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Abstract 

 

Electric vehicles are facing critical problems that compromise their sales and leave potential 
buyers in doubt when considering purchasing this type of vehicle, especially considering the 
lack of infrastructure to meet the unprecedented demand. This dissertation addresses the 
problem of designing an appropriate infrastructure to charge electric vehicles, including the 
location of recharging stations, through a Mobile Charging Service (MCS). This is achieved 
with the development of an optimization model that considers the reduction not only of the cost 
per journey, but also of the costs with the construction of the recharging stations, while seeking 
to offer a high quality recharging service, able to satisfy strict demand time and location 
requirements. 

Contributions from the literature were analyzed and informed the design of the core 
characteristics of the approach as well as the steps of the service. 

A stochastic model was developed and implemented in IBM Ilog Cplex Optimization Studio. 
The model was formulated as a mixed integer linear program (MILP) and used to solve location 
routing problems (LRP) with time windows (TW) and recharging stations location. The model 
deals appropriately with demand uncertainty. For demonstration purposes, tests were made 
comparing deterministic and stochastic settings, and verifying the model’s ability to improve 
service capacity while saving investment and operating costs. 

To examine the impact of technological performance and operational capacity variations, a 
sensitivity analysis was applied on battery capacity, travelling consumption rate, price of the 
recharging stations, and number of vehicles needed to provide the service. Technological 
progress, in particular, may have an important impact in providing more efficient services to 
the customers. 
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Resumo 

 

Os veículos elétricos enfrentam problemas críticos que estão a comprometer as suas vendas e a 
levantar dúvidas aos potenciais clientes quando consideram a aquisição deste tipo de veículos, 
especialmente num contexto de infraestrutura insuficiente para dar resposta a uma procura sem 
precedentes. Esta dissertação foca-se no problema de projetar uma infraestrutura apropriada 
para o carregamento de veículos elétricos, incluindo a localização de postos de carregamento, 
através de um Serviço de Carregamento Móvel (SCM). Tal é realizado através do 
desenvolvimento de um modelo de otimização que considera a redução não só do custo por 
viagem, mas também dos custos com a construção dos postos de carregamento, procurando em 
simultâneo oferecer um serviço de carregamento de elevada qualidade, capaz de satisfazer 
requisitos exigentes de calendarização e localização da procura. 

Foram analisados contributos da literatura, que informaram a conceção dos aspetos centrais da 
abordagem, bem como as fases do serviço. 

Foi desenvolvido um modelo estocástico, com implementação no ambiente IBM Ilog Cplex 
Optimization Studio. O modelo foi formulado como um modelo de programação linear inteira 
mista e utilizado para resolver problemas de localização-distribuição (location routing 
problems – LRP) com janelas temporais e localização dos postos de carregamento. O modelo 
considera apropriadamente a incerteza na procura. Com propósitos de demonstração, foram 
efetuados testes comparando contextos determinísticos e estocásticos, e verificando a 
capacidade do modelo de melhorar a capacidade do serviço e simultaneamente reduzir custos 
de investimento e operacionais. 

Para avaliar o impacto de variações de desempenho tecnológico e capacidade operacional, 
aplicou-se uma análise de sensibilidade à capacidade da bateria, taxa de consumo em 
deslocação, preço dos postos de carregamento, e número de veículos necessários para 
disponibilizar o serviço. O progresso tecnológico, em particular, poderá ter um papel importante 
na disponibilização de serviços mais eficientes aos clientes. 
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1. Introduction 

1.1. Background and motivation 

In the early 21st century, in response to warnings about environmental and climate changes, the 
adoption of other types of vehicles in the automobile industry was assumed as an important 
measure to reduce the emissions of greenhouse gas. The sector is responsible for 14% of 
greenhouse gas emissions (IPCC, 2014) and produced more than 98 million cars in 2017 
(European Automobile Manufacturers Association, 2018). The mission of reducing CO2 
emissions has been on the agenda of both private and public sectors. Companies have created 
alternatives to the Internal Combustion Engine (ICE) like Plug-in Hybrid Electric Vehicles 
(PHEVs) and Battery Electric Vehicles (BEVs) and governments have tried to provide 
incentives and tax breaks (Un-Noor, Padmanaban, Mihet-Popa, Mollah, & Hossain, 2017) to 
encourage the purchase of these types of vehicles. 

As a consequence, society has been positively adapting and the sales of electric vehicles have 
been growing since 2014, reaching 1.5% of every passenger car sold in the European Union  in 
2017 (European Automobile Manufacturers Association, 2018). 

Furthermore, a great number of countries have introduced targets for their EV fleet and have 
improved their infrastructures to meet the increasing demand. 

1.2. Problem and goals 

Addressing problems such as the reduced drive range and the extended recharging time (Tietge, 
Mock, Lutsey, & Campestrini, 2016) requires a highly capable infrastructure.  

An emerging alternative to tackle the abovementioned issues is Mobile Charging Services for 
EV. These services are capable of supplying energy to customers regardless of their time and 
location requirements, focusing on the minimization of response times (Huang, He, Gu, Wood, 
& Benjaafar, 2015). The service operations’ process allows the supplier to know the 
identification of the BEV, its state of charge, the charging time interval and the location (Cui, 
Zhao, & Zhang, 2018). Then, a Mobile Charging Vehicle, whose power source consists of 
energy storage mounted on the vehicle’s back compartment (Atmaja & Amin, 2015), travels to 
the location and is able to charge the battery of the cars that request a power charge. 

1.3. Methodology 

This dissertation proposes an optimization-based approach to design an infrastructure for such 
a Mobile Charging Service for EV. The main operational problem that the service provider 
needs to tackle is a location routing problem, considering time windows and recharging station 
costs. To consider the significant uncertainty in the demand for the service, we develop a 
stochastic model that adapts the deterministic model of Cui et al.(2018) and implement it in 
IBM Ilog Cplex Optimization Studio. 

Considering demand projections, the optimization model allows exploring the tradeoff between 
investment and operating costs, to assess whether it is cheaper to build just the main recharging 
station or to build additional recharging stations closer to the potential demand in order to 
respond in a more effective way to the customer requests. The model addresses two areas of  
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decision, location and routing, and allows determining the best decision to minimize the costs 
while making sure that the customers are supplied within a certain period. 

To put the model into practice, random instances were created based on the literature, namely 
including deterministic and increasingly volatile stochastic versions of a same instance, and an 
optimization-based sensitivity analysis was carried out for those instances, focusing on battery 
capacity, consumption rate, price of the recharging stations and number of vehicles available to 
provide the service. 

1.4. Outline 

The above is explored and developed in detail in the following chapters, starting with the 
literature review, and following with the detailed description of the mobile charging service and 
the Mixed Integer Linear Programing (MILP) formulation of the model. Thereafter, in chapter 
4, the numerical results obtained with the optimization-based sensitivity analysis are presented, 
and the document closes with a discussion of the results and final conclusions. 
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2. Literature Review 

This chapter presents some of the relevant studies in the field of Electric Vehicles (EV) that 
were revealed to be important references for this work. The first part will be focused on 
understanding the environmental changes taking place in the world and the reasons to adopt 
another type of vehicle. The second will focus on services in the area of EV and on the 
respective research that was most directly relevant for this work. The following section presents 
optimization approaches used in diverse studies and how to combine them to have a better 
solution, and the last part will present two-stage modeling structures in stochastic and 
deterministic settings. 

