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Resumo

É apresentada uma descrição e intrepretação do Teorema de Weinberg para Fotões Moles,

usado para a regularização das divergências no infravermelho em Eletrodinâmica Quântica.

Este esquema pode ser estendido de modo a incluir a descrição de qualquer fotão de su�ci-

entemente baixa energia, independentemente do grau de detetabilidade, deduzindo assim, os

fatores corretivos e probabilidade de emissão destes fotões, com esta última a seguir a pro-

babilidade de Poisson esperada semiclassicamente. Um cálculo explícito das probabilidades

para o caso de dispersão eletrão-fotão permite concluir que, mesmo no caso mais extremo

de fermiões ultrarrelativísticos, a taxa de emissão destes fotões é extremamente baixa, caso

o limite mínimo permitido às suas energias seja não-nulo. Qualquer detetor de fotões com

um limiar energético de deteção inferior não-nulo teria apenas associado um termo corretivo

desprezável. Detetores perfeitos são considerados impossíveis na discussão que se segue. Fi-

nalmente, apresento uma descrição de Teoria Quântica de Campo das medidas sem interação

e argumento que muitos dos conceitos paradoxais em Mecânica Quântica, envolvendo estas

interações, são satisfatoriamente explicadas nesse contexto.

Palavras-chave: Medidas Sem Interação; Divergências Infravermelhas; Fotões moles; Te-

orema de Weinberg para Fotões Moles
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Abstract

I present a detailed mathematical description and interpretation of Weinberg's Soft Photon

Theorem for regularising infrared divergences in Quantum Electrodynamics. The theorem

can easily be extended to any low-energy photons, regardless of the degree of detectability,

thus deducing the correction factors and probability of emission, the latter mirroring the

semiclassical Poisson distribution, for these photons. An explicit calculation of those prob-

abilities for the case of electron-photon scattering leads to the conclusion that, even in the

most extreme case of ultrarrelativistic fermions, these photons have an extremely low emis-

sion rate if the lower limit allowed to their energies to be nonvanishing. Any photon detector

with nonzero minimal threshold for detection energy would only get a negligible correction

factor. Perfect detectors are deemed impossible in the subsequent discussion. Finally, I give

a Quantum Field description of Interaction Free Measurements, and argue that many of the

paradoxical concepts about these interactions in Quantum Mechanics have a satisfactory ex-

planation in this framework.

Keywords: Interaction Free Measurements; Infrared divergences; Soft photons; Wein-

berg's Soft Photons Theorem
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Abbreviations

IFM Interaction Free Measurement

IR Infrared

QED Quantum Electrodynamics

QFT Quantum Field Theory

QM Quantum Mechanics

Conventions

Natural units, c = ~ = 1, are adopted throughout this work. The signature for the

Minkowski metric, ηµν , used is (−,+,+,+). The symbols for particles and propagators are

the standard ones in contemporary literature, see Ref. [1, 2]. Feynman diagrams, drawn

using TikZ-Feynman [3], follow the left to right convention for the �ow of time. Einstein's

summation convention is generally used. The following simpli�ed notations were introduced

[4],

∑
~p

≡
∫

d3p

(2π)32E~p
, δ~p−~q ≡ (2π)32E~p δ(~p− ~q) .
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Introduction

The original objective of this thesis was to learn more about Elitzur-Vaidman Interaction

Free Measurements. This thought experiment [5], better discussed in Chapter 2 and related

Appendix B, proposes a way to obtain information about the location of an object without

interacting with it. To showcase this possibility, the authors propose a bomb, in�nitely

sensible to any photon, and claim to be able to localise without exploding it. This raised

objections by some authors on pragmatic grounds [6]. The claim about using very low-energy

photons, called soft, lead to the consideration of relating the experiment with Weinberg's Soft

Photons Theorem, used to regularise infrared divergences in Quantum Electrodynamics [1, 7].

The aim of understanding in-depth this theorem was in the root of a long detour through its

mathematical details, displayed in Chapter 1 and the associated Appendix A.

This theorem allows for the computation of probabilities of emission of photons with low

energies, which, if detectable, indicate the impossibliness of the bomb. In order to relate this

theorem with Interaction Free Measurements, a Quantum Field description of the Elitzur-

Vaidman thought experiment, better suited for discussion of ranges of interaction, is pre-

sented. This formalism allows for a seemingly less paradoxical interpretation than the purely

quantum mechanical case, plagued by the particle-wave duality.
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1. Weinberg's Soft Photons Theorem

In this chapter, I analyse the soft photon approximation and its role in solving the infrared

(IR) divergences of Quantum Electrodynamics (QED). The derivation will mostly follow the

one developed by Weinberg [1, 7], but similar deductions can be seen in Refs. [2, 8, 9], and

in the original paper by Bloch and Nordsieck in Ref. [10].

Section 1.1 treats the corrections, due to low-energy photons with speci�c energy, detectable

or not, introduced to the M matrix; Section 1.2 resolves the virtual infrared divergences

with the introduction of virtual soft photons; Section 1.3 deals with the full correction to

the transition rates, by further introducing the modi�cations due to real soft photons, and

provides the probability of emission, valid for low-energy photons, both detectable or not.

This chapter has an associated appendix, Appendix A, where some of the calculations are

developed, and some explanations of physical quantities are provided.

1.1. Emission and absorption of low-energy photons

Consider a QED process, α→β, involving an arbitrary number of charged particles. When

interacting, charged particles can emit and absorb photons; some of them, weakly energetic.

The most weakly energetic can even evade any physical detector. Such low energy photons

have energies much smaller than the typical rest masses of the charged particles involved in

the process. Let us, then, compute how the α→β process is altered by the presence of those

photons.

The emission of a low-energy photon from a fermion of charge e in β,

12



,
q p

k

implies, at �rst order, the additional factor in the M matrix,

ie

∫
d4q

(2π)4 ūσ(~p)γµSF(q)ελ∗µ

(
~k
)

(2π)4δ(p+ k − q)

= ieūσ(~p)γµ
i
(
/p+ /k −m

)
(p+ k)2 +m2 − iε

ελ∗µ

(
~k
)
.

Noticing that

γµ
(
/p−m

)
=
(
−/p+m

)
γµ − 2pµ − 2mγµ,

using the closing relation, ∑
σ

uσ(~p) ūσ(~p) = −/p+m,

expanding the denominator and cancelling the terms on-shell, in the limit of small energies,1

we have,

−eūσ(~p)

∑
σ′ uσ′(~p) ūσ′(~p) γ

µ − 2pµ − 2mγµ

2p·k − iε
ελ∗µ

(
~k
)
.

Simplifying the numerator,

∑
σ′

ūσ(~p)uσ′(~p)ūσ′(~p) =
∑
σ′

2mδσσ′ ūσ′(~p) = 2mūσ(~p) ,

we get

−eūσ(~p)
2mγµ − 2pµ − 2mγµ

2p·k − iε
ελ∗µ

(
~k
)
.

The ūσ (~p) term was already part of the original Mα→β matrix, so we reintroduce it there,

yielding the correction factor
epµ

p·k − iε
ελ∗µ

(
~k
)
.

1Equivalently we can simply neglect the square of the the 4-momentum as being of second order. When
on-shell, k2 is identically null, but for the cases that will arise later, where the soft photon is o�-shell and
k2 does not simply cancel out, we will use that argument to still ignore the term.

13



In the case where the photon is emitted from an initial leg, in α,

,
p q

k

the element in the M matrix is

ie

∫
d4q

(2π)4SF(q) γµελ∗µ

(
~k
)
uσ(~p)(2π)4δ(q + k − p)

= ie
i
(
/p− /k −m

)
(p− k)2 +m2 − iε

γµελ∗µ

(
~k
)
uσ(~p) .

The previous argument still works, leading to the additional factor

epµ

−p·k − iε
ελ∗µ

(
~k
)

= − epµ

p·k + iε
ελ∗µ

(
~k
)
.

We arrive at the conclusion that the emission of a single low-energy photon of 4-momentum

k from a branch of 4-momentum p leads to the correction

Mα→β →Mα→β

ξepµελ∗µ
(
~k
)

p·k − iξε

 ,

where ξ = 1 or ξ = −1, whether the photon is emitted from a �nal leg or an initial one,

respectively.

Since

p·k = ~p·~k − EfEγ = Eγ

(
|~p| cos(θ)−

√
|~p|2 +m2

)
,

we can easily verify that the only divergence in the denominator occurs when Eγ → 0, for

nonzero values of m. Therefore, we can now drop the prescription iε.

The transition probability is altered to

|iMα→β|2 → |iMα→β|2
∣∣∣∣e2pµpνηµν

(p·k)2

∣∣∣∣ = |iMα→β|2
∣∣∣∣ emp·k

∣∣∣∣2 ,
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where we have performed a polarisation sum to obtain the ηµν factor.

Of course, if R charged particles of charges en intervene in the process, either at the

beginning or the end, we have R possible sources for the emitted photon. All possibilities of

emission are accounted for with a sum over their probabilities.

The correction to Mα→β then takes the form,

Mα→β →Mα→β

R∑
n=1

(
ξnenp

µ
n

pn ·k

)
ελ∗µ

(
~k
)
.

If we consider

Mµ(k) = Mα→β
∑
n

(
ξnenp

µ
n

pn ·k

)
which satis�es Ward's identity for on-shell photons, kµMµ = 0, we have

∑
n

(
ξnenpn · k
pn ·k

)
Mα→β =

(∑
n

ξnen

)
Mα→β = 0.

For a non-zero transition process,

∑
n

ξnen = 0⇔
∑
f

ef =
∑
i

ei,

which is just stating that total charge is conserved in the process.

We now want to consider the corrections due to the emission of more than one low-energy

photon. When two emissions originate in two di�erent branches, the corrections simply stack.

The diagram, where the legs emitting the photons can be either initial or �nal,

k1

k2

,

q1

p1

q2

p2

15



has a matrix element,

(2π)8
∫

d4q1

(2π)4

(
ie1ūσ1(~p1) γµSF(q1) ελ1∗µ

(
~k1

)
δ(p1 + k2 − q1)

)
×
∫

d4q2

(2π)4

(
ie2ūσ2(~p2) γνSF(q2) ελ2∗ν

(
~k2

)
δ(p2 + k2 − q2)

)

= ūσ1(~p1) ūσ2(~p2)

ξ1e1p
µ
1 ε
λ1∗
µ

(
~k1

)
p1 ·k1 − iξ1ε

ξ2e2p
µ
2 ε
λ2∗
µ

(
~k2

)
p2 ·k2 − iξ2ε

 ,

corresponding to the correction,

Mα→β →Mα→β

ξ1e1p
µ
1 ε
λ1∗
µ

(
~k1

)
p1 ·k1

ξ2e2p
ν
2ε
λ2∗
ν

(
~k2

)
p2 ·k2

 .

