3.6 show the fibres produced from the polymeric solution with water/ethanol 

as well as their respective average fibre’s diameter. It is possible to verify that the fibres are scattered 

randomly and have no defects. It is also possible to observe a smaller variation in the diameters, which 

are more homogeneous and with an average value of 244 nm. 
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Figure 3.3 - SEM image for fibres produced using the following parameters 0.25 ml.h -1; 15 cm and 15 kV for the 

4 wt.% PAAm solution in water and its diameters and variations (30 fibres were measured using ImageJ 

software). 

 

Figure 3.4 - SEM image for fibres produced using the following parameters 0.25 ml.h -1; 15 cm and 15 kV for the 

4 wt.% PAAm solution in water. 

   

Figure 3.5 - SEM image for fibres produced according to parameters 0.25 ml.h -1; 15 cm and 15 kV for the 4 wt.% 

PAAm solution in water/ethanol and its diameters and variations (30 fibres were measured using ImageJ 

software). 
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Figure 3.6 - SEM image for fibres produced according to parameters 0.25 ml.h -1; 15 cm and 20 kV for the 4 wt.% 

PAAm solution in water/ethanol. 

As the objective is to obtain the minimum diameter possible, a flow rate of 0.25 ml.h-1, a 

tip-to-collector distance of 15 cm and an applied voltage of 15 kV was the set of parameters chosen for 

membrane production because it corresponds to the parameters where the solution with the two 

solvents produced smaller fibres and thus it is possible to have a term of comparison between the fibres 

of the two membranes. 

 

3.1.3 PAAm membranes crosslinking 

Polyacrylamide is a water-soluble polymer and the purpose of this project is to apply these 

membranes in physiological conditions. Therefore it is necessary to crosslink the membranes to make 

them solvent resistant [43]. As can be seen from Figure 3.7, a non-crosslinked PAAm membrane in 

contact with water forms a gel and eventually dissolves. 

 

Figure 3.7 – Non-crosslinked polyacrylamide electrospun membrane before (left) and after (right) contact with 

water. 

There are several methods of crosslink to polyacrylamide reported in the literature: using Gamma 

radiation [44], using formaldehyde [45] or using a glutaraldehyde solution in ethanol [17]. The crosslink 

will create covalent bonds between the polymer chains forming three-dimensional networks as shown 

in Figure 3.8 These links will reduce the structure's mobility and increase its mechanical properties and 

water-resistance [46]. 
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Figure 3.8 - Schematic representation of crosslinking of polymer chains (adapted from [46]). 

For this work, the crosslinking method using glutaraldehyde was chosen. Additionally, the 

glutaraldehyde solution was combined with temperature to evaporate ethanol and newly formed water 

molecules and to increase chain movements to increase reagent diffusion and to provide energy for 

endothermic crosslink reaction to occur. In the case of polyacrylamides, crosslinking can be either by 

intra or intermolecular reactions. Figure 3.9 shows the possible reactions and possible reaction 

products [17]. 

 

Figure 3.9 - Crosslinking reaction between PAAm and GA [17]. 

For membrane crosslinking optimization, various temperatures were tested during different times 

for reaction to occur. At temperatures below 80 °C no crosslink occurred, and the membrane dissolved 

and returned to gel form in contact with water. At 80 °C it appears that only after 2 h of reaction the 

fibrous structure was kept, while with only 1 h of reaction the fibres show deformation, being fused 

(Figure 3.10 a)).  



15 

 

 

Figure 3.10 - Effect of crosslink on polymeric membranes for several times: 1 h (left); 2 h (centre); 5 h (right) and 

at various temperatures: a) 80 °C; b) 100 °C; c) 120 °C; d) 140 °C; e) 150 °C. 

At temperatures above 100 ºC, the membrane became rigid and yellow showing signs of 

degradation (Figure 3.11); however it is possible to verify that at these temperatures the fibrous 

structure is increasingly defined and looks similar to what it had before the crosslink happened (Figure 

3.10). It was also found that higher temperatures resulted in higher shrinkage rates of the membrane 

due to the heat-sensitive properties of the polymer. As the main application of these membranes is their 

use in drug delivery, it is necessary that the membranes maintain a certain degree of mobility to adsorb 

a drug and not be degraded. It is also important that the membrane maintained its morphology after 

immersion in physiological medium. If the fibres fuse together, the membrane loses characteristics such 

as high porosity and high surface area. Consequently, the combination of chosen parameters was 80 ºC 

and 2 h, because with these parameters the membrane had a good fibrous structure and no signs of 

temperature degradation and did not show such a large reduction in size due to polyacrylamide 

crosslinking (Figure 3.11).  
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Figure 3.11 - Membrane after 2 h at 80 ºC (left) and after 1 h at 120 °C (left). 