2.1. Environmental changes and new types of vehicles 

In a world of constant change, “the human influence on the climate system is clear and growing” 
(IPCC, 2014), so measures are being adopted with the aim of reducing the emission of 
greenhouse gas (GHG) into the atmosphere. One of the most important sectors for this goal is 
the transportation sector, which emits 25 percent of the GHGs produced by energy-related 
sectors (Yong, Ramachandaramurthy, Tan, & Mithulananthan, 2015), and especially urban 
mobility, which accounts for 40% of all CO2 emissions from road transportation (Nanaki et al., 
2017). 

The situation required more responsible and sustainable alternatives to be presented. The 
market reacted and a range of Electric Vehicles emerged: Battery Electric Vehicles (BEV), 
Hybrid Electric Vehicles (HEV), Plug-in Hybrid Electric Vehicles (PHEV) and Fuel Cell 
Electric Vehicles (FCEV) (Un-Noor et al., 2017). These kinds of vehicles are different in their 
configurations and while being quite distinct, they promote more effective solutions to fight the 
negative impacts of conventional vehicles (Darabi & Ferdowsi, 2012) in terms of emissions of 
gases to the atmosphere and as a replacement of Internal Combustion Engine Vehicles (ICEV). 
The benefits surrounding these green solutions are multiple: they are four times more energy 
efficient compared to ICEV (Helmers & Marx, 2012), they reduce gasoline consumption and 
GHG from 30 to 50% with no change in the vehicle class (Romm, 2006) and, finally, they 
feature lower user costs per km, noise and pollution (Egbue & Long, 2012). 

With all these benefits, international institutions started to deploy a variety of policies to 
increase the sales of these type of vehicles. With the EU trying to achieve 10% of renewable 
energy in transportation by 2020 (Directive 2009/28/EG, 2009), members states would need to 
reduce emissions from passenger cars significantly (EP, 2009). The International Energy 
Agency (IEA) aims to reach a combined total of 20 millions full and plug-in hybrid Electric 
Vehicles by 2020 (Hawkins, Singh, Majeau-Bettez, & Strømman, 2013). 

In addition to institutions, governments also reacted, e.g., Ireland introduced a new tax system 
to encourage the purchase of vehicles with lower CO2 emissions (Caulfield, Farrell, & 
McMahon, 2010), the United States provided a $2,000 tax deduction in the purchase of Hybrid 
Vehicles (Diamond, 2009), Germany exempted vehicles registered before 2016 from ownership 
tax for 10 years for, and vehicles registered between 2016 and 2020 for 5 years (Tietge et al., 
2016), and Spain launched plan MOVELE to assist the implementation of the electric vehicle 
in Spanish cities (Sierzchula, Bakker, Maat, & Van Wee, 2014). In general, several countries 
opted for benefits such as “tax or other economic ones such as reduced/exempted parking free 
or congestion charges, but in some instances also allow access to bus lane or carpool lanes”, 
according to Bjerkan et al. (2016).  
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Despite the global approach to incentives and policies, the outcome seems to be insufficient 
(Canals Casals, Martinez-Laserna, Amante García, & Nieto, 2016) as there are many limitations 
in this field, from social and economic to technological and operational. 

From a social point of view, there are multiple challenges such as changing habits (Wolsink, 
2012) and the resistance to new unproven or unfamiliar technology (Egbue & Long, 2012). On 
the economic side, it is important to mention the high price of EV batteries (Nykvist & Nilsson, 
2015) and the high cost of these types of cars (Chan, 2002). 

From the technological and operational perspectives, it is worth mentioning the limited range 
of the vehicles, which afflicts owners with “range anxiety“, according to He et al. (2014) and 
Tate et al. (2008), the insufficient number of recharging stations (Masuch, Lützenberger, 
Ahrndt, Heßler, & Albayrak, 2011), and the lack of commercial availability of alternative fuels 
(Directive 2009/28/EG, 2009). This problem is present overall and in the United States of 
America, “individuals were willing to pay from $35 to $75 dollars for a mile of added driving 
range” (Hidrue, Parsons, Kempton, & Gardner, 2011). The limited range, together with the long 
charging period (Qin & Zhang, 2011), are the two big limitations that make customers reluctant 
to purchase such vehicles, and are addressed through the implementation of a Mobile Charging 
Vehicle (MVC) service such as the one considered in this work. 

2.2. Related Applications of Mobile Charging Services 

Among the different ways of recharging electric vehicles available in the market, the most 
common one is plug-in charging (He et al., 2014), followed by battery swapping (Adler & 
Mirchandani, 2014; Mak, Rong, & Shen, 2013; H. Sun, Yang, & Yang, 2019), dynamic wireless 
recharging (Liu & Wang, 2017), and charging lanes (Z. Chen, He, & Yin, 2016). Plug-in 
charging may be divided in three levels: slowest, primary, and fast charging (Shareef, Islam, & 
Mohamed, 2016; Yilmaz & Krein, 2012). 

The services that are being applied and studied in this area can be divided in different categories: 

 Mobile Charging Services, studied by Cui et al. (2018), provide the service at any time 
and location. Atmaja et al, (2015) present a similar service, but with two modes, the first 
consisting of on-grid charging, with the provider connecting to the electric grid, and the 
second consisting of off-grid charging, with the provider using only battery power; 

 Battery Swapping Services, addressed by Mak et al., (2013), who consider a model of 
infrastructure where any customer can be supplied full energy at a warehouse by 
swapping the battery, and H. Sun et al., (2019), who consider a multi-interval battery 
swapping location and battery inventory-recharging planning problem; 

 Infrastructures to provide energy to customers, addressed in location studies for multiple 
types of BEV recharging facilities (Liu & Wang, 2017), recharging stations (Bakker, 
2011; Frade, Ribeiro, Gonçalves, & Antunes, 2012), and mobile charging stations 
through heterogeneous networks consisting of macrocells and small cells (H. Chen, Su, 
Hui, & Hui, 2017). 
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2.3. Location Routing, Time Windows and Recharging Stations Location 

In this section, we introduce mathematical models relevant to the problem addressed in this 
work, which involves serving multiple customers who request Mobile Charging Services, while 
seeking to reduce distances between services and recharging stations and costs of construction. 

Mobile Charging Services have been directly addressed in studies such as those by Huang et 
al., (2015), who use a queuing based analytical approach called “nearest job next”, Cui, Zhao, 
Chen, & Zhang, (2018), who seek to minimize the total distance of MCVs required to complete 
all charging requests for BEV drivers in distributed locations, and Cui et al,(2018), who use the 
Location Routing Problem (LRP) as a basis to locate recharging facilities and develop routing 
plans for MCVs. 

The LRP is closely linked with the VRP (Wu, Low, & Bai, 2002). Although not recognized 
until the 1970s (Min, Jayaraman, & Srivastava, 1998), the reality is that the LRP can be defined 
as a VRP in which the location of the depots are calculated simultaneously with the schedules 
and distribution routes in order to minimize the total system cost. The LRP could be viewed 
more as the strategic level and the VRP as the tactical level. There are many real world 
applications for these kinds of problems, such as waste collection (Caballero, González, 
Guerrero, Molina, & Paralera, 2007), bill delivery (Lin, Chow, & Chen, 2002), drink 
distribution (Watson-Gandy & Dohrn, 1973) and military equipment location (Murty & Djang, 
1999). In the end, the LRP joins the facility location problem with the vehicle routing problem 
(Barreto, Ferreira, Paixão, & Santos, 2007). 

When considering delivering something by car, it is important to consider the high number of 
constraints that can arise in the way this service is performed. These constraints, such as 
distances, include also temporal windows with specific routes, which are addressed in the 
Vehicle Routing Problem with Time Windows (VRPTW). This problem, in which a vehicle 
has to reach an objective in a specified time interval (Gendreau & Tarantilis, 2010), while 
handling realistic complications of the basic routing model (Schrage, 1981), has been 
extensively studied and tested (Bräysy & Gendreau, 2005; Dalmeijer & Spliet, 2018). Time 
windows have multiple applications, from postal deliveries (Blanutsa, 2010; L. Sun, Zhao, & 
Hou, 2015), to bank deliveries (Rod, Ashill, & Gibbs, 2016) or dial-a-ride services (Sexton & 
Bodin, 1985).   