That was quite straightforward. The contentious case is when the photons are emitted

from the same leg. In that case, the correction from

q1 q2 pf

corresponds to the matrix element

(ie)2ūσ( ~pf )

∫∫
d4q1d

4q2γ
µSF(q2) γνSF(q1) ελ2∗µ

(
~k2

)
ελ1∗ν

(
~k1

)
δ(q2 + k2 − q1)δ(pf + k2 − q2)

= (ie)2ūσ( ~pf ) γµελ2∗µ

(
~k1

) i
(
/pf + /k2 −m

)
(pf + k2)2 +m2 − iε

γνελ1∗ν

(
~k1

) i
(
/pf + /k1 + /k2 −m

)
(pf + k1 + k2)2 +m2 − iε

= ūσ( ~pf )

epµf ελ2∗µ

(
~k2

)
pf ·k2 − iε

 epνf ε
λ1∗
ν

(
~k1

)
pf ·(k1 + k2) + k1 ·k2 − iε

 .

Again, we wish to sum over all possible schemes of emission for two photons, in order to

get a sum of all possible corrections. For the two photons emitted from a single leg, we ought

16



to add the contributionsepµf ελ2∗µ

(
~k2

)
pf ·k2 − iε

 epνf ε
λ1∗
ν

(
~k1

)
pf ·(k1 + k2) + k1 ·k2 − iε

+

epµf ελ1∗µ

(
~k1

)
pf ·k1 − iε

 epνf ε
λ2∗
ν

(
~k2

)
pf ·(k1 + k2) + k1 ·k2 − iε

 .

Reducing this expression to the same denominator,

epµf ελ2∗µ

(
~k2

)
pf ·k2 − iε

epµf ελ1∗µ

(
~k1

)
pf ·k1 − iε

 pf ·(k1 + k2)− 2iε

pf ·(k1 + k2) + k1 ·k2 − iε
,

and neglecting k1 · k2 as a second order term, yields

ξepµf ελ1∗µ

(
~k1

)
pf ·k1

ξepµf ελ2∗µ

(
~k2

)
pf ·k2

 ,

which reproduces the result we would obtain if the photons were emitted from two di�erent

legs. We conclude that two corrections can simply be added as independent factors to the

Mα→β matrix.

1.1.1. General case

To derive the general case, we shall �rstly assume N low-energy photons emitted from a

single leg, initial or �nal, contributing with a correction to Mα→β as

Mα→β →Mα→β

N∏
i=1

ξepµif ελi∗µi
(
~ki

)
pf ·ki

 . (1.1)

It is clear the formula works for N = 1. For N soft photons emitted from a single leg, we

will �rst consider the following diagram,

k1 kn−1 kn

.. . .
q1 qn+1 pf

17



Of course, this only works for a particular ordering. As for the case n = 2, in general, we

have to account for all permutations of the ki's. We get, by summing over all permutations

and extracting the factor whose denominator has the most terms in each,

n+1∑
s=1

ξepµsf ε
λs∗
µs

(
~ks

)
pf ·
∑n+1

j=1 kj

n+1∏
i=1
i 6=s

ξepµif ε
λi∗
µi

(
~ki

)
pf ·
∑n+1

j=i kj
.

The product only has n factors. If we assume the validity of the simpli�cation for n

photons, we can write

n+1∑
s=1

ξepµsf ε
λs∗
µs

(
~ks

)
pf ·
∑n+1

j=1 kj

n+1∏
i=1
i6=s

ξepµif ελi∗µi
(
~ki

)
pf ·ki

 =
1

pf ·
∑n+1

j=1 kj

n+1∑
s=1

(pf ·ks)
n+1∏
i=1

ξepµif ελi∗µi
(
~ki

)
pf ·ki



=
n+1∏
i=1

ξepµif ελi∗µi
(
~ki

)
pf ·ki

 ,

which, by induction, completes the proof, leading to Eq. (1.1). We see that the corrections

for n low-energy photons stack the same way, whether they are emitted from the same leg or

from di�erent ones. Of course, in the case of a process with several charged legs, we need to

sum over all of them, as well as over the polarisations, to get the most complete correction.

The Mα→β matrix changes, due to the presence of N emitted soft photons from a process

with R branches, as

Mα→β →Mα→β

N∏
j=1

∑
λj

R∑
n=1

(
ξnenp

µj
n

pn · kj

)
ε
∗λj
µ

(
~kj

) .
Finally, noticing that the absorption of a photon is identical to an emission, as long as

one changes kj → −kj and the respective polarisation, we can include the absorption of P

photons by writing

N∏
j=1

∑
λj

R∑
n=1

(
ξnenp

µj
n

pn · kj

)
ε
∗λj
µj

(
~kj

) P∏
l=1

∑
λl

R∑
m=1

(
−ξmempµlm
pm ·kl

)
ελlµl

(
~kl

) . (1.2)
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Summary

Assumptions:

• In the low-energy regime, the energies of the photons are neglected compared with the

rest mass of the charged particles (
∣∣∣~k∣∣∣� m =⇒ kµ � m) (cf. Ref. [8]). This leads to

O
(∣∣∣~k∣∣∣ /m)⇔ O (∣∣∣~k∣∣∣)⇒ O(∣∣∣~k∣∣∣2).

• Scalar products of 4-momenta of soft photons can also be neglected, ki ·kj ≈ 0.

• We are only taking into account divergent corrections. Photons emitted or absorbed

by virtual particles can be ignored since denominators in the form p2 +m2± 2p · k− iε

diverge, on the assumptions above, only when the emitting particle is real (see Ref.

[9]). In fact, said expression would be null for

p0 =
∣∣∣~k∣∣∣±√(~p− ~k)2

+m2 ≈
√
~p2 +m2,

since, when ~p2�m2, m2 is clearly dominant and, when ~p2 � m2, the ~p2 part is; when

|~p| ≈ m, we can still ignore the term 2~p · ~k against ~p2.

Conclusions:

• We have deduced the full corrective factors due to N low-energy photons emitted and

P absorbed by real charged particles involved in a process: see Eq. (1.2).

• Low-energy photons imply charge conservation through Ward's Identity.
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1.2. Virtual soft photons

Our objective in this section is to remove the infrared divergences that arise due to the

emission and absorption of virtual soft photons between external charged lines. We will

de�ne a virtual soft photon to be any virtual photon with energy and module of the spatial

momentum lower than a threshold Λ. As long as much smaller than the rest mass of any

external charged particles, the value for Λ is purely arbitrary.

The very �rst step is to strip the matrix Mα→β from all the virtual soft photons, removing

the virtual IR divergences from it at the same time. We want to reintroduce the virtual

soft photons as corrections. Let us recall the results in Eq. (1.2), replacing the sums of the

polarisation vectors, for emission and absorption, ελ∗µ
(
~k
)
, ελν

(
~k
)
, by photonic propagators

−iηµν
k2−iε . There are two cases to pay attention to: when the virtual photon links two �nal (or

two initial) legs and when it links a �nal and an initial one.

Analysing �rst the second case,

,
pn qn qm pm

k

we extract the external spinorial terms from Mα→β , obtaining the contribution

− enem
∫∫∫

d4k

(2π)4

d4qn

(2π)4

d4qm

(2π)4

−iηµν
k2 − iε

ūσ(~pn) γµSF(~qn)Mα→βSF(~qm) γνuσ′(~pm)

× (2π)8δ(qn + k − pn) δ(qm + k − pm)

= − enemūσ(~pn) γµ
[∫

d4k

(2π)4

−iηµν
k2 − iε

SF

(
~pn − ~k

)
Mα→βSF

(
~pm − ~k

)]
γνuσ′(~pm) .

20



Using the same trick as in the previous section,2 we have

enem

[∫
d4k

(2π)4

−iηµν
k2 − iε

pµn
pn ·k + iε

ūσ(~pn)Mα→β uσ′(~pm)
pνm

pm ·k + iε

]
.

Reintroducing the spinorial terms in the matrix, we obtain the correction due to a single

virtual soft photon linking a charged particle in α with one in β,

−ienem(pn ·pm)

(2π)4

[∫
d4k

(k2 − iε) (pn ·k + iε) (pm ·k + iε)

]
.

Note that since the photons are not on-shell, we ought to keep the iε factor for the time

being. The case where the photon links two initial legs (analogous if both of them are �nal),

,

qn
pn

k

qm
pm

implies the term

(Mα→β)ab

∫∫∫
d4k

(2π)4

d4qn

(2π)4

d4qm

(2π)4SF (qn)ca(γ
µ)ec ūσ(~pn)e SF (qm)db(γ

ν)fd ūσ′(~pm)f

× Πµν(k)(−enem)(2π)8δ(qn + k − pn)δ(k + pm − qm)

= (−enem)

∫
d4k

(2π)4

−iηµν
k2 − iε

(ūσ(~pn) γµSF (pn − k))a(Mα→β)ab(ūσ′(~pm) γνSF (pm + k))b

= (−enem)

∫
d4k

(2π)4

−iηµν
k2 − iε

−ipµn
−pn ·k − iε

ūσ(~pn)a(Mα→β)ab ūσ′(~pm)b
−ipνm

pm ·k − iε

=
−ienem(pn ·pm)

(2π)4

∫
d4k

(k2 − iε)(pn ·k + iε)(−pm ·k + iε)

[
ūσ(~pn)a(Mα→β)ab ūσ′(~pm)b

]
,

2Virtual photons are not on-shell, so the condition k2 = 0 is not true anymore. The conditions, k0,
∣∣∣~k∣∣∣ <

Λ� m, imply that terms in ki ·kj = ~ki ·~kj−k0i k0j � m2 are negligible, in particular for i = j, reproducing
the desired result. This form for the propagators can also be derived from the �rst condition alone, since

k2− 2p · k− iε = −
(
k0
)2

+~k2 + 2k0E− 2~p ·~k− iε = 0 yields the solutions k0 = E

(
1±

√
1− 2~v·

~k
E
− iε

)
,

neglecting
∣∣∣~k∣∣∣2 /E2. Retaining only the �rst terms in the series expansion of the square root, we have the

approximate solutions ~v · ~k + iε and 2E. Since
∣∣k0∣∣ � m ≤ E, the last solution is discarded. So, what

only remains in the denominator is ~p · ~k − Ek0 − iε = p · k − iε.
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and we arrive at the correction

−ienem(pn ·pm)

(2π)4

∫
d4k

(k2 − iε) (pn ·k + iε) (−pm ·k + iε)
.