The crosslinking process will alter the chemical bonds of molecules, causing two polymer chains 

to bind together [47]. In order to be able to evaluate these newly formed bonds, a FTIR analysis was 

performed as it allows to see how the molecules are linked. The FTIR analysis of polyacrylamide before 

and after the crosslinking process is shown in Figure 3.12. The reaction between PAAm amide group 

and aldehyde from GA forms imine, which can be confirmed by the band adsorption of imine C ═ N at 

1538 cm-1 in crosslinked membranes (Figure 3.12). A reduction in the C — N amide band at 1413 cm-1 

is also noticeable, which is consistent with the conversion of amide to imine. The reaction between 

PAAm amide and GA aldehyde can occur in two ways: both GA molecule aldehydes react with 2 PAAm 

amide groups to create a crosslink bridge with two imine bonds, or only one aldehyde reacts with the 

PAAm amide group to form imine bonds, while the other aldehyde is hydrolysed to carboxylic acid. The 

first case can be observed by the reduction of C — N amide at 1413 cm-1 and the presence of the imine 

C ═ N at 1538 cm-1. The second case is confirmed by the presence of carboxylic acid at bands at 1065, 

1020 and 919 cm-1 [17]. 

 

Figure 3.12 - FTIR analysis for PAAm before and after crosslinking reaction with glutaraldehyde. 

3.2 Magnetic Nanoparticles 

The synthesis of IONPs has been optimized in previous studies in the Department of Materials 

Science, so the following results are for comparison only with those data already obtained. 
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X-ray diffraction analysis allows to evaluate the crystalline structure of nanoparticles and to 

conclude about the iron oxide species present in the sample. Figure 3.13 shows the XRD diffractogram 

for the synthesized nanoparticles and for the NPs with their coatings. It is possible to confirm the 

existence of 6 characteristic peaks of iron oxide NPs for 2θ angles of: 30.1; 35.5; 43.2; 53.5; 57.0 and 

62.8, corresponding respectively to the diffraction planes 220, 311, 400, 422, 511 and 440, respectively. 

Comparing to the standard patterns for magnetite and maghemite (reference code: JCPDS 00-0190629 

for magnetite and JCPDS 00-039-1346 for maghemite), NPs have a crystal cubic structure. As 

magnetite and maghemite present the characteristic peaks at similar values of 2θ, the amount of 

magnetite relative to maghemite is verified by the difference in intensities between the peak of the plane 

(440) and the plane (220) and (511), which shows a higher quantity of magnetite. Another way to verify 

the presence of magnetite is by the similarity of intensities between the peaks of the planes 511 and 

220, which is characteristic of this material. However, there is likely to be a small fraction of maghemite. 

The objective of having a greater amount of magnetite over maghemite is due to the superparamagnetic 

properties of the magnetite at room temperature, so it is necessary for the intended applications [31]. 

To obtain the average crystallite size, the Scherrer formula at the most intense peak (311) was 

used: 

𝜏 =
𝐾𝜆

𝛽cos (𝜃)
    Eq. 3.1 

Where K represents a particle shape constant (0.94), 𝜆 is the wavelength of the incident radiation 

(1.54 Å for Cu), β is the full width at half maximum of the highest intensity, in radians, and θ represents 

the value. of the angle, in radians, of the peak. From the formula it is possible to calculate a value of 

9.5 nm for crystallite. 

For magnetite to exhibit superparamagnetic properties at room temperature, particle sizes must 

be less than 20 nm [4], it is then possible to infer that the nanoparticles exhibit superparamagnetic 

behaviour at room temperature. 

Also, from the analysis of Figure 3.13, it is possible to verify that the addition of the stabilizers 

does not affect the crystalline structure of the NPs, visible through the non-alteration of the 

diffractograms. The mean size of the stabilized NPs was also calculated by Eq 3.1, maintaining the 

value obtained for the crystallite, which once again confirms the non-alteration of the crystallographic 

structure of the particles [4,31].  

Due to the very small size of the NPs, transmission electron microscopic analysis (TEM) was 

required, thus allowing to verify not only the morphology but also the presence of aggregates of NPs. 

