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Abstract 

Bone biomarkers are chemical substances produced during the bone remodelling pro-

cess that can provide beneficial information concerning bone metabolism. Recently, 

some studies highlighted the importance of Wnt signalling, a crucial pathway for osteo-

blast differentiation and a master bone mass regulator. In fact, serum levels of Dkk1 and 

SOST, which are negative regulators of Wnt signalling, increase with age and are associ-

ated with bone mass loss. Previous studies from the CEDOC group showed that, in fra-

gility fracture patients, osteoblast terminal differentiation is impaired, which is associated 

with bone mechanical fragility. Therefore, it was hypothesized that serum Wnt regulators 

are associated to bone fragility and can constitute new markers for osteoporosis treat-

ment decision. 

In this dissertation, the association between bone gene expression of markers of osteo-

blast and osteoclast differentiation and of Wnt pathway regulators (Dkk1, Dkk2, SOST, 

WIF1 and sFRP1) with bone mineral density was analysed. Furthermore, the association 

between serum levels of bone biomarkers and Wnt regulators and bone mineral density 

was analysed as well. A set of 128 patients submitted to hip arthroplasty, aged above 40 

years old, were evaluated from a clinical database. Linear regression analysis was per-

formed to assess the above-mentioned associations. Associations within estimators were 

conducted to compute missing values. Stepwise regression was used with the Backward 

elimination process and bootstrapping was used to externally validate the models. Be-

sides the bone biomarkers, four variables were included to the models, namely sex, rheu-

matoid arthritis, corticoid use and secondary osteoporosis.  

Positive correlations were found between serum levels of Wnt regulators (P1NP, SOST 

and Dkk1) and BMD. With respect to the genetic expression of bone biomarkers, Dkk2 

and sFRP1 were negatively associated with BMD, whereas Lrp6 and WIF1 were positively 

correlated. These results demonstrate that an upregulation of bone gene expression of 

Wnt regulators, namely some of the Wnt inhibitors, is associated with low bone mass. 

The low number of patients is a limitation and further studies need to be conducted in 

larger populations and with the inclusion of more bone biomarkers. This dissertation was 

conducted under the project ARIBOS, funded by the Portuguese Society of Rheumatol-

ogy. 
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Resumo 

Os biomarcadores ósseos são substâncias químicas, produzidas durante o processo de 

remodelação óssea, que podem fornecer informações benéficas sobre o metabolismo 

ósseo. Recentemente, alguns estudos realçaram a importância da via Wnt, uma via crucial 

para a diferenciação dos osteoblastos e um regulador-chave de massa óssea. De fato, os 

níveis séricos de Dkk1 e SOST, que são reguladores negativos da via Wnt, aumentam 

com a idade e estão associados à perda de massa óssea. Estudos anteriores do grupo do 

CEDOC mostraram que, em pacientes com fraturas por fragilidade, a diferenciação ter-

minal dos osteoblastos é prejudicada, o que está associado à fragilidade mecânica óssea. 

Assim, foi levantada a hipótese de que os reguladores séricos da via Wnt estão associa-

dos à fragilidade óssea e podem constituir novos marcadores para a decisão no trata-

mento da osteoporose. 

Nesta dissertação, analisou-se a associação entre a expressão génica óssea de marcado-

res da diferenciação de osteoblastos e osteoclastos e de reguladores da via Wnt (Dkk1, 

Dkk2, SOST, WIF1 e sFRP1) com a densidade mineral óssea. Além disso, a associação 

entre os níveis séricos de marcadores de remodelação óssea e reguladores da via Wnt e 

a densidade mineral óssea também foi analisada. Foram avaliados 128 pacientes subme-

tidos à artroplastia da anca, com idade superior a 40 anos, a partir de uma base de dados 

clínica. Regressão linear foi utilizada para avaliar as associações supramencionadas. As-

sociações entre os estimadores foram realizadas para imputar valores ausentes na base 

de dados. A regressão stepwise foi usada, juntamente com o processo de eliminação 

Backward e bootstrapping foi usado para externamente validar os modelos. Além dos 

biomarcadores ósseos, quatro variáveis foram incluídas nos modelos: sexo, artrite reu-

matoide, uso de corticoide e osteoporose secundária. 

Foram encontradas correlações positivas entre os níveis séricos de reguladores da via 

Wnt (P1NP, SOST e Dkk1) e a densidade mineral óssea. No que diz respeito à expressão 

genética dos biomarcadores ósseos, Dkk2 e sFRP1 foram negativamente associados à 

densidade mineral óssea, enquanto Lrp6 e WIF1 foram positivamente correlacionados. 

Estes resultados demonstram que uma regulação positiva dos reguladores da via Wnt, 

mais especificamente alguns dos inibidores da via Wnt, está associada a baixa massa 

óssea. O reduzido número de doentes é uma limitação e estudos futuros necessitam de 

ser realizados em populações maiores e com a inclusão de mais biomarcadores ósseos. 
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1 
1. Introduction 

1.1 Osteoporosis and its Social and Economic Impact 

Osteoporosis has become a major health concern worldwide, mainly due to its preva-

lence and socioeconomic consequences on society [1], [2], with currently more than 200 

million people suffering from this disease [3]. Osteoporosis is characterized by low bone 

mass and structural degeneration, resulting in increased bone fragility and predisposition 

to fracture [4]. These fractures result in a major health issue in the elderly population, 

namely in terms of morbidity, mortality and costs to health care services [5], [6].  

Osteoporosis occurs primarily due to normal ageing, where bone becomes naturally 

weaker over time. Bone mineral density starts to progressively decline at the fourth dec-

ade, whereas the fracture risk increases progressively [7]. However, it can also result from 

excessive bone loss during adulthood (e.g. menopause – in women) [8]. When women 

reach menopause, the steep decrease observed in oestrogen serum levels impairs the 

normal bone remodelling cycle, ultimately leading to a net loss of bone [9]. 

In 1994, the World Health Organization (WHO) proposed a simple method to classify 

osteoporosis, which was essentially based on the measurement of bone mass by dual-

energy X-ray absorptiometry (DEXA) [10]. It classifies the subjects into four main classes 

according to the value of their bone mineral density (BMD), when compared with a young 

adult reference population (T-score, Table 1.1). Based on these diagnostic criteria, an 

estimated 27.6 million European residents had osteoporosis in 2010 [11].  
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Table 1.1 – Classification of osteoporosis according to WHO. 

Category T-score 

Normal T-score ≥ –1.0 

Osteopenia –2.5 < T-score < –1.0 

Osteoporosis T-score ≤ –2.5 

Severe osteoporosis T-score ≤ –2.5 with a fragility fracture 

Nowadays, it is known that osteoporosis and the occurrence of osteoporotic fractures 

depend on several factors besides bone mass. These risk factors can be divided into ma-

jor and minor risks, according to their impact in osteoporosis. Among the major risk fac-

tors are age and sex of the individual, prior fragility fractures, family history of hip frac-

tures, corticoid therapy and hypogonadism. Minor risk factors include body mass index 

lower than 18.5 Kg/m2, rheumatoid arthritis, hyperparathyroidism, frequent falls and toxic 

habits, such as excessive intake of alcohol and current smoking [6]. 

In 2008, the University of Sheffield, collaborating with WHO, developed a clinical algo-

rithm, known as FRAX®, that expresses the 10-year probability of hip fracture and major 

osteoporotic fracture, like spine, forearm or shoulder fractures. This algorithm considers 

each of the individual patient models that integrate the clinical risk factors, as well as 

BMD at the femoral neck and provides a relatively reliable tool to categorize individuals 

according to the risk of fracture and, thus, prioritize pharmacological therapies [6], [12]. 

According to the International Osteoporosis Foundation, there are around 9 million frac-

tures each year caused by osteoporosis, all over the world [13]. Europe and the Americas, 

by themselves, account for more than half of the share regarding the place of occurrence 

of these fractures and in a rapid aging population, consequence of declines in fertility 

rates and higher average life expectancy, these statistics will increase over the next dec-

ades [13]. The incidence of osteoporotic fractures increases exponentially with age and 

the existence of previous fragility fractures imposes a huge risk factor for subsequent 

fractures, underlining the importance of urgent intervention in patients to prevent further 

fractures and improve the quality of life (Fig. 1.1) [5].  
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Figure 1.1 – Burden of osteoporosis in Europe and its comparison with other neoplastic disorders, 

measured by disability-adjusted life-years (DALYs) that are lost for each disease [14]. 

Concerning the economic costs, these include direct and indirect costs. The first ones are 

related to hospitalization and aftercare costs, whereas the second ones are meant for the 

impact on daily basis activities and, thus, quality of life. Together, these costs are a sub-

stantial economic burden on social and health care services [5]. To illustrate this reality, 

it is estimated that the direct costs of fractures derived from osteoporosis in Europe reach 

around €36 thousands of millions annually [15]. 

1.2 Standard Diagnostic Tools for the Assessment of Osteoporosis 

Bone mineral density is one of the major predictors of osteoporosis and fracture risk, 

which makes it of utmost importance to accurately measure it. Since bone density cannot 

be measured by traditional X-rays, specialised techniques need to be used [16]. A variety 

of different techniques are available [10], namely peripheral DEXA (for forearm, finger 

and heel), single-energy X-ray absorptiometry (for heel or wrist), dual photon absorp-

tiometry (for spine, hip or total body), single photon absorptiometry (for wrist), quanti-

tative computed tomography (for spine or hip), peripheral quantitative computed to-

mography (for forearm) and quantitative ultrasound (for heel or finger). However, for the 
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purpose of this work, only the two currently most commonly used techniques will be 

addressed. 

1.2.1 Dual-energy X-ray Absorptiometry 

Nowadays, DEXA remains the gold standard diagnostic tool for osteoporosis, estimating 

bone mineral content (BMC) from the portions of the image identified as bone tissue and 

dividing it by the total projected area scanned [17]. Therefore, BMD measurements are 

obtained in grams per unit of area, which usually comes in cm2 [17], [18].  

Current DEXA equipments deliver much less radiation, protecting patients from excessive 

radiation exposure, which was one of the greatest disadvantages of this technology in its 

early developments [17]. Nevertheless, patients are still exposed to some extent of radi-

ation, which implies a clear limitation as it presents a risk in patient health. Another fea-

ture allows DEXA to distinguish bone tissue from other tissues, such as fat and muscle, 

by using x-ray beams with different energies [18].  

However, tissues are not homogenously distributed, which leads to measurement errors 

[19]. Moreover, correct patient positioning is of utmost importance, since slight changes 

in positioning result in a wide range of BMD values, often far from reality [20]. Other 

disadvantages include high associated costs, large-sized machines and relatively low re-

producibility [21]. 

1.2.2 Quantitative Computed Tomography 

Different diagnostic techniques have been used to quantify bone mass and bone loss as 

well. For instance, quantitative computed tomography (QCT) is utilized to obtain volu-

metric measurements of BMD [22]. These measurements represent a value closer to re-

ality, as the information does not get partially lost during areal projection calculations 

[23]. In addition, it is possible to separate cortical from trabecular bone, a great ad-

vantage over DEXA [21], [22]. 

Although having significant advantages compared to DEXA, QCT comes with a few dis-

advantages as well, very similar to those observed in DEXA machines. Even being con-

sidered a more advanced technology, its high complexity requires well-trained specialists 

to procced with the scanning protocols [21]. High costs are also among the 
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disadvantages, together with the emission of higher radiation doses when used to meas-

ure hip BMD values [21]. 

Therefore, around 2008, the International Society for Clinical Densitometry (ISCD) estab-

lished that QCT should be used to perform vertebral measurements, while hip measure-

ments could be evaluated with DEXA or peripheral CT scanners (pQCT) [24]. 

1.3 Motivation and Objectives 

Bone remodelling is a lifelong process, where bone tissue is constantly being removed 

and replaced by new bone tissue, commonly known as osteoclast-mediated bone re-

sorption and osteoblast-mediated bone formation, respectively [25]. It plays a vital role 

in preserving and maintaining the skeleton healthy status during its lifetime, which in-

cludes bone replacement following any kind of injurie, such as micro-fractures, and re-

sponding to eventual body demands, depending on the mechanical load [25]. Changes 

in BMD occur naturally with advancing age but can also result from impaired bone re-

modelling activity due to possible existing abnormalities [26]. In impaired remodelling, 

abnormal changes in expression and release of various local and systemic factors often 

result in increased bone resorption activity, leading to decreased BMD and bone mass 

loss [25], [26]. 

