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Resumo 

Diferenças no microbioma oral têm sido encontradas entre populações humanas 

com diferentes dietas, estilos de vida, entre outros fatores. No entanto, a compreensão 

completa da extensão desta variabilidade está ainda por alcançar e, neste sentido, a 

caracterização dos microbiomas orais de populações humanas pouco estudadas poderá 

ser particularmente valiosa. 

Aqui, caracterizamos o microbioma oral humano de diferentes populações 

africanas que vivem em regiões geográficas distintas (São Tomé e Príncipe, Angola, 

Zimbábue e Moçambique), que têm diferentes idiomas (Khoisan, Bantu e Crioulo) e 

métodos de subsistência (agro-pastoris, pastoris, peripatéticos e forrageadores) usando 

a porção de ‘reads’ não humanos obtidos através de uma abordagem de Sequenciação 

de Captura do Exoma Expandido a partir de saliva e raspagens da mucosa das 

bochechas.  

No geral, encontramos diferentes padrões de medidas de diversidade, com as 

populações agro-pastoris a apresentarem menor diversidade intra-individual e maior 

diversidade inter-individual. Por sua vez, os Sekele, o único grupo de forrageadores, 

apresentou a maior diversidade intra-individual. Para além disto, as análises de 

agrupação e ordenação discriminaram a maior parte das populações agro-pastoris de 

Angola e de São Tomé e Príncipe das restantes populações não agro-pastoris, nas quais, 

nenhuma diferenciação foi detetada entre os grupos pastoris, peripatéticos e 

forrageadores angolanos. A diferenciação entre os grupos agro e não agro-pastoris deve-

se principalmente ao enriquecimento de diversos táxons neste último, tal como, 

Atopobium sp., Solobacterium moorei e Veillonella dispar. Propomos que a separação 

destes grupos pode ser devida a diferentes dietas e/ou estatutos económicos das 

populações estudadas. 

Palavras-chave 

Microbioma oral, Saliva, Métodos de subsistência, Captura do Exoma, Populações 

Africanas. 

 

 



4  FCUP      

 Oral microbiome characterization of diverse human populations from Africa 

 

 

Abstract 

Differences in the oral microbiome have been found between human populations 

having different diets, lifestyles, among other factors. However, a full comprehension of 

the extent of this variation has not yet been accomplished, and the characterization of the 

oral microbiomes from understudied human populations might be particularly valuable in 

this regard.  

Here, we successfully characterized the human oral microbiome of different African 

populations living in distinct geographic regions (São Tomé and Príncipe, Angola, 

Zimbabwe and Mozambique), having different languages (Khoisan, Bantu and Creole) and 

subsistence methods (agropastoralists, pastoralists, peripatetic and foragers) by using the 

portion of non-human reads obtained through an Expanded Exome Capture Sequencing 

approach from saliva and cheek scraps.  

Overall, we found different patterns of diversity measures, showing most 

agropastoral populations lower intra-individual and higher inter-individual diversity 

compared to the remaining groups. The Sekele, the only foragers, had the highest intra-

individual diversity. Furthermore, the cluster and ordination analyses discriminated most 

Angolan and São Tomé and Príncipe agropastoral populations from the remaining non-

agropastoral populations where no differentiation was detected between the Angolan 

pastoralists, peripatetics and foragers. The differentiation between the agro and non-

agropastoral clusters are mainly due to enrichment in the latter of several taxa such as, 

Atopobium sp., Solobacterium moorei and Veillonella dispar. We propose that the 

separation of these two clusters could be due to different diets and/or economic-status of 

the populations studied. 

 

Keywords 

Oral microbiome, Saliva, Subsistence methods, Exome capture, African populations. 
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1. Introduction 

1.1. Oral microbiome 

The number of human cells that compose the human body is of the same order of 

magnitude as the number of microbial cells that colonize it (Sender et al., 2016). The 

microbial cells occupy different habitats of the human body. One of the largest and most 

complex of these habitats is the oral cavity (Wade, 2013; Chen and Jiang, 2014). The 

group of microorganisms living in the oral cavity are designated by oral microbiota and the 

set of their genomes the oral microbiome (Chen and Jiang, 2014). 

The oral microbiota is heterogeneously distributed in different sites of the oral cavity 

(Mager et al., 2003), nevertheless, the microorganisms present in saliva are partially 

shared with those found in other sites such as tongue dorsum, buccal mucosa and plaque 

(Mager et al., 2003; Eren et al., 2014). As a consequence, saliva has been widely used to 

study the human oral microbiome (Takeshita et al., 2014; Grassl et al., 2016; Nakano et 

al., 2018).   

1.2. Sequencing approaches 

To study the microbiome, there are two next-generation sequencing (NGS) 

approaches commonly used: i) amplicon sequencing (amplification and subsequent 

sequencing of a target DNA fragment) of the 16S rDNA gene (gene present in all bacteria), 

and ii) shotgun sequencing (random sequencing of the DNA from a sample). While the 

amplicon sequencing is a most cost-effective approach, the shotgun sequencing has the 

advantage of being able to detect other microorganisms than bacteria, such as fungi and 

viruses. Furthermore, shotgun sequencing studies reportedly detect more diversity than 

amplicon ones (Poretsky et al., 2014; Ranjan et al., 2017). Interestingly, Kidd et al., (2014) 

characterized the oral microbiome from saliva samples by focusing on reads that did not 

align to the human genome obtained with a Human Exome Capture Sequencing, an 

approach that target the human exome. The authors reported that the structure and 

abundance of microorganisms obtained seem to be consistent with that obtained through 

traditional shotgun metagenomic sequencing (Kidd et al., 2014). 

1.3. Oral microbiome across different populations 

Studies on oral microbiome have revealed a great diversity of microbial 

communities, both in terms of abundance distribution and composition. These differences 

have been related to diseases as well as to different environments, diets and other factors. 
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On one hand, the oral microbiome has been related to a multitude of oral and 

systemic diseases, including caries, periodontitis, diabetes, obesity, liver diseases, colon 

cancer, oral and pancreatic cancer and RA (a systematic autoimmune disease) (Lu et al., 

2019). The incidence of some of these diseases varies among human groups, which may 

result from intrinsic differences in their oral microbiota (Gupta et al., 2017).  