The morphology, as well as the average diameters, of the DMSA and OA coated NPs are shown in 

Figure 3.14 respectively. It can be confirmed that the measured diameters for the coated NPs are very 

similar to the value calculated by the XRD diffractogram, thus showing that each nanoparticle is 

composed of only one magnetic domain. It is also possible to confirm that the surfactants used did not 

change the shape of the NPs, presenting an almost spherical shape and with small size variations. 

However, even though they are dispersed, it is possible to verify some aggregates due to interactions 

between particles. This can be confirmed by XRD and TEM analysis, where an average size of 

approximately 10 nm was determined. 
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Figure 3.13 - XRD diffractogram of pristine nanoparticles, oleic acid-coated nanoparticles and DMSA coated 

nanoparticles. 

 

Figure 3.14 - TEM image of A) dimercaptosuccinic acid-coated magnetite and B) oleic acid-coated magnetite 

nanoparticles and the respective size distribution of nanoparticles. 

3.3 Magnetic Membranes characterization  

After optimizing the electrospinning parameters to electrospun plain PAAm, nanoparticles were 

incorporated in the electrospinning solution at a ratio of 2 wt.% of polymer’s mass. Both polymeric 
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solutions containing OA or DMSA coated NPs were homogeneous, however, the later showed the 

presence of some nanoparticle aggregates. 

Since NPs are in aqueous solution, their addition to the precursor solutions will change their 

viscosity, requiring a change in electrospinning parameters. Based on the parameters used to produce 

the membranes with only the PAAm solution, the same study mentioned above was performed, 

obtaining the optimal parameters: 0.3 ml.h -1; 15 cm; 15 kV; temperature below 33 °C and humidity 

below 35 %. In order to evaluate the effect that the addition of NPs had on the fibres, the membranes 

produced with DMSA and OA NPs containing solutions were observed using SEM analysis. Membrane 

morphology, as well as diameter variation, can be assessed in Figure 3.15 and Figure 3.16. It can be 

confirmed that the incorporation of IONPs did not affect the mean fibre diameter comparing to those 

produced containing only the polymer, obtaining an average fibre diameter of about 200 nm. It is also 

possible to verify that the incorporation of the NPs in the membranes did not change the fibre’s 

morphology or its dimensions. 

In fibres produced using the solution of PAAm in water with NPs – DMSA, there are aggregates 

in the fibres due to the incomplete dispersion of the particles. Due to this poor dispersion, there is a 

greater variation in diameters, however, the mean diameter is smaller than that of the fibres obtained 

with the solution with NPs – OA. On the other hand, in the solution with NPs – OA, the particles were 

well dispersed in the membrane leading to larger mean diameter and more monodispersed fibre 

diameter. This analysis, however, does not allow the confirmation of the presence of NPs in the fibres. 

In order to obtain this information, energy dispersive spectroscopy (EDS) analysis was performed 

(Figure 3.17). This analysis shows the presence of about 2 wt.% of iron in the fibres observed, which 

corresponds to the amount of NPs added to the solutions. To further confirm the presence of NPs, a 

TEM analysis was performed to analyse the interior of the fibres, where the NPs are incorporated, and 

thus, visible if present. 

 

Figure 3.15 - SEM image of PAAm 4 wt.% in water fibres containing NPs - DMSA produced with optimized 

parameters (0.3 ml.h-1; 15 cm; 15 kV) and respective diameter variation (30 fibres were mediated using ImageJ 

software). 
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Figure 3.16 - SEM image of PAAm 4 wt.% fibres containing NPs - OA produced with optimized parameters (0.3 

ml.h -1; 15 cm; 15 kV) and respective diameter variation (30 fibres were mediated using ImageJ software). 

 

Figure 3.17 - EDS analysis of membranes containing NPs – DMSA (A) and NPs – OA (B). 

Figure 3.18 shows the TEM analyses of fibres with NPs – OA and those with NPs – DMSA. 

Through the analysis of the figure, it is possible to verify that the NPs were successfully incorporated in 

the fibres. It can also be seen that in fibres containing oleic acid-coated NPs (left), they are well 

dispersed in the fibres. On the other hand, in fibres with NPs – DMSA, due to the incomplete dispersion 

of NPs, there are agglomerates along the fibres and regions without nanoparticles which will translate 

into zones with a higher and lower heating rate when the magnetic field is applied. This result correlates 

with the macroscopically observation of the poorly dispersed NPs – DMSA in the polymeric solution 

before electrospinning. 