Making use of the factors ξn, we can write these two corrections in a single formula,

−ienem(pm ·pn)

(2π)4

[∫
d4k

(k2 − iε)(−ξnpn ·k + iε)(ξmpm ·k + iε)

]
=
−ienemξnξm(pm ·pn)

(2π)4

[∫
d4k

(k2 − iε)(−pn ·k + iξnε) (pm ·k + iξmε)

]
.

To compute the integral we �rst integrate the time component, k0, which we write as

∫
dk0d~k(∣∣∣~k∣∣∣2 − (k0)2 − iε

)(
Enk0 − ~pn ·~k + iξnε

)(
~pm ·~k − Emk0 + iξmε

).

It is important to note that the integration in k0 runs from −Λ to Λ. The module of ~k is

subject to a similar constraint. Since

(
k0 −

∣∣∣~k∣∣∣+ iε
)(
k0 +

∣∣∣~k∣∣∣− iε) =

((
k0
)2 − ∣∣∣~k∣∣∣2 + iε

)
,

we make an analytic extension to the complex plane in k0, identifying four poles,

k0
1 ≡

∣∣∣~k∣∣∣− iε k0
3 ≡ ~vn ·~k − iξnε

k0
2 ≡ −

∣∣∣~k∣∣∣+ iε k0
4 ≡ ~vm ·~k + iξmε

,

where ~vn ≡ ~pn
En

is the velocity of the particle n on the given frame of reference. It is clear

that |~vn| ≤ 1, with the equality only holding when the fermions are massless. This ensures

that the real part of all poles is caught inside the range ]−Λ,Λ[.

When ξn = −ξm = 1, the imaginary parts obey =
(
k0

1

)
,=
(
k0

3

)
,=
(
k0

4

)
<0, while =

(
k0

2

)
>0.

Therefore, we can simply draw a rectangular integration path with vertices −Λ, Λ, −Λ + iL

and Λ+iL, where L is to be taken to in�nity, enclosing the single pole on the upper semiplane.
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By an elementary calculation in Residue Calculus, we can solve3 the integration in k0,

−
∫

dk0d~k(
k0 −

∣∣∣~k∣∣∣+ iε
)(
k0 +

∣∣∣~k∣∣∣− iε)(Enk0 − ~pn ·~k + iε
)(
~pm ·~k − Emk0 − iε

)
= −

∫
2πid~k

2
(
−
∣∣∣~k∣∣∣+ iε

)(
−
∣∣∣~k∣∣∣En − ~pn ·~k + iε

)(
~pm ·~k + Em

∣∣∣~k∣∣∣− iε)
→
ε→0
−
∫

iπd~k∣∣∣~k∣∣∣3(En + ~pn ·k̂
)(
Em + ~pm ·k̂

) =
~k→−~k

−iπ
EnEm

∫
d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
).

In the last step we rotated ~k (as we are free to do, since it is an unitary transformation), so

that the result mirrors the one in literature (cf. Ref. [1]).

The case of −ξn = ξm = 1 is equivalent to the previous one, but this time the lone pole,

k0
1, is in the lower semiplane. That is the plane we ought to draw our contour on, simply

conjugating our complex vertices of the rectangle. The integral then simpli�es4 to

∫
dk0d~k(

k0 −
∣∣∣~k∣∣∣+ iε

)(
k0 +

∣∣∣~k∣∣∣− iε)(Enk0 − ~pn ·~k − iε
)(
~pm ·~k − Emk0 + iε

)
=

∫
2πid~k

2
(∣∣∣~k∣∣∣− iε)(En ∣∣∣~k∣∣∣− ~pn ·~k − iε)(~pm ·~k − Em ∣∣∣~k∣∣∣+ iε

)
→
ε→0

−iπ
EnEm

∫
d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
),

which equates to the previous result. These two cases, photons connecting an initial and a

�nal leg (ξnξm = −1), simplify the correction to

πenem(pm ·pn)

(2π)4EnEm

∫
d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
).

In the cases where the photon connects either two initial legs or two �nal ones, ξn = ξm,

we get two poles in the upper semiplane and another two in the lower one. We ought to sum

3It is easy to verify that the integration on the path around the upper plane, in the in�nite limit, vanishes.
4In order to preserve the de�nition of the residue dependent on the (positive) orientation of the contour,
this integral, from −Λ to +Λ on the real line, is a�ected by an extra negative sign.
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two residues this time. When ξn = ξm = 1, integrating in the path closing the upper plane

(and enclosing the poles k0
2, k

0
4), the integral is

−
∫

dk0d~k(
k0 −

∣∣∣~k∣∣∣+ iε
)(
k0 +

∣∣∣~k∣∣∣− iε)(Enk0 − ~pn ·~k + iε
)(
~pm ·~k − Emk0 + iε

)
=
−iπ
EnEm

∫ d~k∣∣∣~k∣∣∣3 (1− ~vn ·k̂
)(

1− ~vm ·k̂
)+

∫
2d~k(

~vm ·~k −
∣∣∣~k∣∣∣)(~vm · ~k +

∣∣∣~k∣∣∣) (~vm − ~vn)·~k


=
−iπ
EnEm

∫ d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
)− ∫ 2d~k∣∣∣~k∣∣∣3(1− ~vm · k̂

)(
1 + ~vm · k̂

)
(~vm − ~vn)·k̂


=
−iπ
EnEm

∫ d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
)− ∫ d~k∣∣∣~k∣∣∣3

(
1

1− ~vm ·k̂
+

1

1 + ~vm ·k̂

)
1

(~vm − ~vn)·k̂

 .
Once again, re�ecting k̂ in relation to the origin on the second term gives

−iπ
EnEm

∫ d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
)− ∫ d~k∣∣∣~k∣∣∣3

(
1

1− ~vm ·k̂
− 1

1− ~vm ·k̂

)
1

(~vm − ~vn)·k̂


=
−iπ
EnEm

∫
d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
).

Equivalently, for ξn = ξm =−1, integrating once more on the upper semiplane,

−
∫

dk0d~k(
k0 −

∣∣∣~k∣∣∣+ iε
)(
k0 +

∣∣∣~k∣∣∣− iε)(Enk0 − ~pn ·~k − iε
)(
~pm ·~k − Emk0 − iε

)
=
−iπ
EnEm

∫ d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
)− ∫ 2d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂

)(
1 + ~vn ·k̂

)
(~vm − ~vn)·k̂


=
−iπ
EnEm

∫
d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
),

by the same reasoning as before.
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The integrations in these two other cases are equal to the ones from the previous two. We

can write the correction toMα→β due to a single virtual soft photon linking any two possible

charged external legs as a sum over all such charged external legs,

∑
n,m

−πenemξnξm
(2π)4EnEm

(pn ·pm)

∫
d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
),

where the integral is subject to the constraint
∣∣∣~k∣∣∣ < Λ. Writing the integral in spherical

coordinates makes an integration in the radial component a fairly simple step,

∫
d~k∣∣∣~k∣∣∣3(1− ~vn ·k̂
)(

1− ~vm ·k̂
)= ln

(
Λ

λ

)
B(~vn, ~vm) ,

where we have de�ned

B(~vn, ~vm)≡
∫

dΩ

(1− ~vn ·r̂)(1− ~vm ·r̂)

to be the integral in the spherical surface part. This integral, solved in Section A.1, can be

written as

B(~vn, ~vm) =
4π

(1− ~vn ·~vm)βmn
arctanh(βmn) =

−4πEnEm
(pn · pm)βmn

arctanh(βmn)

with

βmn ≡

√
1− (1− ~v2

n)(1− ~v2
m)

(1− ~vn · ~vm)2 =

√
1− m2

nm
2
m

(pn · pm)2 .

The factor βmn is simply the module of the velocity of one of the particles in the reference

frame of the other, as discussed in Section A.2.

Plugging everything in the correction to Mα→β , written above, we get

∑
n,m

enemξnξm

(2π)2βmn
arctanh(βmn)ln

(
Λ

λ

)
.

Let

A(α→β) ≡ −
∑
n,m

enemξnξm

(2π)2βmn
arctanh(βmn) ,
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so that the correction due to a single soft photon between any two branches is simply

−A(α→β) ln

(
Λ

λ

)
.

We are �nally prepared to derive the correction due to N virtual soft photons that connect

any two charged external legs. In the previous section, it was derived that, in the soft photon

limit, the correction due to N soft photons was just the product of the N individual soft

photon corrections. In this case, when the photon connects two di�erent legs, the stacking of

corrections continues to occur, replacing each pair of polarisations by a photonic propagator.

In the case where the soft photon connects two nodes in the same leg, the diagram can simply

be dealt with by renormalising the mass of the fermion. We conclude that it is still possible

to independently stack one-photon corrections, in the same way it was done in the previous

section.

Accounting for the Feynman rules, we shall divide the result by the symmetry factors: N !

due to the permutations between the N virtual soft photons, and 2N due to the exchange of

both ends of each photon line. The correction for N photons is, then,

1

2NN !

[
−A(α→β) ln

(
Λ

λ

)]N
.

The corrective factor toMα→β should include the corrections not only from exactly N soft

photons, but from any number of them, so an in�nite sum is in order,

∞∑
N=1

1

N !

[
−1

2
A(α→β) ln

(
Λ

λ

)]N
=

(
Λ

λ

)− 1
2
vA(α→β)

,

that is,

Mα→β →Mγv
α→β ≡Mα→β

(
λ

Λ

)1
2
A(α→β)

,

de�ning Mγv
α→β as the transition matrix with the virtual soft photons reincluded. Given that

A(α→β) is a positive exponent (see Section A.3), we can already see, since Λ is a �nite

nonvanishing constant and taking λ → 0 implies Mγv
α→β → 0, that Mα→β has no infrared
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divergences.

Let us just calculate the transition rate, as it will be useful later. By Fermi's Golden Rule,

we have the di�erential transition [11],

dΓγvα→β =

(∏
i

1

2E~pi

)
|Mα→β|2

(
λ

Λ

)A(α→β)

(2π)4δ

∑
i

pi −
∑
f

pf

 = dΓα→β

(
λ

Λ

)A(α→β)

,

which, after integrating on the �nal momenta, yields

Γγvα→β = Γα→β

(
λ

Λ

)A(α→β)

.

1.2.1. Comment on the approximation

The condition that both
∣∣k0
∣∣ and ∣∣∣~k∣∣∣ are below a certain Λ�m is not very satisfying.

The cylindrical integration domain on 4-momentum space might seem a bit arbitrary. An

alternative condition is to consider an integration in a 3-ball, with the condition that
∣∣k0
∣∣2 +∣∣∣~k∣∣∣2≤Λ2, where a Wick rotation is supposed to have been executed. The integrand decays

quickly on k0 so that the validity of it should hold [2]. Not only would we be introducing

a more symmetric supposition, but it would also resemble the upper bound regularisation.

