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Abstract. This paper presents a simple wearable, non-intrusive affordable mobile framework 

that allows remote patient monitoring during gait rehabilitation by doctors and physiotherapists. 

The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), an Android 

smartphone and a developed app for collecting, primary processing of data and for persistence 

of data in a remote PostgreSQL database, which is available in a remote server and where further 

data processing is performed. This framework provides gait features classifier by invoking an 

implemented REST API available in the remote server. Low computational load algorithms 

based on Euler angles and filtered signals were developed and used for the classification and 

identification of several gait disturbances. These algorithms include the alignment of IMUs 

sensors data by means of a common temporal reference as well as heel strike and stride detection 

algorithms. After segmentation of the remotely collected signals for gait strides identification 

relevant features were extracted to feed, train and test a classifier for prediction of gait 

abnormalities using supervised machine learning type and Extremely Randomized Trees 

method.    

1. Introduction 

Gait analysis support recognition of normal or pathological patterns of walking, for medical diagnosis 

and treatment [1], physical therapy [2] and sports training [3]. The traditional scales used to analyze gait 

parameters in clinical conditions include variable degree of subjectivism during assessment. Progress in 

new technologies has given rise to devices and techniques which allow objective evaluation of different 

gait parameters, resulting in more efficient measurement and providing specialists with a large amount 

of reliable information on patients’ gaits. A simple and accurate technological system would be helpful 

to increase efficiency and affordability of motor rehabilitation. Gait analysis using wearable wireless 

sensors can be an economical, convenient and effective way to provide diagnostic and clinical 

information for various health-related issues [4]. In section II of the paper several related works are 

presented. Section III summarizes the proposed method and system. Section IV describes the results and 

discussion and Section V the conclusions. 

2. Related Works 
Several gait analysis systems have been proposed over the years. Alcaraz et. al [5] proposed a system 

using an IMU Shimmer2R and an Android application for mobile gait performance evaluation and 
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feedback. In this system the extraction of important features from accelerometer raw data in both time 

and frequency domain was performed for gait classification, and each peak within a data window was 

processed to distinguish between normal and abnormal gait. A method for measuring human gait posture 

using wearable sensors was proposed by Takeda et al. [6]. The acquisition of the signals was realized 

with a tri-axial acceleration sensor and three gyro sensors aligned on three axes. These were placed at 

abdomen level and at lower limbs (both thighs, both shanks and both feet) to measure acceleration and 

angular velocity during walking [6]. Bonnet and Jallon presented a technique for recognition of different 

gait conditions from a body-worn sensor data. A sensor located at subject’s shank was a combination of 

a 3-D accelerometer and a 3-D magnetometer [6]. Charry et al. [7] work have shown that inertial sensors 

have good performance comparable to video-based systems. In Nukala, et al. [4] work a custom designed 

low-cost wireless gait analysis based on inertial measurement unit (IMU) was used to collect the gait 

data for four patients diagnosed with balance disorders and from three normal subjects. Each subject has 

executed Dynamic Gait Index (DGI) tests while wearing the custom wireless gait analysis sensor 

(WGAS) [4]. Previous researches have shown that machine learning methodologies are effective for 

classification of different activities from sensor data [8]. 

3. System Description 
The implemented measurement system for gait classification is a distributed computation system, which 

includes embedded sensing device that are Bluetooth compatible, edge computation platform and user 

GUI expressed by an Android OS device and by advanced processing and classification in a remote 

server. IMU as part of sensing device allow acquisition of the signals for gait monitoring. The signals 

from measurement channels are primary processed and Wi-Fi transmitted by the Android OS Platform 

that also assures the Internet connectivity. An Android app was developed for smartphone that invokes 

a REST API in a remote server. Java and Python programming languages in a server support data 

processing and classification using machine-learning. The developed system includes two Shimmer3 

devices and a database. In figure 1 the system architecture including two IMU units, an Android OS 

computation platform (smartphone) and a remote server is presented.  

 

 

 
 

 

 

Figure 1. Gait Rehabilitation Monitoring System Block Diagram. 

The software that runs in the Android OS device performs several tasks related to setup, data 

processing and packing, data transmission and some self-test functions that monitor the proper working 

of the system. Complex functions that require higher data processing capabilities are performed 

remotely by computation units as Laptop or remote server. 
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3.1. System Description - Hardware – IMUs 

The hardware of the system includes 2 Shimmer3 IMUs. Shimmer3 is a small wireless sensing device, 

well suited for wearable applications. The integrated kinematic sensors, the storage and low-power 

standards-based communication capabilities of Shimmer3 IMUs are proper for development of motion 

capture applications, long-term data acquisition and real-time monitoring. 9DoF Calibration Application 

from Shimmer [9] was used to calibrate Shimmer3 devices. 