Figure 3.19 shows the FTIR spectrum of the membranes produced with the polymer solution 

alone (black) and the composite membranes, blue with NPs – OA and red with NPs – DMSA. It is 

possible to verify that the NPs do not alter the structure of PAAm thus giving another index of their 

incorporation in the fibres. It is also possible to notice a band at 560 cm-1 corresponding to Fe – O in 

the composite membranes which can indicate the presence of iron oxide NPs in the composite 

membranes. Additionally, the bands corresponding to PAAm membranes above described are also 

present. The bands related to the presence of both surfactants (DMSA and OA) are not visible probably 

due to their small concentration in the final composite membrane. 
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Figure 3.18 - TEM images for PAAm fibres incorporating NPs - OA (left) and NPs - DMSA (right). 

 

Figure 3.19 - FTIR analysis of composite membranes containing NPs compared to membrane of plain PAAm. 

3.3.1 Thermogravimetric Analysis (TGA) 

In order to evaluate the effect of temperature increase on NPs ou the polymer, temperature 

thermogravimetry assays were performed. The thermograms of OA and DMSA coated nanoparticles 

are shown in Figure 3.20. It is possible to observe a mass loss at about 120 °C corresponding to the 

water adsorbed in the nanoparticles on both samples. In the case of DMSA coated NPs it is possible to 

verify a mass loss at 250 ºC due to the degradation of DMSA ligand to Fe3O4. When the temperature 

reaches 400 °C there is no mass loss, showing that only iron oxide is present in the sample at this 

temperature [48]. In OA coated NPs, a mass loss at about 214 °C corresponding to the oleic acid boiling 

temperature can be found, whereas about 25 % of the total mass is lost. This mass loss can be related 

to the removal of oleic acid which is not bound to Fe3O4. Also, a mass loss of about 10 % at 338 °C is 

also visible, which corresponds to the removal of oleic acid that is bound to the surface of Fe3O4 [4]. 
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In order to evaluate the effect of NPs on the thermal properties of the polymer, the same test was 

performed. A mass loss at about 86 °C to about 100 °C corresponding to the remaining solvent losses 

in the membranes can be verified. The second phase of PAAm degradation occurs between 220 °C 

and 320 °C with a variation of about 15 % corresponding to the loss of NH2 in the form of ammonia. 

The third degradation zone occurs at 320 ºC and remains until 400 ºC, with the maximum decomposition 

rate at about 383 ºC, corresponding to the degradation of PAAm chains [49].  

Comparing the polymer membranes before and after the crosslinking, it can be seen that for a 

temperature of 400 °C the remaining material is larger in the non-crosslinked membrane. The 

crosslinking process, by creating links between chains, will also make the membrane more temperature 

resistant and some of the reactions that would occur at higher temperatures have already occurred 

during the crosslink reaction [50]. 

For the composite membranes, it is possible to observe the same peaks already analysed for the 

polymeric membranes and for the NPs.  

 

Figure 3.20 - Thermogravimetric analysis of plain PAAm membranes before and after crosslinking, composite 

PAAm membranes with iron oxide NPs incorporated and nanoparticles coated with DMSA and OA. 

3.3.2 Stress tests 

In order to evaluate the mechanical properties of the membranes stress tests were performed. 

Through these tests, it is possible to evaluate the reaction of the membranes when a load is applied to 

it. Stress tests consist of the uniaxial application of a load on the membrane, making it stretch until 

rupture [31]. Figure 3.21 shows representative curves of the stress tests of each membrane. Figure 

3.22 and Figure 3.23 shows the extrapolated parameters for each membrane, young’s modulus and 

ultimate tensile strength (UTS), respectively. 
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Figure 3.21- Stress curves for the different polyacrylamide membranes: 4 wt.% polyacrylamide; PAAm 4 wt.% 

crosslinked; PAAm 4 wt.% with NPs - OA and PAAm 4 wt.% with NPs – DMSA. 