On the other hand, the characterization of the oral microbiota in a variety of human 

populations revealed differences in the oral microbiome profile related with distinct diets, 

lifestyles, and environmental conditions. Nasidze et al., (2009) compared 12 worldwide 

locations and found the biggest differences between individuals’ oral microbiomes in 

Congo. By contrast, the individuals from Georgia and Turkey presented the most similar 

oral microbiomes. In relation to individuals of other countries, individuals from Congo 

showed an increased frequency of several genera being the most striking case the genus 

Enterobacter (in Congo corresponded to 28% of the sequences while in California, China, 

Germany, Poland, and Turkey was absent). Overall, the authors found that the oral 

microbiome was not strongly influenced by geography. Kidd et al., (2014) found that 

Khoisan populations possess higher oral pathogenic microbial load than the one observed 

in North Americans from the Human Microbiome Project (Methé, 2012). These authors 

hypothesised that the observed differences could result from “limited access to dental 

care, antibiotics and/or absence of water fluoridation among the KhoeSan” (Kidd et al., 

2014).  

Several studies found that significantly different oral microbiomes were shaped by 

the host genetics. Mason et al., (2013), studied individuals from the four major ethnicities 

of the United States, and showed that microbial communities from saliva and subgingival 

biofilms were characteristic from the individuals' ethnicity, the degree of association was 

enough to a machine-learning classifier being able to discriminate individuals between 

ethnicities based on their microbial profiles. It was suggested that more similar oral 

microbiomes between individuals of the same ethnic group could result from more similar 

tooth and root morphologies and innate immune responses to infectious agents. In line 

with this study, Blekhman et al. (2015) found a significant association between the human 

genetic variations and the microbial composition of several sites of the oral cavity by using 

data from the Human Microbiome Project. Demmitt et al., (2017) showed that, 

independently of cohabitation status during a sampled period of 2-7 years, twins 

maintained a relatively more similar oral microbiome than unrelated people. These authors 

found two human loci on chromosomes 7 and 12, which influence the microbial 

phenotypes. 
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Other studies attribute most of the differences of the oral microbiome to the host 

lifestyle and particularly to their diet. Nasidze et al., (2011) found that Batwa Pygmies, a 

former hunter-gatherer group from Uganda, possess a significant higher microbial diversity 

than the agricultural groups from Sierra Leone and from the Democratic Republic of 

Congo, and suggested that the diet (protein-rich in Batwa Pygmies) was the main driver 

of the observed differences. These authors also report that Batwa Pygmies populations 

possess 40 microbial genera which have never been described in the Human oral cavity, 

reinforcing the necessity to analyse the oral microbiome in more detail, and in more diverse 

human populations (Nasidze et al., 2011). Li et al., (2014) demonstrated significant 

differences in the oral microbiome diversity of German and African populations. The oral 

microbiome of Germans was very diverse within individuals but quite similar between 

them, whereas in African populations the pattern was the opposite. These authors suggest 

the variability of the diet and the degree of human concentration as the main drivers of the 

observed pattern (Li et al., 2014). Takeshita et al., (2014) compared the oral microbiome 

of genetically similar human populations from South Korea and Japan. The Japanese oral 

microbiome was characterized by "higher proportions of Prevotella and Veillonella and 

lower proportions of Neisseria and Haemophilus" comparatively to the oral microbiome of 

the Koreans, and these differences were thought to be correlated with the worst 

periodontal status of the Japanese. The authors suggest that the diet, spicier and saltier 

in the Koreans, was the main driver of the observed differences in the oral microbiome. 

Lassalle et al. (2018) studied the oral microbiome of hunter-gatherer and farmer 

populations from the Philippines and compared them with that of individuals from a western 

lifestyle. The authors found that the oral microbiomes were significantly correlated with the 

subsistence strategy. While Hunter-gatherers were enriched in Neisseria species, 

westerns were enriched in Haemophilus, and farmers fell in between this gradient. These 

results confirm that major shifts in the human oral microbiome composition occurred in line 

with marked dietary shifts, being the first one, with the advent of agriculture when the 

consumption of food with high levels of carbohydrates increased, and the second, with the 

Industrial Revolution and the advent of industrially processed flour and sugar (Adler et al., 

2013; Schnorr et al., 2016; Gupta et al., 2017). 

These studies have shown that the oral microbiome is highly diverse; in particular, 

the oral microbiome of groups that maintain traditional lifestyles seems to be widely 

different from the well-studied oral microbiome of individuals from westerns civilization. So, 

to gain knowledge about the oral microbiome, more studies need to be done of populations 

having different subsistence modes and from understudied world regions. 
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In this context, we analyse the oral microbiome of 95 individuals from several 

populations living in different areas of Africa and with a high cultural and biological 

diversity. This work will allow us to contribute valuable oral microbiome data from an 

understudied region, and to investigate the influence of different factors such as 

environment and lifestyle to obtain a more accurate picture of the general composition of 

the human oral microbiome. 

1.4. Objectives 

The present study aims to contribute to the general knowledge of the oral 

microbiota by analysing the human oral microbiome composition of several populations 

from Africa living in different geographic areas, with different subsistent modes and 

population histories. In this work, we take advantage of the sequence data available from 

95 individuals from different African populations obtained through an Expanded Exome 

Capture Sequencing approach, as in Kidd et al., (2014).   

In order to achieve the main goal of this study, four more specific objectives were 

defined: 

I) Characterize the oral microbiome of each individual by identifying the species 

and genera and their abundance distribution.  

II) Calculate the diversity of the oral microbiome both within and between 

individuals. 

III) Compare the oral microbiome profiles and diversity levels of the different 

populations. Identify which species and genera are the most differentiated 

between groups.  

IV) Investigate whether differences on the oral microbiome exist depending on the 

characteristics of the studied populations (lifestyles, environment, genetic 

background). 

  



FCUP       17 

Oral microbiome characterization of diverse human populations from Africa  

 

 

2. Material and Methods 

2.1. Samples 

Saliva or cheek scrap samples along with ethnographic data referent to language 

and genealogical aspects were collected with written informed consent from a total of 96 

African individuals. The sampled individuals belong to 16 populations from 4 African 

countries: Angola (10 populations), Mozambique (1 population), São Tomé and Príncipe 

(3 populations) and Zimbabwe (2 populations), which location is shown in Figure 1. 

 

Figure 1. Geographic representation of the location of the studied populations in (A) São Tomé and Príncipe, (B) Angola, 

(C) Zimbabwe and (D) Mozambique. 

 

In addition to living in distinct geographic regions, the sampled populations present 

several other distinct characteristics, namely, different population histories, languages and 

subsistence patterns. Details about these populations can be consulted in Table 1.  
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Table 1. Country, language, subsistence pattern, collected sample type and number of individuals for each population 

analysed. 

