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Abstract 

MOTIVATION: Respiratory disease is among the leading causes of death in the world. 

Most of these deaths occur in poorer countries where pollution is more prominent and 

medical care is less accessible. Prevention and early detection are essential steps in 

managing respiratory disease. Auscultation is an essential part of clinical examination 

as it is an inexpensive, noninvasive, safe, easy-to-perform, and one of the oldest 

diagnostic techniques used by the physician to diagnose various pulmonary diseases. 

The drawbacks of this procedure is that doctors require experience and ear accuity to 

provide a more accurate diagnosis to the patient. It is especially hard since some sounds 

are harder to detect because of the limitations of the human ear. 

 

OBJECTIVES: The objective of this work is to successfully detect and/or classify crackle 

and wheeze sounds in the lung sound digital signal, using advanced signal processing 

techniques combined with convolutional neural networks. 

 

METHODOLOGY: We utilize the ICBHI 2017 challenge dataset to test our methods, 

which consists of 126 participants and 6898 annotated respiratory cycles. We experiment 

with raw audio, Power Spectral Density, Mel Spectrogram and MFCCs as input features 

for a convolutional neural network. We then perform five-fold cross validation to compare 

the final methods. 

 

RESULTS: Utilizing a Mel Spectrogram as the input features for a convolutional neural 

network showed better results than the other methods, achieving a test accuracy of 43%, 

an AS of 0.43, a HS of 0.42, a SP of 0.36 and a SE of 0.51. 

 

KEYWORDS: lung, sound, signal, auscultation, automation, classification, deep, 

learning, convolutional, neural, network, crackle, wheeze. 

 

 

 

 

 

 

 

 



Resumo 

MOTIVAÇÃO: A doença respiratória está entre as principais causas de morte no mundo. 

A maioria destas mortes ocorre em países pobres onde a poluição é mais significativa 

e o acesso a tratamento medicinal é menor. A prevenção e a deteção são partes 

essenciais do controlo da doença respiratória. A auscultação é essencial no exame 

clínico pois é um método de baixo custo, não invasivo, seguro, fácil de executar e um 

das técnicas mais antigas e usadas para o diagnóstico de doenças pulmonares. A 

desvantagem deste método é que os doutores precisam de experiência e acuidade 

auditiva para conseguirem dar um diagnóstico de melhor qualidade. Isto torna-se ainda 

mais difícil devido às limitações do ouvido humano. 

 

OBJETIVOS: O objetivo deste trabalho é a deteção e classificação de crackles e 

wheezes em sinais digitais de som de auscultação pulmonar, utilizando métodos de 

processamento de sinal digital combinado com o uso de redes neurais convolucionais. 

 

METODOLOGIA: Nós utilizamos a base de dados de som de auscultação que foi 

utilizado para um desafio na ICBHI 2017, para testar os nossos métodos. A base de 

dados foi recolhida de 126 participantes e contém 6898 ciclos respiratórios anotados. 

Nós experimentados com o processamento de som direto, com o Power Spectral 

Density do sinal, com o espectrograma de Mel do sinal e com os MFCCs do sinal como 

input para a rede neural convolucional. Depois comparamos os resultados finais 

utilizando five-fold cross validation. 

 

RESULTADOS: A utilização do espectrograma de Mel como input para a rede neural 

demonstrou os melhores resultados, conseguindo uma accuracy de 43%, um AS de 

0.43, um HS de 0.42, um SP de 0.36 e um SE de 0.51. 

 

 

PALAVRAS-CHAVE: pulmão, som, sinal, auscultação, automação, classificação, deep, 

learning, rede, neural, convolucional, crackle, wheeze. 
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Chapter 1: Introduction 

1.1. Motivation 

According to the World Health Organization (WHO) [1], Chronic respiratory diseases (CRDs) are 

among the leading causes of death in the world. More than 3 million people die each year from 

chronic obstructive pulmonary diseases (COPDs), which is approximately 6% of all deaths 

worldwide. In 2016, 251 million cases of COPD were reported globally. 