Analysing the stress curves, it is possible to extrapolate 2 parameters: the young’s modulus, 

which characterizes the mechanical resistance of the material and the ultimate tensile strength, which 

is where occurs the rupture. Through Figure 3.21 it is possible to confirm that the crosslinking increases 

the rigidity of the membrane making it more brittle and giving it the behaviour of a fragile material, with 

an elastic deformation zone and a negligible plastic deformation zone. Also, the addition of 

nanoparticles will increase the young modulus of the membranes. This is visible in Figure 3.22 where 

a variation of the modulus in the membranes with incorporated nanoparticles is noted. It is also possible 

to confirm that OA coated NPs impart greater membrane rigidity than DMSA coated NPs, due to the 

inhomogeneity of the composite solution that contained NPs – DMSA. Due to the inhomogeneity in the 

dispersion of NPs in membranes with NPs – DMSA, they result in a smaller reinforcement than 

incorporation of NPs – OA in membranes. However, it can be concluded that the addition of NPs 

strengthens the membrane by increasing its young modulus. In the non-crosslinked membranes, there 

is an increase in plastic deformation relative to non-crosslinked membranes, taking a long time to reach 

the breaking stress. 

It is also noticeable that the addition of NPs affects the mechanical properties of membranes as 

the fibres begin to roughen, increasing friction between them, restricting slip when stretched, increasing 

their young’s modulus as seen in Figure 3.22. 
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Figure 3.22 – Young’s module of each membrane type. 

From Figure 3.23 it is possible to verify that the crosslinked membrane endures a higher tension 

before breaking and that the dispersion of the NPs in the membranes increases this value. In the 

membrane containing NPs – DMSA, as these are not completely dispersed the reinforcement is not as 

large as in the membrane containing NPs – OA. 

 

Figure 3.23 - Ultimate tensile strength of each membrane type. 
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3.3.3 Swelling 

For swelling assays samples were cut in 1 x 1 cm dimensions and immersed in a phosphate 

buffer solution (PBS) during different times. In order to evaluate the effect that temperature had on the 

polymer, two studies were made. Samples of polymeric membranes with and without NPs were 

immersed in the PBS solution (Figure 3.24 A)) and kept at 37.5 °C on an orbital shaker. Other samples 

were immersed in PBS solution (Figure 3.24 B)) and kept at room temperature. In order to evaluate the 

swelling ratio, the mass was measured before and after immersion for several times (5, 10, 30 min and 

1, 2 and 4 h) in order to ascertain the mass swelling ratio over time. 

The swelling ratio was calculated through Eq. 3.2 

 

𝑄 =
𝑊𝑠−𝑊𝑑

𝑊𝑑
     Eq. 3.2 

where Ws is the weight of the membrane after immersion and Wd the weight of the membrane 

before immersion. 

From the analysis of Figure 3.24, it is possible to verify that the swelling ratio is more consistent 

in the samples placed at room temperature. This happens because the temperature of 37.5 °C is very 

close to PAAm UCST (35 °C), which causes the polymer to relax by swelling and contract, releasing 

the PBS solution, making the data more variable. 

 

Figure 3.24 - Swelling ratio curves of plain PAAm membranes and composite membranes at different times. 

Samples A) were performed at a constant temperature of 37.5 ° C. Samples B) were performed at room 

temperature. 

In the membranes kept at room temperature is possible to verify that incorporation of NPs 

reduces the amount of liquid absorbed by the membranes. This is due to the effect that the insertion of 

NPs has on the polymer. The magnetic NPs will occupy spaces in the PAAm pores where the PBS 

would be incorporated; According to stress data, the incorporation of NPs increases the stiffness of the 

material, which causes the fibres not to move as well on the membrane to incorporate PBS. Additionally, 

magnetic NPs can also act as polymer crosslink agents lowering their swelling properties [51].  

When it comes to the membranes without nanoparticles, Begam et al. [52] studied the swelling 

effects of polyacrylamide obtaining ratios in the order of 2/3 after 4 h of immersion. The values obtained 
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for the membrane without NPs are in accordance with these values, showing a ratio of 2.5 at the same 

time. 

3.3.4 Magnetic Hyperthermia  

In order to evaluate the heating ability of iron oxide NPs incorporated in polyacrylamide 

membranes, magnetic hyperthermia studies were performed, following the same procedure already 

studied in the department: applying an alternating magnetic field with a magnetic flux density of 300 

Gauss and a frequency of 418.5 kHz during 10 minutes [31]. For NPs to be used in the treatment of 

tumours, a temperature of about 42.5 °C is required, so, if an average human body temperature of 

37 ºC is considered, a variation of only 5 ºC is required to reach this value. 

For the hyperthermia assays, a total amount of 10 and 20 mg of membrane per assay was used. 