However, using a BEV requires considering the existence of more constraints, which extend 
the VRPTW to the electric vehicle fleet VRPTW (E-VRPTW) (Schneider, Stenger, & Goeke, 
2014): a limited range and the possibility of recharging vehicles in an available station with an 
appropriate scheme. The time to recharge depends on the level of battery upon arrival at the 
station. Moreover, with the introduction of these kinds of vehicles, the authors above sought to 
identify the minimum number of vehicles to be employed and total travel distance. In a similar 
way, Keskin et al, (2016) adopt the possibility of a partial recharge with the power required to 
ensure the service (E-VRPTW-PR). In this work we consider the Location Routing Problem 
with Time Windows and Partial Recharge Strategy, which means that the MCVs will be able 
to charge only what they need to provide the service and get back to the recharging station, with 
the intention of providing the customer an efficient and fast service. 
  



Optimisation Analysis of an Electric Vehicle Mobile Charging Service with Demand Uncertainty 

 

6 

 

2.4. Two-stage deterministic and stochastic models 

In this work, we extend a deterministic model, whose outcome is precisely determined without 
any random variation and always produces the same output, to a two-stage stochastic model, 
which uses ranges of values for parameters in the form of probability distributions. 

Many studies have been conducted comparing stochastic models with their deterministic 
counterparts (Blount, 1991; Cook & Russell, 1978). Those related with EV, LRP and multi-
depot contexts are the most relevant for this study.  

Kim et al. (2017) propose a stochastic model and charging scheduling method for an EV battery 
charging system. Differently, Laporte et al. (1989) combined an LRP and a VRP, considering 
two stages of decision: the first stage consisted of making a few decisions before having all 
information, and the second took place after the information became available, trying to 
accomplish the best outcome. Lastly, Wu et al. (2002) presented a stochastic model showing 
individual customer demand in order to reflect reality more accurately in future applications. 

These studies have in common an effort to explicitly incorporate uncertainty to address future 
demand in a more accurate way, which is also the goal in considering a stochastic model in this 
study. The model will be able to address a few questions that cannot be considered in a 
deterministic model, and will allow avoiding the analysis biases that result from considering a 
deterministic demand (Powell, 1986). 
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3. Problem Description 

3.1. Notation 

For readability, we have listed the notations used in our work in table 1 for indices, table 2 for 
sets, table 3 for parameters, and table 4 for decision variables. 

 

Table 1 Indices 

Indices Definition 

s Index of scenarios, s ϵ S      

i, j Index of nodes, i,j ϵ V’s, 0, N+1 

(i,j) Index of physical link between two adjacent nodes, (i,j) ϵ A 

µ The µth type of recharging station 

 

Table 2 Sets 

Sets Definition 

Ф Set of feasible types of recharging stations; µ ϵ Ф = {1,2,3}  

F Set of recharging stations 

F’ Set of dummy vertices of F 

F0’ Set of dummy vertices of depot instance 0 

F’0 Set of charging visits including depot instance 0 

Vs Set of customers in scenario s 

Vs, 0 Set of customers including depot instance 0 in scenario s 

V’s Set of customer vertices including visits to recharging stations in scenario s, 
V’s = Vs U F’ 

V’s, 0 Set of customers and dummy vertices visits including depot instance 0 in 
scenario s, V’s, 0 = V’s U {0} 

V’s, N+1 Set of customers and dummy vertices visits including depot instance N+1 in 
scenario s, V’s, N+1 = V’s U {N+1} 

V’s, 0, N+1 Set of customers and dummy vertices visits including depot instance 0 and N+1 
in scenario s, V’s, 0, N+1= V’s U {0} U {N+1} 

V = V1 U V2 U V3 U… U Vs 

A {(i,j): i,j ϵ V, i ≠ j} 

S Set of scenarios 
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Table 3 Parameters 

Parameters Definition 

B The budget limit for building recharging stations 

Cap Number of vehicles available 

di,j Distance of link (i,j) ϵ A 

ci,j Cost of link (i,j) ϵ A 

ti,j Travel time of link (i,j) ϵ A 

ɛµ Recharging rate of type µ 

bµ
 Cost of building recharging station type µ 

qi The power demand for one electric car in node i ϵ V 

Q Battery capacity for Service Car 

h Charge consumption rate in traveling 

α The number of corresponding dummy nodes of one candidate recharging 
station 

ui,s Demand number of node i ϵ Vs, with ui,s = 0 if i does not belong to set Vs 

ai Earliest start of service at node i ϵ V 

li Latest start of service at node i ϵ V 

zi Service time at node i ϵ V 

M Sufficiently large constant 

Ps Probability of scenario s 

 

Table 4 Variables 

Variables Definition 

Sµ
i =1 if recharging station type µ should be built in node i; otherwise = 0 

𝜏 ,  The time of arrival at node i in scenario s, i ϵ V’s, 0, N+1, s ϵ S 

Fi,s The recharging amount of electricity at node i in scenario s, i ϵ V’s, 0, N+1, s ϵ S 

xi,j,s =1 if arc (i,j) is traveled in scenario s; = 0 otherwise 

yi,s The remaining battery on arrival at node i in scenario s  
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3.2. Problem characteristics 

This work addresses the problem of designing an infrastructure for a mobile charging service, 
with the construction of one or more recharging stations. 

The problem, and the instances created for our experiments, feature the following main 
characteristics: 

 There will be one fixed main recharging station, which will be a type 3 station built in 
a central location. 

 Additional recharging stations may be built, of three different types: the first type has a 
recharge rate of 0.35, type 2 a recharge rate of 0.25, and type 3 a recharge rate of 0.3. 

 The recharging stations just recharge MCVs, not customers. Several potentials are 
considered sites for the recharging stations, whose location has to be defined before 
knowing the customer demand. 

 The multiple visits to the recharging stations are modelled with the help of a dummy 
node set, each node corresponding to one visit. 

 Each customer, in sets whose numbers vary from 5 to 15 in the scenarios considered in 
our instances, is supplied once, in a specific time window given by the earliest and the 
latest start, to satisfy the lack of power in their batteries, which establishes the electricity 
demand. 

 A homogenous fleet of 3 MCVs, powered by a rechargeable battery with fixed capacity, 
departs from the main recharging station, eventually returns to one or more of the 
recharging stations to recharge in order to continue serving customers, and finally 
returns to the main recharging station after having served all customers. The MCVs will 
consume energy not only with the energy they provide to customers, but also on the 
trips. If they do not have enough energy to supply the customer and return to a 
recharging station, they will recharge earlier with enough energy to provide the service 
faster. After all the services, the vehicle gets back to the main recharging station still 
with energy or empty. Seeking efficiency, the vehicles will typically recharge as few 
times as possible and leave the main station fully charged. 

 To simplify the model, there is no congestion or relief on the road. The travel time and 
energy consumption therefore have a close relation with the travel distance, linking the 
routing of the MCV with the minimization of the total travel distance of the vehicles. 
The MCV’s recharging amount is thus equal to the journey that they must do from the 
point of departure where they recharge until they visit again a recharging station. In this 
journey they will serve as many customers as they can. 

 Overall, the service seeks to minimize the costs of the traveled distances and of building 
recharging stations, exploring the trade-off between these costs, i.e., if it does not pay 
off for a vehicle to go back to the main recharging station and come back to the 
customer, a recharging station may be built. 
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3.3. Optimization Model 

In this section, we present the mathematical model, which is based on the model proposed by 
Cui et al. (2018). Enhancements were made to the original model in order to improve the 
consideration of additional aspects of practical relevance. 