From these assumptions, a regularisation scheme, like Pauli-Villars, which allows for the

interpretation of Λ as a mass of a �ctitious massive photon (taking Λ ∼ m would introduce

an upper cuto� similar to that in Ref. [2]), should not be a great step to take. However, I do

not wish to carry it out here. Instead, I will argue that the di�erence between the cylindrical

integration and the spherical one is negligible.

In fact, the di�erence can be written as an integration in k0 in the regions limited by√
Λ2 − ~k2≤ k0≤Λ, and another for ~k in the full 2-sphere. This, remember, already with a
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Wick rotation,

∫∫ Λ

√
Λ2−~k2

dk0d~k(∣∣∣~k∣∣∣2 + (k0)2

)(
k0 + ~vn ·~k

)(
k0 + ~vm ·~k

)
≤ 1

Λ2

∫ (
Λ−

√
Λ2 − ~k2

)
d~k(√

Λ2 − ~k2 + ~vn ·~k
)(√

Λ2 − ~k2 + ~vm ·~k
)∼ C

Λ3
.

So the corrections induced between the two integration domains are, at best, of order

Λ−3, much lower than the logarithmic leading order. Thus, they should not alter the result

signi�cantly.

Summary

De�nitions:

• Virtual soft photon (of energy Λ): A virtual photon with
∣∣k0
∣∣ , ∣∣∣~k∣∣∣ below an arbitrary

value Λ, much smaller than the rest mass of any external charged particle. Note that

the value of Λ is frame-dependent, therefore, a conversion to another frame requires the

appropriate Lorentz factor. This assumption is again mirrored in Ref. [8].

Conclusions:

• The IR divergence due to virtual soft photons travelling between two charged external

legs cancels out when the full `sea of virtual photons' is taken into account.

• The de�nition can be replaced by a more symmetrical one without introducing relevant

corrections, bridging this derivation with some of the modern ones, like in Ref. [2].
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1.3. Real soft photons

We, �nally, want to readd the real soft photons that are emitted by our external charged

particles. Such photons, albeit hitting our detectors, are of such low energy that do not

make them click. Let us assume a `hard' energy value, E, such that particles with energy

lower than it cannot be detected. Since all the charged particles in our α → β process are

detectable, E is lower than their rest masses, being in line with the assumption made in the

�rst section.

There is another restriction we ought to keep in mind: conservation of energy is assumed in

the process α→ β, but we are now adding a term
∑

f

∣∣∣~kf ∣∣∣−∑i

∣∣∣~ki∣∣∣ to the �nal energy due to

the emission and absorption of soft photons. In order to rescue energy conservation, this new

term needs to be within the uncertainty energy of the detector, ET , that is
∑

f

∣∣∣~kf ∣∣∣−∑i

∣∣∣~ki∣∣∣ ≤
ET .5

With all this in mind, we just square the module of Eq. (1.2),

|Mα→β|2
N∏
j=1

∣∣∣∣∣∣
∑
λj

R∑
n=1

(
ξnenp

µj
n

pn ·kj

)
ε
λj∗
µj

(
~kj

)∣∣∣∣∣∣
2
P∏
l=1

∑
λl

R∑
m=1

(
−ξmempµlm
pm ·kl

)
ελlµl

(
~kl

)2

= |Mα→β|2
∏
j

(∑
n

ξnenp
µj
n

pn ·kj

)(∑
n′

ξn′en′p
νj
n′

pn′ ·kj

)∑
λj

ε
λj∗
µj

(
~kj

)∑
λ′j

ε
λ′j
νj

(
~kj

) ·
·
∏
l

(∑
m

−ξmempµlm
pm ·kl

)(∑
m′

−ξm′em′pνlm′
pm′ ·kl

)∑
λl

ελl∗µl

(
~kl

)∑
λ′l

ε
λ′l
νl

(
~kl

)
→|Mα→β|2

∏
j

∑
n,n′

ξnenξn′en′(pn ·pn′)
(pn ·kj)(pn′ ·kj)

∏
l

∑
m,m′

ξmemξm′em′(pm ·pm′)
(pm ·kl)(pm′ ·kl)

 ,
where the polarisations were simpli�ed as

∑
λj

ε
λj∗
µj

(
~kj

)∑
λ′j

ε
λ′j
νj

(
~kj

)
=
∑
λj

ε
λj∗
µj

(
~kj

)
ε
λj
νj

(
~kj

)
= ηµjνj .

5Despite the two restrictions over the energy of the real soft photons, they have a common origin. A more
precise detector lowers the threshold to detect a soft photon, E, leading to the detection of more soft
photons and lowering the value of ET .
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Also, since the corrections for absorbed or emitted soft photons are equal, we can update

our j index to include all real soft photons, irrespectively of if they are incomming or outgoing

in the process. We might also consider that we are adding the real soft photons to the matrix,

Mγv
α→β , with the virtual photons already present. In that light, we have the correction

∣∣∣Mγv
α→β

∣∣∣2 → ∣∣∣Mγv
α→β

∣∣∣2∏
j

[∑
n,m

ξnξmenem(pn ·pm)

(pn ·kj)(pm ·kj)

]
.

Once again, invoking Fermi's Golden Rule, we have that the di�erential transition without

added real soft photons [11],

dΓγvα→β =

(∏
i

1

2E~pi

)∏
f

d3 ~pf

2(2π)3E ~pf

∣∣∣Mγv
α→β

∣∣∣2(2π)4δ

∑
i

pi −
∑
f

pf

 ,

will now be

dΓγrα→β =

(∏
i

1

2E~pi

)∏
f

d3 ~pf

2(2π)3E ~pf

∏
j

d3 ~kj

2(2π)3
∣∣∣~kj∣∣∣

(2π)4δ

∑
i

pi −
∑
f

pf −
∑
j

kj

×
×
∣∣∣Mγv

α→β

∣∣∣2∏
j

[∑
n,m

ξnξmenem(pn ·pm)

(pn ·kj)(pm ·kj)

]

= dΓγvα→β

∏
j

 d3 ~kj

(2π)32
∣∣∣~kj∣∣∣

∑
n,m

ξnξmenem (pn ·pm)

(pn ·kj) (pm ·kj)

 ,
noting that δ

(∑
i pi −

∑
f pf −

∑
j kj

)
≈ δ

(∑
i pi −

∑
f pf

)
. Given our state of ignorance

about the momenta of the absorbed soft photons, the integration is extended to such particles

and not only to the �nal ones, like it is usually done in Fermi's Golden Rule.
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Integrating over the �nal momenta,

Γγrα→β = Γγvα→β

∏
j

∑
n,m

ξnξmenem(pn ·pm)

∫
d3 ~kj

(2π)32
∣∣∣~kj∣∣∣(pn ·kj)(pm ·kj)


= Γγvα→β

∏
j

∑
n,m

ξnξmenem(pn ·pm)

(2π)32EnEm

∫
d3 ~kj∣∣∣~kj∣∣∣3(1− ~vn ·k̂j
)(

1− ~vm ·k̂j
)
 ,

where ~vn = ~pn
En

are, again, the velocities of the particles in a given reference frame. This

integral has now some subtleties that the equivalent in the previous section had not. The

restriction on the module of the momentum is still there, now with the maximum value

of E, but now it also ought to respect the condition
∑

s

∣∣∣~ks∣∣∣ ≤ ET . We shall write this last

restriction as a Heaviside step function, Θ
(
ET −

∑
s

∣∣∣~ks∣∣∣),6 so that, making use of the Fourier

transform [12],

Θ(x) =
1

2πi
lim
ε→0+

∫ ∞
−∞

eixt

t− iε
dt

we get∏
j

∫
λ≤| ~kj|≤E

d3 ~kj∣∣∣~kj∣∣∣3
1(

1− ~vn ·k̂j
)(

1− ~vm ·k̂j
)
Θ

(
ET −

∑
s

∣∣∣~ks∣∣∣)

=

∏
j

∫
λ≤| ~kj|≤E

d3 ~kj∣∣∣~kj∣∣∣3
1(

1− ~vn ·k̂j
)(

1− ~vm ·k̂j
)
 1

2πi
lim
ε→0+

∫ ∞
−∞

dt
eit(ET−

∑
s|~ks|)

t− iε

=

∏
j

∫
λ≤| ~kj|≤E

d3 ~kj∣∣∣~kj∣∣∣3
1(

1− ~vn ·k̂j
)(

1− ~vm ·k̂j
)
 1

2πi
lim
ε→0+

∫ ∞
−∞

dt
eitET

∏
j e
−it|~kj|

t− iε

=
1

2πi
lim
ε→0+

∫ ∞
−∞

dt
eitET

t− iε
∏
j

∫
λ≤| ~kj|≤E

d3 ~kj∣∣∣~kj∣∣∣3
e−it|~kj|(

1− ~vn ·k̂j
)(

1− ~vm ·k̂j
)
 .

6Θ (x) =

{
1 x ≥ 0

0 x < 0
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To solve the integrals on the momenta, we use spherical coordinates once again,

∫
λ≤| ~kj|≤E

d3 ~kj∣∣∣~kj∣∣∣3
e−it|~kj|(

1− ~vn ·k̂j
)(

1− ~vm ·k̂j
)

=

∫ E

λ

r2dr

r3
e−itr

∫
dΩ(

1− ~vn ·k̂j
)(

1− ~vm ·k̂j
)

=

[∫ E

λ

dr

r
e−itr

]
B(~vn, ~vm)

=

[ ∞∑
n=1

∫ E

λ
dr

(−it)n

n!
rn−1 +

∫ E

λ

dr

r

]
B(~vn, ~vm)

=

[ ∞∑
n=1

(−it)n

n!n
(En − λn) + ln

(
E

λ

)]
B(~vn, ~vm) .

This does not depend on the index j, so, for N soft photons,

∏
j

([ ∞∑
n=1

(−it)n

n!n
(En − λn) + ln

(
E

λ

)]
B(~vn, ~vm)

)

=
1

N !

[ ∞∑
n=1

(−it)n

n!n
(En − λn) + ln

(
E

λ

)]N
BN (~vn, ~vm)

=
1

N !

N∑
j=0

N
j

[ ∞∑
n=1

(−it)n

n!n
(En − λn)

]j[
ln

(
E

λ

)]N−j
BN (~vn, ~vm) ,

where the division by N ! is needed since soft photons are indistinguishable and we want to

avoid overcounting them. The integral in t, then takes the form of a sum of terms like

Cr lim
ε→0+

∫ ∞
−∞

dt
eitET

t− iε
tr,

where Cr are constants containing factors such as powers of ln
(
E
λ

)
. This can be solved

through Calculus of Residues, with the respective analytic extension to the complex plane.