To test the same concentrations of NPs as those in the membrane, NPs suspensions of 0.2 mg.ml-1 

and 0.4 mg.ml-1 were also tested, respectively. Figure 3.25 shows the temperature variations of the 

NPs, where can be seen that an increase in concentration will cause an increase in temperature 

variation. It’s also possible to conclude that using a concentration of 0.4 mg.ml-1 NPs – DMSA it is 

possible to reach the therapeutic temperature of 42.5 °C. Differences in temperature increments 

between NPs – DMSA and NPs – OA are due to the entrapping effect that OA causes on NPs by limiting 

their Brownian particle movements. Consequently, almost all heat generated is due to Neel relaxations 

[53]. Soares [4] verified that there was a temperature variation with the increase of the concentration of 

NPs – OA , reaching values of about 3 ºC for concentrations similar to those used. The variations 

obtained in this study are in accordance with these data, as can be seen in Figure 3.25. 

Through these data, it’s possible to predict a larger temperature variation in the NPs – DMSA 

conjugated PAAm membranes. 

Figure 3.25 also shows the temperature variations for the PAAm membranes with NPs 

incorporated, produced from both solvent systems: water and water/ethanol. It is possible to verify that 

there is a smaller temperature variation in the composite membranes than in the NPs solutions. This 

large difference is due to the effect the polymer has on NPs, limiting their Brownian relaxations. It is 

also noticeable that membranes containing NPs – DMSA have a higher temperature increase than 

those containing NPs – OA, since, once again, there is a limitation of Brownian relaxation by OA. 

Another possible explanation for the small temperature increases in composite membranes is the 

possibility that some part of the NPs is lost upon the crosslinking process by diffusion to the GA solution 

and due to the shrinkage of the membrane that causes the NPs to be released. Consequently, the final 

amount of NPs within the composite membrane could be smaller than the predicted one. 

The largest temperature variations correspond to those of the 20 mg membranes as they should 

have more NPs. It is also possible to verify that the membrane with the most promising results is the 

20 mg membrane of PAAm in water with NPs – DMSA, since this is the membrane that shows the 

highest temperature variation. If the body temperature is 37 °C, it is not possible to reach the desired 

42.5 °C with these membranes. An alternative was to apply the magnetic field for longer periods of time, 

or to increase the concentration of NPs in the solutions, being possible to reach the 5 ºC increase to 

obtain a temperature of 42.5 ºC. 
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Figure 3.25 - Temperature variation for DMSA and OA coated nanoparticles in suspension and composite 

membranes of PAAm with NPs incorporated produced using two different solvent systems: water and 

water/ethanol (8:2). The tests were performed for 10 min for a magnetic field of 300 Gauss at 418.5 kHz (five 

tests were performed for each measure). 

  

0

1

2

3

4

5

6

PAAm in 

water/ethanol (8:2)

Δ
T

 (
ºC

)
 NPs OA - 0.2 mg/ml

 NPs OA - 0.4 mg/ml

 NPs DMSA - 0.2 mg/ml

 NPs DMSA - 0.4 mg/ml

 PAAm+NPs-OA membrane (10 mg)

 PAAm+NPs-OA membrane (20 mg)

 PAAm+NPs-DMSA membrane (10 mg)

 PAAm+NPs-DMSA membrane (20 mg)

NPs in suspension PAAm in water



28 

 

 



29 

 

4 Conclusion 

The main objective of this work was the production of dual-responsive polyacrylamide (thermal 

and magnetic) composite membranes by electrospinning technique for use in magnetic hyperthermia 

in cancer therapy. However, thermosensitivity was not measured and should be confirmed by 

measuring the variation in dimensions with increasing temperature. 

Iron oxide nanoparticles were used due to their superparamagnetic properties at room 

temperature, their biocompatibility and their ability to generate heat when subjected to an alternate 

magnetic field. These NPs were obtained by chemical precipitation and subsequently coated with OA 

and DMSA to avoid aggregation and to avoid changes in oxidation states. Through FTIR analysis it was 

possible to confirm the binding of surfactants to NPs, and by TEM analysis it was possible to calculate 

the diameter of the IONPs and to conclude that it corresponds to the diameter required for them to 

become superparamagnetic. Through XRD analysis it was also possible to infer that the addition of 

stabilizers to the NPs will not affect their properties. 

One of the major obstacles in magnetic hyperthermia technique is the application of localized 

nanoparticles due to the large amount that is required, which leads to the search for new distribution 

systems. To overcome this obstacle, SPIONs were incorporated in a polyacrylamide solution and 

electrospun to obtain a membrane with the thermal responsiveness of polyacrylamide and the magnetic 

responsiveness of SPIONs. This composite can serve as a more efficient distributor of NPs. 