 

COPD is a non-curable progressive life threatening lung disease that restricts lung airflow and 

predisposes to exacerbations and serious illness, but treatment can relieve symptoms and reduce 

the risk of death. COPD is not a single disease, but a term used to describe chronic lung diseases 

that restrict lung airflow. Some of these include: asthma, chronic obstructive pulmonary disease, 

occupational lung diseases and pulmonary hypertension. 

 

Around 90% of COPD deaths occur in low-income and middle-income countries [1]. The main 

avoidable causes of COPD are smoking and indoor and outdoor air pollution, while other non-

avoidable causes include age and heredity. It is predicted to increase in the following years due 

to higher smoking rates and aging populations in numerous countries. 

  

The most effective method for managing this disease is prevention, early detection and easy 

access to great medical treatment. 

 

Pulmonary auscultation has been a hallmark in medical examination since the 19th century [2]. It 

is a non-invasive, fast, cheap and easy procedure to assess the state of the patient's lungs, which 

can easily be taught to untrained physicians or individuals. 

  

However, the diagnosis process is highly dependent on the physician's experience and ear acuity. 

There are multiple lung auscultation points in the chest, sides and back, with different sound 

characteristics corresponding to the different lung areas and chest morphology. The sound also 

needs to be obtained in a controlled sound environment with careful and precise placement of the 

contact surface of the stethoscope to isolate the lung sounds from environmental noise. 
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With the recent development and improvement of digital stethoscopes [3], we now have the 

capability to capture the lung sound signal into computers. This has allowed us to combine digital 

signal processing methods with lung sound analysis to create enhanced visualization and 

diagnosis tools. 

  

Ideally, digital signal processing has many benefits for lung sound analysis. It is an automated 

process, which can be supervised by a human if necessary, it is deterministic, consistent and is 

generally faster and more accurate than human perception. Additionally, with the development of 

wireless services and the Internet of Things (IoT), the benefits of a fully automated diagnosis 

could be spread worldwide, become faster and be more accessible, especially when combined 

with cloud service technology. 

 

The problem with applying signal processing to lung sound analysis is that the physiology of the 

lungs is very complex and the sound dynamics can vary immensely depending on various factors, 

like location, patient position, airflow intensity, age, weight, gender, etc [4]. This is one of the 

reasons why experts can have dissimilar subjective descriptions of the same sounds [5]. Because 

of this, it is hard to define a set of universal rules or features to characterize some sounds that 

can be indicative of certain illnesses. This is a setback to the application of automated diagnosis. 

1.2. Objectives of the Study 

The main objective of this work is to successfully detect and classify the adventitious sounds in 

the lung sound digital signal, using a combination of signal processing techniques and deep 

artificial neural networks. More specifically, we will be focusing on utilizing a convolutional neural 

network architecture for the classification of lung sounds. 

 

The result is meant to be used by the physician to assess any possible lung pathologies that are 

indicative of those types of sounds. 

 

Ideally, the method should improve adventitious sound detection and classification accuracy and 

robustness when faced with various types of noise and other factors when capturing the lung 

sound signal. 
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1.3. State of the art 

The current state of the art [6-48] in pulmonary sound classification consists of obtaining a 

database of pulmonary sounds, applying audio filtering techniques, extracting relevant audio 

features and feeding them as input to a classification method. 

 

Most databases in these studies are private and consist of less than a hundred participants, with 

the average participant count being much lower than that. Most known pulmonary sound 

databases that are publicly available also have very few examples to work with. 

 

A majority of these studies have objectives that are related to the study of crackles and wheezes, 

while the remaining studies focus on pulmonary diseases, other adventitious sounds and sound 

denoising. 

 

The most commonly used classification methods are machine learning algorithms such as 

artificial neural networks, support vector machines, k-nearest neighbors and Gaussian mixture 

models. The artificial neural networks architecture types used in these studies are almost entirely 

the standard multi-layer perceptron, with the exception of [6] and [7] which utilize a recurrent 

neural network architecture and a convolutional neural network architecture, respectively. Where 

the study in [7], that implements a CNN architecture, has the objective of classifying lung sounds 

as healthy or not healthy. 

 

The most used signal processing techniques to produce features for classification are based on 

spectral analysis, cepstral analysis, wavelet transforms and statistics. The most popular signal 

feature extraction method is the MFCC method. 