The integrand has a pole in iε, corresponding to the residue e−εET (iε)r. The integration
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over the upper semiplane vanishes on the in�nite limit, so the integral is simply

∫ ∞
−∞

dt
eitET

t− iε
tr = 2πie−εET (iε)r →

ε→0
0,

for r ≥ 1. In the case where r = 0, the integral becomes

1

2πi
lim
ε→0

∫ ∞
−∞

dt
eitET

t− iε

[
ln

(
E

λ

)]N
=

[
ln

(
E

λ

)]N
Θ(ET ) .

Of course, Θ(ET ) = 17 and, recalling the de�nition,

A(α→β) ≡
∑
n,m

ξnξmenem(pn ·pm)

(2π)32EnEm
B(~vn, ~vm) = −

∑
n,m

enemξnξm

(2π)2βmn
arctanh(βmn) ,

allows us to write the transition rate, with N real soft photons included, in a neater way as

Γγrα→β = Γγvα→β
A(α→β)N

N !

[
ln

(
E

λ

)]N
.

Again, given the undetectability of the soft photons, a process can emit or absorb 1, 2, 6,

42, 756... soft photons and we would be unable to notice it. The �nal transition rate ought

to include a sum over all possibilities of emission and absorption,

Γγrα→β = Γγvα→β

∞∑
N=0

A(α→β)N

N !

[
ln

(
E

λ

)]N
= Γγvα→β

(
E

λ

)A(α→β)

= Γγvα→β

(
E

Λ

)A(α→β)(Λ

λ

)A(α→β)

= Γα→β

(
E

Λ

)A(α→β)

. (1.3)

Thus, we have obtained the transition rate of a process α→β, Γγrα→β , where α and β are

hard particles, in the presence of soft photons, virtual and real, that is, with all the photons

7ET = 0 would be a perfect detector with no photon being able to escape it. We will just consider we are
always in the case were ET > 0. This constant drops now from the calculations.
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reintroduced. All terms in the right hand side of the expression (1.3) are �nite, therefore

so is Γγrα→β : the infrared divergences of virtual and real soft photons cancel out in the full

transition rate. Of course, Γγrα→β cannot depend on Λ, hence this dependence is buried in

Γα→β by the de�nition of the extracted virtual soft photons.

Finally, as we have computed the transition rate, we can also compute the probability of

emission of N soft photons8 with energies comprised in the interval [E−, E+]. We proceed to

ignore the corrections from virtual soft photons, including them instead in a constant K that

will be dealt with by normalisation. Since the total energy of the N emitted soft photons is

still lower than ET , we can just reuse the results obtained previously to get the probability,

P(N ;E−≤E≤E+) = K
A(α→β)N

N !

[
ln

(
E+

E−

)]N
=
A(α→β)N

N !

[
ln

(
E+

E−

)]N(E−
E+

)A(α→β)

,

with
∑∞

N=0 P(N ;E−≤E≤E+) = 1. Writing µ ≡ A(α→β)ln
(
E+

E−

)
, we can easily see that

the probability,

P(N ;µ) =
µN

N !
e−µ,

follows a Poisson distribution, with µ as the mean value of emitted photons. Fixing E+

(possibly as E) and making E− = λ→0, we see that µ grows to in�nity and the probability

of emitting a �nite number of soft photons vanishes [10]. This is the so called soft photon

cloud that a charged particle emits. The same results allow to further compute the mean

energy each of the N photons emits, integrating in
∣∣∣~kj∣∣∣d3 ~kj , instead. The integration in the

energies gives

∫ E+

E−

dre−itr = (E+ − E−) +
∞∑
n=1

(−it)n

(n+ 1)!

(
En+1

+ − En+1
−
)
,

with all the terms with n higher than 1, as before, vanishing, when integrating in
∫∞
−∞

dt
t−iε

8Since, after normalisation, this probability will only depend on the integrations on the momenta of the real

photons, as long as we assume perturbative regime (ET � m) and low-energy photons (
∣∣∣~ki∣∣∣� m), it still

su�ces to describe the probability of emission of low-energy, yet detectable, photons.
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and taking the limit ε→ 0. This yields A(α→β)N

N ! (E+ − E−)N
(
E−
E+

)A(α→β)
, when multiplying

it by the normalisation. Summing over N gives the mean energy each emitted soft photon

carries, eA(α→β)(E−λ)
(
λ
E

)A(α→β) → 0 as λ→ 0. This is not surprising, since any other �nite

value would mean an in�nite amount of emitted energy due to the emission of an in�nite

number of soft photons.

Summary

De�nitions:

• Real soft photon (of energy E): A real photon with
∣∣∣~k∣∣∣ below the detection energy E.

Such energy is assumed to be much smaller than the rest mass of any external charged

particle.

Conclusions:

• The IR divergence due to real soft photons emitted or absorbed by charged external

legs disappears since the transition rate can be written as a �nite quantity, depending

on the capabilities of the external detectors.

• The emission of low-energy photons follows a Poisson distribution, which was already

expected from the semiclassical results, with the mean value of emission equating

A(α→β)ln
(
E+

E−

)
. We will see in Section 2.2 that, for nonzero E−, this factor is ex-

tremely small, so the emission of these photons is incredibly rare. The energy carried

by each soft photon, in the limit λ→0, vanishes.
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2. Interaction Free Measurements

2.1. Introduction

Avshalom C. Elitzur and Lev Vaidman proposed, in 1993, a method to obtain information

about the location of an object without interacting with it, which they called an Interaction

Free Measurement (IFM) [5].

(a) (b)

Figure 2.1.: Interferometer without (a) and with (b) a bomb, in z, blocking the lower path.

The method, in its simpler form, consists of a Mach-Zehnder interferometer with a bomb

placed on one of its arms (vide Figure 2.1). It is assumed that an incoming particle on the

boobytrapped path will always interact with and trigger the bomb.1 This interaction is local

and the arms of the interferometer are so far apart that particles in the other path would never

interact with the bomb. Whereas without it, every particle thrown into the interferometer

would be detected in a single detector, D1, with the bomb, both detectors share a quarter

1If it did not, the probabilities would be slightly changed, but the general argument would be maintained,
given that this case would count as a no detection or explosion.
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of probability of detection, with a further half being the probability of triggering the bomb.

The conclusion of this experiment is that, whenever the second detector, D2, ticks, there is

an object blocking one of the paths of the interferometer.

Note that the experiment can be executed with any opaque object, but its usefulness derives

from the fact that it allows us to infer the existence of unstable states without interacting with

them. Such states are modelled by the bomb and its propensity to explode once it interacts.

More complex con�gurations can improve the rate of detection of the bomb without exploding

it, assuming it is placed inside a cavity, possibly up to a theoretical limit of 100% [13, 14, 15],

but the simpler scheme is enough to make an analysis.

The proposed nomenclature raised some opposition and discussion about the possibility

of having an in�nitely sensitive bomb [6, 16]. Indeed, an in�nitely sensitive bomb would be

physically unreasonable: quantum �uctuations or, based on the considerations of Chapter 1,

soft photon that reaches the bomb would be able to detonate it, and they should be in�nite

in number, would do the same.2. This should not be a cause for concern, though: not only

the real usefulness of the Elitzur and Vaidman's setup is not on measuring the position of

nonexistent objects, but also because the nonexistence of an in�nitely sensitive bomb does

not imply a transference of momentum from the incoming object to the bomb, when D2

ticks. This is recognised in Ref. [6]. The possible transfer of momentum, they argue, would

occur due to the wave function collapse, but this does not invalidate or support the claim

that there is no interaction before that moment. The best we shall be able to do, even with

QFT, is to say that there is a superposition of explosion and no explosion of the bomb before

the collapse.

2Note that if the detonation is, in any way, detectable, those soft photons would not be soft by the de�nition
given, but merely low-energy. This should not alter the argument, but I �nd important to highlight this
caveat in order to maintain semantic consistency.
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2.1.1. Quantum �eld theory description

Given the proposed sensibility of the bomb, it should be considered a quantum mechanical

object. Let us make the mathematical description in terms of quantum �eld theory. The

standard QM derivation is available in Ref. [5]. Instead of considering the evolution of a

given external state, we will consider the evolution of the �eld itself, in the presence of an

interferometer, and consider the probability of taking a particular path. Without a bomb,

let us have the �elds

φ(x) =
∑
~p

[
a(~p)eip·x + a†(~p)e−ip·x

]
, π(x) =

∑
~p

(
−iE~p

)[
a(~p)eip·x − a†(~p)e−ip·x

]
,

where x is a point in the Minkowski space. Now consider a mirror placed on z, described as

�z[φ(x)] =


φ(x) ~z 6= ~x

V †φ(x)V ~z = ~x

,

with V = exp
(
iπ
2

∑
~p a
†(R·~p)a(~p)

)
and R = 1−2 (n̂⊗n̂).3 Explicitly writing the transforma-

tions of the �eld and its re�ected counterpart, φ′(R·x), (see Ref. [18]), in the same reference

frame of φ(x),

V †φ(x)V = i
∑
~p

a(R·~p)eip·x − a†(R·~p)e−ip·x ≡ φ′(R·x)

V †φ′(R·x)V = −
∑
~p

a(~p)eip·x + a†(~p)e−ip·x = −φ(x)

Note that, fortunately,4

[
V †φ(x)V, V †π(y)V

]
= V †[φ(x), π(y)]V = iδ(x− y) .

3This Householder matrix simply indicates the action of the mirror on the momenta [17]. It has the property
R† = R = R−1. Its extension to Minskowski space is merely R, with the time component kept undis-
turbed. The global phase e±iπ/2 = ±i arises from the angle π/2 between the incoming and outgoing paths
[18]. Ultimately, it is this phase shift that leads to the interference, independently of the description used.

4Further note that the momentum of the �eld φ′(R·x) is the re�ected momentum of φ(x), whilst the energy
remains unchanged (cf. Section B.1).
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The mirror is not more than a local interaction, but since we want to compute the proba-

bilities of a path going through it, we can just introduce it as a function of the �eld. We can

de�ne the beamsplitter in a similar fashion,

�z[φ(x)] =


φ(x) ~z 6= ~x

U †φ(x)U ~z = ~x

,

with U = exp
(
iπ
4

∑
~p a
†(R·~p)a(~p)

)
. Its action on the �eld can be explicitly written as

U †φ(x)U =
1√
2

∑
~p

{
a(~p)eip·x + a†(~p)e−ip·x

}
+

i√
2

∑
~p

{
a(R·~p)eip·x − a†(R·~p)e−ip·x

}
.

This corresponds to a split of the �eld in two superimposed components 1√
2
φ (x) and 1√

2
φ′(R·x).