Bone mineral density is a measure of bone mass per unit of volume (volumetric density) 

or per unit of area (areal density) and can be assessed through densitometric techniques 

[11]. BMD is one of the major predictors of osteoporosis and fracture risk, which makes 

it a key-factor in the diagnosis of osteoporosis. Early diagnosis of osteoporosis is essen-

tial for the identification of patients with a high risk of developing osteoporosis and fra-

gility fractures, resulting in early and more efficient treatments. Additionally, the use of 

models capable of estimating BMD based on measured serum levels of bone biomarkers 

and/or genetic expression of bone biomarkers, could help to reduce both the need of in 

vitro/in vivo studies, which are extremely expensive, and the frequency of DEXA exams 

prescribed. In addition, these models may lead to vital clues regarding biomarkers that 

can be used as powerful markers for osteoporosis treatment decision.  
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Hence, the main objective of this dissertation is to assess the association between bone 

gene expression and serum concentrations of markers of osteoblast and osteoclast differ-

entiation and of Wnt pathway regulators with bone mineral density. In order to achieve 

the proposed main objective, the following specific objectives were defined: 

1) Estimate bone mineral density based on its major contributors; 

2) Evaluate the association of serum levels of markers of osteoblast and osteoclast 

differentiation and of Wnt pathway regulators with bone mineral density; 

3) Estimate the association between bone gene expression markers of osteoblast 

and osteoclast differentiation and of Wnt pathway regulators and bone mineral 

density. 

This dissertation was conducted under the project ARIBOS, funded by the Portuguese 

Society of Rheumatology. 

1.4 Thesis Outline 

Apart from this chapter, which contemplates a brief introduction about osteoporosis, as 

well as the importance of this work and the motivation that propelled it, an extensive and 

detailed insight into the biology and physiology of bone is given in Chapter 2. 

Chapter 2 is crucial, because it explains the complex yet brilliant architecture of bone, its 

mechanical properties and microenvironment, namely a description of the bone cells, the 

major determinants of bone mineral density and the markers of osteoblast and osteo-

clast differentiation, with emphasis in the Wingless/Integrated signalling pathway. 

Chapter 3 provides a description of the methodology used. More specifically, it contains 

information about the study design, source of data, study variables and the statistical 

data analysis performed. 

Chapter 4 presents the exploratory analysis of the data and the main results obtained, as 

well as a glimpse into the developed graphical user interface. 

Chapter 5 discusses the results obtained and compares them with the literature, as well 

as exploiting some of the limitations of this work. 

Chapter 6 resumes the main conclusions drawn from this work and discusses future per-

spectives.
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2 
2. Literature Review 

In this chapter, the theoretical concepts that are important to understand the underlying 

complexity of bone and all its biophysiological processes are discussed in detail. The 

major determinants of bone mineral density are addressed and explained, together with 

numerous bone resorption and bone formation biomarkers. Finally, the Wingless/Inte-

grated (Wnt) signalling pathway is explained, as well as the bone biomarkers that are 

part of it. 

2.1 Bone Physiology and Biology 

The vertebrate skeleton is made of different tissues, each one with different properties 

and functions, that provide support, structure and protection for the body. It is mainly 

composed by bone, but it also includes cartilage, tendons and ligaments. On the other 

hand, bone is a unique kind of connective tissue with a characteristic that distinguishes 

it apart from the rest of the connective tissues, which is its mineralized composition. As 

an organ, bone is made up of cartilaginous joints, calcified cartilage of the growth plate 

(exclusively during skeleton growth), marrow space and the mineralized structures of 

cortical (compact bone) and trabecular (cancellous bone) bone (Fig. 2.1) [25], [27], [28]. 

As a tissue, bone is a combination of the mineralized and non-mineralized matrixes (os-

teoid) and the cellular components, namely the osteoblasts, responsible for bone for-

mation, the osteoclasts, responsible for bone resorption, and the entrapped osteoblasts 

into the mineralized matrix that later differentiate into osteocytes. The communication 

between these cells and the role they play in bone remodelling processes will be further 

discussed below [25], [27], [28].  
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Figure 2.1 – Constitution of long bones. At a macroscopic scale, long bones are composed by 

articular cartilage, the inner layer and porous trabecular bone, the outer layer and denser cortical 

bone and the marrow cavity. On its surface, long bones are covered by a thin fibro-cellular highly 

vascularized and innervated membrane, the periosteum [25], [29]. 

Cortical bone is a dense, compact, low metabolism type of bone and forms the hard-

outer layer, called cortex, giving its smooth, white and solid appearance. It facilitates the 

execution of the main bone functions, which includes supporting the body, protecting 

vital organs, providing levers for movement, and storing chemical ions. It consists of mul-

tiple microscopic columns (osteon), composed by multiple layers of osteoblasts and os-

teocytes around a central canal called the Haversian canal. The Volkmann canal is re-

sponsible for addressing a connection between the Haversian canals [25], [27], [28]. On 

the other hand, trabecular bone is a cancellous, high metabolism type of bone with a 

high level of porosity. It forms the internal tissue of skeletal bone and is an open cell 

porous network. Trabecular bone has a higher surface-area-to-volume ratio than cortical 

bone and it makes the bone softer and weaker, but at the same time more flexible. This 

type of bone is highly vascular and frequently contains red bone marrow, where blood 

cells are produced. Thin formations of osteoblast, covered in endosteum, create an irreg-

ular network of spaces, the trabeculae, with its functional unit, the trabecula [25], [27], 

[28]. Figure 2.2 shows the structure and the individual components of cortical bone, while 
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figure 2.3 demonstrates the arrangement of the components in trabecular bone, to-

gether with a transverse section of a trabecula [30]. 

 

Figure 2.2 – Structure and components of cortical bone. Adapted from [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Structure and components of trabecular bone. Adapted from [30].  
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2.1.1 Hierarchical Bone Structure 

Bone is organized in a variety of material arrangement structures, to achieve its mechan-

ical, biological and chemical functions (Fig. 2.4). To understand the bone mechanical 

properties, it is important to analyse the combined mechanical properties of its individual 

components, as well as their relationship at the various levels of hierarchical structural 

organization [25], [27], [28]. 

Figure 2.4 – Hierarchical bone structure. At the macrostructure level, bone is the combination 

between trabecular and cortical bone. At the microstructure level, the Haversian systems, which 

are a series of canals to accommodate blood vessels, are surrounded by layers of concentric la-

mellae. The connection between these systems is assured by the transversal Volkmann canals. At 

the nanostructure level, bone is made of two phases: the organic phase is composed by the col-

lagen type I organic matrix, whereas the mineral phase is composed by carbonate-substituted 

hydroxyapatite embedded in the organic matrix. Adapted from [31]. 

At a macrostructure point of view, bone is composed by its inner and porous trabecular 

bone with the marrow cavity, involved by a dense cortical bone, acting as a protective 

shield. At this level, bone mechanical properties are studied through classic bending 
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tests, to analyse bone stiffness, energy storage, ductility and fragility, among others [25], 

[27], [28].  

At a microstructure point of view, cortical bone has numerous concentric lamellae layers 

that surround a central canal carrying a blood vessel, commonly known as the Haversian 

systems (osteons). These systems form an interconnected grid through transversal chan-

nels, designated as Volkmann canals. Trabecular bone has cellular foam-like structure 

made of an interconnected network of rods and plates forming the bone trabeculae. 

Osteons and bone trabeculae have osteocyte lacunae, connecting to each other and to 

vessels through canaliculi [25], [27], [28]. 

Finally, at a nanostructure point of view, transmission electron microscopy (TEM) allowed 

the concept of bone as a heterogeneous and anisotropic material that comprises two 

phases: the organic phase, formed by the organic matrix, is mainly composed by collagen 

type I and the mineral phase is essentially composed of inorganic particles of carbonate-

substituted hydroxyapatite embedded in the organic matrix [25], [27], [28]. 

2.1.2 Bone Mechanical Properties 

Since bone is a highly hierarchically structured tissue, its strength arrives from the com-

plex, yet harmonized relationship between the macroscopic tissues (cortical and trabec-

ular bone) and the different structural and material properties [32]. Bone can adapt itself 

to mechanical load [33]. However, its adaptive response varies, depending on the strain 

conditions (frequency, distribution, amplitude, among others). The mechanical behaviour 

of bone reflects its intrinsic properties, and these can be determined through standard-

ized mechanical tests [34]. 

2.1.2.1 Stress-Strain 

When external forces (stress) are applied to bone, they are distributed over its cross-

sectional area and induce structural deformations (strain). This results in the generation 

of an internal resistance to the applied force. While strain is a measure of linear defor-

mation, expressed in percentage (%) of change from the original dimensions or angular 

configuration of the structure, stress is a measure of load per unit of area, expressed in 

Newton per square metre (N/m2) or Pascal (Pa) [32]. Considering the stress-strain curve, 

bone can either exhibit elastic behaviours or plastic behaviours, depending on its yield 
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point. There is a linear relationship between the stress applied and the resultant defor-

mation, expressed by the modulus of Young (E). It is obtained by determining the slope 

of the linear portion of the curve, dividing the stress by the strain at any point in that 

region (Fig. 2.5). 

Figure 2.5 – Representation of a stress-distension curve. The elastic region (A) represents a region 

where bone has the capability to restore its initial form. From that point, permanent deformation 

occurs (B), entering in a new region, called the plastic region (C). Eventually, bone reaches a point 

where fracture will occur. The slope of the curve, in the elastic region, represents the modulus of 

Young (E) and the material strength is determined by the area under the total curve (D) [34]. 

When the magnitude of the strain remains under the yield point, designated as the elastic 

region, bone elastically deforms by storing energy and later returns to its initial state by 

releasing the absorbed energy. In contrast, when the magnitude of the strain exceeds 

the yield point, bone enters a so-called plastic region, in which bone loses its ability to 

return to its initial state, resulting in permanent damages. 
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2.1.2.2 Mechanical Behaviour 

In order to withstand a variety of loading types, bone has distinctive responses to each 

one of them, due to its unique anisotropic architecture. Bone has adapted itself to ac-

commodate the load, which resulted in bone strength and rigidity being typically greater 

in the direction where load is most commonly applied [32], [34]. Stress can be catego-

rized into five types: compression, tension, shear, torsion and bending (Fig. 2.6). 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 – Schematic illustration of different types of external forces that can be applied to bone 

[34]. 

Cortical bone, where osteons are oriented in a longitudinal direction, can better handle 

compressive strains than tensile strains, but does not withstand shear rates very well due 

to its high stiffness [35]. Trabecular bone has a lower Young modulus than cortical bone, 

because it has a greater porosity degree [36], and although less stiff, it can withstand 

greater strains. 

Considering the material contribution, the organic and inorganic components present in 

bone influence the mechanical behaviour as well [37]. The degree of mineralization (to-

gether with its quality) and porosity are the two major factors that determine the quality 

of bone and how it will respond to load [32]. When bone becomes overly stiff and brittle, 

due to its high levels of mineralization and crystallinity, the formation of microfractures 

can emerge at lower levels of deformation [32]. Conversely, if the levels of mineralization 

and crystallinity are too low, bone becomes more fragile and weaker, leading to the 
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appearance of microdamage at lower levels of deformation as well [32]. On the other 

hand, the degree of porosity strongly influences bone mass and density [37]. The rapid 

age-related deterioration on the cortical and trabecular structures increases bone poros-

ity, compromising bone integrity and leading to a successive bone loss over time [32]. 

Therefore, an optimal balance between the quality of both organic and inorganic com-

ponents, influenced by the degrees of mineralization, crystallinity and porosity, is vital to 

maintain the best standards of bone response to load [32], [33], [37]. 

2.1.3 Bone Cells 

2.1.3.1 Osteoblasts 

Osteoblasts are the cells responsible for creating new bone tissue and emerge from mes-

enchymal stem cells (MSCs). They synthesize osteoid, which is a non-mineralized organic 

extracellular matrix [25], [27], [28].  

After participating in bone formation processes, osteoblasts undergo one of three pos-

sible outcomes: 1) they go through apoptosis (programmed cell death), 2) differentiate 

into osteocytes if they become trapped into the mineralized bone matrix, or 3) become 

dormant lining cells, participating in calcium-exchange activities and waiting to be reac-

tivated to engage in bone formation [25], [27], [28].  