Population Country Language family 
Subsistence 
pattern 1 

Sample 
type 

Number of 
individuals 

Angolar 
São Tomé 
and Príncipe 

Creole Agropastoralists 
Cheek 
scraps  

9 

Forro 
São Tomé 
and Príncipe 

Creole Agropastoralists 
Cheek 
scraps 

8 

Príncipe 
São Tomé 
and Príncipe 

Creole Agropastoralists 
Cheek 
scraps  

8 

Ovimbundu Angola Bantu Agropastoralists Saliva 5 

Nyaneka Angola Bantu Agropastoralists Saliva 5 

Ganguela Angola Bantu Agropastoralists Saliva 5 

Kuvale Angola Bantu Pastoralists Saliva 7 

Kwepe Angola 
Khoe-Kwadi 
(Khoisan)/Bantu 2 

Pastoralists Saliva 7 

Kwisi Angola Bantu Peripatetic Saliva 8 

Twa Angola Bantu Peripatetic Saliva 7 

Himba Angola Bantu Pastoralists Saliva 7 

Tjimba Angola Bantu Peripatetic Saliva 5 

Sekele  Angola Kx’a (Khoisan) Foragers Saliva 7 

Tshwao Zimbabwe Khoe-Kwadi (Khoisan) Peripatetic 3 Saliva 5 

Nambya Zimbabwe Bantu Agropastoralists Saliva 1 

Mozambique Mozambique Bantu Agropastoralists 
Cheek 
scraps 

2 

1 The term peripatetic aims to classify the low-status, primarily non-food-producing populations Kwisi, Twa, Tjimba and 

Tshwao. 

2 Khoe-Kwadi was the former language of the Kwepe, but nowadays this group speaks Bantu. 

3 Tshwao lived as foragers but nowadays are better classified as peripatetics. 

 

2.2. DNA extraction and sequencing 

DNA extraction was conducted for saliva and cheek scraps as previously described 

(Quinque et al., 2006). Library preparation and expanded exome enrichment were 

performed using Nextera® Rapid Capture Enrichment kit by Illumina.  

The 96 individuals were sequenced in three different sequencing runs. One run 

sequenced 24 indexed samples corresponding to individuals of São Tomé and Príncipe in 

two lanes using Illumina’s HiSeq 1500 System in Rapid Run mode. Other 24 samples from 

Angolan populations were also sequenced using two lanes in an Illumina’s HiSeq 1500 

System in Rapid Run mode. The other 48 indexed samples were sequenced in four lanes, 

using Illumina’s HiSeq 1500 System in High Output Run mode. 

The resulting FASTQ files were processed in order to remove low-quality reads by 

applying a filter for Phred Quality Score of 30 (Q30) with Sickle (v1.33) (Joshi and Fass, 

2011) in pair-end mode. Reads that passed the quality filter were aligned to the human 

genome hg19 using the -mem option of Burrows-Wheeler Aligner (BWA) software 

(v0.7.15) (Li, 2013). After the alignment one of the Tjimba samples presented very low 
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number of reads and it was excluded from this work. The BAM files resulting from the 

alignment contained all sequenced reads, those that aligned to the human genome and 

those that did not align. We used these BAM files to proceed to the metagenomic analysis. 

 

2.3. Metagenomic pipeline 

As a first step of the metagenomic pipeline, from the BAM files containing all 

information about the alignment of the reads to the human genome hg19, we extracted the 

non-human reads, that is, the unmapped reads, using the option view -b -f 4 of the software 

SAMtools (Li et al., 2009). 

The non-human reads were further subjected to a quality filtering suitable for the 

metagenomic analysis. We used PRINSEQ tool (Schmieder and Edwards, 2011) to 

remove reads with less than 50 bp, reads with a mean quality score less than 25 and reads 

which were exact duplicates in accordance with the criteria used in Kidd et al., (2014). 

Since PRINSEQ works with FASTQ files, the BAM files were first converted using 

BEDtools (Quinlan and Hall, 2010). 

In order to identify and characterize the non-human organisms present in the 

samples, we used the fragment recruitment approach, which consists in mapping 

metagenomic reads against a set of selected references genomes (Rusch et al., 2007). 

Thus, we downloaded the microbiome reference genomes from the Human Microbiome 

Project (HMP) (NCBI BioProject PRJNA28331) (November 19, 2018) and created a 

BLAST database using the option makeblastdb of the software BLAST+ (Altschul et al., 

1990). The high-quality non-human reads were blasted against this database using the 

option blastn of the software BLAST+ and the best hit for each read was retained. In 

accordance with the work of Kidd et al., (2014), for the species-level binning (i.e. to 

consider that a read was in fact amplified from a specific species) we required that the 

alignment covered at least 75% of the read length, and the sequences were at least 95% 

identical. We also applied other less stringent criteria for read recruitment as in Kidd et al., 

(2014) in order to compare the relative abundance of reads obtained at each restriction 

level.  

 

2.4. Data analysis 

The abundance of each microbial species in each individual was inferred according 

to the number of metagenomic reads aligned against each species and a species 

abundance table was constructed. Species that did not recruit any read in any sample 

were removed. A genera abundance table was also constructed from the species 
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abundance table by merging species of the same genus, and both tables were used for 

the subsequent analyses. The correlation between the number of taxa (species and 

genera) detected in each individual and the correspondent number of reads was calculated 

using a Spearman rank correlation test using the function “cor.test” from the package stats 

v3.6.1 (R Core Team, 2018).  

Two diversity measurements were estimated from our data, the alpha (diversity 

within individuals) and the beta (diversity between individuals) diversities. Prior to alpha 

and beta diversities calculations, we performed a square-root transformation of our data 

in order to attenuate the influence of highly-abundant species. This transformation is 

usually applied to count variables (Osborne, 2002). Alpha diversity was calculated using 

the Shannon index (Shannon, 1948) with the function “diversity” from the package vegan 

v2.4-2 (Oksanen et al., 2019). Beta diversity was calculated using the Bray–Curtis 

dissimilarity (Bray and Curtis, 1957) with the function “vegdist” also from the package 

vegan v2.4-2. 

To explore how the individuals analysed clustered according to their microbiome 

profiles, two ordination methods were applied, principal component analysis (PCA) and 

non-metric multidimensional scaling (NMDS). For the PCA analysis, we first carried out a 

variance-stabilizing transformation of our data based on the negative binomial model using 

DESeq2 (Love et al., 2014; McMurdie and Holmes, 2014). This transformation intends to 

reduce or eliminate the dependence of the variance on the mean so that all variables have 

the same variance. Here, each variable corresponds to the number of reads recruited for 

each microbial taxon in the different individuals. PCA was performed using the function 

“dudi.pca” from the package ade4 v1.7-13 (Dray and Dufour, 2007). To visualize the PCA 

outputs we used the function “fviz_pca” from the package factoextra v1.0.5 (Kassambara 

and Mundt, 2017). NMDS was performed using the function “metaMDS” from the package 

vegan v2.4. Due to the large discrepancy of the number of recruited reads for a determined 

microbial taxon, a square root-transformation followed by a Wisconsin double 

standardization was automatically applied by metaMDS, and then the Bray-Curtis 

dissimilarity matrix was calculated. The functions “ordiplot”, “ordihull” and “orditorp” from 

the package vegan v2.4-2 were used to display the NMDS outputs. 