Probabilistic scenarios were added to better represent randomness and make the model more 
robust. The objective function was expanded to include recharging stations construction costs, 
and accordingly the budget constraint was removed. There was also a change related to the 
number of cars allocated to provide the service which was kept fixed. In the flow constraints, a 
set of constraints were added to restrict the set of requests according to the corresponding 
scenario, i.e., if the scenario includes only 8 out of the of the total 15 requests, these constraints 
will remove the others from consideration. 

When applying mathematical models to real-world problems, there are always aspects that must 
be assumed and others disregarded, to be able to cope with complexity. In our case, some 
features of the mobile service have been simplified given the many directions in which the 
model could evolve. 

Thus, the number of services to be provided by the mobile charging vehicles as well as the 
number of vehicles available and the service time (arrival and departure) are set in advance. 
The service provider recharges the vehicle only if it does not have enough energy to provide 
the service or cannot return to the recharging station after the service that it has to do. 
Furthermore, it may recharge even if it still has some battery and may recharge more than once 
to be able to serve all the customers. 

The average speed of the MCVs is 22 km/h, as assumed in the study by Kenworthy et al. (1999), 
and the cost of each recharging station was obtained from the study by Axsen et al. (2012). The 
cost was divided by the number of years of depreciations (5) and days of use per year (365) to 
fit the daily time horizon of the instances. The electricity cost was calculated based on the 
estimated price of the Portuguese market, for which this study was undertaken, 0.2 €/kWh 
(Camus, Farias, & Esteves, 2011). The energy consumption per kilometer is 0.183 kWh/km, as 
given by Fetene at al. (2017). 

Factors such as traffic or the relief of the city are not considered (Neubauer, Brooker, & Wood, 
2012). The recharging rate, ɛ, is assumed constant and the battery capacity, Q, varies according 
to different possible classes.  

The mathematical model can be presented as a MILP (mixed integer linear programming) 
model, as follows. 

The objective is the minimization of the total costs of traveling and building recharging stations: 

 

 

                                    𝑀𝑖𝑛 𝑃 𝑐 ,  𝑥 , ,

∈ ’ ,∈ ’ ,∈

+ 𝑆
µ
𝑏µ

µ  Ф ∈ /{ } 

                                           (1) 
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Ps is the probability of scenario s. ci,j is the cost of traveling between starting node i and end 
node j. xi,j,s  is a binary decision variable, which takes the value of 1 if the arc (i,j) is traveled in 
scenario s, and 0 otherwise. Sµ

i is a binary decision variable, which takes the value 1 if a 
recharging station of type µ is built in node i, and 0 otherwise. bµ denotes the cost of building 
a recharging station of type µ. 

The recharging stations constraints are as follows: 

 

                                                               𝑆
µ

µ  Ф 

 ≤ 1 , ∀ 𝑖 ∈ 𝐹/{0}                                                                   (2)  

 

                                                         𝑆

µ  Ф 

= 1 , ∀ 𝑖 ∈ 𝐹{0}                                                              (3) 

 
                                𝑆

µ
=  𝑆

µ
= 𝑆

µ
= 𝑆

µ
 … = 𝑆

µ
, ∀ 𝑖 ∈ 𝐹/{0}, ∀ µ ϵ Ф                         (4) 

 
 

                                                              𝑆
µ

∈ {0,1}, ∀ 𝑖 ∈ 𝐹 , 𝑖 ≠ 𝑗, ∀ µ ϵ Ф                                                      (5) 

 

Constraints (2) ensure that only one type of charging device can be built for each dummy node, 
while constraints (3) limit the recharging station to be built in the depot node {0} to type 3. 
Constraints (4) assign the dummy nodes the same type as the corresponding recharging station. 
The binary constraints for the decision variables are enforced in constraints (5). 

The flow constraints are as follows: 
 

                                                   𝑥 , , = 1, ∀ 𝑖 ∈ 𝑉  , ∀ 𝑠 ∈ 𝑆

∈ , ,

                                          (6) 

 

                                                    𝑥 , , = 0, ∀ 𝑖 ∉ 𝑉  , ∀ 𝑠 ∈ 𝑆

∈ , ,

                                         (7) 

 

                           𝑥 , , − 𝑥 , ,  

∈ , ,

= 0, ∀ 𝑗 ∈ 𝑉′

∈ , ,

, ∀ 𝑠 ∈ 𝑆                                  (8) 

 

                                                         𝑥 , , ≤ 𝐶𝑎𝑝 , ∀ 

∈ ,

𝑠 ∈ 𝑆                                                    (9) 

 
                                                𝑥 , , ∈ {0,1}, ∀ 𝑖, 𝑗 ∈ 𝑉 , , , 𝑖 ≠ 𝑗, ∀𝑠 ∈ 𝑆                                 (10) 
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Constraints (6) guarantee the connectivity of the customer visits in scenario s, with each 
customer visited only once by any mobile charging vehicle. The customers not included in 
scenario s are not visited in that scenario, as implemented by constraints (7). Constraints (8) 
force the number of outgoing travels to be equal to the number of incoming travels at each 
vertex in a scenario s. Constraints (9) establish the maximum number of vehicles that will leave 
node {0} in scenario s to provide the service. Constraints (10) define the binary nature of flow 
decision variables. 

The time constraints are as follows: 

 
        𝜏 , +(𝑡 , + 𝑧 )𝑥 , , − 𝑙 1 − 𝑥 , , ≤ 𝜏 , ∀ 𝑖 ∈ 𝑉 , , ∀ 𝑗 ∈ 𝑉 , , 𝑖 ≠ 𝑗, ∀ 𝑠 ∈ 𝑆        (11) 

 
                                                𝑎 ≤ 𝜏 , ≤ 𝑙 , ∀ 𝑖 ∈ 𝑉 , , , ∀ 𝑠 ∈  𝑆                                             (12) 

Considering the distance di,j between nodes and a fixed travel speed, the travel time ti,j of each 
journey is predetermined. The service times are also predetermined. The times at which a 
vehicle arrives and leaves each customer have to be such that the MCV does not start charging 
before ai and later than li. Waiting times may exist if the vehicle ends the service later than 
expected. Constraints (11) are the time feasibility constraints for the customer nodes and depot 
node with instance of 0 in scenario s. Constraints (12) enforce the time windows for the services 
in scenario s and constraints (13) consider the recharge time instead of the service time when 
the previous node, i, is a recharging station. 

 

𝜏 , + 𝑡 , 𝑥 , , + 𝐹 𝑆 𝜀

µ  Ф

− 𝑙 + 𝜀 𝑄 1 − 𝑥 , , ≤ 𝜏 , ∀ 𝑖 ∈ 𝐹 , ∀ 𝑗 ∈ 𝑉′ , , 𝑖 ≠ 𝑗, 𝑠

∈ 𝑆                                                                                                                                                                    (13) 

 

As pointed out by Cui et al. (2018), the product 𝐹 𝑆  is nonlinear and leads to nonconvexity. 
To address this problem, a nonconvex formulation is obtained through a reformulation-
linearization technique (RLT). 