 

From these studies, it can be observed that the use of neural networks combined with audio 

features produce results that are among the best methods in the current state of the art. 

1.4. Contributions 

The contributions of this work are as follows: 

● Application of convolutional neural networks for the classification of crackles and wheezes; 
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● Exploration of lung sound features for the detection of adventitious lung sounds: we 

experiment with raw signal processing, spectral features and cepstral features. We 

convert the lung signal to a usable 2D image, which is more appropriate for CNNs; 

● Solving some of the challenges of applying CNNs to lung sound classification: we face the 

problem of CNN classification with a dynamic input size, how to detect patterns in large 

inputs and how to train the model reliably; 

1.5. Thesis structure 

This thesis is structured as follows: 

 

● Chapter 2: We describe the human respiratory system’s basic anatomy and physiology, 

we present the guidelines for the auscultation procedure, we describe the equipment 

properties and capabilities of the stethoscope, and we present the established 

nomenclature for lung sound analysis as well as their characteristics and meaning. We 

also briefly discuss some of the relevant points that were important for this work. 

● Chapter 3: We present the machine learning methods used for this work, artificial neural 

networks, their components and optimization methods, the methods for audio signal 

processing and feature extraction, and a brief conclusion of the chapter where we again 

discuss the relevant points for this work. 

● Chapter 4: We describe the dataset that was used in this work to develop the classification 

methods, we describe the signal processing methodology, the libraries and tools used to 

implement the methods, and the experimental methodology for comparing results of 

different methods. We also discuss the challenges and our proposed solutions concerning 

the application of our method and the search for the best classification method. 

● Chapter 5: We present the results of our proposed methods. We compare using two 

comparison methods: challenge split comparison and five-fold comparison. We then 

interpret the results, comparing each method and showing the weaknesses and strengths 

of the methods. 

● Chapter 6: We finish by summarizing the work, the challenges we faced, our solutions, 

the results we obtained and their limitations, then we present a brief proposal for the future 

work. 
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Chapter 2: Pulmonary Auscultation 

This chapter provides a fundamental understanding of the background relating to the human 

respiratory system, its basic anatomy and function, the pulmonary auscultation procedure 

guidelines and methods, the naming convention involved with pulmonary sound analysis and the 

principal characteristics of abnormal sounds and their general clinical significance. Pertaining to 

the adventitious sounds section, this chapter only focuses on the types of sounds that are relevant 

for this work, which are crackles and wheezes. And finally, this chapter contains a brief discussion 

of the important aspects which had an effect on the work’s process and decisions. This chapter 

was largely adopted from [49]. 

2.1. The Human Respiratory System 

The purpose of the human respiratory system is to exchange carbon dioxide in our bloodstream 

with the oxygen present in our environment’s atmosphere. Oxygen is a vital requirement for our 

cells to function continuously, with carbon dioxide being the resulting waste product of cellular 

function. 

 

The lungs act as the exchange border between the atmosphere and our bloodstream, by 

circulating the air inside the lungs with every breath, filling them with the surrounding 

environment’s available oxygen and expelling carbon dioxide waste. 

2.1.1. Anatomy 

The human respiratory system is divided into two respiratory tracts, the upper respiratory tract 

and the lower respiratory tract. The upper respiratory tract consists of the organs which are 

outside the chest cavity area, which includes the nose, pharynx and larynx. The lower respiratory 

tract consists of the organs which are almost entirely inside the chest cavity area, which includes 

the trachea, bronchi, bronchioles, alveolar ducts and alveoli. 

 

In terms of function, there is the conducting zone and the respiratory zone. The conducting zone 

is made up of the respiratory organs that form a path that conducts the inhaled air into the deep 

lung region. And the respiratory zone is made up of the alveoli and the tiny passageways that 

open into them where gas exchange takes place. 
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Fig. 1 - Schematic of the respiratory system displayed by the upper and lower respiratory tract region [50]. 