3.2. System Description - Software  

The APP for Android OS was developed using Multi Shimmer Template and the Shimmer drivers that 

provide Bluetooth connectivity to Shimmer3 devices. The ShimmerDriver and 

ShimmerAndroidInstrumentDriver that hold ShimmerObject (threads running connections between app 

and devices), ShimmerBluetooth (streaming over Bluetooth), ObjectCluster (that represents data from 

devices) and Shimmer (that represents a device) Java classes were used. Multiple Shimmer devices can 

be connected simultaneously to a device with Android OS, using multiple instances of the Shimmer 

Class object [10]. Shimmer drivers manage the connection with the app and data streaming over 

Bluetooth. Interactions with the remote server are executed using SSH2 implemented via JSch, Java 

Secure Channel and port forwarding and SFTP. Android Fragments were developed to implement the 

APP functionalities: LoginFragment and RegisterFragment for login and registration over SSH2. 

WalkFragment and TrainFragment have handlers to manage threads running the multiple Bluetooth 

connections with Shimmer3 devices, and to receive messages sent from the devices carrying the gait 

information. The received messages are synchronized using a common System timestamp reference, 

pre-processed and sent in a .csv to the remote server over SFTP. These two fragments layouts have the 

option to plot signals and YY Euler angles. TrainFragment has an AlertDialog to choose the 

classification label associated with each gait type and WalkFragment has an AlertDialog to show the 

test results. Figure 2 depicts the APP functionalities: Plot of the signals during the session, upload the 

data file on the server, and the display of classification results. Train classifier feature enables the APP 

to collect data and train a classifier model. The algorithm for gait classification is described in figure 3 

and figure 4. Smartphone connects to the system devices using Shimmer drivers and Bluetooth, 

collecting tri-axial data from both devices that integrate accelerometers, gyroscopes and magnetometers. 

Data from the two Shimmer3 devices are pre-processed by Android device and transformed by the APP 

into a .csv file containing IMU Bluetooth address, device sampling-rate, gait classification labels, 

collected raw data, aligned timestamps and Euler angles. IMU signals alignment algorithm was 

developed and implemented. A common referential time was considered for IMUs and the obtained data 

from both devices was aligned to this common reference. A common temporal reference was considered 

as the instant at which the samples are received by the Android Smartphone [11] and the timestamp of 

arrival of each sample in the smartphone is collected.  

Each IMU sample is associated with a time stamp according to the following relation: 

𝑐𝑡 =  𝑤𝑠 –  𝑠𝑎𝑡                                                  (1) 

where ct is current timestamp; ws is start walking timestamp; sat is sample timestamp arrival in the 

smartphone.  

Samples with timestamp prior to the moment gait starts are ignored. Euler angles are a convenient 

set of generalized coordinates for describing the orientation of a body-fixed coordinate frame [12]. In 

this application the Euler angles (yaw, pitch, and roll) were used to describe the legs movement based 

on the data in quaternion [13] format delivered by IMU Shimmer3 devices attached to the legs. On the 

APPs level a conversion is made from quaternion to Euler angles that are stored in .csv file that is sent 

to the system remote server by SFTP for off-line processing. Additionally, digital filtering has been 

considered. Thus a 4th order Butterworth bandpass digital filter characterized by 0.7 Hz low-cut off and 

35 Hz high-cut off frequencies has been applied to the accelerometer’s signals [7] to increase the signal-

to-noise ratio which will help gait classification. 
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(a)                                                      (b)                                                              (c) 

Figure 2. APP functionalities: (a) plot of the IMU signals; (b) upload the data as .csv file; (c) display 

classification results. 

 

 

 
 

                                             (a)                                                                            (b) 

Figure 3. Algorithms flowchart: (a) gait classifier training flow; (b) gait session flow. 
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Additionally, 1st order Butterworth low-pass digital filter characterized by 10 Hz cut-off frequency 

has been applied to magnetometer signals and obtained Euler angles. These play a very important role 

in the detection of the heel strikes that occur during the gait cycles, which are useful to help segmenting 

the signal for stride identification and features extraction for training the classifier model. Euler angle 

from YY axis was used in this algorithm. The YY axis was chosen in this calculation considering the 

calibration procedure. A heel strike detection algorithm includes the following steps: i) calculation of 

the mean value of the discrete YY axis Euler signal; ii) determination of the signal indexes where values 

are below the mean value of the signals; iii) heel strikes detection, by calculating the maximum value 

between the lower and upper limits of the signal samples in noisy signals or in signals with many peaks, 

and elimination of peaks that may be misidentified as heel strikes (if two identified samples below the 

mean have more than two samples above the mean - initial adaptive distance = two samples, then there 

might exist a heel strike between them; at each iteration through samples determined in the second step, 

is performed the distance adjustment if the number of samples is above, in between or greater than 

current distance: 

𝑑 =  [𝑑/2 +  𝑎𝑏𝑠(𝑙 −  𝑛)]/2                                           (2) 

where d is distance, l is last sample, n is next sample; iv) storing the identified heel strikes in a 

buffer; v) calculation of the mean difference between heel strikes identified in the fourth step; vi) 

iteration through the heel strikes (indexes) to get the segments of the original discrete YY axis Euler 

signal between those heel strikes; vii) calculation of the heel strikes index for the original signal. After 

identifying the heel strikes, the strides can easily be obtained from the signal segments. Figure 4 shows 

the segments obtained from the acquired signal at each heel strike for the right and left legs. Each 

segment displayed in figure corresponds to a gait cycle. 