To visualize whether differences in the distribution of species/genera existed 

among individuals, we created heatmaps of species and genera abundance and 

conducted the hierarchical clustering of individuals. For this analysis we used the Bray–

Curtis dissimilarity values from the data transformed with DESeq2. Heatmaps were 

created using the function “pheatmap” from the package pheatmap v1.0.12 (Kolde, 2019), 
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and the hierarchical clustering of individuals based on the Bray-Curtis dissimilarity was 

calculated with the clustering method ward.D2 (Murtagh and Legendre, 2014). 

PCA, NMDS, heatmap and the associated hierarchical cluster analysis, were 

performed for 3 sets of individuals with respect to a geographical criterion: one dataset 

considering all the 95 individuals analysed, a second dataset considering only individuals 

from southern Africa (Angola, Zimbabwe and Mozambique), and the third one only 

considering individuals from Angola. 

In order to investigate whether the oral microbiome profiles of the studied 

populations were statistically different according to their characteristics (Table 1), a 

Permutational multivariate analysis of variance (PERMANOVA; Anderson et al., 2001) was 

conducted using the function “adonis” from the package vegan v2.4-2. Significance was 

tested using 9,999 permutations. The PERMANOVA analysis was based on the Bray–

Curtis dissimilarity, which was calculated from the data transformed with DESeq2. We 

grouped populations according to different criteria and compared populations i) with 

different type of collected samples, ii) speaking different language families, ii) from different 

countries, and iii) with different subsistence patterns. Regarding the subsistence patterns, 

taking into account that the Tshwao are former foragers but nowadays they live as 

agropastoralists, we carried out two different analyses including them into the agropastoral 

or the forager group. PERMANOVA compares groups assuming in the null hypothesis that 

the centroids and the dispersion of the groups are equivalent. Thus, when the null 

hypothesis of PERMANOVA is rejected we cannot discriminate what differ between 

groups, if the centroids, the dispersions or both. For comparisons in which the null 

hypothesis of the PERMANOVA was rejected, we calculated the dispersions of the groups 

using the function "betadisper" from the package vegan v2.4-2 and tested its significance 

using the function "Anova" from the package car (Fox and Weisberg, 2019). 

All the analyses and graphs performed in this study were conducted in R studio 

version 3.5.2 (R studio team, 2016).  

 

3. Results 

3.1 Oral microbiome quantifications 

From the total number of reads obtained for each sample with the Expanded 

Exome Capture Sequencing approach (≈ 32 million reads per individual), 2.18% (1.64% 

in cheek scraps and 2.43% in saliva) were unmapped since they did not align to the human 
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genome hg19 (≈ 700,000 reads per individual). After the exclusion of low-quality reads 

with Prinseq tool, an average of 630,000 high-quality non-human reads remained for each 

individual (Figure 2), these reads were aligned against the microbiome reference genomes 

of the Human Microbiome Project (HMP) (NCBI BioProject PRJNA28331) and three 

stringency criteria for reads recruitment were applied (Figure 3). 

 

 

Figure 2 | Number of reads per individual at different stages of the bioinformatic pipeline. Light grey bars represent the 

total number of reads obtained for each sample after sequencing. Grey bars represent the number of reads unmapped 

after the alignment with the human genome and dark grey bars represent the number of unmapped reads that meet 

the quality criterion defined by Prinseq tool. 
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Figure 3 | Number of reads aligned to the microbiome database at different restriction levels. Light grey bars represent 

reads with at least 50% identity to microbial reference genomes. Grey and dark grey bars represent, respectively, reads 

with at least 80% and 95% of identity to microbial reference genomes and which aligned in at least 75% of its length. 

 

Focusing on the reads that aligned under the most stringent criteria, in individuals 

whose DNA was extracted from saliva, we detected an average of 276 species (ranging 

from 203 - 372) and 105 genera (69 -150). In individuals whose DNA was extracted from 

cheek scraps, we detected an average of 206 species (ranging from 138 - 274) and 76 

genera (49 - 107) (Figure 4 and 5; Figure S1 and S2, Appendix).  

Regarding the number of microbial species identified, the groups from São Tomé 

and Príncipe (Angolar, Forro and Príncipe), Mozambique and the Nambya individual from 

Zimbabwe, recruited, on average, a considerably lower number of microbial species per 

individual compared to the other groups (ranging from 194 - 234). However, we need to 

take into account that only two Mozambican individuals and one Nambya were included in 

this study. On the other hand, the populations Ovimbundu, Kwepe and Nyaneka are those 

that recruited, on average, a higher number of microbial species per individual (285 - 300). 

Regarding the population variance in the number of microbial species identified per 

individual, the Himba, Kuvale, Mozambique, Príncipe and Tshwao present the lowest 

values (391 - 730) whereas Ganguela and Ovimbundu present the highest ones (2406 - 

2838) (Figure 4).  
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Considering the number of microbial genera identified in each population, we found 

a similar pattern with that of the species. The populations from São Tomé and Príncipe, 

Mozambique and the Nambya individual recruited a considerably lower number of 

microbial genera per individual (ranging from 74 - 81) whereas Ovimbundu, Nyaneka and 

Kwisi recruited, on average, a higher number (112 - 117). Regarding the population 

variance in the number of microbial genera identified per individual, a more uniform pattern 

than that of the species was found. The Himba, Mozambique and Kuvale present the 

lowest values (38 - 88) whereas the highest variance was found in Sekele (480) (Figure 

5). 

 

Figure 4 | Box plots showing the variation in the number of microbial species identified in the individuals of each 

population. 



FCUP       25 

Oral microbiome characterization of diverse human populations from Africa  

 

 

 

To check whether the differences in the number of species/genera detected per 

individual were influenced by different number of sequencing reads, we calculated a 

Spearman correlation. The results indicated a significant positive association between the 

number of microbial reads obtained for each individual and the correspondent number of 

species (rs = 0.839, p-value < 2.2e-16) and number of genera identified (rs = 0.851, p-value 

< 2.2e-16) (for species see Figure 6; for genera see Figure S3, Appendix). 

 

Figure 5 | Box plots showing the variation in the number of microbial genera identified in the individuals of each population. 
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Figure 6 | Relation between the number of reads obtained for each individual and the correspondent number of microbial 

species identified. Spearman correlation between these two variables: rs = 0.839 p-values < 2.2e-16.  