The osteoblast-lineage cells give rise to osteoblast progenitor cells (pre-osteoblasts), that 

later differentiate into mature osteoblasts. The process of osteoblast differentiation is 

stimulated by the presence of specific chemical signalling cytokines, which include bone 

morphogenetic proteins (BMPs), parathyroid hormone (PTH), transforming growth factor 

beta (TGF-) and a wingless/integrated (Wnt) pathway. Osteoblasts themselves are ca-

pable of producing growth factors as well, such as insulin-like growth factor I and II, TGF-

 and BMPs, that are stored in the organic matrix and play a vital role in osteoblast dif-

ferentiation and normal functioning. The osteoblast-lineage maturing process is called 

osteoblastogenesis (Fig. 2.7) [25]. 
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Figure 2.7 – Osteoblastogenesis. Active osteoblasts arise from a sequential differentiation of mes-

enchymal stem cells and participate in bone formation. Upon termination of bone formation, os-

teoblasts can become lining cells on the bone surface, die by apoptosis, or differentiate to oste-

ocytes [25]. 

2.1.3.2 Osteocytes 

Osteocytes are the differentiation products of osteoblasts that become trapped in the 

mineralized bone matrix. Osteocytes are uniformly distributed throughout the mineral-

ized bone matrix and connect between each other or to other cells through dendrite-like 

processes contained in fluid-filled canals (canaliculi), which radiate toward the surface 

and the blood supply [25], [27], [28].  

Their strategical location in the bone matrix allows them to detect local changes in me-

chanical stimuli, respond to changes in concentrations of circulating factors, such as hor-

mones and ions, and to amplify these signals, leading to a coordinated adaptive response 

of the skeleton to environmental changes, which include adaptations in bone architec-

ture, through bone modelling. Hence, osteocytes are extremely important cells in adapt-

ing bone to variations in mechanical loading and maintaining skeletal health [25], [27], 

[28].  

Sclerostin is an important marker for mature osteocytes, encoded by the SOST protein 

and acts as a negative key regulator of bone mass by counteracting the canonical Wnt 

signalling cascade, which is crucial to bone homeostasis. It affects bone formation di-

rectly and bone degradation indirectly, and its withdrawal results in increased bone mass 
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[38]. Osteocytes are long-lived cells, but like all cells, they also undergo apoptosis. A 

decrease in the osteocyte population is associated with bone fragility induced by oestro-

gen deficiency, glucocorticoid excess and lack of mechanical load [25], [27], [28]. 

2.1.3.3 Osteoclasts 

Osteoclasts are the cells responsible for bone resorption. They are members of the mon-

ocyte-macrophage family derived from bone marrow macrophages. The osteoclast dif-

ferentiation process, known as osteoclastogenesis (Fig. 2.8), depends on two cytokines, 

namely, macrophage-colony stimulating factor (M-CSF or CSF-1) and receptor activator 

of nuclear factor- κB ligand (RANKL), which are produced by marrow stromal cells and 

osteoblasts [39]. 

Figure 2.8 – Osteoclastogenesis. Osteoblasts and osteocytes secret RANKL and M-CSF, among 

other cytokines, that control osteoclast differentiation. Osteoprotegerin (OPG), which is also se-

creted by osteoblasts and osteocytes, acts as an inhibitor for osteoclast differentiation, by binding 

to RANKL [25]. 

RANKL is a member of the tumour necrosis factor (TNF) family and is the key osteoclas-

togenic cytokine required for the differentiation of precursor cells. RANKL, produced by 

osteoblast and osteocytes, binds to the RANK receptor, which is expressed in osteoclasts. 
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Osteoclastogenesis is stimulated by PTH, PTH-related protein (PTHrP), prostaglandin E2 

(PGE2) and interleukin 1 (IL-1), which act on osteoblast cells to upregulate RANKL expres-

sion [25], [27], [28].  

In contrast, OPG, a form of the TNF receptor, which is also expressed by osteoblast and 

osteocytes and is upregulated by oestrogen, BMP and TGF-, acts as a decoy receptor 

for RANKL to downregulate osteoclastogenesis. Therefore, the ratio between RANKL and 

OPG in osteoblast cells controls differentiation and activation of osteoclasts [40], [41]. 

2.1.4 Bone Remodelling 

As a dynamic organ, bone undergoes a continual and coordinated self-regeneration pro-

cess throughout life, changing its internal structure in a process called remodelling [42]. 

Bone remodelling requires osteoclast-mediated bone resorption and osteoblast-medi-

ated bone formation and it is achieved by the basic multicellular unit (BMU) [43]. In cor-

tical bone, an osteonal structure is formed, which represents concentric layers of bone 

encircling a Haversian canal. Conversely, when remodelling occurs on trabecular bone, 

the resulting structure is a hemiosteon. 

The remodelling cycle is divided into five stages: activation, resorption, reversal, for-

mation and quiescence [25], [43], [44]. The activation phase begins with the lining cells 

digesting the layer of unmineralized matrix, thus exposing the bone surface. Osteoclast 

precursors are recruited to the bone surface, differentiating into functioning osteoclasts. 

Afterwards, the bone lining cells retract to expose the mineralized matrix, allowing oste-

oclasts to attach and initiate bone resorption.  

During bone resorption, osteoclasts first dissolve the mineralized bone matrix and later 

degrade the organic matrix. After completion, they undergo apoptosis. The reversal 

phase, which comes after the resorption phase, is a time window in which bone resorp-

tion terminates and bone formation begins. Here, specialized cells deposit a thin layer of 

collagen rich in osteopontin (OPN) that provides fibre matrix bonding, enhancing bone 

resistance to fracture.  

During the formation phase, osteoblasts deposit the osteoid, which consists primarily of 

type I collagen fibres and serves as a template for the mineralization. At last, the quies-

cence phase is characterized by a latency state, in which bone rests until a new cycle 

begins. 
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While bone is being formed, osteoblasts deposit growth factors in the mineralizing ma-

trix, such as TGF-, platelet-derived growth factor (PDGF), insulin-like growth factors 

(IGFs) and bone morphogenetic protein 2 (BMP-2). These growth factors can be later 

released following bone degradation by osteoclasts and participate in the stimulation, 

recruitment, migration, and differentiation of osteoblast progenitors [45].  

Hauge [46] suggested a model for cancellous bone remodelling, in which a closed shell-

form compartment is formed to promote the occurrence of the process (Fig. 2.9). Since 

the bone remodelling compartment (BRC) is sealed, it may contribute to keep the local 

chemical signals at concentrations sufficiently high to promote the fully completion of 

the bone remodelling cycle. It has gained support over the years, because it may help to 

explain how bone resorption and bone formation are linked, even though they take place 

at different time windows during the cycle. 

Figure 2.9 – Bone remodelling compartment. For the bone remodelling process to occur, osteo-

cytes send a signal to the neighbouring bone lining cells, which retract and expose the bone 

surface. Osteoclast precursors are recruited and differentiate into mature osteoclasts to initiate 

bone consumption. As the degradation of the bone matrix progresses, the embedded growth 

factors are released, thereby promoting the recruitment of osteoblast precursors and their differ-

entiation into mature osteoblasts. After bone resorption is complete, osteoblasts initiate bone 

formation, creating new bone matrix and refiling the lacuna. The green arrow indicates stimula-

tion, whereas the red arrow indicates inhibition [25]. 
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2.2 Major Determinants of Bone Mineral Density 

Various studies have shown that body weight, body composition and body fat distribu-

tion, dietary calcium and vitamin D intake and physical activity represent major drivers of 

bone mineral density in adults and elderly populations [47]–[54]. 

2.2.1 Body Weight 

Macdonald et al. [55] demonstrated that body weight accounted for 2.6% of bone loss 

at the femoral neck and 8.4% at the lumbar spine in postmenopausal women, who were 

not under any type of hormonal replacement therapy (HRT) treatment. These results 

showed that a variation in body weight was, indeed, a significant predictor of BMD and 

were in agreement with the findings of Marcel et al. [50], which reported as well that 

body weight was a major determinant of BMD. 

Finkelstein et al. [56] also concluded that body weight had a strong impact on BMD loss 

after menopause. Meanwhile, numerous studies have reported that women with higher 

body mass index and weight were negatively correlated with the rates of bone loss, 

meaning that thinner women are most likely to develop osteoporosis, due to their higher 

bone loss rates [57]–[60].  

Exactly why women with higher body weight have slower bone loss rates is unclear, but 

a possible explanation to this phenomenon might be related to increased productions 

of oestrogens by adipose tissue [56]. 

2.2.2 Body Composition and Body Fat Distribution 

Body composition is considered an important factor, regulating bone mass in postmen-

opausal women [49]. A significant number of studies discovered that fat mass was posi-

tively associated with BMD [51], [55], [61]–[64] and just like Finkelstein et al. [56], these 

authors attributed this discovery to possible increased productions of oestrogens by the 

adipose tissue. 

Other researchers have suggested that women with higher body fat percentages natu-

rally impose higher loads to the bone, leading to increased mechanical stimulus and, 

consequently, increased BMD [65]–[67]. 
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Miliken and his co-workers [47] demonstrated that the variations in soft tissue composi-

tion better explained the changes in BMD, compared with body weight, exercise fre-

quency or calcium intake. Gnudi et al. [68] studied the relationship between total fat mass 

(TFM) and total lean mass (TLM) with BMD and BMC. They concluded that both TFM and 

TLM were significantly correlated with BMD and BMC in osteoporotic and non-osteopo-

rotic postmenopausal women. 

2.2.3 Dietary Calcium and Vitamin D Intake 

It has been established that nutritional factors have an impact on bone mineral density 

and age-related bone loss [69]. Calcium plays a vital role in skeletal health and its impact 

on bone mass has been extensively studied [70]. On the other hand, vitamin D deficiency 

is well known among elderly people, as a consequence of low sunlight exposure and low 

dietary vitamin D intake [71]. The metabolic process of converting 25(OH) Vitamin D into 

1.25(OH)2 Vitamin D decreases with age, which results in lower absorptions of calcium in 

the intestine [72], [73]. In turn, this leads to production of PTH and stimulation of its 

catabolic effect, increasing bone resorption [74], [75]. 

Several studies have shown that regular calcium intake is positively correlated with BMD 

and BMC [48], [76]–[79]. Tai et al. [80] studied whereas higher calcium intakes affected 

BMD and concluded that it led to small increases in BMD. Chevalley et al. [81] demon-

strated that oral intake of calcium supplements successfully prevented decreases in fem-

oral BMD and lowered vertebral fracture rate in vitamin-D-replete elderly patients. Gra-

dos et al. [71] reported significantly increases in BMD in older women who had vitamin 

D deficiency and were given supplementary calcium and vitamin D. Sadat-Ali and his 

colleagues [82] investigated the association between 25(OH) Vitamin D serum levels and 

BMD among Saudi individuals. They discovered that decreased serum levels of 25(OH) 

Vitamin D were associated with low bone mass and increased levels of PTH. 

2.2.4 Physical Activity 

During menopause and the following years, women experience significant reductions in 

muscular strength and bone mass [49]. Studies have shown that regular physical activity 

in postmenopausal women helps to maintain or even slightly increase BMD [83]–[89]. 
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Chien et al. [90] demonstrated that aerobic exercises practiced on a regular basis atten-

uated bone loss.  

On the other hand, Douchi et al. [87] reported that increases in body fat percentage due 

to sedentarism were related to increases in BMD in women. Hence, following an active 

lifestyle positively affects BMD maintenance and reduces bone loss [49].  

Nevertheless, some studies found that physical activity levels had no impact on BMD 

[85], [91]. Thus, healthy active lifestyles should be adopted to prevent excessive bone 

loss, stimulating bone formation and helping to maintain BMD. 

2.3 Bone Turnover Biomarkers 

Bone biomarkers are chemical substances produced during the bone remodelling pro-

cess that can provide valuable information concerning bone metabolism [92]. These can 

be divided into three categories: bone resorption, bone formation and bone turnover 

biomarkers. The latest are used to evaluate to what extent are bone resorption or bone 

formation being inhibited [92]. 

2.3.1 Indicators of Bone Resorption 

Bone resorption markers are products that arise from the activity of osteoclasts during 

bone matrix degradation or cytokines that promote osteoclast differentiation and matu-

ration [92]. Several indicators of bone resorption have already been proposed, but for 

the purpose of this work, we will only focus on those that were measured in the patients 

present in the database. 

2.3.1.1 C-terminal telopeptide of type I collagen 

Telopeptides are non-helical sequences of collagen that can be found at each end of the 

molecule [93]. C-terminal telopeptide of type I collagen, better known as CTX-I, is a deg-

radation product from type I collagen (constituent of bone matrix) released during the 

activity of the enzyme cathepsin K [94]. CTX-I has been considered as a strong reference 

marker for bone resorption by the International Osteoporosis Foundation (IOF) [94]. 
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2.3.1.2 Receptor activator of nuclear factor-KB ligand 

Receptor activator of nuclear factor-KB ligand (RANKL) is a protein of the tumour necrosis 

factor (TNF) family [95], [96]. Produced by osteoblast-lineage cells, its function lies in the 

regulation of the differentiation, proliferation and maturation processes of osteoclasts, 

by binding to its receptor RANK [97].  