A modified strides detection algorithm was developed and includes: i) calculation of the mean 

distance between the identified heel strikes of a YY Euler angle signal; ii) iteration through the heel 

strikes and extraction of the signals segments from the original signal contained in-between; iii) storage 

in a key-value list of the timestamp associated to the start of each segment and the segment itself; iv) 

elimination of all signal segments which length do not fit in the interval based on the mean segments 

distance: [0.7*mean segments distance ;1.3*mean segments distance]. By considering the segments of 

one of the two Euler angle signals, iteration through the segments and for each segment iteration through 

the key-value list of the other signal (other leg) that maps the start of an identified segment with a 

timestamp. If there is a segment timestamp that fits in the temporal window of the second signal 

extracted segment, then the current segment is accepted and the two segments from the different devices 

are considered as a gait stride, otherwise the segment is excluded. 

Extremely Randomized Trees method was used for feature extraction. Following features were 

considered: in time domain - standard deviation, maximum, minimum, skew, kurtosis, displacement, 

interquantil range, mean absolute deviation and area; in frequency domain - Discrete Fast Fourier 

Transform (DFFT) (standard deviation of DFFT coefficients), Power Spectral Density – Welch (PSD) 

(standard deviation of PSD) and Discrete Wavelet Transform (Daubechies db4) (standard deviation of 

the approximation and detail coefficients); in time-frequency domain: Discrete Wavelet  Transform 

(Daubechies db4) (standard deviation of the approximation and detail coefficients). A set of extracted 

features was used for training and other for testing the classification model. 

4. Results and Discussions 

The implemented gait assessment system was tested in laboratory with 4 volunteers [average and 

range age 38.8 years (33-45); average weight 78.8 Kg (67-87)] who performed normal and abnormal 

gait. A walking distance of nearly 40 meters for each gait was used to train the classifier, and of 10 

meters to test the classification algorithm.  
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Figure 4. Euler YY angle segments for left (a) and right legs (b). 

Table 1.  Classifier Scores. 

Gait Precis
ion 

Recall F1 

normal 1.000 0.951 0.974 

v. slow 0.948 0.981 0.963 

parkinsonian 1.000 1.000 1.000 

hemipl. right 0.916 0.889 0.900 

equinus 0.948 0.983 0.964 

glut. max. right 0.972 0.935 0.952 

glut. max. left 1.000 0.914 0.954 

running 0.944 1.000 0.969 

hemipl. left 0.972 1.000 0.985 

The experiments were carried out by using 2 Shimmer3 devices (fs=51.2Hz) and an Android 

Smartphone Alcatel U5 (Quad-core 1.3 GHz, 8GB ROM + 1 GB RAM, Android 7.0 Nougat). The type 

of the tested gaits and the labels for training the classifier were: normal gait (label1), very slow gait 

(label 2), parkinsonian gait (label3), hemiplegic gait – right leg (label 4), equinus gait-jump knee (label 

5), gluteus maximus - right leg (label 6), gluteus maximus - left leg (label 7), running gait (label 8), 

hemiplegic gait – left leg (label 9). The classifier was trained 6 times and its average scores Precision, 

Recall and F1 at stride level are illustrated in table 1. The data from 4 volunteers was used for training 

and testing the classifier. The data from walking tests for 10 meters was used to test the capacity of the 

system for correctly identify the gait features. For this test results the most frequent identified stride 

label was considered as the identified gait type. Volunteers 2 and 4 and had 9 gait types 100 % correctly 

identified. Volunteer 1 had one misidentified gait: gluteus maximus - right leg as gluteus maximus - left 

leg and Volunteer 3 had one misidentified gait: gluteus maximus - left leg as gluteus maximus - right 

leg. Although the precision of gait recognition was high, only the results from algorithm testing with a 

larger sample size would allow the comparison with existing results from other research studies.  

5. Conclusions 

In this work, a simple wearable, non-intrusive affordable mobile framework that allows remote patient 

monitoring during gait rehabilitation is described. The remote functionality provided by the app offers 
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a tool for the health institutions for monitoring rehabilitation process. Heel strike and stride detection 

algorithms based on Euler angles and filtered signals disturbances including the alignment of IMUs 

signal data by means of a common temporal reference were developed and used for the classification 

and identification of several gait pathologies.  More data from patients with pathologic and abnormal 

gait is intended to be included in the classifier in future work, to increase the sensitivity of the algorithm 

to predict the evolution of rehabilitation by considering the patient’s gait session historic.  
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