 

The respiratory system mainly consists of two lungs, the right and the left lung. Both lungs are 

similar but they are not symmetrical. The right lung is constituted by three lobes: the right upper 

lobe, the right middle lobe and the right lower lobe. The left lung is constituted by two lobes: the 

right upper lobe and the right lower lobe. 

 

The lobes are divided into segments, and those segments are related to the segmental bronchi, 

which are the third degree branches that branch off of the second degree branches, which in turn 

branch off from the lung’s bronchus. 
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Fig. 2 - Schematic of the respiratory system showing the anatomy of the lung [51]. 

 

The right lung is made up of ten segments and the left lung is made up of eight to ten segments. 

2.1.2. Physiology 

Most of the respiratory tract exists merely as a piping system for air to travel in the lungs, and 

alveoli are the only part of the lung that exchanges oxygen and carbon dioxide with the blood. 

 

The alveoli are a single cell membrane that allows for gas exchange to pulmonary vasculature. 

The diaphragm and intercostal muscles help with inspiration by creating a negative pressure 

inside the chest cavity, where the lung pressure becomes less than the atmospheric pressure, 

filling the lungs with air.  The muscles then help with expiration by creating a positive pressure 

inside the chest cavity, where the lung pressure becomes greater than the atmospheric pressure, 

emptying the lungs of air in the process. 

 

The air goes through the larynx and trachea, splitting itself into the two bronchi paths. Each 

bronchus divides into two smaller branches forming bronchial tubes. These tubes create a tree of 

pathways inside the lung, ending with the alveoli. 

https://en.wikipedia.org/wiki/Pulmonary_alveolus
https://en.wikipedia.org/wiki/Gas_exchange
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Carbon_dioxide
https://en.wikipedia.org/wiki/Blood
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The oxygen is exchanged for carbon dioxide in the alveoli, where it diffuses into the lung’s 

capillaries. Then exhalation starts and the CO2 concentrated air is expelled through the same 

bronchial pathways to the external environment through the nose or mouth. 

 

The secondary functions of the respiratory system include: filtering, warming, and humidifying the 

inhaled air. 

2.2. Auscultation Procedure 

To auscultate the lungs effectively [2], the physician must follow the following set of steps and 

methods: 

1. Lead the patient to assume a sitting or resting position in a quiet environment. 

2. Remove or displace any clothing that might interfere with the auscultation, and warm up 

the stethoscope’s chest piece before placing it on the body. 

3. Ask the patient to take deep breaths with an open mouth. 

4. With the stethoscope’s diaphragm, begin the auscultation anteriorly at the apices, and 

move downward till no breath sound is heard. Next, listen to the back, starting at the apices 

and moving downward. At least one complete respiratory cycle should be heard at each 

point. 

5. Always compare symmetrical points on each side. 

6. Listen for the quality of the breath sounds, the intensity of breath sounds, and the presence 

of adventitious sounds. 

2.2.1. Stethoscope 

The stethoscope [3] is an acoustic device that transmits the sounds from the chest piece through 

an air-filled hollow tube to the listener’s ears. 

 

The acoustic version of the binaural stethoscope consists of a hollow tube attached to a chest 

piece made of a wider-based diaphragm and a smaller hollow bell. The diaphragm transmits 

sounds with higher frequencies, while the bell transmits sounds with lower frequencies. Due to 

the varying sensitivity of the human ear, some sounds might not be heard because of their low 

frequencies. This limitation has led to the creation of an electronic version which is much more 

advanced than the original acoustic version. 
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A digital stethoscope can convert an acoustic sound into an electronic signal, which can be 

modified and amplified to improve the listening experience. The signal can also be stored in a 

computer where it can be further processed and analyzed. The acquisition of the electronic signal 

of the acoustic sound involves the use of a microphone and a piezoelectric sensor, as well as the 

filtering of any noise artifacts and amplification of the sound. Most digital stethoscopes allow the 

selection of different frequency response modes, allowing the user to better hear specific sounds 

from the heart and lungs. Some digital stethoscopes also have the capability to be connected via 

Bluetooth to wirelessly transmit sound signals to a dedicated processing unit or personal 

computer. 

2.2.2. Auscultation Sound 

In this section, we give a basic definition of the terms used for pulmonary sound analysis [5][52], 

some of their mechanical causes and clinical significance [2]. 