 

Regarding the pattern of reads distribution between microbial organisms, we 

observe that few species recruit most of the reads. After calculating the relative 

frequencies of each taxa, the 20 most abundant species recruit 68.7% of the reads while 

the 100 most abundant species recruit 95% of the reads. The 10 most frequent genera 

are: Neisseria, which recruits 21% of the reads, Streptococcus (17.3%), Prevotella (12%), 

Rothia (7.5%), Porphyromonas (6.3%), Haemophilus (4.8%), Actinomyces (4.3%), 

Veillonella (3%), Enterobacter (2.7%) and Capnocytophaga (2.4%) (Figure 7). 

Population 
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Figure 7 | Relative frequency of the 20 most frequent genera in the populations studied. 

 

3.2 Oral microbiome diversity 

Regarding the values of alpha diversity calculated with the Shannon index, which 

measures how abundant and evenly the microbes are distributed in a sample, at the 

species level, the populations from São Tomé and Príncipe (Angolar, Forro and Príncipe), 

Mozambique and the Tshwao from Zimbabwe present the lowest diversity values (mean 

values between 4.53 and 4.64). In contrast, the Sekele, along with Kwisi, Kwepe, Twa, 

Himba, Tjimba and Nambya, present the highest values (mean values between 4.8 and 

4.88), in these populations the mean and, particularly, the median values are relatively 

homogenous. The Ovimbundu, Ganguela, Nyaneka and Kuvale present intermediate 

alpha diversity values (mean values between 4.68 and 4.77) (Figure 8). At the genus level, 

although a similar pattern is observed, as less taxonomic entities are accounted, the range 

of values is smaller. On average, Angolar individuals present the lowest values of alpha 

diversity (3.33) while Sekele present the highest (3.66) (Figure S4, Appendix). 
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Figure 8 | Box plots showing the distribution of alpha diversity values (Shannon index) calculated for the individuals of 

each population at the species level. Numbers inside box plots correspond to populations mean values. 

 

Regarding the values of beta diversity calculated as Bray-Curtis dissimilarity, which 

measures pairwise differences in species composition between individuals and for which 

a value of 0 means the two sites share all the species and a value of 1 means they do not 

share any species, we observe that individuals from the populations of São Tomé and 

Príncipe (Angolar, Forro and Príncipe), along with Ovimbundu, Ganguela and Tshwao 

present the most differentiated oral microbiomes. On the other hand, individuals from the 

groups Kuvale and Himba present the most similar ones (Figure 9). At the genus level, the 

groups Angolar, Ganguela and Tshwao are the ones whose individuals present the most 

differentiated oral microbiomes while the individuals with more similar ones are, 

consistently, from the Kuvale and Himba (Figure S5, Appendix). 
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Figure 9 | Box plots showing the distribution of beta diversity values (Bray–Curtis dissimilarity) calculated between pairs 

of individuals of each population at the species level. Numbers inside box plots correspond to populations mean values. 

 

3.3 Ordination and cluster analysis based on microbial profiles 

In order to evaluate how individuals relate to each other based on their microbial 

profiles we performed a Principal Component Analysis (PCA). In the PCA based on 

species frequencies (Figure 10), the first three components explain roughly 25% of the 

variance (PC1 = 12.3%, PC2 = 7.4% and PC3 = 5%). In PC1-PC2 (Figure 10A) we can 

observe that populations are roughly separated into two groups. On one hand the 

agropastoral populations from São Tomé and from Angola, and on the other hand, the 

remaining populations, including the forager Sekele, the pastoralist and peripatetic groups 

from Angola, and the Tshwao and the Nambya from Zimbabwe. Mozambique and Príncipe 

appear in a more intermediate position. Considering population midpoints in PC1, the 

maximum separation is between the Kwepe and Nyaneka. PC2 clearly separates some 

individuals from the agropastoral Ovimbundu, Angolar and Príncipe populations. In PC3 

we observe a further separation of some individuals from Príncipe. Here, the agropastoral 

populations from Angola are separated from those of São Tomé and Príncipe while 

Mozambique occupies an intermediate position (Figure 10B). The PCA based on genera 

frequencies roughly present the same pattern as the species one. The main difference is 

that in PC3 we observe a marked separation of Tshwao from the other populations. In this 

PCA the first three components explain roughly 26% of the variance (PCA1 = 13.2%, 

PCA2 = 7% and PCA3 =5.6%) (Figure 10C and D).  
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Figure 10 | Principal component analysis based on microbial species (A and B) and genera (C and D) data from 95 

African individuals. A and C represent PC1 and PC2 whereas B and D represent PC1 and PC3. Individuals are 

represented by a specific combination of symbol and colour representative of the population. Population midpoints are 

indicated with larger symbols. 
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Besides the positioning of the individuals, PCA also allows us to see the positioning 

of the variables (here species and genera) by means of a loading plot of the PCA. 

Variables are plotted in accordance to their weight in each component, and those plotted 

in the same direction are positively correlated whereas variables plotted in opposite 

direction are negatively correlated. The position of individuals in the PCA is also correlated 

with the direction of the variables, therefore, individuals plotted in the same direction of a 

determined variable, are enriched in that variable (species or genera).  

Figure 11A shows the 20 species with the greatest contribution to PC1-PC2, most 

of the species were positioned concordant with the cluster of non-agropastoral populations 

(i.e. they are in the bottom right side of the graph). This pattern indicates that most of the 

differences between populations are driven by species enriched in non-agropastoralists 

and with low frequency in agropastoralists. Overall the species with more contribution to 

PC1-PC2 are Streptococcus parasanguinis, Streptococcus infantis, Atopobium sp., 

Streptococcus peroris and Veillonella dispar. 

Figure 11B shows the 20 genera with the greatest contribution to PC1-PC2, the 

positioning of genera in relation to that of the species was more structured. Most of the 

genera (16) are on the most extreme positive side of PC1, thus, are enriched in the non-

agropastoralists cluster. In contrast, the genus Eikenella is enriched in the agropastoralists 

cluster. The genera Gemella, Granulicatella and Streptococcus are positively correlated 

with PC2, with the highest abundance present in Príncipe, and the lower in Ovimbundu 

and Angolar. Overall, the genera with more contribution to PC1-PC2 are Atopobium, 

Eubacterium, Campylobacter, Dialister and Lancefieldella. 
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Figure 11 | Loading plots (positioning of the variables species and genera) of the principal component analysis based on 

microbial species (A) and genera (B) data from 95 African individuals. For both PCA the 20 species/genera with the 

greatest contribution to PC1-PC2 are represented. Species/Genera are coloured by contribution as indicated by the 

legend.  
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We further explored principal component analysis (both with species and genera 

data) with the southern Africa dataset (Angola, Zimbabwe and Mozambique) without 

considering those from São Tomé and Príncipe (Figure S6 and S7, Appendix), and the 

Angola dataset (Figure S8 and S9, Appendix).  