Previous studies have shown that elevated RANKL serum levels in mice (by inhibiting its 

decoy receptor, OPG) lead to increased osteoclast activity and high rates of bone resorp-

tion; on the other hand, low-expression of RANKL resulted in a decrease in osteoclast 

activity and elevated bone mass [98], [99]. 

2.3.1.3 Tartrate-resistant acid phosphatase 

Tartrate-resistant acid phosphatase (TRAP) is an inactive synthesized proenzyme. Its ac-

tivated form, tartrate-resistant acid phosphatase isoform 5b (TRAP 5b), is established as 

an indicator of osteoclast activity and bone resorption [100], [101]. TRAP 5b, usually se-

creted by osteoclasts, is responsible for dephosphorylating proteins embedded in the 

bone matrix. In addition, it has the capability of producing reactive oxygen species nec-

essary for bone matrix degradation [92], [101].  

A study conducted by Halleen and his co-workers [102], demonstrated that serum levels 

of TRAP 5b were higher in osteoporotic patients and, consequently, negatively associated 

with BMD. 

2.3.2 Indicators of Bone Formation 

Concerning the indicators of bone formation, these are cytokines that arise from the 

activity of osteoblasts during bone formation or promote osteoblast differentiation, pro-

liferation and maturation [92]. Numerous bone formation markers have been proposed 

as well. However, as mentioned previously, focus will be given only to those that were 

measured in the patients present in the database. 
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2.3.2.1 Alkaline phosphatase (bone isoenzyme) 

Alkaline phosphatase (ALP) is a metalloenzyme and a vital piece in hard mineralized tis-

sue formation [103]. Several studies have reinforced this knowledge, demonstrating that 

ALP leads, indeed, to tissue mineralization [104]–[109]. ALP is expressed in the early 

phases of tissue development, when other essential cytokines, such as osteocalcin, are 

still down-regulated [103]. ALP has, therefore, become a reference marker for evaluating 

the maturity of mineralized tissue and a good indicator of bone formation [103]. 

2.3.2.2 Osteocalcin 

Osteocalcin is a protein secreted mostly by osteoblasts during bone formation activity 

[110]. Osteocalcin is often used as a biomarker of bone formation and is believed to have 

a regulatory function in bone tissue mineralization [110].  

van de Loo et al. [111] studied the effect of osteocalcin on the precipitation of insoluble 

salts and demonstrated that osteocalcin played an inhibitory role on the precipitation of 

calcium salts. On the other hand, Ducy et al. [112] verified that mice with null expression 

of osteocalcin developed more bone mass and had higher bone formation rates com-

pared to the control group. Sudhir et al. [113] concluded that, in his study of the diag-

nostic potential of serum osteocalcin levels as an indicator of primary osteoporosis in 

women, osteocalcin levels were negatively correlated with BMD measurements. These 

studies suggest that osteocalcin plays a vital role in inhibiting bone mineralization and 

can be used as a reference biomarker of bone formation.  

Nevertheless, Murshed et al. [114] studied mice with elevated expression of osteocalcin 

and observed that bone mineralization exhibited, approximately, a normal status. Thus, 

further studies need to be conducted to assess the exact role of osteocalcin within the 

bone matrix environment.  

To our knowledge, it can be used as a biomarker for osteoblastic bone formation, espe-

cially for women, since osteoporotic women present higher osteocalcin serum levels that 

non-osteoporotic women [113]. 
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2.3.2.3 Core-binding factor alpha 1 

Hormones and growth factors are required to activate osteoblast-specific signalling pro-

teins and transcription factors and consequently stimulate osteoblast differentiation 

[115].  

Core-binding factor alpha 1 (cbfa1), also known as runt-related gene 2 (Runx2), is one of 

the most important transcription factors for osteoblastic differentiation and osteogenesis 

[115]–[117]. It is responsible for regulating the expression of osteocalcin in fully mature 

osteoblasts [116], [118], ultimately playing an essential role in bone formation.  

Komori et al. [119] performed a study on mice to evaluate the importance of cbfa1 in 

osteogenesis. They discovered that the deletion of this transcription factor resulted in a 

complete lack of ossification due to the maturational arrest of osteoblasts, proving that 

cbfa1 is a key regulator of osteoblast differentiation. 

2.3.2.4 Procollagen type 1 N-terminal Propeptide 

N-terminal propeptide of type I procollagen (P1NP) is a product derived from the cleav-

age of type I procollagen (Fig. 2.10) during the assemble process into fibrils [120]. Serum 

levels of P1NP are proportional to the amount of collagen embodied into the bone ma-

trix, which results in a significant association with bone formation rates [120]. Therefore, 

P1NP is considered to be a standard reference biomarker for bone formation, as it re-

flects the activity of osteoblasts and bone formation and collagen deposition. 

 

 

 

 

 

 

 

Figure 2.10 – The formation process of type I collagen, through the cleavage of the two terminals 

of type I procollagen. One terminal corresponds to the procollagen N-terminal propeptide (P1NP), 

while the other one corresponds to the procollagen C-terminal propeptide (P1CP) [121]. 
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Elma et al. [122] studied the relationship between P1NP and BMD and discovered that 

serum levels of P1NP were significantly higher in osteoporotic women, compared to non-

osteoporotic women. 

2.3.2.5 Osterix 

Osterix (Osx) is an osteoblast-specific transcription factor, vital for osteoblast differenti-

ation and bone formation [123]–[125]. Nakashima and his co-workers [126] revealed, for 

the first time, that mice with knockout Osx did not develop any form of bone formation 

activity, although having normal cartilage development.  

On the other hand, studies have shown that upregulating Osx resulted in expression of 

osteocalcin in osteoblasts and collagen type I [127]. However, recent studies have 

demonstrated that Osx also plays a role in inhibiting osteoblast proliferation, by binding 

to and activating Dkk1 (Fig. 2.11), thereby leading to an inhibitory role of the Wnt signal-

ling pathway [123]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 – Inhibitory mechanisms of osterix in the Wnt pathway. Osterix activates Dkk1, which 

is a natural Wnt inhibitor and inhibits the activity of β-catenin [123]. 

These data suggest that Osx is an essential component in osteoblast differentiation but 

has the capability of inhibiting osteoblast proliferation. Thus, Osx guarantees an optimal 

bone formation rate by strictly regulating osteoblastogenesis [123]. 
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2.3.2.6 Osteoprotegerin 

Osteoprotegerin (OPG) is a decoy receptor of RANKL, preventing it to bind to RANK and, 

thus, inhibiting osteoclasts differentiation [128]. Bone resorption is, therefore, attenu-

ated. OPG is produced by osteoblasts and is essential for regulating osteoclastogenesis. 

Decreases in the RANKL/OPG ratio results in a decrease of the number of osteoclasts and 

their activity [128]–[130].  

Numerous studies revealed that overexpression of OPG or downregulation of RANKL in 

mice resulted in reduced osteoclastogenesis, low bone resorption rates and development 

of osteopetrosis [99], [131]–[133]. 

2.3.2.7 Semaphorin-3A 

Semaphorin-3A (Sema3A) is a membrane-associated secreted protein, from the Sema-

phorin family, associated with the synchronous regulation of bone resorption and for-

mation [134], [135]. It protects bone by supressing osteoclastic bone resorption and stim-

ulating osteoblastic bone formation [136]. According to Behar et al. [137], Sema3A is 

primarily expressed in osteoblasts, whereas its natural receptor is expressed in osteo-

clasts.  

Several studies demonstrated that Sema3A knockout mice had atypical bone and carti-

lage development, decreased bone mass or developed osteopenia, as a result of de-

creased bone formation [138]–[140].  

Collectively, these data show that Sema3A plays a critical role in osteoblast differentiation 

and osteoblastic bone formation, as well as inhibitory functions in osteoclast differentia-

tion and osteoclastic bone resorption. 

2.3.3 The Wnt Pathway and Other Bone Turnover Biomarkers 

The Wingless/Integrated (Wnt) pathway is a signalling pathway composed by several 

glycoproteins that are essential for the regulation of bone homeostasis [141]. This path-

way is commonly divided into two branches: the canonical pathway, also known as 

WNT/β-catenin pathway, and the noncanonical pathway. 
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Two wingless/integrated pathways have been characterized: the canonical Wnt pathway 

and the noncanonical Wnt pathway. The canonical Wnt/-catenin pathway, conjointly 

with BMP signalling, contributes to osteoblast differentiation and skeletal development, 

leading to bone formation. This canonical path has a negative feedback on osteoclast 

differentiation and bone degradation, by increasing the expression of OPG [45], [142]. In 

contrast, the noncanonical pathway stimulates osteoclastogenesis. Wnt signalling is an 

important regulator of bone remodelling as well, by dictating the fate of MSC differenti-

ation to osteoblasts or to other cell types (Fig. 2.12) [45], [142]. 

Figure 2.12 – Overview of the two branches of the Wnt pathway. The canonical pathway initiates 

with the binding process between the canonical Wnt ligands and the Wnt co-receptors LRP5 or 

LRP6. Wnt signalling is regulated not only by the Wnt ligands but also by its antagonists, namely 

Dkk1, Dkk2 and SOST. These cytokines indirectly inhibit Wnt signalling by binding to the LRP5/6 

proteins, preventing them to stimulate Wnt. Conversely, sFRP and WIF1 are responsible for directly 

inhibiting both canonical and noncanonical Wnt signalling [142]. 



28 

 

Recent studies highlighted the importance of this pathway, crucial for osteoblast differ-

entiation and a master bone mass regulator [143], [144]. In fact, serum levels of dickkopf 

factor 1 (Dkk1) and sclerostin (SOST), which are negative regulators of Wnt signalling, 

increase with age and are associated with bone mass loss. Previous studies from the 

CEDOC group showed that, in fragility fracture patients, osteoblast terminal differentia-

tion is impaired, which is associated with bone mechanical fragility [145]. Moreover, it 

was also demonstrated that in hip fragility fracture patients there was deterioration of 

trabecular stiffness, the mechanical parameter directly associated with tissue mineraliza-

tion [146]. 

2.3.3.1 Wnt10B 

Wnt10b is a specific glycoprotein from the Wnt family that direct and positively correlates 

with BMD [141]. Studies performed by Bennett and his colleagues [147], [148], showed 

that elevated expressions of Wnt10b induced bone formation. Consequently, Wnt10b is 

a good reference indicator for bone formation as it is directly associated with bone mass 

gain. 

2.3.3.2 Dickkopf-1 

The dickkopf factor 1 (Dkk1) is a well-known secreted Wnt inhibitor. Its actuation relies 

on the binding process to the Wnt co-receptors lipoprotein receptor-related proteins 5 

and 6 (Lrp5/Lrp6) [141].  

Butler et al. [144] studied the association between serum levels of Dkk1 and BMD. They 

found out that expression of Dkk1 was high and negatively correlated with BMD scores 

and elevated Dkk1 serum levels were traced in osteoporotic patients. Their results, like 

many others performed in humans and animals [149]–[153], confirm that Dkk1 sup-

presses osteoblast activity and can be used as a marker for bone metabolism, particularly 

bone formation.  

However, Ueland et al. [154] studied bone mass and bone strength associations with 

cortical and trabecular Dkk1 and SOST levels in Norwegian postmenopausal women and 

discovered that they were positively correlated with bone mass and strength. 
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2.3.3.3 Dickkopf-2 

Dickkopf factor 2 (Dkk2) also plays a role in the Wnt signalling pathway [141]. The results 

obtained by Li and his colleagues [155] revealed that mice with null Dkk2 expression had 

lower bone formation rates, which may suggest a role in bone formation, contrarily to 

the functions of Dkk1. Furthermore, Rodrigues et al. [156] reported that low serum levels 

of Dkk2 were associated with increased in fracture risk, independently of BMD. Another 

study demonstrated that when Wnt7b was suppressed, Dkk2 inhibited bone formation, 

but stimulated late osteoblast differentiation in the presence of Wnt7b [157]. Hence, 

these data suggest that the effects of Dkk2 on the Wnt pathway strongly depend on the 

concentration levels of other cytokines. 

2.3.3.4 Sclerostin 

Sclerostin is a protein encoded by the SOST gene and is mainly produced by osteocytes 

[141]. Sclerostin binds to Lrp5 and Lrp6, preventing them to stimulate Wnt signalling. 