Let 𝜃µ
= 𝐹 𝑆

µ, for each µ ϵ Ф and i ϵ F′, to linearize the bilinear term: 

 
𝜏 , + 𝑡 , 𝑥 , , + ∑ 𝜃 ,µ  Ф 𝜀 − 𝑙 + 𝜀 𝑄 1 − 𝑥 , , ≤ 𝜏 , ∀ 𝑖 ∈ 𝐹 , ∀ 𝑗 ∈ 𝑉′ , , 𝑖 ≠ 𝑗, 𝑠 ∈

𝑆                                                                                                                                                                    (14)  
 

Following the rules of RLT, 𝜃µ
= 𝐹 𝑆

µ is equivalent to the following constraints: 
 
                                                                          𝜃 , ≥ 0, ∀ 𝑠 ∈ 𝑆                                                          (15) 
 
                                                                     𝜃 , − 𝑆

µ
𝑀 ≤ 0, ∀ 𝑠 ∈ 𝑆                                                (16) 

 
                                                                      𝜃 , − 𝐹  ≤ 0, ∀ 𝑠 ∈ 𝑆                                                    (17) 
 
                                                           𝜃 , − 𝐹 + 𝑀 − 𝑆 𝑀 ≥ 0, ∀ 𝑠 ∈ 𝑆                                      (18) 
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The electricity constraints are as follows: 
 
Customer to customer 
𝑥 , , 𝑞 𝑢 , ≤ 𝑦 , ≤ 𝑦 , − ℎ𝑑 , 𝑥 , , − 𝑞 𝑢 , 𝑥 , , + 𝑄 1 − 𝑥 , , , 𝑖 ∈ 𝑉 , , ∀ 𝑗 ∈ 𝑉 , , 𝑖 ≠

𝑗, ∀ 𝑠 ∈ 𝑆                                                                                                                                   (19) 
 
 

 
Dummy to customer 
𝑥 , , 𝑞 𝑢 , ≤ 𝑦 , ≤ 𝑦 , + 𝐹 , − ℎ𝑑 , 𝑥 , , + 𝑄 1 − 𝑥 , , , 𝑖 ∈ 𝐹 , ∀ 𝑗 ∈ 𝑉 , , 𝑖 ≠ 𝑗, ∀ 𝑠

∈ 𝑆                                                                                                                                                            (20) 
 
                                    𝑥 , , 𝑞 𝑢 , ≤ 𝑦 , ≤ 𝑄 − ℎ𝑑 , 𝑥 , , , ∀ 𝑗 ∈ 𝑉 , , ∀ 𝑠 ∈ 𝑆                    (21) 

 

                                               0 ≤ 𝐹 , ≤ 𝑆
µ

µ  Ф 

𝑀, ∀ 𝑖 ∈ 𝐹 , ∀ 𝑠 ∈ 𝑆                                     (22) 

 
                                                    0 ≤ 𝑦 , + 𝐹 , ≤ 𝑄, ∀ 𝑖 ∈ 𝐹 , 𝑠 ∈ 𝑆                                             (23) 

 

With the battery consumption assumed to be a constant h for each km that the MCV must travel, 
a trip from i to j consumes ℎ𝑑 ,  of the remaining battery. The battery remaining after every trip 
is given by 𝑦 , . Each 𝑢 ,  is assigned a positive number of requests and multiplied by the 
charging demand for each request, 𝑞 , to obtain the demand. It will be zero when the node i 
does not belong to the set Vs. M should be a sufficiently large positive number. 

Constraints (19) and (20) keep track of the state of charge of the battery for the customer and 
dummy nodes, respectively, and ensure that the battery state of charge never falls below the 
electricity demand of the next customer node. In constraints (19), the vehicle comes from 
serving another customer, while in constraints (20) it comes from recharging in a dummy node.  

Constraints (21) address the battery remaining after traveling from node {0} to the first 
customer, considering the consumption made by the MCV. Constraints (22) assure that an MCV 
will recharge in nodes with a recharging station. Finally, constraints (23) enforce that the sum 
of the level of recharging and what was left in the battery does not exceed the capacity of the 
battery. 
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4. Numerical Experiments 

In this chapter we present a set of numerical experiments to demonstrate the model described 
in the previous chapter. The computing platform used for these experiments was a personal 
computer with Intel ® Core ™ i7-5500U 2.40GHz CPU and 12.00 GB RAM, using the 
Microsoft Windows Version 10 Home (64 bit) operating system. The environment used to 
develop the model and carry out the numerical experiments was IBM ILOG Cplex Optimization 
Studio version 12.9.0. 

The study is based on a subset of the instances used by Cui et al,(2018), which in turn are based 
on the well-known VRPTW instances of Schneider et al.,(2014). 

4.1. Generation of benchmark instances 

A set of 15 benchmark instances with scenarios including from 5 to 15 customers were created. 
The 15 instances feature three classes of customer geographic distribution – clustered (C), 
randomly distributed (R), and both clustered and randomly distributed (RC). The difference 
between the classes is the distance from the demand locations to the main station. The demand 
in clustered instances is closer to the main station than in the randomly distributed instances. 
The RC instances join both classes. 

In figure 1, two of the classes are represented in terms of the geographic distribution of the 
demand: on the left, a clustered instance, and on the right, a randomly distributed instance. A 
RC instance will joins both patterns. 

 

 

Figure 1 Geographic distribution of recharging stations and clients in two types of instances, 
clustered on the left and randomly distributed on the right (axes in kilometers) 

In terms of scheduling horizon, short (1) and long (2) is the time frame that the MCV has to 
meet all the demand. In the short scheduling horizon, the MCV has less time and the times of 
the services are shorter than in the long scheduling horizon. In the long scheduling horizon, the 
earliest and latest start correspond to wider time windows and it is easier to satisfy all the 
demand. Geographic distribution classes and schedule horizon are combined to define each 
instance's demand areas and times. For each combination of geographic distribution and 
scheduling horizon, three types of volatility are considered: no volatility, i.e., deterministic (D), 
low volatility (LV) and high volatility (HV). These three types allow, for each instance, the 
possibility of having one deterministic and two stochastic variations. In the two stochastic 
variations, one has a higher volatility and the other a lower volatility. 
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Each type of volatility corresponds to a specific number of scenarios with specific numbers of 
clients. The deterministic instances have 1 scenario with 10 clients. The stochastic instances 
have 5 scenarios. The low volatility instances have scenarios with numbers of clients between 
8 and 12. The high volatility instances have scenarios with numbers of clients between 5 and 
15. In terms of notation for the scenarios, D1-C10 corresponds to the deterministic instances, 
LV5-C812 to the low volatility instances, and HV5-C515 to the high volatility instances.  

Instances with a short scheduling horizon in general were found to require more vehicles to be 
available in the fleet. 

 

 

 

 

Figure 2 Types of instances and correspondences with their codes 

 

Figure 2 presents the coding system used to identify each instance. There are multiple possible 
combinations, according to each instance’s features: geographic distribution class (R, C or RC), 
scheduling horizon (1 or 2), volatility (D, LV or HV), number of scenarios (1 or 5) and customer 
number range (C10, C812 or C515). For example, R2LV5-C812 is an instance with randomly 
distributed customers (R), long scheduling horizon (2), low volatility stochastic (LV5) demand 
and a customer number range between 8 and 12 customers. 

Given the limited time window of 16 hours per day, instances C2 were not considered in the 
sensitivity analyses. 
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In line with the demonstration purpose of these numerical experiments, and to control the size 
of our instances, we selected a subset of three from the 21 candidate recharging station sites in 
the original instances. For a clearer understanding, we illustrate that selection in figures 3 and 
4. Figure 3 shows the 21 candidate recharging stations, from which we selected the one in the 
center to be the main station, and 3 others to cover all the set-up in the best way.  

 

 

Figure 3 Geographic distribution of recharging station candidates (axes in kilometers) 

 

Figure 3 shows the selected candidate sites, jointly with the demand in one of the 15 customer 
scenarios used in our instances. The availability of recharging stations becomes essential if the 
vehicles have little autonomy and need to be recharged often. All instances in each class share 
the same candidate locations for the recharging stations. 