Through the electrospinning technique, polyacrylamide fibres with dimensions of about 200 nm 

were produced, obtaining a high surface area/volume ratio. The crosslinking process was also 

optimized because PAAm is a water-soluble polymer, and without the occurrence of crosslink would 

degrade due to the existing water in the body. 

Through TEM analysis it was possible to confirm the incorporation of NPs in the polyacrylamide 

fibres, a result that was also confirmed by an EDS analysis, in which the iron element was identified in 

the fibres. Using thermogravimetric analysis, it was found that the addition of NPs does not affect the 

thermal stability of the polymer, nor does the polymer affect the stability of coatings in the NPs. Swelling 

tests show that the membranes absorb a larger amount of liquid in the early immersion times, stabilizing 

over time, which allows to conclude that the membrane retains the liquid. Through these tests it was 

also possible to verify that the swelling ratio is more coherent over time if the polymer temperature is 

lower than its UCST. Stress test results show that the addition of nanoparticles to fibres has a reinforcing 

effect by increasing their young modulus.  

The magnetic hyperthermia study concluded that there is a higher temperature increase for 

membranes containing DMSA coated nanoparticles yet, the desired value of 42.5 °C was not reached 

with any of the tested membranes. 

The results obtained are quite promising; however, it is necessary to optimize the processes 

before these composite membranes are ready for in vitro testing. The main focus should be to optimize 

the number of nanoparticles that will be added to the polymer solution. Since a 2 % concentration of 

NPs led to variations of 1 ºC during magnetic hyperthermia tests, with a higher concentration, a larger 

temperature variation should be obtained. 
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Cell viability studies are also required to ensure biomedical applications of the composite to be 

used in the treatment of tumours. For this, a study of the amount of NPs that can be incorporated in 

membranes, the rate of NPs release into the medium following magnetic hyperthermia assays, and the 

effect of surfactants on cytotoxicity should be studied to ensure membrane biocompatibility. 

One way to improve the amount of NPs in the composite during magnetic hyperthermia testing 

would be to use the crosslinking agent during polymer synthesis, turning the polyacrylamide used for 

the electrospinning non-water-soluble, removing the need for the GA crosslinking step. In this way NPs 

would not be lost during the crosslink, and temperature variations during hyperthermia would be higher, 

closing in or even reaching the therapeutic value. Another way to improve this application would be to 

adsorb the NPs at the fibres’ surface and not incorporate them into the PAAm solution. This will ensure 

that the fibres do not limit the NPs’ Brownian relaxations, allowing higher temperature values to be 

achieved. 

Also, the most efficient method of incorporating the membrane into the body should be studied 

in order to obtain the highest possible yield. 
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6 Supporting Information 

Table 6.1 - Results of parameter combinations tested in the electrospinning technique. 

1 Did not produce fibres due to low flow rate 

2 Did not produce fibres due to the distance between the needle and the collector 

3 Produced beaded fibres 

4 Produced monodispersed fibres without defects 

 

Table 6.2 - Parameters used for Water/Ethanol (8:2) + 3 wt.% PAAm solution. 

Temp. (ºC) Humidity (%) Rate (ml.h -1) Distance (cm) Voltage (kV) Result 

31.6 32 

0.15 

15 

15 1 

31.6 32 17.5 1 

31.7 32 20 1 

31.6 31 

20 

15 1 

31.8 32 17.5 1 

31.6 32 20 1 

22.3 34 

0.20 

15 

15 3 

25.9 35 17.5 3 

28.0 33 20 3 

27.4 33 

20 

15 2 

27.4 33 17.5 2 

27.5 32 20 2 

27.1 33 

0.25 

15 

15 3 

26.4 31 17.5 3 

24.9 35 20 3 

25.0 35 

20 

15 2 

25.0 35 17.5 2 

25.1 35 20 2 
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Figure 6.1 - SEM image of fibres produced with 4 wt.% PAAm solution in water using parameters: 0.25 ml.h -1; 

15 cm and 15 kV, without humidity control (Initial humidity: 36%; Final humidity: 48%). Average diameter: 

277±115 nm. 

 

Figure 6.2 - Example of a beaded membrane produced with the 3 wt.% PAAm solution in water/ethanol, through 

the parameters 0.25 ml.h -1; 15 cm; 15 kV. 
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Table 6.3 - Parameters used for Water/Ethanol (8: 2) + 4 wt.% PAAm solution. 