Decreased levels of serum sclerostin are associated with increased osteoblast activity, 

bone formation and bone strength [158], [159], thus, showing that sclerostin is an im-

portant negative regulator of bone formation [141]. Moreover, mechanical loading, 

sensed by osteocytes, is known for inducing bone remodelling episodes and stimulating 

bone formation [160]. This effect occurs because when mechanical load triggers osteo-

cytes, they suppress the expression of sclerostin, contributing to osteoblast differentia-

tion and proliferation, through Wnt signalling [160]. 

2.3.3.5 Low-density lipoprotein receptor-related protein 6 

Low-density lipoprotein receptor-related proteins (Lrp) are membrane receptors that 

carry cellular signalling functions in bone [141]. Lrp6 is a co-receptor of Wnt, but has 

higher affinity for Wnt natural inhibitors, such as sclerostin and Dkk1 [141]. This means 

that Lrp6 tends to bind with these cytokines to prevent them of inhibiting Wnt. Therefore, 

Lrp6 plays an ultimate role of stimulating osteoblast differentiation and proliferation, as 

well as bone formation. 

Mani et al. [161] showed that mutations in Lrp6 were associated with decreased bone 

mass and increased fracture risk, as well as other complications, such as coronary 
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diseases. On the other hand, biochemical evidences were found that demonstrated that 

Lrp6 helps to improve PTH signalling in osteoblasts, leading to an inhibition of sclerostin, 

which will, consequently, favour bone formation [75], [141], [162]. 

2.3.3.6 Secreted frizzled-related protein 1 

Secreted frizzled-related proteins (sFRP) are glycoproteins that are related to frizzled 

proteins, which are receptors that mediate the Wnt signalling pathway [163]. They inhibit 

Wnt, by competing with membrane-bound frizzled proteins for direct Wnt binding [141], 

[164] and intervene in bone formation, cartilage development and skeletal disorders 

[164]. Several researchers reported that mutations in the sFRP1 gene or its deletion, were 

associated with enhanced trabecular BMD in humans and mice [165], [166].  

On the same hand, Yao and his co-workers [167] showed that overexpression of sFRP1 

was negatively correlated with BMD and Rodrigues et al. [156] showed that high serum 

levels of sFRP1 were related to an increase in fracture risk. Moreover, Wang et al. [164] 

demonstrated that sFRP1 induced elevated apoptosis rates in osteoblasts, which lead to 

decreased bone mechanical properties and reduced BMD and trabecular bone volume. 

These results were similar to those obtained by Bovine et al. [168]. Overall, these results 

clearly suggest that sFPR1 inhibits osteoblasts and bone formation activity, which makes 

it a well-accepted bone formation marker. 

2.3.3.7 Wnt inhibitory factor 1 

Wnt inhibitory factor 1 (WIF1) is among the secreted Wnt antagonist that bind directly 

to Wnt proteins [169]. Its role lies in the ability to change protein conformity to which 

they bind, thereby preventing their binding to the Wnt receptors [169]. WIF1 is expressed 

when osteoblasts are in the final phases of their BMP2-induced differentiation and mat-

uration process [141]. Nevertheless, mice with WIF1 null-expression had normal bone 

development [170], which means that its effect on bone formation inhibition might not 

be significant on its own. 
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2.3.3.8 Vitamin D 

Vitamin D is produced in the skin and metabolized to 25 hydroxy vitamin D (25(OH) 

Vitamin D), which is the main circulating form of vitamin D [171], [172]. However, 25(OH) 

Vitamin D is further metabolized to 1.25(OH)2 Vitamin D, which is the principal hormonal 

form of vitamin D and responsible for most of its actions [171], [172]. 

Mice with osteoblastic null-expression of vitamin D receptor (VDR) exhibited elevated 

levels of ALP and osteocalcin, with increased mineralization rates and bone formation 

activity [173], [174], while other studies demonstrated that increases in 25(OH) Vitamin 

D levels were positively correlated with bone formation markers [175]–[177]. Moreover, 

high expression of VDR in osteoblasts resulted in increased bone mass [178], [179]. Vit-

amin D deficiency is related to decreased bone mineral density and higher risk of fracture 

(Fig. 2.13) [180]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 – The different pathological pathways of vitamin D deficiency that ultimately lead to 

fractures [180]. 

However, 25(OH) Vitamin D can also favour bone resorption activity, by regulating 

RANKL expression on osteoblasts, thus increasing the number of osteoclasts [171]. Im-

portant is to mention that the regulatory effect of 25(OH) Vitamin D in osteoclastogen-

esis is achieved in osteoblasts [171].
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3 
3. Methodology 

Here, a description of the tools and methods used to meet the objectives is provided. 

More specifically, it contains information about the study design, data source and study 

population and for each of the specific objectives, the study variables that were used and 

the statistical data analysis performed. 

3.1 Study Design 

The WNT project is a transversal study based on a sample of elderly Portuguese men and 

women, who underwent surgery due to hip fracture or hip osteoarthritis and aimed to 

assess which factors were related to the hip fragility fractures. These patients were given 

total hip replacement surgery between 2008 and 2009, at the orthopedic department of 

Hospital de Santa Maria in Lisbon. Patient data, which was completely anonymized, was 

obtained from a clinical database, provided by the Chronic Diseases Research Centre 

(CEDOC), as part of the WNT project. Since osteoporosis is, essentially, a female related 

disease, initially, only women were the population-target. However, due to the inexist-

ence of sufficient data, men were also included. Therefore, all 128 patients present in the 

database were included in the study. 
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3.2 Model 1: Major Determinants of Bone Mineral Density 

3.2.1 Study Variables 

As mentioned previously, the most important determinants of bone mineral density 

found in literature were body weight, body composition and body fat, dietary calcium 

and vitamin D intake and physical activity. To successfully build a model following these 

variables to compute missing values and expand the data, matches had to be found from 

the variables present in the database. Hence, patient weight (in kilogram), patient height 

(in metres), patient age (in years), sex, body fat (%), current tobacco use (binary: yes or 

no) and the serum concentration of 25(OH) Vitamin D (in ng/mL) were initially chosen to 

be fitted into the model. 

Tobacco was used as a proxy to physical activity, because Papathanasiou et al. [181] re-

ported that smoking was strongly and inversely associated with physical activity in young 

Greek adults. In addition, Heydari et al. [182] also discovered that smoking negatively 

affected the quality of physical activity in Iranian adults. 

Body fat percentage was a result of a mathematical expression proposed by Meeuwsen 

et al. [183], who demonstrated that body fat percentage was strongly correlated with 

age, sex and body mass index (BMI). These variables were listed in the patient database, 

which meant that body fat percentage could be calculated. Nevertheless, BMI calculation 

is based on body weight, which was already considered. Therefore, we chose not to in-

clude body fat percentage in our model, but instead utilizing the individual variables 

(age, sex, height and weight), as recommended by Daniel and Cross [184]. 

3.2.2 Statistical Analysis 

All analyses were carried out using the Statistical Package for the Social Sciences (SPSS, 

version 24). Linear regression analysis was performed to assess the association between 

BMD and the major contributors of BMD. 

Since linear regression analysis requires normalized residuals [184], Kolmogorov-Smirnov 

test [184] was computed to ensure that each variable followed a normal distribution. 

Variables were considered normally distributed if their p-value was higher or equal than 

0.05.  
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For variables which did not follow a normal distribution, mathematical transformations 

were computed in the following order to normalize the data [185]: logarithmization, ex-

ponentiation, cubic root, multiplicative inverse and polynomialization with crescent de-

grees. Upon analysis, weight and height had to be logarithmized; age suffered a second-

degree polynomialization (square age) and vitamin D could not be normalized. As a re-

sult, vitamin D was excluded from the model. 

During linear regression analysis, the constant was removed from all models, because it 

was considered that, from a physiological point of view, BMD is inexistent when all vari-

ables are equal to zero. Stepwise regression was used with the Backward elimination 

process. This method includes all initial estimators into the model and tests the deletion 

of each estimator, according to a model fit criterion [186]. It removes the variable whose 

loss gives the most statistically insignificant deterioration of the model fit and repeats 

this process until no further variables can be deleted without a statistically significant loss 

of fit [186]. The extent to which each variable improved the model, was assessed by its 

statistical significance (p-value < 0.10).  

Bootstrapping, which is a technique for testing model stability, relying on random sam-

pling with replacement [187], was used to externally validate the model. It allows the 

estimation of the sampling distribution of an estimator, using random resampling with 

replacement from the original sample [187]. For the purpose of this work, bootstrapping 

was used to estimate the p-values of the regression coefficients. The age coefficient was 

multiplied by ten thousand (10 000) to be in the same order of magnitude as the remaining 

coefficients. 

3.3 Model 2: Serum Levels of Bone Turnover Biomarkers 

3.3.1 Study Variables 

Regarding the serum levels of bone turnover biomarkers, all those available in the data-

base were used. These included osteocalcin (OCL, in ng/mL), bone-specific alkaline phos-

phatase (BSALP, in U/L), procollagen type 1 N-terminal propeptide (P1NP, in ng/mL), C-

terminal telopeptide of type I collagen (CTX-I, in ng/mL), soluble receptor activator of 

nuclear factor-KB ligand (s-RANKL, in pg/mL), soluble osteoprotegerin (s-OPG, in pg/mL), 

soluble dickkopf factor 1 (s-Dkk1, in pg/mL), soluble dickkopf factor 2 (s-Dkk2, in ng/mL), 
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soluble sclerostin (s-SOST, in pg/mL), vitamin D (25(OH) Vit D, in ng/mL) and tartrate-

resistant acid phosphatase (TRAP, in U/L). In addition, three clinical diagnostic variables 

were also included in the model: rheumatoid arthritis (binary: yes or no), corticoid use 

(binary: yes or no) and secondary osteoporosis (binary: yes or no). From the patient de-

mographic characteristics, sex was included as well. 

3.3.2 Statistical Analysis 

The same statistical analysis described in 3.2.2 was used to evaluate the association be-

tween serum levels of bone turnover biomarkers and BMD. Following the same rationale, 

BSALP, P1NP, s-SOST and TRAP had to be logarithmized; s-RANKL, s-OPG and s-DKK1 

were transformed into their cubic root. OCL, CTX-I, s-Dkk2 and 25(OH) Vitamin D were 

excluded from the model. 

However, because of the existence of certain variables with several missing values, linear 

regression had to be previously performed to compute the correlations between the dif-

ferent variables, before evaluating their association with BMD. Sex was accounted for in 

these correlations. After the imputation of the missing values, all variables were given a 

second Kolmogorov-Smirnov test to ensure that each variable followed a normal distri-

bution.  As a consequence, all variables suffered the same transformations as described 

above, with the exception of TRAP, which had to be excluded from the model.   

Summing up, from the initial eleven variables included in the model, six variables were 

used (BSALP, P1NP, s-SOST, s-RANKL, s-Dkk1 and s-OPG) and the remaining variables 

were excluded. 

3.4 Model 3: Genetic Expression of Bone Turnover Biomarkers 

3.4.1 Study Variables 

Concerning the genetic expression of bone turnover biomarkers, these were presented 

as a comparison to a housekeeping (HK) control gene [145]. Apart from one variable 

(COL1/PMM1), all genetic expression of bone turnover biomarkers available in the data-

base were used as well. These included core-binding factor alpha 1 (Cbfa1/HK), osteo-

protegerin (OPG/HK), receptor activator of nuclear factor-KB ligand (RANKL/HK), Osterix 
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(Osx/HK), alkaline phosphatase  (ALP/HK), osteocalcin (OCL/HK), sclerostin (SOST/HK), 

dickkopf factor 1 (Dkk1/HK), dickkopf factor 2 (Dkk2/HK), Low-density lipoprotein recep-

tor-related proteins 5 and 6 (LRP5/HK and LRP6/HK), secreted frizzled-related protein 1 

(sFRP1/HK), Wnt inhibitory factor 1 (WIF1/HK), Wnt10b (WNT10B/HK) and, finally, Sem-

aphorin-3A (SEMA3A/HK). The same three clinical diagnostic variables described in 3.3.1 

were included in the model as well. From the patient demographic characteristics, sex 

was also included. 

3.4.2 Statistical Analysis 

Since the data presented itself with a wide range of values, often with quite a difference 

between them, it was considered that, for each variable, all values above two standard 

deviations from the mean were outliers and, therefore, excluded. In addition, a patient 

was considered as an outlier patient whenever more than 50% of its variables met the 

above criteria. As a result, two patients were excluded. Moreover, one variable (sFRP1) 

had the value zero, which was also excluded from the model. 