The momentum �eld splits in a similar way, in components 1√
2
π(x) and 1√

2
π′(R·x). The fol-

lowing commutating relations hold:

[φ(x), π(y)] =
[
φ′(x), π′(y)

]
= iδ(x− y) ,[

φ(x), π′(y)
]

=
[
φ′(x), π(y)

]
= iδ(x− y) .

If the �elds are well localised, we shall consider this last condition null, thus well separable

�elds commute.

De�ning the vertices of a square in Minkowski space, L11, L12, L21 and L22, we want to

compute the probability amplitude of propagating a �eld from a point a to the beamsplitter

in L11, then propagate 1√
2
φ(x) to L12 and 1√

2
φ′(R·x) to L21. In those two points, two mirrors

re�ect the �elds. The �elds are �nally propagated to the last beamsplitter in L22, where they

are recombined and propagated to a point b. The evolution inside the interferometer goes as

φ(L11)
�L11→ 1√

2

(
φ(L11) + φ′(R · L11)

)�L12→
�L21

1√
2

(
φ′(R·L12)− φ(L21)

)�L22→ −φ(L22) ,

with the full path corresponding to a probability amplitude, written in terms of two-point
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correlation function, G(·, ·),

G(a, L11)G(L11, L12)G(L11, L12)G(L12, L22)G(L12, L22)G(L22, b) .

We have written the �eld as if it were scalar, but since the transformation acts only on the

ladder operators, we can use a photon �eld instead, interacting with a fermionic bomb.5 Let

us assume the interaction happens in the path between L11 and L12,6 then

G(L11, L12)→ G(L11, z − ε)〈Ω|A1
µ(z − ε)A2

ν(z + ε)ψ̄(y)ψ(x)|Ω〉G(z + ε, L12) ,

for an interaction range of radius |~ε| (with ε = (0,~ε)).7 We can now apply perturbation

theory to compute the 〈Ω| · |Ω〉 term, but there is no need to do it explicitly as it will

eventually correspond to a scattering matrix and the claim that the incoming state is lost

can be retrieved. Indeed, as long as the theories considered have a �nite e�ective interaction

range, but the force carriers have in�nite range, such as QED, we can always build the

interferometer such that there is no interaction between the superimposed �eld and the bomb.

In fact, we get the exact same result as in QM: before collapse, we have a superposition of

interaction and detection in D2 (and another in D1 that we do not consider).

Finally note that, although the point is to localise an object by interacting with it, the

experiment is often linked with the which-path problem [18]. Since the interference is obvi-

ously destroyed by the bomb, this problem is not relevant (see Ref. [19]). In fact, considering

perturbations of the �eld with su�ciently small dispersion, allowing for the identi�cation of

both superimposed �elds with each perturbation, as long as we can indicate which path was

obstructed by the bomb, we can state which �eld gave the detection in D2.

5The unitary transformations should be amended to include transformations of the external factors. A
detailed derivation is presented in Section B.2.

6Any other of the four internal paths could have been chosen. It is important to require the interaction to be
unique. We are assuming only one of the superimposed �elds interacts with the bomb. This can be done
with very localised perturbations of the �elds and assuming that long-range correlations are negligible.

7For QED, |~ε| ∼ 1/m, where m is the mass of the lightest fermion [2].
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2.2. Pollution by low-energy photons

Considering, for instance, the bomb as a fermion, we can examine the possibility of altering

the standard probabilities of the setup due to the emission of low-energy photons.

On the assumptions of Chapter 1, we have a Poisson probability of emission of a low-energy

photon with energy comprised between E− and E+, P(N ;µ) = µN

N ! e
−µ, with the mean value

µ given by A(f→f ′)ln
(
E+

E−

)
. A(f→f ′) is the Weinberg's factor, which depends only on

the charges and velocities of the particles in the process: in this case, a fermion possibly

transforming into another one. One of the easiest ways to model the bomb is to consider a

scattering of a photon by an electron. There is no privileged direction of integration, so the

emitted photons have equal probability of leaving in any direction.

We are focusing solely on detectable photons, therefore, we can just take E− to be our

detection threshold. If it is nonvanishing, µ is �nite. In fact, µ grows very slowly, since it is

logarithmic in E− and, even though A(f → f ′) diverges for β → 1, we have

A
(
f→f ′

)
=

2e2
f

(2π)2

[
1

β
arctanh(β)− 1

]
≤

2e2
f

β
arctanh(β) ≈ 10e2

f ,

for a velocity at 99.99% the speed of light. In these conditions, the number of emitted

detectable photons is so low that it is very unlikely that one will be emitted in the direction

of the incoming photon.

Only for the detection limit, E−→0, which is physically di�cult to justify, we would get,

as in the case of soft photons, a divergent µ and, therefore, a cloud of detectable photons, in

particular, with a beam going in the direction of the splitter. So, when decreasing the detec-

tion threshold to extremely low values, the detectors would tick, even after an interaction.

Hence, knowing how low the detection energy would have to be, allows us to conclude that

the predictions of Elitzur and Vaidman are safe from pollution by these photons.
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Conclusions

Fields can be written as superpositions, and well localised perturbations can be treated as

separate and independent �elds, as long as long-range interactions are negligible. This is the

case of QED. In fact, for this type of theories, the Elitzur-Vaidman results for IFM can be

derived in terms of QFT. Thus, the scattering and �nite interaction ranges imposed ad hoc

in a QM description arise naturally in this formalism as a Scattering Matrix and interaction

ranges that depend on the normalisation parameters.

From the discussion on the Weinberg's Soft Photon Theorem, a Poisson probability for

low-energy photons can be derived. The mean value of the number of emitted photons,

A(α→β)ln
(
E+

E−

)
, depends on Weinberg's A(α→β) factor. This factor was computed in the

case of photon-electron scattering. Despite divergent in the limit when the relative velocity of

the incomming and outgoing electron is the speed of light, its value is, for typical velocities,

very low. For example, for 99.99% the speed of light, this factor is lower than ten times the

square of the electron charge. Only when the emitted photons are allowed to take arbitrarily

low energies, the mean value grows to in�nity and the 4-momenta of the emitted photons

covers the whole 4-momentum space. In other words, there is no sea of low-energy photons

if a sensible lower limit for the energies of detection is imposed. In this case, the emission

of these photons can be safely ignored. In particular, the IFM probabilities only acquire a

neglible correction.
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A. Appendix to Chapter 1

A.1. Solution of the integral of Section 1.2

We want to solve ∫
d3~r

|~r|3(1− ~a·r̂)
(

1−~b·r̂
) ,

where ~a, ~b are two constant vectors satisfying |~a| ,
∣∣∣~b∣∣∣ ≤ 1.

The obvious �rst step is to rewrite the integral in spherical coordinates. The integration

on the radius is quite straightforward,

ln

(
Λ

λ

)∫
dΩ

(1− ~a·r̂)
(

1−~b·r̂
) .

The frame of reference will be oriented in such a way that ~a is aligned with the axis

Oz and the projection of ~b in the plane Oxy is aligned with the axis Ox. Writing r̂ =

sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ+ cos (θ)̂z, we have ~a·r̂ = a cos(θ) and, de�ning θ′ as the angle

between ~a and ~b, we further have ~b·r̂ = b cos(θ′) cos(θ) + b sin(θ′) sin(θ) cos(φ). Rewriting the

integral in the spherical surface in this fashion corresponds to

∫
sin(θ)dθdφ

(1− a cos(θ))(1− b cos(θ) cos(θ′)− b sin(θ) sin(θ′) cos(φ))
.

The integral in φ is of the form

∫ 2π

0

dφ

(w − u cos(φ))
,
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with w = 1 − b cos(θ) cos(θ′) and u = b sin(θ) sin(θ′). These constants satisfy the condition

w ≥ u.1 Since the integrand is even, we can reduce it to

∫ π/2

−π/2

2dφ

(w + u sin(φ))
.

Given that w2 ≥ u2, the inde�nite integral has the solution (2.551-3 of Ref. [20])

4√
w2 − u2

arctan

w tan
(
φ
2

)
+ u

√
w2 − u2

.
Since there are no divergences in the interval ]−π/2, π/2[, after a few simpli�cations, we get

2π√
w2−u2 . Writing the terms under the square root as,

w2 − u2

=
(
1− b cos(θ) cos

(
θ′
))2 − (b sin(θ) sin

(
θ′
))2

= 1− 2b cos(θ) cos
(
θ′
)

+ b2 cos2(θ) cos2
(
θ′
)
− b2

(
1− cos2(θ)

)
sin2

(
θ′
)

= 1− b2 sin2
(
θ′
)
− 2b cos(θ) cos

(
θ′
)

+ b2 cos2(θ)

=A+B cos(θ) + C cos2(θ),

where we have de�ned

A = 1− b2 sin2
(
θ′
)
,

B = −2b cos
(
θ′
)
,

C = b2,

1It su�ces to note w − u = 1− b cos(θ) cos(θ′)− b sin(θ) sin(θ′) = 1− b cos(θ − θ′) ≥ 0.
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and so, the last integral to solve takes the form

∫ π

0

2π sin(θ)dθ

(1− a cos(θ))
√
A+B cos(θ) + C cos2(θ)

=

∫ π
2

−π
2

2π cos(θ)dθ

(1 + a sin(θ))
√
A−B sin(θ) + C sin2(θ)

=

∫ 1

−1

2πdx

(1 + ax)
√
A−Bx+ Cx2

.

Changing the variable to y = ax+ 1,

2π

a

∫ 1+a

1−a

dy

y
√
A− B

a (y − 1) + C
a2

(y − 1)2

= 2π

∫ 1+a

1−a

dy

y
√

(Aa2 +Ba+ C)− (Ba+ 2C)y + Cy2

=
2π√

Aa2 +Ba+ C

∫ 1+a

1−a

dy

y
√

1− Ba+2C
Aa2+Ba+C

y + C
Aa2+Ba+C

y2
.

Substituting back the A, B, C constants, using

Aa2 +Ba+ C =
(
1− b2 sin2

(
θ′
))
a2 − 2ab cos

(
θ′
)

+ b2

= a2 − a2b2 + a2b2 cos2
(
θ′
)
− 2ab cos

(
θ′
)

+ b2

= a2
(
1− b2

)
−
(
1− b2

)
+ 1− 2

(
~a·~b
)

+
(
~a·~b
)2

=
(

1− ~a·~b
)2
−
(
1− a2

)(
1− b2

)
=
(

1− ~a·~b
)2
β2,

and de�ning

β =

√√√√√√1−
(1− ~a2)

(
1−~b2

)
(

1− ~a·~b
)2 ,
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we can write the integral as

2π(
1− ~a·~b

)
β

∫ 1+a

1−a

dy

y
√

1− 2b2−2ab cos (θ′)

(1−~a·~b)
2
β2

y + b2

(1−~a·~b)
2
β2
y2

=
2π(

1− ~a·~b
)
β

∫ 1+a

1−a

dy

y

√
1− 2 b2−~a·~b

(1−~a·~b)
2
β2
y + b2

(1−~a·~b)
2
β2
y2

.