 

 

Figure 4 Example of geographic distribution of selected main and candidate recharging 
stations and customers for an instance (axes in kilometers) 
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The deterministic model has a single scenario corresponding to a probability 1, with 10 
customers. The low volatility model has 5 scenarios corresponding to probabilities 0.3, 0.1, 0.1, 
0.2, and 0.3, corresponding to numbers of customers of 8, 9, 10, 11, and 12 respectively. 
Concerning the high volatility model, the same 5 scenarios were used, with the previously 
mentioned probabilities, but with numbers of customers of 5, 8, 10, 12, and 15. 

The sets of customers are randomly drawn from the sets of 15 customers and used the same 
way in all the instances.  

For the power demand, qi, we assume the values from the original instances, with one request 
per customer. By default, the battery of the MCVs is equal to seven times the average value of 
the total power demand in the customer requests. The recharge rate will be 0.3 in type 3 
recharging stations, 0.25 in type 2, and 0.35 in type 1. In terms of the construction costs and the 
number of vehicles to provide the service the same value is assumed in all instances. When the 
vehicles are providing the service, it is assumed that there is no waste of energy in transferring 
energy from one battery to the other. 

Battery capacities differ between classes of geographic distribution, but are kept equal within 
each class. 

Regarding the time windows it should be mention the earliest and latest start as well as the 
geographic distribution of the clients are important factors that influence the service provider 
journey and can be addressed in the developed model. Power demand, service time, and latest 
start are all values suggested by Schneider et al. (2014). 
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4.2. Base results for all instances 

Table 5 presents an overview of the results for the base situation. This instance will be compared 
in all tables, considering changes in the battery capacity, consumption rate and price of 
recharging stations. For the solutions obtained, the table presents the expected total costs of the 
journeys done by the three MCVs and the possible costs of recharging stations, if built. #RS is 
the number of recharging stations built in each instance, assuming that every instance 
necessarily builds one station. The following parameter is the average number of recharges that 
occurred in each instance in the different recharging stations. The table also includes the battery 
capacity that was considered for each instance. 

 

Table 5 Optimal total cost, recharging amount, and number of recharging stations for the base case 

instances 

No. Instance TC #RS 
# 

Recharges 
Battery 

Capacity 

1 C1D1-C10 9.70 2 1 200 

2 C1LV5-C812 9.85 2 3 200 

3 C1HV5-C515 10.51 2 5 200 

4 R2D1-C10 7.87 1 2 230 

5 R2LV5-C812 10.05 2 6 230 

6 R2HV5-C515 11.69 3 7 230 

7 RC2D1-C10 13.10 2 1 230 

8 RC2LV5-C812 13.24 2 5 230 

9 RC2HV5-C515 15.61 3 5 230 

10 R1D1-C10 10.21 1 1 230 

11 R1LV5-C812 10.98 1 3 230 

12 R1HV5-C515 10.58 1 3 230 

13 RC1D1-C10 10.53 1 1 250 

14 RC1LV5-C812 11.99 2 4 250 

15 RC1HV5-C515 11.70 2 4 250 
 Note: “TC” is the total expected cost in euros, “#RS” is the average number of  recharging stations,  
“#Recharges” is the average number of recharges, and battery capacity is given in in kilometers 

 

4.3. Sensitivity Analysis 

In an era of innovation and technological progress in the electric car industry, it is possible to 
think of improvements in various areas leading to more efficient services. A sensitivity analysis 
may be useful in assessing the impact of such improvements. In the following sections, an 
analysis was carried out, regarding variations in battery capacity, energy consumption of the 
fleet that provides the service, recharging station costs and number of vehicles to provide the 
service. The first three are largely connected with technological aspects, while the fourth one is 
mostly related with operations strategy aspects. 
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4.3.1 Sensitivity analysis for battery capacity 

Regarding battery capacity, two additional cases were created. In case I, with a decrease of 10% 
of the battery capacity, the service vehicles may need to recharge more times but will fill the 
battery faster. On the other hand, in case III, an increase of 10% of the battery capacity allows 
serving more clients with fewer recharges. Case II is the base situation. 

Table 6 presents a comparison between base results and the case with 10% less battery capacity. 
The columns on the right-hand side of the table present the difference between total costs, 
number of recharging stations and number of recharges. 

 

Table 6 Comparison of results for a 10% decrease in battery capacity 

 

No. Instance 
Case I Case II 

ΔTC ΔRS ΔRec 
TC #RS #Rec TC #RS #Rec 

1 C1D1-C10 9.82 2 2 9.70 2 1 1% 0 1 

2 C1LV5-C812 10.01 2 4 9.85 2 3 2% 0 1 

3 C1HV5-C515 10.82 2 6 10.51 2 5 3% 0 1 

4 R2D1-C10 7.87 1 2 7.87 1 2 0% 0 0 

5 R2LV5-C812 10.16 2 7 10.05 2 6 1% 0 1 

6 R2HV5-C515 11.80 3 8 11.69 3 7 1% 0 1 

7 RC2D1-C10 13.29 2 2 13.10 2 1 1% 0 1 

8 RC2LV5-C812 15.45 3 7 13.24 2 5 17% 1 2 

9 RC2HV5-C515 15.80 3 7 15.61 3 5 1% 0 2 

10 R1D1-C10 10.25 1 1 10.21 1 1 0% 0 0 

11 R1LV5-C812 11.31 1 4 10.98 1 3 3% 0 1 

12 R1HV5-C515 10.73 1 3 10.58 1 3 1% 0 0 

13 RC1D1-C10 10.79 1 2 10.53 1 1 2% 0 1 

14 RC1LV5-C812 12.44 2 6 11.99 2 4 4% 0 2 

15 RC1HV5-C515 12.01 2 6 11.70 2 4 3% 0 2 

Note: “TC” is the total expected cost, “#RS” is the average number of recharging stations, “#Rec” is the average 
number of recharges, ΔTC is the variation of total cost in percentage, ΔRS is the variation of the average number 
of recharging stations, and ΔRec is the variation of the average number of recharges 

 

With less capacity, the MCVs need to recharge more often and/or in more recharging stations. 
The total costs, therefore, will generally increase with the decrease in battery capacity. 

As for the number of recharging stations, it is mostly stable, with some variation observed only 
for the RC2LV5-C812 instance that needs to build one more. For the  number of recharges, the 
variation is significant with almost all instances presenting higher numbers of recharges to 
satisfy the same customer demand. Overall, the decrease in battery capacity leads to a small 
increase in the costs and an increase in the number of recharges. 

Table 7 presents a comparison between base results and the case with 10% more battery 
capacity, with a structure similar to Table 6. In this case, with an improvement of 10% in the 
capacity, the MCVs need to recharge less often and/or in less recharging stations. The total 
costs generally decrease with the increase in battery capacity. 
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As for the number of recharging stations, it is mostly stable, with some reductions observed in 
some instances. A large difference in the total costs is visible if recharging stations are not 
required to be built. Regarding the number of recharges, the variation is significant in almost 
all instances. With the increase in capacity, there is a significant improvement in the total costs 
with savings of 15% in some cases. 