The relative position of the populations in these PCAs was generally maintained. 

The main difference was observed on the PCA based on species frequencies of southern 

Africa individuals, in which PC3 separates the Tshwao from the other groups. This 

separation was already seen in the PCA with all individuals, but only when accounting for 

genera frequencies. 

For the PCA considering only southern Africa individuals, the taxa with more 

contribution to the first two components were, in the case of the species, Streptococcus 

parasanguinis, Granulicatella sp., Granulicatella adiacens, Rothia sp. and Veillonella 

dispar, and in the case of the genera, Atopobium, Lancefieldella, Solobacterium, 

Eubacterium and Oribacterium (Figure S7 A and B, Appendix). For the PCA considering 

only Angolan individuals, the taxa with more contribution to the first two components were, 

in the case of the species, Streptococcus parasanguinis, Rothia sp., Treponema 

socranskii, Veillonella dispar and Atopobium sp., and in the case of the genera, 

Lancefieldella, Atopobium, Solobacterium, Oribacterium and Rothia (Figure S9, A and B, 

Appendix). 

In order to further explore the differences among individuals we performed another 

ordination method, a non-metric multidimensional scaling (NMDS). Both methods aim to 

minimize the dimensions of the data, but PCA preserves the covariance and MDS 

preserves the distance between individuals. NMDS was performed from the Bray–Curtis 

dissimilarity distance matrix for both species and genera data with all the individuals, with 

southern African individuals and with Angolan individuals. We used the option of displaying 

the population’s polygons, created by connecting individuals of the same population. In 

NMDS1 and NMDS2 we observe two clusters, one with low dispersion of individuals, which 

comprehend mainly the non-agropastoral groups and the other with high dispersion of 

individuals, which comprehend the São Tomé and Príncipe and Angolan agropastoralists. 

The two clusters show little overlap and are better discriminated while based on species 

frequencies data. The two NMDS accounting only for southern Africa individuals and only 

for Angolan individuals display a more striking separation of the two clusters. The NMDS 

results are fairly consistent with those of PCA (Figure 12; Figure S10 and S11, Appendix). 
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Figure 12 | Non-metric multidimensional scaling based on microbial species (A and B) and genera (C and D) data from 

95 African individuals (in both cases a three-dimensional NMDS was built). A and C represent dimensions 1 and 2 of the 

NMDS, while B and D represent dimensions 1 and 3. On the species based NMDS (A and B) the stress level was 0.124 

whereas on the genera based NMDS (C and D) the stress level was 0.144. In order to better understand the positioning 

of the populations in the low-dimension space, the individuals with more extreme positions in each population where 

connected by lines forming population polygons represented by a specific colour as indicated by the legend. 

 

To visualize how the oral microorganisms are distributed across individuals we built 

heatmaps of species and genera abundance, which are shown in Figure S12 and S13.  
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We wanted to focus on the species and genera with more contribution for the PCA, 

so we built heatmaps considering the 20 species/genera with more weight for the three 

datasets: All individuals, Southern African individuals and Angolan individuals. We have 

also performed a hierarchical clustering of the individuals in order to understand which 

ones present the most similar oral microbiomes. The hierarchical cluster analysis supports 

the separation of individuals in two clusters that largely correspond to the agropastoralists 

and the non-agropastoralists as already observed in the PCA and NMDS results. It is 

important to mention that the Nambya individual fall inside the non-agropastoralists cluster. 

In the hierarchical cluster analysis while accounting for all the individuals and using species 

data, one individual from Mozambique and 3 individuals from Príncipe also fall within the 

non-agropastoralists (Figure 13). When we consider genera data, all individuals from 

Mozambique and Príncipe, plus two individuals from Angolar and three Forro fall within 

the cluster of non-agropastoralists (Figure 14). In the heatmaps based on the Southern 

Africa and Angola datasets, the hierarchical clustering of individuals separates more 

clearly agropastoral from non-agropastoral groups, except in the Southern Africa case, 

where, besides Nambya, one individual from Mozambique also falls within the non-

agropastoral group (Figure S14 – S17, Appendix).   

 

Figure 13 | Heatmap of species abundance in 95 African individuals. Only the 20 species with the greatest contribution 

to principal component 1 and 2 of the respective PCA are shown. Individuals (rows) are coloured in relation to their 

population. 
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Figure 14 | Heatmap of genera abundance in 95 African individuals. Only the 20 genera with the greatest contribution to 

principal component 1 and 2 of the respective PCA are shown. Individuals (rows) are coloured in relation to their 

population. 

 

3.4 Factors shaping microbial profiles in African populations 

In order to test if the oral microbiome composition varies among groups defined 

upon populations characteristics (e.g. subsistence patterns), we performed a 

PERMANOVA analysis (Table 2). In cases were the PERMANOVA results were 

significant, we also evaluated the dispersion of the groups with an Anova analysis in order 

to see if the differences solely resulted from the groups’ centroids. We compared groups 

of populations based on type of collected sample, languages, geography (countries) and 

subsistence patterns, as described in Table 1. Taking into account the results obtained in 

the other analysis, namely PCA, NMDS and hierarchical clustering, we also performed the 

analysis referent to subsistence pattern by comparing agropastoralists with non-

agropastoralists, with the original classifications of each population and by including 

Nambya in the non-agropastoral group. All the PERMANOVA and dispersion comparisons 

were significant. However, the comparison in which PERMANOVA returned the higher 

pseudo-F value, a statistic referent to the strength of the test, was Agropastoralists vs Non-

Agropastoralists (including Nambya) (Pseudo-F = 21.888), in which 19% of the total 

variance could be explained by differences between these two categories.  
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Table 2 | Results from PERMANOVA analysis. Grouping criteria defined as in table 1. 

 Anova results from clusters 

dispersion 
PERMANOVA results 

Grouping criteria p-values F-value p-value R2 
Pseudo-

F value 

Sample type 4.487e-06 4.5084 0,0001 0.07715 7.7752 

Language 0.000743 6.1518 0,0001 0.15019 5.3611 

Country 0.01937 3.4693 0,0001 0.1362 4.7828 

Subsistence 2.412e-10 20.787 0,0001 0.20267 7.7104 

Subsistence op. 2 1.809e-10 21.117 0,0001 0.20541 7.8416 

Agro vs Non- 

Agropastoralists 
1.421e-10 52.067 0,0001 0.18235 20.741 

Agro vs Non- 

Agropastoralists op. 2 
2.363e-10 50.518 0,0001 0.19051 21.888 

Subsistence op. 2 - Equal to “Subsistence” but considering Tshwao as foragers. 