Once more, because of the existence of certain variables with several missing values, the 

same statistical analysis described in 3.3.2 was used. Following the same basis, 

RANKL/HK, OCL/HK, Dkk2/HK, sFRP1/HK and WIF1/HK had to be logarithmized; LRP6/HK 

and SEMA3A/HK were transformed into their cubic root. Osx/HK, cbfa1/HK, OPG/HK, 

ALP/HK, SOST/HK, Dkk1/HK, LRP5/HK and WNT10B/HK were excluded from the model. 

After the imputation of the missing values and the following Kolmogorov-Smirnov test, 

all variables suffered the same transformations as described above, apart from WIF1/HK, 

which was transformed into its cubic root. 

Summing up, from the initial fifteen variables included in the model, seven variables were 

used (RANKL/HK, OCL/HK, Dkk2/HK, LRP6/HK, sFRP1/HK, WIF1/HK, and SEMA3A/HK) 

and the remaining variables were excluded.  
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3.5 Graphical User Interface 

A graphical user interface (GUI) was developed using MATLAB (Version 9.5.0, The Math-

Works Inc. 2018b) in addition to this work. The main purpose to achieve from this GUI is 

to promote a faster, easier and better way to interact with the user. As an intuitive and 

user-friendly interface, it is meant to facilitate the visualization and analysis of the results 

obtained to draw conclusions. 

In order to meet some of the proposed requirements, gathered during the project, a GUI 

was designed, created and later tested to fulfil every given suggestion. 

Both equations later achieved in this dissertation (see Chapter 4) were computed into 

MATLAB, functioning as a calculation engine and linked to the GUI to produce a certain 

result, which in this case was the value of the bone mineral density. The user can intro-

duce the values of the respective bone biomarkers and the demographic characteristics 

of the patient, which represent the input values of the system. Afterwards, with a push of 

a button, the calculation engine runs and produces a result, which can be seen in the 

GUI. Figure 3.1 shows how these three main blocks communicate with each other and 

how the information flows during in the system. 

 

Figure 3.1 – Illustrative schematic of the communication between the main blocks of the system.
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4 
4. Results 

4.1 Patient Characteristics 

From the total 128 evaluated patients, 45 were males and 83 were females. In the male 

group, 11 had surgery as a result of hip fracture and 34 because of hip osteoarthritis, 

whereas in the female group, 49 had surgery as a consequence of hip fracture and 34 

because of hip osteoarthritis (Fig. 4.1). Women were slightly older (76±10) than men 

(71±10) and had a lower number of smokers (only 6% against 27.3%). Men presented 

themselves with higher hip BMD (0.84±0.12) compared to women (0.69±0.11). All BMD 

measurements (Hip BMD) were a result from DEXA. Figures 4.2 to 4.5 show the demo-

graphic characteristics from both groups regarding age, weight, height and hip BMD. 

Figure 4.1 – Total number of male and female patients, as well as the number of discriminated 

patients with respect to the type of surgery given.  
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Figure 4.2 – Demographic characteristics regarding age and weight in the female group. Mean is 

represented by the single black dots; the experimental standard deviation (SD) is represented by 

the red bars; minimum and maximum values are represented by the black dashed lines. With 

respect to age, values ranged between 40 and 90 years old (yo) with 76±10 yo (Mean±SD). With 

respect to weight, values ranged between 42 and 92 kilogram (kg) with 64±12 kg (Mean±SD). 

 

Figure 4.3 – Demographic characteristics regarding height and hip BMD in the female group. 

Mean is represented by the single black dots; the experimental standard deviation (SD) is repre-

sented by the red bars; minimum and maximum values are represented by the black dashed lines. 

With respect to height, values ranged between 1.4 and 1.8 meters (m) with 1.58±0.08 m 

(Mean±SD). With respect to hip BMD, values ranged between 0.55 and 1.05 g/cm2 with 0.69±0.11 

g/cm2 (Mean±SD).  
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Figure 4.4 – Demographic characteristics regarding age and weight in the male group. Mean is 

represented by the single black dots; the experimental standard deviation (SD) is represented by 

the red bars; minimum and maximum values are represented by the black dashed lines. With 

respect to age, values ranged between 42 and 91 years old (yo) with 71±10 yo (Mean±SD). With 

respect to weight, values ranged between 49.2 and 101 kilogram (kg) with 75±12 kg (Mean±SD). 

 

Figure 4.5 – Demographic characteristics regarding height and hip BMD in the female group. 

Mean is represented by the single black dots; the experimental standard deviation (SD) is repre-

sented by the red bars; minimum and maximum values are represented by the black dashed lines. 

With respect to height, values ranged between 1.6 and 1.8 meters (m) with 1.69±0.05 m 

(Mean±SD). With respect to hip BMD, values ranged between 0.65 and 1.01 g/cm2 with 0.84±0.12 

g/cm2 (Mean±SD). 



41 

 

The prevalence of rheumatoid arthritis and secondary osteoporosis was higher in the 

female group, with 8.4% in both cases. Moreover, seven women (8.4%) were on corticoid 

therapy, in contrast with men, which only had one patient on corticoid therapy. 

Concerning the serum concentrations of bone turnover biomarkers, women had, in gen-

eral, higher values compared to men (Table 4.1). Osteocalcin was the only factor that was 

more elevated in the men group (9.5±10.6) than in the female group (8.6±8.5). 

On the other hand, the RANKL/OPG ratio was nearly the same in both groups, with a 

value of approximately 0.123. The difference between maximum and minimum values 

were greater in P1NP, CTX-I, s-OPG, s-Dkk1 and s-SOST, with CTX-I having the highest 

dispersion of values (0.1 - 898.1 in the men group and 0.1 - 1628.4 in the female group). 

 

Table 4.1 – Characterization of the serum levels of bone turnover biomarkers in the male and 

female groups (with missing values). Data shown as Mean ± Experimental standard deviation. 

 Males Females 

 Mean ± SD Min. Max. Mean ± SD Min. Max. 

Serum Levels       

OCL (ng/mL) 9.5 ±10.6 2.0 45.4 8.6 ± 8.5 2.0 30.8 

ALP (g/L) 11.5 ± 6.8 3.9 30.3 12.2 ± 4.7 5.0 20.2 

P1NP (ng/mL) 58.1 ± 65.0 10.1 310.0 77.0 ± 110.8 10.6 854.5 

CTX-I (ng/mL) 50.5 ± 160.6 0.1 898.1 72.1 ± 234.4 0.1 1628.4 

s-RANKL (pg/mL) 12.3 ± 8.9 1.0 26.8 14.9 ± 13.2 0.4 54.3 

s-OPG (pg/mL) 100.1 ± 75.1 2.4 311.2 120.9 ± 89.4 0.9 412.6 

s-Dkk1 (pg/mL) 472.1 ± 209.1 25.7 1025.5 663.8 ± 343.5 103.2 1762.2 

s-Dkk2 (ng/mL) 6.5 ± 9.8 0.1 51.6 11.4 ± 16.3 0.1 75.0 

s-SOST (pg/mL) 380.4 ± 198.3 109.8 869.6 383.9 ± 201.2 63.7 985.3 

25(OH) Vit D 

(ng/mL) 
27.9 ± 22.9 11.4 85.8 28.3 ± 26.3 11.89 142.2 

TRAP (U/L) 2.2 ± 1.7 0.4 6.2 2.4 ± 1.9 0.5 10.0 

With respect to the genetic expression of bone turnover biomarkers, the same pattern 

found in table 4.1 can be observed in table 4.2. Women had higher bone biomarker ex-

pression than men, apart from OCL, WIF1 and WNT10B. Expressions of LRP5 and LRP6 
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were found to be approximately the same in both groups (0.2±0.3 and 0.2±0.4 in men 

and women for LRP5, respectively, and 0.3±0.3 and 0.3±0.5 in men and women for LRP6, 

respectively). 

Widest ranges were found in OPG, RANKL, Osx, SOST, Dkk1 and WNT10B, with SOST 

having the highest dispersion of values (0.006 - 522.6 in men and 0.0005 - 660.8 in 

women). 

Table 4.2 – Characterization of the bone turnover biomarkers in the male and female groups (with 

missing values). Data shown as Mean ± Experimental standard deviation. 

 Males   Females   

 Mean ± SD Min. Max. Mean ± SD Min. Max. 

Gene Expression       

Cbfa1/HK 0.2 ± 0.2 0.005 1.3 0.3 ± 0.8 0.001 5.8 

OPG/HK 1.5 ± 6.4 0.004 39.9 5.8 ± 23.9 0.002 143.3 

RANKL/HK 3.8 ± 13.7 0.002 77.0 9.0 ± 28.2 0.005 193.1 

Osx/HK 4.4 ± 16.7 0.003 102.7 11.7 ± 41.4 0.002 270.6 

ALP/HK 0.2 ± 0.3 0.009 1.2 0.3 ± 0.6 0.001 4.4 

OCL/HK 0.1 ± 0.5 0.00004 2.6 0.1 ± 0.2 0.00002 1.1 

SOST/HK 17.0 ± 82.7 0.006 522.6 34.1 ± 109.0 0.0005 660.8 

Dkk1/HK 1.2 ± 6.8 0.00002 39.7 9.4 ± 40.5 0.00007 225.0 

Dkk2/HK 0.4 ± 0.9 0.0000007 4.1 1.6 ± 5.6 0.002 32.3 

LRP5/HK 0.2 ± 0.3 0.0002 1.6 0.2 ± 0.4 0.002 2.1 

LRP6/HK 0.3 ± 0.3 0.00005 1.4 0.3 ± 0.5 0.00006 2.7 

sFRP1/HK 1.6 ± 5.6 0.0037 34.4 2.2 ± 5.4 0.0006 29.7 

WIF1/HK 11.7 ± 17.6 0.033 62.7 9.1 ± 15.5 0.003 64.3 

WNT10B/HK 38.0 ± 89.0 0.000005 399.2 32.3 ± 71.7 0.0003 334.4 

SEMA3A/HK 0.3 ± 0.3 0.0008 1.1 0.4 ± 0.5 0.009 2.1 
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4.2 Model 1: Major Determinants of Bone Mineral Density 

Estimating the association between BMD and the major determinants of bone mineral 

density was necessary to compute nighty-seven missing values in the database. The 

model achieved (Table 4.3) had an associated R-square of 0.984, was validated with the 

bootstrapping technique (thousand iterations) and had a mean percent error of 6.8%. 

Concerning the gender estimator, females were categorized as value one and males were 

categorized as value zero. 

Table 4.3 – Linear regression analysis of major determinants of BMD associated with bone mineral 

density. 

  Without Bootstrap With Bootstrap 

Model 1 Coefficient p-value p-value 

Sex -0.101 0.024 0.111 

𝐴𝑔𝑒2 -0.2238 0.089 0.328 

ln 𝑊𝑒𝑖𝑔ℎ𝑡 0.222 <0.001 0.001 

R-square 0.984 

4.3 Model 2: Serum Levels of Bone Turnover Biomarkers 

Model 1 allowed the computation of all BMD missing values, which was extremely im-

portant for achieving more robust models that would follow. The same principle was 

applied to all variables that were considered in the models. Table 4.4 demonstrates the 

equations that were reached through linear regression analysis. These equations were 

used to compute missing values among the serum levels of bone turnover biomarkers. 

After computing the missing values for the serum levels of bone turnover biomarkers, it 

was possible to estimate the association between BMD and the concentrations of these 

regulatory factors. This estimation is represented by model 2.1, which can be seen in 

table 4.5. 

Model 2.1 was validated with the bootstrapping technique, with nine hundred and sev-

enty-three iterations. However, upon a careful analysis of the obtained p-values, it was 
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observed that two of the seven variables were not statistically significant with bootstrap-

ping validation (table 4.5). Consequently, these two variables (rheumatoid arthritis and 

corticoid use) were removed from the model, which allowed the achievement of the final 

model (model 2.2), with a R-square of 0.986 and validated with bootstrapping as well 

(table 4.6). 

Table 4.4 – Linear regression analysis for serum bone biomarkers to compute missing values. 

Model Coefficient p-value R-square 

ALP   0.910 

ln 𝑃1𝑁𝑃 5.441 <0.001  

ln 𝑆𝑂𝑆𝑇 -1.394 0.067  

P1NP   0.839 

Sex 27.027 0.055  

√𝐷𝑘𝑘1
3

 -8.692 0.007  

ln 𝐴𝐿𝑃 44.361 <0.001  

RANKL   0.839 

ln 𝑇𝑅𝐴𝑃 -5.831 0.049  

ln 𝐴𝐿𝑃 9.569 <0.001  

OPG   0.813 

√𝐷𝑘𝑘1
3

 15.523 0.007  

ln 𝐴𝐿𝑃 37.351 0.077  

√𝑅𝐴𝑁𝐾𝐿
3

 -43.412 0.047  

Dkk1   0.796 

√𝑂𝑃𝐺
3

 109.486 <0.001  

SOST   0.872 

ln 𝑇𝑅𝐴𝑃 -134.196 0.009  

ln 𝑃1𝑁𝑃 120.481 <0.001  

TRAP   0.734 

ln 𝐴𝐿𝑃 1.027 <0.001  
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Table 4.5 – Linear regression analysis of serum bone biomarkers associated with bone mineral 

density. 