 

Table 7 Comparison of results for 10% more battery capacity 

 

No. Instance 
Case II Case III 

ΔTC ΔRS ΔRec 
TC #RS #Rec TC #RS #Rec 

1 C1D1-C10 9.70 2 1 7.87 1 0 -23% -1 -1 

2 C1LV5-C812 9.85 2 3 9.85 2 3 0% 0 0 

3 C1HV5-C515 10.51 2 5 10.31 2 4 -2% 0 -1 

4 R2D1-C10 7.87 1 2 7.72 1 1 -2% 0 -1 

5 R2LV5-C812 10.05 2 6 9.70 2 4 -4% 0 -2 

6 R2HV5-C515 11.69 3 7 9.60 2 5 -22% -1 -2 

7 RC2D1-C10 13.10 2 1 11.27 1 1 -16% -1 0 

8 RC2LV5-C812 13.24 2 5 13.24 2 5 0% 0 0 

9 RC2HV5-C515 15.61 3 5 13.81 2 4 -13% -1 -1 

10 R1D1-C10 10.21 1 1 10.14 1 1 -1% 0 0 

11 R1LV5-C812 10.98 1 3 10.71 1 2 -3% 0 -1 

12 R1HV5-C515 10.58 1 3 10.37 1 2 -2% 0 -1 

13 RC1D1-C10 10.53 1 1 10.41 1 0 -1% 0 -1 

14 RC1LV5-C812 11.99 2 4 10.59 1 2 -13% -1 -2 

15 RC1HV5-C515 11.70 2 4 9.98 1 2 -17% -1 -2 

Note: “TC” is the total expected cost, “#RS” is the average number of recharging stations, “#Rec” is the average 
number of recharges, ΔTC is the variation of total cost in percentage, ΔRS is the variation of the average number 
of recharging stations, and ΔRec is the variation of the average number of recharges 

 

4.3.2 Sensitivity analysis for traveling consumption rate 

With a decrease in consumption, the vehicles will achieve better results with a reduced need for 
recharging. The first case that we consider is a 50% reduction in consumption, and the second 
a reduction of 20% in consumption. Case III will be the base results. The comparison is 
presented in tables 8 and 9 between cases I and III, and between cases II and III, respectively. 

With an improvement of 50% in the consumption rate of the MCVs, the costs of traveling are 
reduced and the need for constructing recharging stations is less intensive. When a car has lower 
consumption with equal battery capacity, it will travel longer distances and be able to offer 
more service. As is visible in Table 8, this happened in almost all instances, with decreases of 
close to 20% in costs when the operations no longer required the same number of recharging 
stations. The number of recharges also decreases in all instances, with a more efficient service. 

With an improvement of only 20%, the cost reduction is not as significant as in the previous 
case, but the incentive to reduce the number of recharging stations is still visible in some 
instances, as can be seen in Table 9. The number of recharges follows the same trend. 
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Table 8 Results for a 50% decrease in travelling consumption rate 

 

No. Instance 
Case I Case III 

ΔTC ΔRS ΔRec 
TC #RS #Rec TC #RS #Rec 

1 C1D1-C10 7.65 1 0 9.70 2 1 -21% -1 -1 

2 C1LV5-C812 7.83 1 1 9.85 2 3 -21% -1 -2 

3 C1HV5-C515 8.01 1 1 10.51 2 5 -24% -1 -4 

4 R2D1-C10 7.56 1 0 7.87 1 2 -4% 0 -2 

5 R2LV5-C812 7.98 1 1 10.05 2 6 -21% -1 -5 

6 R2HV5-C515 9.51 2 3 11.69 3 7 -19% -1 -4 

7 RC2D1-C10 10.67 1 0 13.10 2 1 -19% -1 -1 

8 RC2LV5-C812 11.34 1 1 13.24 2 5 -14% -1 -4 

9 RC2HV5-C515 11.69 1 2 15.61 3 5 -25% -2 -3 

10 R1D1-C10 9.96 1 0 10.21 1 1 -2% 0 -1 

11 R1LV5-C812 10.53 1 1 10.98 1 3 -4% 0 -2 

12 R1HV5-C515 10.12 1 1 10.58 1 3 -4% 0 -2 

13 RC1D1-C10 10.36 1 0 10.53 1 1 -2% 0 -1 

14 RC1LV5-C812 9.87 1 1 11.99 2 4 -18% -1 -3 

15 RC1HV5-C515 9.53 1 2 11.70 2 4 -19% -1 -2 

Note: “TC” is the total expected cost, “#RS” is the average number of recharging stations, “#Rec” is the average 
number of recharges, ΔTC is the variation of total cost in percentage, ΔRS is the variation of the average number 
of recharging stations, and ΔRec is the variation of the average number of recharges 

Table 9 Results for a 20% decrease in travelling consumption rate 

 

No. Instance 
Case II Case III 

ΔTC ΔRS ΔRec 
TC #RS #Rec TC #RS #Rec 

1 C1D1-C10 7.85 1 0 9.70 2 1 -19% -1 -1 

2 C1LV5-C812 8.05 1 2 9.85 2 3 -18% -1 -1 

3 C1HV5-C515 10.18 2 3 10.51 2 5 -3% 0 -2 

4 R2D1-C10 7.63 1 1 7.87 1 2 -3% 0 -1 

5 R2LV5-C812 9.72 2 3 10.05 2 6 -3% 0 -3 

6 R2HV5-C515 9.66 2 5 11.69 3 7 -17% -1 -2 

7 RC2D1-C10 10.98 1 1 13.10 2 1 -16% -1 0 

8 RC2LV5-C812 12.60 2 3 13.24 2 5 -5% 0 -2 

9 RC2HV5-C515 13.80 2 4 15.61 3 5 -12% -1 -1 

10 R1D1-C10 9.96 1 0 10.21 1 1 -2% 0 -1 

11 R1LV5-C812 10.83 1 2 10.98 1 3 -1% 0 -1 

12 R1HV5-C515 10.31 1 2 10.58 1 3 -3% 0 -1 

13 RC1D1-C10 10.28 1 0 10.53 1 1 -2% 0 -1 

14 RC1LV5-C812 11.68 2 2 11.99 2 4 -3% 0 -2 

15 RC1HV5-C515 11.19 2 2 11.70 2 4 -4% 0 -2 

Note: “TC” is the total expected cost, “#RS” is the average number of recharging stations, “#Rec” is the average 
number of recharges, ΔTC is the variation of total cost in percentage, ΔRS is the variation of the average number 
of recharging stations, and ΔRec is the variation of the average number of recharges 
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4.3.3 Sensitivity analysis for the recharging station cost 

The cost of recharging stations assumed in the base situation (case II in this section) is given 
by Axsen et al. (2012), assuming 5 years of depreciation and 365 days of activity per year. The 
cost is 2 € per day, considering that each instance corresponds to one day of activity. In case I 
the costs are reduced from 2 to 1 and in case III increased from 2 to 3. For the analysis of the 
results, it is important to keep in mind that the cost of the base recharging station is always 
incurred and therefore not considered in our analysis. Only additional recharging stations are 
considered. 

Table 10 presents the comparison between the base situation (case II) and the case with a cost 
decrease. There are some differences in the costs due to the reduction in the recharging station 
costs. Only in two instances there are fewer stations than in the base case, and there are no 
differences in the number of recharges. 