Agro vs Non-Agropastoralists op. 2 - Equal to “Agro vs Non-Agropastoralists” but considering Nambya as Non-

Agropastoralists. 

 

4. Discussion 

In this work we characterized the oral microbiome of 95 individuals from 16 human 

populations from Africa by using the portion of non-human reads obtained from an Exome 

Capture Sequencing of DNA from saliva samples and cheek scraps. 

We observed slightly lower percentage of non-human reads in the cheek scraps 

(1.64%) than in saliva samples (2.43%). Kidd et al., (2014) used this approach on saliva 

samples and obtained a slightly higher percentage than us, 5.2%. This difference could be 

due to the use of a different enrichment capture kit. Nevertheless, we were able to 

characterize the oral microbiome and record patterns of species and genera distribution 

consistent with the ones obtained from other approaches. In that sense, we found that a 

small fraction of microorganisms recruited most of the reads. Namely, the 20 most 

abundant species recruited 68.7% of all reads while the 100 most abundant species 

recruited 95%. We identified the most abundant genera across all studied populations and 

these comprised Neisseria, with 21% of the reads, Streptococcus (17.3%), Prevotella 

(12%), Rothia (7.5%) and Porphyromonas (6.3%), which is consistent with other studies 

(Nasidze et al., 2009; Li et al., 2014; Kidd et al., 2014). 

With respect to the number of species and genera detected in the different 

populations studied we found a considerably lower number of taxa in the populations from 
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São Tomé and Príncipe and Mozambique. Two factors could explain these differences; 

first, 24 out of the 25 individuals from São Tomé and Príncipe were sequenced in a 

different run for which a lower number of reads was obtained. However, taking into account 

that one individual from São Tomé, and the two from Mozambique were sequenced jointly 

with all remaining samples, but they also present a considerably lower number of taxa, we 

speculate that the observed differences are mainly caused by the type of collected sample 

rather than a batch effect of the sequencing runs. Secondly, these populations are the only 

ones whose DNA was extracted from cheek scraps, and therefore, it may reflect that the 

microbial community present in the cheeks is less diverse and less representative of the 

other oral sites than the microbial community of the saliva, as in fact was already reported 

(Zaura et al., 2009). 

In any case, to account for the effects of the unequal number of sequence reads 

obtained per individual which was correlated with the number of taxa identified, these 

analyses should be repeated using a rarefaction of the reads i.e. for each individual we 

will randomly subsample a number of reads equal to the individual with fewer reads.  

In comparison with previous studies that used the amplicon sequencing of 16S 

rDNA gene (Nasidze et al., 2009; Nasidze et al., 2011; Li et al., 2014), the number of taxa 

we detected was considerably higher, which might reveal to be an advantage of the Exome 

capture sequencing approach. However, we should not exclude the possibility that the 

actual number of microorganisms present in the samples is lower than what we estimated, 

since as Kidd et al., (2014) mentioned, some microorganisms present genomic regions of 

high identity with the human genome and could be falsely detected by low-quality human 

reads. 

 We measured the diversity of the oral microbiome on the different populations and 

generally found lower levels of intra-individual diversity (alpha diversity) and higher levels 

of inter-individual diversity (beta diversity) in most agropastoral groups in relation to groups 

having other subsistence modes. Interestingly, the only hunter-gatherers of our study, the 

Sekele, presented the highest values of alpha diversity and one of the lowest values of 

beta diversity. These results are consistent with what was found in other studies, such as, 

Nasidze et al., (2011), which compared the former hunter-gatherers Batwa Pygmies from 

Uganda with agricultural groups from Sierra Leone and the Democratic Republic of Congo, 

and Lassalle et al., (2018), which compared hunter-gatherer and traditional farmer 

populations from the Philippines. 

One of the most striking results was the separation between agropastoral and non-

agropastoral groups observed in the ordination and cluster analysis. This separation is 
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more evident at the species level than at the genus level, factor that enhances the 

importance of applying shotgun sequencing over amplicon sequencing methods on the 

study of the oral microbiome, to allow microbial identification at the species level. 

In both PCA and NMDS results, the agropastoral individuals are highly dispersed 

while the non-agropastoral ones are more clustered. These dispersion patterns are 

concordant with the higher inter-individual diversity values in agropastoralists than in non-

agropastoralists. The fact that the cluster of agropastoralists also includes the three 

agropastoral populations from Angola, which samples were obtained through saliva, 

suggests that the differences between these two clusters cannot only be due to differences 

in the microbiome of cheek scraps and saliva. It is worth mentioning that the Nambya from 

Zimbabwe, which were classified as agropastoralists fall inside the non-agropastoral 

cluster.  

When focusing on Southwestern Angola, it is striking that no differences in the oral 

microbiome profile were observed between the forager Khoisan-speaking Sekele, and the 

Bantu-speaking pastoral and peripatetic populations, and that the larger difference was 

between all these populations versus the agropastoral ones.   

We tested whether there were statistically significant differences between the 

microbial profiles of the individuals according to diverse characteristics of the populations 

studied with PERMANOVA analysis. Although we found significant differences according 

to all comparisons performed, the individuals were better separated in agropastoralists 

versus non-agropastoralists. It is important to highlight that the groups compared present 

also different dispersions, which can result in significant values for PERMANOVA. 

Whereby we cannot conclude that the groups have in fact different compositions. 

Nevertheless, taking into account the results from the ordination and cluster analysis, it is 

reasonable to state that the agropastoral and the non-agropastoral groups present 

different compositions of the oral microbiomes, and that the significant value obtained with 

the PERMANOVA test would not only result from the groups different dispersions. 

One of the reasons that could be responsible for the differences between these 

two groups is diet as has been documented (Nasidze et al., 2011; Nam et al., 2011; 

Schnorr et al., 2014). Agropastoralists probably present a higher carbohydrate intake 

coming from the crops they grow compared to hunter-gatherers, which likely present a 

higher animal protein intake derived from game food. However, since we lack reasonable 

information about differences in nutrient intake between these populations, especially 

referent to the Angolan peripatetics (Kwisi, Twa and Tjimba) is not possible to conclude 

whether the observed differences are reflective of their different diets or not. 
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Another plausible reason for the observed differences in the oral microbiome of 

agropastoral and non-agropastoral groups could be related with a socio-economic status. 