  Without Bootstrap With Bootstrap 

Model 2.1 Coefficient p-value p-value 

Sex -0.180 <0.001 0.001 

Rheumatoid arthritis 0.108 0.072 0.126 

Secondary Osteopo-

rosis 
-0.164 0.003 0.017 

Corticoid use 0.089 0.099 0.113 

ln P1NP 0.028 0.018 0.015 

ln 𝑆𝑂𝑆𝑇 0.103 <0.001 0.001 

√𝐷𝑘𝑘1
3

 0.018 0.007 0.008 

R-square 0.987 

Table 4.6 – Linear regression analysis of serum bone biomarkers associated with bone mineral 

density, after bootstrap validation. 

Model 2.2 Coefficient p-value 

Sex -0.174 <0.001 

Secondary Osteoporosis -0.057 0.108 

ln P1NP 0.019 0.090 

ln 𝑆𝑂𝑆𝑇 0.102 <0.001 

√𝐷𝑘𝑘1
3

 0.023 <0.001 

R-square 0.986 

4.4 Model 3: Genetic Expression of Bone Turnover Biomarkers 

Following the same basis as in the serum bone biomarkers, linear regression analysis was 

performed to compute missing values in the genetic expression of bone biomarkers (ta-

ble 4.7). Afterwards, model 3 was built to find out whether gene expression of bone bi-

omarkers could successfully estimate an association with bone mineral density. The 

model was validated with the bootstrapping technique, with thousand iterations. As a 

result, none of the variables had to be removed. In addition, model 3 had a R-square of 

0.967. The results are shown in table 4.8. 
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Table 4.7 – Linear regression analysis for genetic expression of bone biomarkers to compute miss-

ing values. 

Model Coefficient p-value R-square 

RANKL   0.514 

Sex 10.386 0.014  

ln 𝑂𝐶𝐿 -3.339 0.001  

ln 𝐷𝑘𝑘2 -1.573 0.058  

ln 𝑠𝐹𝑅𝑃1 5.804 <0.001  

OCL   0.646 

ln 𝐷𝑘𝑘2 -0.099 <0.001  

ln 𝑊𝐼𝐹1 0.050 0.056  

√𝐿𝑅𝑃6
3

 0.833 0.002  

√𝑆𝐸𝑀𝐴3𝐴
3

 -0.690 0.001  

ln 𝑅𝐴𝑁𝐾𝐿 0.055 0.003  

Dkk2   0.358 

ln 𝑠𝐹𝑅𝑃1 0.734 0.002  

√𝐿𝑅𝑃6
3

 7.548 <0.001  

LRP6   0.584 

√𝑆𝐸𝑀𝐴3𝐴
3

 0.549 <0.001  

ln 𝑂𝐶𝐿 0.030 0.034  

ln 𝐷𝑘𝑘2 0.029 0.014  

sFRP1   0.524 

√𝑆𝐸𝑀𝐴3𝐴
3

 1.706 0.043  

ln 𝑅𝐴𝑁𝐾𝐿 0.800 <0.001  

ln 𝑂𝐶𝐿 -0.331 0.035  

WIF1   0.404 

√𝐿𝑅𝑃6
3

 18.047 <0.001  

SEMA3A   0.686 

ln 𝑠𝐹𝑅𝑃1 0.04 0.011  

√𝐿𝑅𝑃6
3

 0.937 <0.001  
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Table 4.8 – Linear regression analysis of genetic expression of bone biomarkers associated with 

bone mineral density. 

  Without Bootstrap With Bootstrap 

Model 3 Coefficient p-value p-value 

Sex -0.070 0.044 0.044 

Rheumatoid arthritis -0.191 0.012 0.012 

Corticoid use 0.129 0.077 0.077 

ln 𝑂𝐶𝐿 -0.059 <0.001 <0.001 

ln 𝐷𝑘𝑘2 -0.022 0.004 0.004 

ln 𝑠𝐹𝑅𝑃1 -0.047 <0.001 <0.001 

√𝐿𝑅𝑃6
3

 0.232 0.028 0.028 

√𝑊𝐼𝐹1
3

 0.070 <0.001 <0.001 

√𝑆𝐸𝑀𝐴3𝐴
3

 0.322 0.002 0.002 

R-square 0.967 
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4.5 Graphical User Interface 

Figure 4.2 shows the displacement of the numerous elements throughout the GUI. In 

addition to what is shown below, a patient database was also created and developed 

within the GUI, which allows the user to register and record the identification number of 

the patient, all its measured values of serum levels and genetic expression of bone turn-

over biomarkers and the number of consults taken. 

 

Figure 4.6 – GUI representing a bone mineral density estimator for elderly Portuguese men and 

women. At the left, the panel that controls the serum levels of bone biomarkers provides the 

possibility to input the demographic characteristics of the patient and to compute the concentra-

tions of the bone turnover biomarkers. At the right, the panel that controls the genetic expression 

of bone biomarkers provides the possibility to input the demographic characteristics of the pa-

tient as well and to compute the genetic expressions of the bone turnover biomarkers. All the 

results of bone mineral density estimates are given in g/cm2.
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5 
5. Discussion 

The results presented mention three different models, that represent a way of estimating 

the association between bone mineral density and three major groups of estimators, 

which include the principal determinants of BMD (model 1), serum concentrations of 

bone turnover biomarkers (model 2.2) and the genetic expression of bone turnover bi-

omarkers (model 3), respectively. All the models were achieved with a stepwise regres-

sion method, namely the backward elimination technique, and further validated with 

bootstrapping. Correlations between estimators within models 2 (2.1 and 2.2) and 3 were 

performed as a vehicle to diminish the quantity of missing values in those estimators. 

5.1 Model 1: Major Determinants of Bone Mineral Density 

Model 1 provided a bridge for the achievement of more robust results in models 2 and 

3, by allowing the substitution of the missing values by an acceptable BMD estimation. 

Although the model did not include all initial estimators, it demonstrated a mean percent 

error of 6.8%. 

There was a positive correlation between weight and BMD, which corroborates the find-

ings of Salamat et al. [188], who demonstrated that BMD was higher in obese and over-

weight men, premenopausal and postmenopausal women, compared to those who had 

normal weight. Silva et al. [189] also observed that increased body mass indexes, due to 

increases in body weight, contributed to a positive influence on BMD in postmenopausal 

women. 

Both overweight and obesity may offer a so-called protective role against bone loss and 

can be mediated by fat mass and lean mass [189], [190]. Fat mass, similar to muscle mass 

(lean mass), can induce higher skeletal-loading events, promoting bone formation and, 



50 

 

thus, preventing excessive bone loss [191]. Although it might seem that the protective 

role of overweight and obesity is mainly induced through this mechanism, there are al-

ternative roots to which fat mass can interfere with bone. It is believed that adipose tissue 

can contribute to this protective role through the production of oestrogens and other 

cytokines, such as leptin, that influence osteoblasts and promote bone formation as well 

[56], [192]. 

Negative correlations were found between both age and sex and BMD. Age is a vital 

factor in bone mass loss, mainly in women. Nuti et al. [193] reported that postmenopau-

sal BMD changes are closely linked to the years since the onset of menopause, similar to 

the results obtained by Heidari et al. [194]. These results showed that older postmeno-

pausal women had decreased values of BMD compared to early postmenopausal women. 

Concerning gender, Nieves et al. [195] showed that men had greater hip BMD compared 

to women, despite comparable body sizes. BMD differences between genders can be 

related with a genetic tendency for males to have higher lean mass percentages com-

pared to females and attaining higher peak bone mass [196]. 

The model obtained in this work takes into consideration weight, age and sex. After 

bootstrapping validation, it was observed that sex and age were no longer statistically 

significant. However, it was opted that those two estimators would remain in the model, 

since they represent two important determinants of bone mineral density, thus achieving 

more acceptable results. In addition, this model only represented a way of filling the 

missing values of BMD in the database and was not the main objective of this disserta-

tion. Therefore, this decision was thought to be appropriate for this context. 

The exclusion of the regression constant from the model, which is explained in chapter 

3, forced the line that best fitted the data to pass through the origin of the axis. This 

resulted in a higher value for the associated R-square, which was 0.984. Including the 

regression constant would significantly decrease the R-square, which would be about 

30% to 40% lower. Nevertheless, this model can be indirectly comparable (because it has 

no constant) to a few models obtain by several authors. Baheiraei et al. [197] obtained 

an R-square of 0.38 for femoral neck BMD in Iranian women, using a model with age, 

BMI and tobacco use as dependent variables. Rexhepi et al. [198] reported R-squares of 

0.371 and 0.372 for BMD associations with age-adjusted weight and BMI, respectively, in 

Russian menopausal women. On the other hand, Salamat et al. [199] could only explain 

14% of changes in BMD accounting for age-adjusted weight and BMI. Talash et al. [200] 

had an R-square of 0.308 for the changes in femoral neck BMD, using BMI as estimator. 
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Meybodi et al. [201] achieved R-squares of 0.21 and 0.25 for femoral neck BMD and total 

femur BMD, respectively, considering age, BMI, current smoking and current physical 

activity. 

5.2 Model 2: Serum Levels of Bone Turnover Biomarkers 

In order to achieve more robust results in models 2.1 and 2.2, by substituting as much as 

missing values as possible, linear regression analysis was first performed to produce 

equations that represented the correlations between the different estimators. The com-

putation of missing values for each variable was a necessary step, but far from represent-

ing the real measured values of the patients. This imputation of missing values may have 

contributed to the appearance of wrong associations between variables, leading to con-

trary results of what was expected. 

Model 2.2 provided an estimation of bone mineral density, based on the serum concen-

trations of bone turnover biomarkers. Although the final model only accounted for three 

bone biomarkers, it still produced promising results, with an R-square of 0.986. 

Originally, model 2.1 comprised seven estimators, from which four were demographic 

characteristics of the patients and the remaining three were serum concentrations of 

bone biomarkers. Nonetheless, after applying bootstrapping, two estimators, namely 

rheumatoid arthritis and corticoid use, were no longer statistically significant, leading to 

their exclusion from the model. Thus, the final model (model 2.2) was composed by sex, 

secondary osteoporosis, P1NP, SOST and Dkk1. 

Negative correlations were found between both sex and secondary osteoporosis and 

BMD. A negative association between sex and BMD is in concordance with the findings 

of Nieves et al. [195] and Alswat et al. [196], as mentioned previously. Regarding second-

ary osteoporosis, it is "defined as low bone mass with microarchitectural alterations in 

bone leading to fragility fractures in the presence of an underlying disease or medica-

tion", according to Mirza et al. [202]. Secondary osteoporosis has been considered a clin-

ical risk factor for osteoporosis [10], which means that whether the patient has or not 

secondary osteoporosis can be linked to higher or lower BMD values. More specifically, 

a patient with secondary osteoporosis is most likely to have decreased values of BMD, 

which agrees with the results obtained in the model. 

There was a positive association between P1NP and BMD, which corroborates the find-

ings of Szulc et al. [120]. P1NP is considered a bone formation biomarker and its serum 
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concentrations are correlated with elevated bone formation rates [120]. However, these 

results contrast with those reported by Elma et al. [122], who discovered elevated serum 

levels of P1NP in osteoporotic women. This apparent contradictory particularity might 

be caused by the inhibition of the activity of mature osteoblasts by other cytokines 

responsible for osteoblast regulation. P1NP derives from the cleavage process of the 

collagen type I molecule, by the activity of specific proteases at the N-terminal [94]. This 

process has its origins mainly from proliferating osteoblasts, which are not fully mature, 

yet [94]. Therefore, P1NP continues to be produced but the inhibition of the mature 

osteoblasts prevents the deposition of bone matrix. Together with increased osteoclast 

activity, these factors may explain why Elma and her co-workers [122] discovered 

elevated serum concentrations of P1NP in osteoporotic women. 