The inde�nite integral is (2.266 of Ref. [20])

∫
dy

y

√
1− 2 b2−~a·~b

(1−~a·~b)
2
β2
y + b2

(1−~a·~b)
2
β2
y2

= ln(y)− ln

2− 2
b2 − ~a·~b(

1− ~a·~b
)2
β2

y + 2

√√√√√√1−
2
(
b2 − ~a·~b

)
y − b2y2(

1− ~a·~b
)2
β2

.
Evaluating it in the limits, it is simply

ln

(
1 + a

1− a

)
− ln


1− b2−~a·~b

(1−~a·~b)
2
β2

(1 + a) +

√
1− 2(b2−~a·~b)(1+a)−b2(1+a)2

(1−~a·~b)
2
β2

1− b2−~a·~b
(1−~a·~b)

2
β2

(1− a) +

√
1− 2(b2−~a·~b)(1−a)−b2(1−a)2

(1−~a·~b)
2
β2

.

The square roots can be simpli�ed to

√√√√√√1−
2
(
b2 − ~a·~b

)
(1± a)− b2(1± a)2(

1− ~a·~b
)2
β2

=
a± ~a·~b(

1− ~a·~b
)
β
,
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since a ≥ ~a ·~b. This is, followed by a series of algebraic steps,

ln

(1 + a

1− a

)1− b2−~a·~b
(1−~a·~b)

2
β2

(1− a) + a−~a·~b
(1−~a·~b)β

1− b2−~a·~b
(1−~a·~b)

2
β2

(1 + a) + a+~a·~b
(1−~a·~b)β




= ln

(1 + a

1− a

)(1− ~a·~b
)2
β2 −

(
b2 − ~a·~b

)
(1− a) +

(
a− ~a·~b

)(
1− ~a·~b

)
β(

1− ~a·~b
)2
β2 −

(
b2 − ~a·~b

)
(1 + a) +

(
a+ ~a·~b

)(
1− ~a·~b

)
β


= ln

(1 + a

1− a

)(1− ~a·~b
)2
−
(
1− a2

)(
1− b2

)
−
(
b2 − ~a·~b

)
(1− a) +

(
a− ~a·~b

)(
1− ~a·~b

)
β(

1− ~a·~b
)2
− (1− a2)(1− b2)−

(
b2 − ~a·~b

)
(1 + a) +

(
a+ ~a·~b

)(
1− ~a·~b

)
β


= ln

(1 + a

1− a

)a2 +
(
~a·~b
)(
~a·~b− a

)
−
(
~a·~b
)
− a2b2 + ab2 +

(
a− ~a·~b

)(
β − β

(
~a·~b
))

a2 +
(
~a·~b
)(
~a·~b+ a

)
−
(
~a·~b
)
− a2b2 − ab2 +

(
a+ ~a·~b

)(
β − β

(
~a·~b
))


= ln

(1 + a

1− a

)a2 − a− a2b2 + ab2 +
(
a− ~a·~b

)(
β + 1− (β + 1)

(
~a·~b
))

a2 + a− a2b2 − ab2 +
(
a+ ~a·~b

)(
β − 1− (β − 1)

(
~a·~b
))


= ln

(1 + a

1− a

)a(1− b2)(a− 1) +
(
a− ~a·~b

)
(β + 1)

(
1− ~a·~b

)
a(1− b2)(a+ 1) +

(
a+ ~a·~b

)
(β − 1)

(
1− ~a·~b

)


= ln

−a(1− b2)(1− a2
)

+ (1 + a)
(
a− ~a·~b

)
(β + 1)

(
1− ~a·~b

)
a(1− b2)(1− a2) + (1− a)

(
a+ ~a·~b

)
(β − 1)

(
1− ~a·~b

)


= ln

−a
(1−b2)(1−a2)

(1−~a·~b)
2 +

(1+a)(a−~a·~b)
(1−~a·~b)

(β + 1)

a (1−b2)(1−a2)

(1−~a·~b)
2 +

(1−a)(a+~a·~b)
(1−~a·~b)

(β − 1)



= ln

a
(
β2 − 1

)
+

(1+a)(a−~a·~b)
(1−~a·~b)

(β + 1)

a(1− β2) +
(1−a)(a+~a·~b)

(1−~a·~b)
(β − 1)


= ln

a(β − 1)
(

1− ~a·~b
)

+ (1 + a)
(
a− ~a·~b

)
a(β + 1)

(
1− ~a·~b

)
− (1− a)

(
a+ ~a·~b

)(1 + β

1− β

)
= ln

aβ
(

1− ~a·~b
)
− ~a·~b+ a2

aβ
(

1− ~a·~b
)
− ~a·~b+ a2

(
1 + β

1− β

) = ln

[
1 + β

1− β

]
.
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We get the �nal result,

∫
d3~r

|~r|3(1− ~a·r̂)
(

1−~b·r̂
) =

2π(
1− ~a·~b

)
β

ln

[
1 + β

1− β

]
ln

(
Λ

λ

)
,

with the de�nition

β ≡

√√√√√√1−
(1− ~a2)

(
1−~b2

)
(

1− ~a·~b
)2 .

It is noteworthy to mention that the result is invariant by interchange of ~a and ~b, as

expected.

Evaluating the extreme values inside the square root, one concludes that, when ~a and ~b

are either parallel or antiparallel,

|a− b|
1− ab

≤ β ≤ a+ b

1 + ab
,

and, in particular, we have that 0 ≤ β ≤ 1, with second equality holding when and only

when at least one of the vectors has module 1. In fact, for such case, β = 1 for every angle

between the two vectors. This will be obvious, physically, when we �nally identify β with

the module of a velocity in natural units.

Finally, taking into account the limiting values of β, we can simply note that the integral

on the spherical surface can be written as

∫
d2Ω

(1− ~a·r̂)
(

1−~b·r̂
) =

4π(
1− ~a·~b

)
β

arctanh(β) ,

leading to the �nal result,

∫
d3~r

|~r|3 (1− ~a·r̂)
(

1−~b·r̂
) =

4π(
1− ~a·~b

)
β

arctanh(β)lnl

(
Λ

λ

)
.
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A.2. Interpretation of βmn

Consider the factor

βmn =

√
1− m2

nm
2
m

(pn ·pm)2 =

√
1− (1− ~v2

n)(1− ~v2
m)

(1− ~vn ·~vm)2 ,

with ~vn ≡ ~pn/En, |~vn| ≤ 1 and pn = (En, ~pn). The momenta of both particles is measured

in the same reference frame. Call it O. Let us assume O is the reference frame where the

particle with label m is at rest. Then

βmn = |~vn| =
|~pn|
En

,

that is, βmn equals the module of the velocity of the particle n measured in the reference

frame O.

Let us now consider that the particles with labels m and n are collinear and measured in

the same reference frame O. Then, βmn can be simpli�ed to

βmn =
|vn − vm|
1− vnvm

.

If we interpret one of the velocities of a particle as the velocity of a reference frame O′, it

becomes clear that βmn is the module of the velocity, obtained through the velocity addition

formula, of the other particle in the frame of reference of the �rst (see Refs. [1, 10]).

Expecting this interpretation to hold in several dimensions, let us check that

βmn =

√(
β
‖
mn

)2
+ (β⊥mn)

2
.

We assume that β‖mn, β⊥mn are the parallel and perpendicular components, respectively,

of the velocity of one particle measured in the reference frame of the other. To ease the

computations, we will just orient O such that the x-axis coincides with the velocity of the
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particle m, and ~vn is on the Oxy plane,

~vm = vmx̂

~vn = vncos(θ)x̂+ vnsin(θ)ŷ.

So
(
β
‖
mn

)2
takes the form

(
β‖mn

)2
=

(
vncos(θ)− vm

1− ~vm ·~vn

)2

.

The perpendicular part is, from the velocity addition formula,

(
β⊥mn

)2
=

(
vn sin(θ)

√
1− v2

m

1− ~vm ·~vn

)2

.

Computing βmn,

βmn =
1

1− ~vm ·~vn

√
(vncos(θ)− vm)2 +

(
vn sin(θ)

√
1− v2

m

)2

=
1

1− ~vm ·~vn

√
v2
n + v2

m − 2vnvmcos(θ)− v2
mv

2
n sin2(θ)

=
1

1− ~vm ·~vn

√
v2
n + v2

m − 2~vn ·~vm +(~vn ·~vm)2 − v2
mv

2
n

=
1

1− ~vm ·~vn

√
(1− ~vm ·~vn)2 − (1− v2

n)(1− v2
m)

=

√
1− (1− ~v2

n)(1− ~v2
m)

1− ~vm ·~vn
.

This is exactly what we want to prove: βmn is the module of the velocity of one particle in

the reference frame of the other. This can be written as

βmn =
∣∣∣~βmn∣∣∣ = |~vm⊕(−~vn)| =

√
1− (1− ~v2

n)(1− ~v2
m)

1− ~vm ·~vn
,

where ⊕ stands for the relativistic sum of velocities. In particular, writing in the frame of

reference of the particle 1, we have ~βmn = ~βm1⊕
(
−~βn1

)
.
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A.3. Positiveness of A(α→β)

We can simplify

A(α→β) = −
∑
n,m

enemξnξm

(2π)2βmn
arctanh(βmn)

to

A(α→β) = −
∑
n,m

ξ′nξ
′
m

βmn
arctanh(βmn) ,

where the ξ′n = enξn
2π satisfy the conservation of charge,

∑
nξ
′
n = 0. Since βmn is the modulus

of a vector ~βmn = ~βm1⊕
(
−~βn1

)
, as we saw in the previous section, we can write A(α→β)

in terms of the rapidity,

~ζmn = β̂mn arctanh
(∣∣∣~βmn∣∣∣) ,

and, thus,

A(α→β) = −
∑
n,m

ξ′nξ
′
m

∣∣∣~ζmn∣∣∣
tanh

∣∣∣~ζmn∣∣∣ .
Through the property of the sum of rapidities, we have,

~ζ1 + ~ζ2 =
~β1⊕~β2∣∣∣~β1⊕~β2

∣∣∣arctanh
(∣∣∣~β1⊕~β2

∣∣∣) ,
so

~ζmn =
~βmn∣∣∣~βmn∣∣∣arctanh

(∣∣∣~βmn∣∣∣)=

~βm1⊕
(
−~βn1

)
∣∣∣~βm1⊕

(
−~βn1

)∣∣∣arctanh
(∣∣∣~βm1⊕

(
−~βn1

)∣∣∣)= ~ζm1 − ~ζn1

and therefore,

A(α→β) = −
∑
n,m

ξ′nξ
′
m

∣∣∣~ζm1 − ~ζn1

∣∣∣
tanh

∣∣∣~ζm1 − ~ζn1

∣∣∣ .
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De�ning f(~x, ~y) = |~x−~y|
tanh|~x−~y| , ~x, ~y ∈ R

n, it then su�ces to show that

∑
n,m

ξ′nξ
′
mf
(
~ζm1, ~ζn1

)
≤ 0.