Temp. (ºC) Humidity (%) Rate (ml.h -1) Distance (cm) Voltage (kV) Result 

31.0 32 

0.15 

15 

15 1 

31.0 32 17.5 1 

31.0 32 20 1 

31.2 31 

20 

15 1 

31.2 31 17.5 1 

31.2 31 20 1 

32.0 34 

0.20 

15 

15 4 

33.0 35 17.5 4 

33.0 33 20 4 

33.0 33 

20 

15 2 

33.0 33 17.5 2 

31.0 32 20 2 

31.0 33 

0.25 

15 

15 4 

31.0 31 17.5 4 

31.0 31 20 4 

31.0 32 

20 

15 4 

31.2 33 17.5 4 

31.2 33 20 4 

 

Table 6.4 - Parameters used for Water/ Ethanol (8: 2) + 5 wt.% PAAm solution. 

Temp. (ºC) Humidity (%) Rate (ml.h -1) Distance (cm) Voltage (kV) Result 

22.6 31 

0.15 

15 

15 3 

22.6 33 17.5 3 

22.6 32 20 3 

23.0 31 

20 

15 3 

23.0 32 17.5 3 

23.0 32 20 3 

24.0 31 

0.20 

15 

15 2 

24.0 31 17.5 3 

24.0 32 20 3 

24.5 31 

20 

15 2 

24.5 31 17.5 2 

24.5 32 20 3 

25.0 33 

0.25 

15 

15 4 

25.0 33 17.5 4 

25.0 33 20 4 

25.1 34 

20 

15 3 

25.1 34 17.5 4 

25.1 35 20 4 
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Figure 6.3 - Example of a beaded membrane produced with the 5 wt.% PAAm solution in water/ethanol, through 

the parameters 0.25 ml.h -1; 15 cm; 15 kV. 

 

Table 6.5 - Parameters used for Water + 3 wt.% PAAm solution. 

Temp. (ºC) Humidity (%) Rate (ml.h -1) Distance (cm) Voltage (kV) Result 

26.0 35 

0.15 

15 

15 1 

26.0 35 17.5 3 

26.0 35 20 3 

26.0 35 

20 

15 2 

29.7 30 17.5 2 

33.0 28 20 2 

32.0 28 

0.20 

15 

15 4 

29.0 30 17.5 4 

25.0 35 20 4 

24.5 35 

20 

15 2 

24.5 35 17.5 2 

24.5 34 20 2 

26.0 34 

0.25 

15 

15 4 

24.7 33 17.5 4 

26.4 31 20 4 

26.0 34 

20 

15 2 

26.0 34 17.5 3 

26.0 35 20 3 
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Table 6.6 - Parameters used for Water + 4 wt.% PAAm solution. 

Temp. (ºC) Humidity (%) Rate (ml.h -1) Distance (cm) Voltage (kV) Result 

24.0 35 

0.15 

15 

15 3 

24.0 35 17.5 3 

24.0 35 20 3 

24.0 34 

20 

15 2 

24.1 34 17.5 2 

24.1 34 20 2 

30.0 28 

0.20 

15 

15 4 

30.0 28 17.5 4 

30.1 28 20 4 

30.0 32 

20 

15 1 

30.0 32 17.5 1 

30.0 32 20 1 

26.0 34 

0.25 

15 

15 4 

26.0 33 17.5 4 

26.1 31 20 4 

26.5 31 

20 

15 4 

26.5 30 17.5 4 

26.5 30 20 4 

27.0 31 0.4 15 15 3 

 

 

Figure 6.4 - SEM image of fibres produced by 4 wt.% PAAm solution in water using parameters 0.4 ml.h -1; 

15 cm; 15 kV. 
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Table 6.7 - Parameters used for Water + 5 wt.% PAAm solution. 

Temp. (ºC) Humidity (%) Rate (ml.h -1) Distance (cm) Voltage (kV) Result 

26.5 36 

0.15 

15 

15 1 

26.5 35 17.5 1 

26.5 35 20 1 

26.4 34 

20 

15 1 

26.4 34 17.5 1 

26.4 34 20 1 

29.0 30 

0.20 

15 

15 3 

29.0 30 17.5 3 

30.0 28 20 3 

30.0 28 

20 

15 2 

30.0 28 17.5 2 

30.0 28 20 2 

28.0 32 

0.25 

15 

15 3 

28.0 33 17.5 3 

28.0 33 20 3 

28.0 33 

20 

15 3 

28.0 33 17.5 3 

28.0 34 20 3 

 