Agropastoralist’s primary economic activity are growing crops and raising livestock, which 

represent a higher profit activity than foraging or being a pastoralist. Thus, when focusing 

on Angola, the agropastoralists Nyaneka, Ganguela and Ovimbundu are wealthier and 

have a higher status than individuals with other lifestyles. In addition, the economic status 

could be related with the level of hygiene, and so, higher in agropastoralists. Kidd et al., 

(2014) found that, the oral microbiome of KhoeSan presented several known pathogens 

among the most abundant taxa, what was not true among healthy Americans. The authors 

suggested that this could result from a “limited access to dental care, antibiotics and/or 

absence of water fluoridation among the KhoeSan”. This hypothesis could explain the 

differences observed in our populations, but should be studied in more detail. Other studies 

have speculated about the influence of the oral hygiene in the oral microbiome. Clement 

et al., (2015) proposed that the similar levels of diversity observed between the Yanomami 

and the U.S. individuals could result from the level of oral hygiene and from the habit of 

chewing of tobacco, however, in terms of composition, the oral microbiomes from these 

two populations was different.  

In order to obtain more accurate conclusions about the factors responsible for the 

differentiation of the oral microbiomes in agropastoral and non-agropastoral groups, it 

could be useful to investigate in which biological processes the species or genera with 

different abundances between agropastoral and non-agropastoral groups are involved. 

Likewise, the pathogen load of those populations might give clues about their hygienic 

levels. Finally, further analysis comparing the microbiome profiles of the populations here 

studied with those from other hunter-gatherer and agropastoral groups (Nasidze et al., 

2011), as well as from populations having a western lifestyle (Lassalle et al., 2018) would 

be useful to understand the pattern here observed.  

In conclusion, we corroborate that the Human Exome Capture Sequencing 

approach applied to oral samples allows a faithful characterization of the human oral 

microbiome. Through this approach we conclude that several African populations present 

distinct oral microbiome profiles, which mainly discriminate agropastoral from non-

agropastoral groups, beyond this, as reported in previous studies, the agropastoral 

individuals present the less diverse oral microbiomes. These differences could result from 

the diet and other conditions, which are likely related to differences in the economic-status, 

like the levels of hygiene, although more studies are needed. Taking into account that the 

diverse populations analysed are from an understudied region, our study provides valuable 
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information to a more complete comprehension of the global human oral microbiome 

composition. 
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6. Appendix 

 
Figure S1 | Bar plots showing the number of microbial species identified for the individuals of each population. 

 

 
Figure S2 | Bar plots showing the number of microbial genera identified for the individuals of each population. 
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Figure S3 | Relation between the number of reads obtained for each individual and the correspondent number of microbial 

genera identified.  Spearman correlation between these two variables: rs = 0.851 p-values < 2.2e-16. 

 
Figure S4 | Box plots showing the distribution of alpha diversity values (Shannon index) calculated for the individuals of 

each population at the genus level. Numbers inside box plots correspond to populations mean values. 
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Figure S5 | Box plots showing the distribution of beta diversity values (Bray–Curtis dissimilarity) calculated between 

individuals of each population at the genus level. Numbers inside box plots correspond to populations mean values. 
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Figure S6 | Principal component analysis based on microbial species (A and B) and genera (C and D) data from 70 

Southern African individuals. A and C represent PC1 and PC2 whereas B and D represent PC1 and PC3. Individuals are 

represented by a specific combination of symbol and colour representative of the population. Population midpoints are 

indicated with larger symbols. 
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Figure S7 | Loading plots (positioning of the variables species and genera) of the principal component analysis based on 

microbial species (A) and microbial genera (B) data from 70 Southern African individuals. For both PCA the 20 

species/genera with the greatest contribution to PC1-PC2 are represented. Species are coloured by contribution as 

indicated by the legend. 
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Figure S8 | Principal component analysis based on microbial species (A and B) and genera (C and D) data from 62 

Angolan individuals. A and C represent PC1 and PC2 whereas B and D represent PC1 and PC3. Individuals are 

represented by a specific combination of symbol and colour representative of the population. Population midpoints are 

indicated with larger symbols.  
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Figure S9 | Loading plots (positioning of the variables species and genera) of the principal component analysis based on 

microbial species (A) and microbial genera (B) data from 62 Angolan individuals. For both PCA the 20 species/genera 

with the greatest contribution to PC1-PC2 are represented. Species are coloured by contribution as indicated by the 

legend. 
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Figure S10 | Non-metric multidimensional scaling based on microbial species (A and B) and genera (C and D) data from 

70 Southern African individuals (in both cases a three-dimensional NMDS was built). A and C represent dimensions 1 

and 2 of the NMDS, while B and D represent dimensions 1 and 3. On the species based NMDS (A and B) the stress level 

was 0.128 whereas on the genera based NMDS (C and D) the stress level was 0.144. In order to better understand the 

positioning of the populations in the low-dimension space, the individuals with more extreme positions in each population 

where connected by lines forming population polygons represented by a specific colour as indicated by the legend. 
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Figure S11 | Non-metric multidimensional scaling based on microbial species (A and B) and microbial genera (C and D) 

data from 62 Angolan individuals (in both cases a three-dimensional NMDS was built).  A and C represent dimensions 1 

and 2 of the NMDS, while B and D represent dimensions 1 and 3. On the species based NMDS (A and B) the stress level 

was 0.12 whereas on the genera based NMDS (C and D) the stress level was 0.134.  In order to better understand the 

positioning of the populations in the low-dimension space, the individuals with more extreme positions in each population  

where connected by lines forming population polygons represented by a specific colour as indicated by the legend. 
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Figure S12 | Heatmap of species abundance in 95 African individuals. Individuals (rows) are coloured in relation to their 

population. 

 

 

Figure S13 | Heatmap of genera abundance in 95 African individuals. Individuals (rows) are coloured in relation to their 

population. 
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Figure S14 | Heatmap of species abundance in 70 Southern African individuals. Only the 20 species with the greatest 

contribution to principal component 1 and 2 of the respective PCA are shown. Individuals (rows) are coloured in relation 

to their population. 

 

 

 

 

Figure S15 | Heatmap of genera abundance in 70 Southern African individuals. Only the 20 genera with the greatest 

contribution to principal component 1 and 2 of the respective PCA are shown. Individuals (rows) are coloured in relation 

to their population. 
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Figure S16 | Heatmap of species abundance in 62 Angolan individuals. Only the 20 species with the greatest contribution 

to principal component 1 and 2 of the respective PCA are shown. Individuals (rows) are coloured in relation to their 

population. 

 

 

 

 

Figure S17 | Heatmap of genera abundance in 62 Angolan individuals. Only the 20 genera with the greatest contribution 

to principal component 1 and 2 of the respective PCA are shown. Individuals (rows) are coloured in relation to their 

population. 

 

 

 

 