If f(~x, ~y) + f(~y, ~z) ≥ f(~x, ~z), we have

∑
n,m

ξ′nξ
′
mf(ζ1m, ζ1n)≤

∑
n,m

ξ′nξ
′
m

(
f
(
~ζ1m, ~ζ1k

)
+ f

(
~ζ1n, ~ζ1k

))
=
∑
n

ξ′n
∑
m

ξ′mf
(
~ζ1m, ~ζ1k

)
+
∑
m

ξ′m
∑
n

ξ′nf
(
~ζ1n, ~ζ1k

)
= 0 + 0 = 0,

like we want to prove. We need, then, to prove that inequality. In fact, it su�ces to show

that g(x) ≡ x
tanhx is subaddictive for x ∈ R+

0 , that is, g(x+ y) ≤ g(x) + g(y), and, then, that

g(x) is monotonically increasing in the same interval.

Proving subaddictivity �rst,

g(x+ y) =
x+ y

tanh(x+ y)

= (x+ y)
1 + tanh(x) tanh(y)

tanh(x) + tanh(y)

=

(
x

tanh(x)

)
tanh(x) + tanh2(x) tanh(y)

tanh(x) + tanh(y)
+(x↔ y)

≤ x

tanh(x)
+

y

tanh(y)
= g(x) + g(y)

since

tanh(x) + tanh2(x) tanh(y)

tanh(x) + tanh(y)
≤ 1

tanh2(x) tanh(y) ≤ tanh(y)

tanh(y)

cosh2(x)
≥ 0

which is always true for y ≥ 0.
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That g(x) is monotonically increasing comes from di�erentiating g(x) and noting the signal

remains positive for positive x, since

g′(x) =
1

tanh(x)
− x

cosh2(x)
=

cosh3(x)− x sinh(x)

sinh(x) cosh2(x)

and the numerator,

cosh3(x)− x sinh(x)

≥ cosh(x)
(
1 + sinh2(x)

)
− x sinh(x)

≥ sinh(x)(cosh(x) sinh(x)− x)

≥ sinh(x)(sinh(x)− x)≥ 0,

given that sinh(x) ≥ x. Finally, since |~x− ~z| ≤ |~x− ~y|+ |~y − ~z|, putting everything together,

we have

g(|~x− ~y|) + g(|~x− ~z|) ≥ g(|~x− ~y|+ |~y − ~z|) ≥ g(|~x− ~z|) .
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B. Appendix to Chapter 2

B.1. Energies and momenta of the transformed �elds

From the formula for the 4-momentum of the �eld [2],

Pµ =

∫
T 0µd3x,

we see that the momentum of the re�ected �eld, φ′(x), is given by

P ′i = −
∫
d3x
(
π′(x) ∂iφ

′(x)
)

= −ii
∑
~p,~q

∫
d3x
[
−iE~p

(
a(R·~p)eip·x + a†(R·~p)e−ip·x

)
qii
(
a(R · ~q)eiq·x + a†(R·~q)e−iq·x

)]
=

1

2

∑
~p

pi

(
−a(R·~p)a(−R·~p)e−i2E~pt − a†(R·~p)a†(−R·~p)ei2E~qt

)
+

1

2

∑
~p

pi

(
a†(R·~p) a(R·~p) + a(R·~p)a†(R·~p)

)
=

1

2

∑
~p

pi

(
a†(R·~p)a (R·~p) + a(R·~p)a†(R·~p)

)
=

1

2

∑
~p

Rijpj

(
a†(~p) a(~p) + a(~p)a†(~p)

)
= RijPj ,

that is, the momentum of the re�ected �eld, φ′(x), is the re�ected momentum of φ(x).

As for the energy,

H ′ =
1

2

∫
d3x
(
π′2(x) +

(
∇φ′(x)

)2
+m2φ′2(x)

)
,
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we can compute each term separately,

∫
d3xπ′2(x) =

∑
~p,~q

E~pE~q

∫
d3x
(
a(R·~p)eip·x + a†(R·~p)e−ip·x

)(
a(R·~q)eiq·x + a†(R·~q)e−iq·x

)
=

1

2

∑
~p

E~p

(
a(R·~p)a(−R·~p)e−2iE~pt + a†(R·~p)a†(−R·~p)e2iE~pt

)
+

1

2

∑
~p

E~p

(
a†(R·~p)a(R·~p) + a(R·~p)a†(R·~p)

)
,∫

d3x
(
∇φ′(x)

)2
= −

∑
~p,~q

iipjq
j

∫
d3x
(
a(R·~p)eip·x + a†(R·~p)e−ip·x

)(
a(R·~q)eiq·x + a†(R·~q)e−iq·x

)
=

1

2

∑
~p

(
E~p −

m2

E~p

)(
−a(R·~p)a(−R·~p)e−2iE~pt − a†(R·~p)a†(−R·~p)e2iE~pt

)
+

1

2

∑
~p

(
E~p −

m2

E~p

)(
a†(R·~p)a(R·~p) + a(R·~p)a†(R·~p)

)
,∫

d3xm2φ′2(x) = −m2
∑
~p,~q

∫
d3x
(
a(R·~p)eip·x − a†(R·~p)e−ip·x

)(
a(R·~q)eiq·x − a†(R·~q)e−iq·x

)
=

1

2

∑
~p

m2

E~p

(
−a(R·~p)a(−R·~p)e−2iE~pt − a†(R·~p)a†(−R·~p)e2iE~pt

)
+

1

2

∑
~p

m2

E~p

(
a†(R·~p) a(R·~p) + a(R·~p)a†(R·~p)

)
.

Summing the three terms yields,

H ′ =
1

2

∑
~p

E~p

(
a†(R·~p)a(R·~p) + a(R·~p)a†(R·~p)

)
= H,

that is, the transformation leaves the energy unchanged.
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B.2. Transformations of vector �elds

Like we have done for scalar �elds, we wish to show that the transformations for vector

�elds hold. Since not only the internal indices but the components of nonscalar �elds should

be altered, we ought to generalise the unitary transformations derived in Chapter 2.

With that objective in sight, let V (α) be a unitary operator, parameterised by α, de�ned

as

V (α) = exp

iαRµν∑
~p

∑
λ,λ′

ε∗λµ (R·~p)a†λ(R·~p)ελ′ν (~p)aλ′(~p)

,
where R is the Householder matrix on Minkowski space de�ned in Chapter 2. We want to

consider the following transformation, V †(α)
∑

κ ε
κ
α

(
~k
)
aκ

(
~k
)
V (α) .

To make use of the Baker-Hausdor� Lemma,1 with

A = Rµν
∑
~p

∑
λ,λ′

ε∗λµ (R·~p)a†λ(R·~p)ελ′ν (~p)aλ′(~p) , B =
∑
κ

εκα

(
~k
)
aκ

(
~k
)
,

we need to compute the following commutators,

[A,B] =

Rµν∑
~p

∑
λ,λ′

ε∗λµ (R·~p)a†λ(R·~p)ελ′ν (~p)aλ′(~p),
∑
κ

εκα

(
~k
)
aκ

(
~k
)

=Rµν
∑
~p

∑
λ,λ′,κ

ε∗λµ (R·~p)ελ′ν (~p)εκα

(
~k
)[
a†λ(R·~p), aκ

(
~k
)]
aλ′(~p)

=−Rµν
∑
~p

∑
λ,λ′,κ

ε∗λµ (R·~p)ελ′ν (~p)εκα

(
~k
)
δ
(
R·~p− ~k

)
δλκ aλ′(~p)

=−Rµν
∑
λ,λ′

ελ∗µ

(
~k
)
ελ
′
ν

(
R−1 ·~k

)
ελα

(
~k
)
aλ′
(
R−1 ·~k

)
=−Rµνηµα

∑
λ′

ελ
′
ν

(
R−1 ·~k

)
aλ′
(
R−1 ·~k

)
=−Rνα

∑
κ

εκν

(
R·~k

)
aκ

(
R·~k

)
,

1That is, eiαABe−iαA = B − iα[A,B] + 1
2!

(−iα)2[A, [A,B]] + . . . (cf. Ref. [18]).
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where we used, in the last step, that R = R−1, and

[A,[A,B]] = RναR
µ
ν

∑
κ

εκµ

((
R−1

)2 ·~k)aκ((R−1
)2 ·~k) =

∑
κ

εκα

(
~k
)
aκ

(
~k
)
.

Therefore,

eiαA
∑
κ

εκα

(
~k
)
aκ

(
~k
)
e−iαA =

∑
κ

εκα

(
~k
)
aκ

(
~k
)

+ iαRνα
∑
κ

εκν

(
R·~k

)
aκ

(
R·~k

)
+

1

2
(iα)2

∑
κ

εκα

(
~k
)
aκ

(
~k
)

+ . . .

= cos(α)
∑
κ

εκα

(
~k
)
aκ

(
~k
)

+ i sin(α)Rνα
∑
κ

εκν

(
R·~k

)
aκ

(
R·~k

)
.

For the mirror operator, V ≡ V (π/2) and

V †
∑
κ

εκα

(
~k
)
aκ

(
~k
)
V = i

∑
κ

εκν

(
R·~k

)
aκ

(
R·~k

)
,

while for the beamsplitter, U ≡ V (π/4) and

U †
∑
κ

εκα

(
~k
)
aκ

(
~k
)
U =

1√
2

[∑
κ

εκα

(
~k
)
aκ

(
~k
)

+ i
∑
κ

εκν

(
R·~k

)
aκ

(
R·~k

)]
.

The transformations for ε∗κα
(
~k
)
a†κ
(
~k
)
are obtained by taking the hermitian conjugate of the

previous expressions. With these results, we �nally have the general transformation of the

photonic �eld, written as

V †(α)Aµ(x)V (α) = cos(α)
∑
~p,λ

[
ελµ(~p)aλ(~p)eip·x + a†λ(~p)e−ip·x

]
+ i sin(α)Rνµ

∑
~p,λ

[
ελν (R·~p)aλ(R·~p)eip·x − ε∗λν (R·~p)a†λ(R·~p)e−ip·x

]
= cos(α)Aµ(x) + sin(α)A′µ(R·x) .

Taking α as π/2 or π/4 yields the desired transformations due to the mirror and beam-

splitter, respectively.
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