Table 10 Results for a 50% decrease in recharging station costs 

 

No. Instance 
Case I Case II 

ΔTC ΔRS ΔRec 
TC #RS #Rec TC #RS #Rec 

1 C1D1-C10 8.70 2 1 9.70 2 1 -10% 0 0 

2 C1LV5-C812 8.85 2 3 9.85 2 3 -10% 0 0 

3 C1HV5-C515 9.51 2 5 10.51 2 5 -10% 0 0 

4 R2D1-C10 7.87 1 2 7.87 1 2 0% 0 0 

5 R2LV5-C812 9.05 2 6 10.05 2 6 -10% 0 0 

6 R2HV5-C515 9.69 3 7 11.69 3 7 -17% 0 0 

7 RC2D1-C10 12.10 2 1 13.10 2 1 -8% 0 0 

8 RC2LV5-C812 13.02 3 5 13.24 2 5 -2% -1 0 

9 RC2HV5-C515 13.61 3 5 15.61 3 5 -13% 0 0 

10 R1D1-C10 10.21 1 1 10.21 1 1 0% 0 0 

11 R1LV5-C812 10.85 2 3 10.98 1 3 -1% -1 0 

12 R1HV5-C515 10.58 1 3 10.58 1 3 0% 0 0 

13 RC1D1-C10 10.53 1 1 10.53 1 1 0% 0 0 

14 RC1LV5-C812 10.99 2 4 11.99 2 4 -8% 0 0 

15 RC1HV5-C515 10.70 2 4 11.70 2 4 -9% 0 0 

Note: “TC” is the total expected cost, “#RS” is the average number of recharging stations, “#Rec” is the average 
number of recharges, ΔTC is the variation of total cost in percentage, ΔRS is the variation of the average number 
of recharging stations, and ΔRec is the variation of the average number of recharges 
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Table 11 Results for a 50% increase in recharging station costs 

 

No. Instance 
Case II Case III 

ΔTC ΔRS ΔRec 
TC #RS #Rec TC #RS #Rec 

1 C1D1-C10 9.70 2 1 10.71 2 1 9% 0 0 

2 C1LV5-C812 9.85 2 3 10.21 1 4 4% -1 -1 

3 C1HV5-C515 10.51 2 5 11.51 2 5 9% 0 0 

4 R2D1-C10 7.87 1 2 7.87 1 2 0% 0 0 

5 R2LV5-C812 10.05 2 6 9.74 1 8 -3% -1 -2 

6 R2HV5-C515 11.69 3 7 10.28 2 8 -14% -1 -1 

7 RC2D1-C10 13.10 2 1 11.50 1 2 -14% -1 -1 

8 RC2LV5-C812 13.24 2 5 14.24 2 5 7% 0 0 

9 RC2HV5-C515 15.61 3 5 14.76 2 7 -6% -1 -2 

10 R1D1-C10 10.21 1 1 10.21 1 1 0% 0 0 

11 R1LV5-C812 10.98 1 3 10.98 1 3 0% 0 0 

12 R1HV5-C515 10.58 1 3 10.58 1 3 0% 0 0 

13 RC1D1-C10 10.53 1 1 10.53 1 1 0% 0 0 

14 RC1LV5-C812 11.99 2 4 10.39 1 6 -15% -1 -2 

15 RC1HV5-C515 11.70 2 4 9.86 1 5 -19% -1 -1 

Note: “TC” is the total expected cost, “#RS” is the average number of recharging stations, “#Rec” is the average 
number of recharges, ΔTC is the variation of total cost in percentage, ΔRS is the variation of the average number 
of recharging stations, and ΔRec is the variation of the average number of recharges 

 

With the increase in the cost, there are some differences, as can be seen in Table 11, with some 
instances featuring a reduction in the number of stations and recharges, and others showing just 
an increase in costs due to the higher station costs. 

 

4.3.4 Sensitivity analysis for the number of vehicles 

The last sensitivity analysis concerns the number of vehicles needed to provide the service. 
Although adding a vehicle could be expensive, in the long term and with an increase in the 
number of customers it could be beneficial. Given the short range of vehicles nowadays, we do 
not consider the situation where the fleet is reduced. 

In Table 13, the reduction of the costs and the impact on the number of recharging stations are 
clearly visible. When there is a reduction of the number of recharging stations, the cost 
decreases more than 10%. For the instances that kept the same number of recharging stations, 
the total cost decreased no more than 4%. In terms of number of recharges, there is not a very 
significant reduction. 
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Table 12 Results for an increase of one in the number of vehicles 

 

No. Instance 
3 Vehicles 4 Vehicles 

ΔTC ΔRS ΔRec 
TC #RS #Rec TC #RS #Rec 

1 C1D1-C10 9.70 2 1 9.70 2 1 0% 0 0 

2 C1LV5-C812 9.85 2 3 9.85 2 3 0% 0 0 

3 C1HV5-C515 10.51 2 5 10.30 2 3 -2% 0 -2 

4 R2D1-C10 7.87 1 2 7.71 1 2 -2% 0 0 

5 R2LV5-C812 10.05 2 6 9.90 2 5 -2% 0 -1 

6 R2HV5-C515 11.69 3 7 9.97 2 6 -17% -1 -1 

7 RC2D1-C10 13.10 2 1 11.43 1 1 -15% -1 0 

8 RC2LV5-C812 13.24 2 5 12.72 2 4 -4% 0 -1 

9 RC2HV5-C515 15.61 3 5 15.38 3 4 -1% 0 -1 

10 R1D1-C10 10.21 1 1 10.16 1 1 0% 0 0 

11 R1LV5-C812 10.98 1 3 10.59 1 3 -4% 0 0 

12 R1HV5-C515 10.58 1 3 10.16 1 2 -4% 0 -1 

13 RC1D1-C10 10.53 1 1 10.44 1 1 -1% 0 0 

14 RC1LV5-C812 11.99 2 4 10.27 1 4 -17% -1 0 

15 RC1HV5-C515 11.70 2 4 11.47 2 4 -2% 0 0 

Note: “TC” is the total expected cost, “#RS” is the average number of recharging stations, “#Rec” is the average 
number of recharges, ΔTC is the variation of total cost in percentage, ΔRS is the variation of the average number 
of recharging stations, and ΔRec is the variation of the average number of recharges 
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5. Conclusions  

5.1. Conclusion 

This study addresses a Mobile Charging Service approach that focuses on the concept of 
recharging Electric Vehicles that require energy at some point in the day to increase the range 
of their journey. Every day, many EV users are restricted in the distances that they would like 
to cover with their cars because of battery capacity constraints. With the kind of service studied 
in this dissertation, these users are able to be provided a recharge without moving and wasting 
the corresponding time. 

The optimization model presented in this dissertation is able to propose a design for the 
infrastructure of the operations of such a service, considering appropriately the close 
relationship between recharging station locations, vehicle routing, and construction cost, which 
are the higher expenses of many companies that work in this field, and, most importantly, the 
stochastic nature of the demand. The two-stage nature of the model makes it more robust and 
able to handle unpredictable demand, optimizing for a variety of possible scenarios the 
combination of strategic and tactical decisions.  

The results obtained make it possible to understand the changes that can be made in order to 
make the entire service more efficient and cheaper. With a daily scope and a maximum of 15 
customers, some changes that may not seem important, may in fact in the long term be 
significantly beneficial, allowing the service provider to offer the same service with 
significantly fewer resources. 

With the sensitivity analysis, it was possible to understand how different directions of 
technological progress, from battery capacity to MCV consumption, may improve the service, 
making it more efficient and effective.  

5.2. Future Research 

For future research, the continuous improvement and work with small instances like the ones 
presented is relevant. Although these small instances may seem obvious to address, the variety 
of combinations of parameters introduces many changes in the design of the solutions. It would 
be of the highest importance to apply this model to a real-world situation to understand the 
performance that it would require a solver like the one used.  

If allowed by the IBM Ilog Cplex’s limitations, environmental factors such as relief, weather 
and temperature should be reflected in the model to allow achieving more detailed and 
implementable solutions. With the corresponding introduction of more variables, parameters, 
and constraints, the model will become more robust and effective. 

Concerning the technological context and specifically the electric vehicles industry, the 
constant change in multiple areas of high improvement potential requires a constant update of 
data such as the price of electricity or the costs of the infrastructure. 

It would also be important to interview service stakeholders to better understand practical 
details that often have a critical role in daily operations, such as how recharging stations work 
and what types of problems appear, and how frequently. 
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