Positive correlations were also found in both SOST and Dkk1 and BMD. Sclerostin and 

Dkk1 are two well-known WNT antagonists, that bind to LRP5 and LRP6 proteins, 

preventing them to stimulate the WNT signalling pathway. Elevated serum levels of SOST 

and Dkk1 have been linked to osteoporotic patients [144], [203], [204]. However, several 

authors reported positive correlations between serum sclerostin levels and BMD in 

postmenopausal women. For instance, Polyzos et al. [205] observed that serum sclerostin 

was decreased in women with postmenopausal osteoporosis compared with non-

osteoporotic postmenopausal women. Xu and his colleagues [206] also obtained the 

same results as Polyzos et al. and demonstrated that serum sclerostin levels were 

positively correlated with BMD. Moreover, Reppe et al. [207] showed that both serum 

sclerostin levels and bone SOST mRNA expression were positively correlated with total 

hip BMD. Ueland et al. [154] reported positive correlations between both Dkk1 and 

sclerostin and bone mass and bone strength in postmenopausal osteoporotic women.  

Underlying pathologies may also be part of this positive association, since Cejka et al. 

[208] discovered a positive correlation between serum sclerostin levels and bone mineral 

density in haemodialysis patients. Although sclerostin has an inhibitory role in bone 

formation, it might be affected by other cytokines, as part of compensatory 

counteracting mechanisms, lowering serum sclerostin concentrations and showing the 

observed positive relations with BMD [207]. Despite some disagreement between results 

and biological evidences, the results obtained by the model can be accepted for 

sclerostin, but not for Dkk1. Possible explanations may lie in the data itself, since the 

mathematical transformations do not interfere with the sign of the correlation (logarithm 

and cubic root are crescent/increasing functions). It was observed that most of the 

variables present in the database had values with extremely wide ranges (see chapter 4, 
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table 4.2), indicating eventual human input errors, such as measurement units, or 

underlying pathologies not mentioned in the database. 

Overall, the results obtained in model 2 are, to a certain part of extent, promising but 

embrace a low number of bone biomarkers and need a careful examination on the Wnt 

regulators, namely the positive correlation found between Dkk1 and BMD. 

5.3 Model 3: Genetic Expression of Bone Turnover Biomarkers 

Following the same rationale as in models 2.1 and 2.2, linear regression analysis was first 

performed to produce equations that represented the correlations between the different 

estimators, in order to substitute as many missing values of the genetic expression of 

bone turnover biomarkers as possible. As it happened with the serum concentrations of 

bone biomarkers, the computation of missing values for each genetic expression of bone 

biomarker was a necessary step, but far from representing the real measured values of 

the patients. This imputation of missing values may have contributed to the appearance 

of wrong associations between variables, leading to contrary results of what was ex-

pected. 

The last model (model 3) was able to grant a valuable and considerable promising esti-

mation of bone mineral density, based on the genetic expression of bone turnover bi-

omarkers (R-square of 0.967). Only two estimators were excluded from the model, 

namely secondary osteoporosis and RANKL/HK, which indicated a good overall fitting of 

the data. 

Corticoid use, Lrp6, WIF1 and Sema3A were positively correlated with BMD. The positive 

relationship between corticoid use and BMD was not expected, since it is documented 

that the use of corticosteroids has a significant negative impact on BMD [209]–[211]. 

Walsh et al. [212] also discovered that either oral or inhaled corticosteroids had a nega-

tive correlation with BMD. This positive correlation found in the model may have derived 

from the substitution of the missing values of BMD. Model 1 did not have into consider-

ation the effect of corticoid therapy, because it was not a major determinant of BMD. 

However, the introduction of the estimated BMD values into the database may have cre-

ated a wrong correlation between BMD and corticoid use. 

The positive correlation between Sema3A and BMD agrees with the studies performed 

in mice, demonstrating that Sema3A knockout-mice had decreased bone formation and 

bone mass [137]–[139]. However, Liu et al. [213] did not find any significant differences 
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between Sema3A expression and BMD in Chinese postmenopausal women. These results 

indicate that, even if mice trials have been successful in identifying correlations between 

bone mineral density and Sema3A, human trials have not yet been able to assess this 

association, leading to a certain critical sense towards the correlation found in the model.  

WIF1 was positively correlated with BMD. This result was not expected, since WIF1 is 

linked to the inhibition of the Wnt pathway, resulting in low bone mass. To illustrate this, 

Yavropoulou et al. [214] demonstrated that the serum microRNA expressing the WIF1 

gene was 14.76-fold higher in women with low bone mass compared to controls. How-

ever, studies in WIF1 knockout-mice showed normal bone development [170]. Neverthe-

less, the positive association found between WIF1 and BMD may be related, once again, 

to the substitution of the missing values of BMD. The introduction of the remaining es-

timated WIF1 values into the database may have created a wrong correlation between 

BMD and the estimator. 

Lrp6 was also positively correlated with BMD, confirming the results obtained by Mani et 

al. [161], who demonstrated that mutation in the Lrp6 gene lead to low bone mass and 

increased fracture risk. LRP6 protein bind to the natural Wnt inhibitors, allowing the stim-

ulation of the pathway and consequent osteoblast differentiation and proliferation, as 

well as bone formation. 

In contrast, negative correlations were found between sex, rheumatoid arthritis, osteocal-

cin, Dkk2 and sFRP1 and BMD. Sex has already been mentioned to favour men over 

women concerning BMD [195], [196]. Regarding rheumatoid arthritis, the obtained rela-

tionship is in concordance with the findings of Heidari et al. [215], Hafez et al. [216] and 

Lodder et al. [217]. These authors reported significant negative correlations between the 

damages caused by the disease and low BMD. 

Dkk2 was found to have a negative association with BMD, which agrees with the results 

obtained by Li el al. [155], who revealed that mice with null Dkk2 expression had lower 

bone formation rates. Li et al. [157] also demonstrated that Dkk2 stimulated late osteo-

blast differentiation in the presence of Wnt7b. 

A negative correlation was also found between sFRP1 and BMD, which can be validated 

with the results obtained by several researchers [164]–[168]. Some authors reported that 

upregulating sFRP1 expression induced osteoblast apoptosis and the inhibition of oste-

oblast activity, resulting in decreased bone properties and BMD, while others showed 

that the deletion of the sFRP1 gene was associated with increased BMD. 



55 

 

Finally, the negative correlation of osteocalcin with BMD obtained in the model is con-

firmed by the results of Singh et al. [113], who reported negative correlations between 

osteocalcin levels and BMD in postmenopausal women. In addition, Ducy et al. [112] 

verified that mice with null expression of osteocalcin had higher bone mass and bone 

formation rates. 

Overall, the results obtained in model 3 indicate that an upregulation of the Wnt pathway 

regulators, namely some of the Wnt inhibitors, is associated with low bone mass, which 

reinforces the findings of Rodrigues et al. [145], [156]. 

Despite the achievement of promising results, the models do present some limitations. 

To begin with, the amount of data in which the models are based on is quite small and 

does not represent a strong basis to withdraw conclusions. Another drawback is related 

to the choice of the removal of the constant from all models. This removal was justified, 

from a physiological point of view, as bone mineral density was considered to be inex-

istence if all estimators were equal to zero. However, in the scientific community, the 

removal of this constant is seldomly seen. The constant modulates the error associated 

to the model itself, but in this case the error is intrinsic to the variables, meaning that all 

the model coefficients have some extent of this associated error.
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6 
6. Conclusions 

6.1 Final Remarks  

The main objective of this work was to assess the association between bone gene ex-

pression and serum concentrations of markers of osteoblast and osteoclast differentia-

tion and of Wnt pathway regulators with bone mineral density. Developing a method 

capable of estimating bone mineral density based on its association with bone bi-

omarkers may help to reduce both the need of in vivo/in vitro studies and the frequency 

of DEXA exams prescribed to diagnose osteoporosis. Two types of estimators were used, 

namely the serum levels of bone biomarkers and their genetic expression. 

As a first approach, the association between bone mineral density and its major deter-

minants was studied, in order to compute missing values in the patient database. 

Matches were found between the major determinants of bone mineral density found in 

the literature and the available variables in the database. Sex was included in the model 

as well. Since linear regression was used to estimate this association, all variables were 

taken a Kolmogorov-Smirnov test to ensure that each variable followed a normal distri-

bution. For those which did not follow a normal distribution, mathematical transfor-

mations were computed in the following order to normalize the data: logarithmization, 

exponentiation, cubic root, multiplicative inverse and polynomialization with crescent 

degrees. During linear regression analysis, the constant was removed from all models 

and stepwise regression was used with the Backward elimination process. Bootstrapping 

was used to externally validate the model. 

Upon the computation of the bone mineral density missing values, the relationship be-

tween the variables representing the serum levels of bone turnover biomarkers was as-

sessed to compute missing values within these variables. The same rationale concerning 

the statistical analysis was applied. Afterwards, the association of serum levels of bone 
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biomarkers with bone mineral density was estimated. Besides all bone biomarkers, four 

variables were included to the model, namely sex, rheumatoid arthritis, corticoid use and 

secondary osteoporosis. The final model, which was validated with bootstrapping, ac-

counted for two demographic variables (sex and secondary osteoporosis) and three var-

iables of serum levels of bone biomarkers (P1NP, SOST and Dkk1) and achieved an R-

square equal to 0.986. 

With respect to the genetic expression of bone turnover biomarkers, the same procedure 

as in the serum levels of bone biomarkers was conducted. Firstly, the relationship be-

tween the variables was assessed to compute missing values and afterwards, the associ-

ation between the estimators representing the genetic expression of bone biomarkers 

and bone mineral density was estimated. The final model, validated with bootstrapping 

as well, accounted for three demographic variables (sex, rheumatoid arthritis and corti-

coid use) and six variables of genetic expression of bone biomarkers (osteocalcin, Dkk2, 

sFRP1, Lrp6, WIF1 and Sema3A) and had an R-square of 0.967. The most prominent re-

sults achieved with this dissertation are related to the findings in model 3 that demon-

strate that an upregulation of the Wnt regulators is associated with low bone mass in 

elderly Portuguese men and women. 

To conclude, the developed work showed promising results related to the estimation of 

bone mineral density based on its association with the serum levels and the genetic ex-

pression of bone turnover biomarkers. It opened great study opportunities for future 

projects that may contribute to the inclusion of more bone biomarkers and the discovery 

of new associations and better bone mineral density estimates. Moreover, these types of 

models can, eventually, become a new clinical decision support system and help to re-

duce the frequency of DEXA exams prescribed to diagnose osteoporosis. 

6.2 Future Perspectives 

The project here developed showed promising estimates of bone mineral density based 

on its association with serum levels and genetic expression of bone biomarkers. However, 

there is still a wide range of complementary studies and improvements that must be 

conducted so that it can eventually pass from an investigation level to a clinical level. 

Taking into consideration the results obtained in models 2.2 and 3, it would be of interest 

to study such relationships in a much larger and more complete clinical database, to 

ensure that more robust conclusions can be drawn from the models. 
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Studying the association between bone mineral density and bone biomarkers in men and 

women separately would also be of interest, since the concentrations of bone bi-

omarkers, as well as their genetic expression, is different between sexes. Moreover, the 

inclusion of other study variables, such as calcium, growth factors and bone morphoge-

netic proteins may create more robust models, in a way that they can be more complete 

and better represent the complex bone microenvironment. 

To finalize, it is of my belief that the present project has created several opportunities for 

future investigation work, hoping that the conclusions and reflections here presented will 

contribute to the development of enhanced models, bringing them closer to a clinical 

decision support system tool.
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Attachments 

1. Calculation of the mean percent error of model 1 

𝑀𝑒𝑎𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =  
|𝐵𝑀𝐷 𝐷𝐸𝑋𝐴 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐵𝑀𝐷|

𝐵𝑀𝐷 𝐷𝐸𝑋𝐴
× 100 

2. Failed Approaches (i.e. all tested scenarios before reaching the final models)  

Relative to model 1 

▪ Inclusion of only women with DEXA measured BMD data; 

▪ Inclusion of alcohol as a dependent variable; 

▪ Dividing women by the reason of surgery. 

Relative to model 2 

▪ Removing all values that were outside the 90-percentile range; 

▪ Normalize data with max and max-min techniques; 

▪ Using only women as population-target; 

▪ Pearson correlations between dependent variables; 

▪ Using the median of the dependent variables to compute the missing values for 

the respective variables; 

▪ Using generalized linear and non-linear models instead of linear regression; 

▪ Inclusion of the regression constant; 

▪ Dividing women by the reason of surgery. 

Relative to model 3 

▪ Removing all values that were outside the 90-percentile range; 

▪ Normalize data with max and max-min techniques; 

▪ Using only women as population-target; 

▪ Pearson correlations between dependent variables; 
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▪ Using the median of the dependent variables to compute the missing values for 

the respective variables; 

▪ Using generalized linear and non-linear models instead of linear regression; 

▪ Inclusion of the regression constant; 

▪ Dividing women by the reason of surgery. 
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