 

Lung sounds: These are all the respiratory sounds that are heard or detected over the chest wall 

or inside the chest, including breath sounds and adventitious sounds. 

 

Breath sounds: These include normal and adventitious sounds detected at the mouth level, 

trachea or over the chest wall. They originate from the airflow in the respiratory tract. 

 

Normal respiratory sounds 

 

Vesicular sounds: Vesicular murmurs can be heard during auscultation in most of the lung areas. 

They are easy to hear during inspiration, but they can only be heard in the beginning of expiration. 

They have a low intensity if the chest wall becomes thickened and can become entirely absent in 

cases where: the lung has collapsed due to the fluid or air pressure of the pleural cavity, no 

ventilation in the affected lung area, or after a pneumonectomy. 

 

Bronchovesicular sounds: Normal bronchovesicular sounds can be heard between the scapula 

at the posterior chest and center part of the anterior chest. 

 



FCUP     16 
Crackle and wheeze detection in lung sound signals using convolutional neural networks      . 

 

Bronchial sounds: Bronchial sounds are audible over the chest near the second and third 

intercostal spaces. They are similar to tracheal sounds, high in pitch and can be heard during 

both inspiration and expiration. They are more clearly heard than vesicular sounds during 

expiration. The sounds are high-pitched (higher than vesicular sounds), loud and tubular. 

 

Tracheal sounds: These can be heard over the trachea, above the sternum, in the suprasternal 

notch and fall in the frequency range of 100-4,000 Hz. They are generated by turbulent airflow 

passing through the pharynx and glottis. These sounds are not filtered by the chest wall and thus 

provide more information. 

 

Mouth sounds: Mouth sounds are described as falling in a frequency range of 200-2,000 Hz. 

They represent turbulent airflow below the glottis. In the case of a healthy person, there should 

be no sound coming from the mouth during respiration. 

 

Abnormal respiratory sounds 

 

Abnormal breath sounds include the absence or reduced intensity of sounds where they should 

be heard or, by contrast, the presence of sounds where there should be none, as well as the 

presence of adventitious sounds. As opposed to those classified as “normal”, abnormal sounds 

are those which may indicate a lung problem, such as inflammation or an obstruction. 

 

Adventitious sounds: Adventitious sounds are additional respiratory sounds superimposed on 

normal breath sounds. These are defined as additional respiratory sounds overlying normal 

breath sounds. They can be continuous (like wheezes) or discontinuous (such as crackles), and 

some can be both (like squawks). The presence of such sounds usually indicates a pulmonary 

disorder. Adventitious sounds are additional respiratory sounds superimposed on normal breath 

sounds. There is a number of adventitious lung sounds, but we will focus on describing crackles 

and wheezes. 

 

Crackles: These explosive and discontinuous adventitious sounds generally appear during 

inspiration. They are characterized by their specific waveform, duration and location in the 

respiratory cycle. A crackle can be characterized as fine (short duration) or coarse (long duration). 

Crackles usually indicate that there is a pathological process in the pulmonary tissue or airways. 

“Coarse” crackles occurring during the beginning of inhalation indicate a chronic bronchial 
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disease. When occurring in the middle of inhalation they indicate bronchiectasis and when at the 

end of inhalation, they are generated by the peripheral bronchi and could be a sign of pneumonia. 

“Fine” crackles are generated by the peripheral bronchi. They are symptoms of infection or 

pulmonary edema. “Coarse” crackles sound like salt poured into a hot pan, while “fine” crackles 

sound more like Velcro strips being slowly pulled apart or a bottle of sparkling water being opened. 

It is generally accepted that the duration of a crackle is lower than 20 ms and the frequency range 

is between 100 and 200 Hz. 

 

Wheeze: This is a continuous adventitious musical sound. Acoustically, it is characterized by 

periodic waveforms with a dominant frequency usually over 100 Hz and lasting over 100ms, thus 

always including at least 10 successive vibrations. Wheezes are usually associated with an airway 

obstruction resulted from various causes. If the wheeze essentially contains a single frequency, 

it is classed as monophonic; polyphonic wheezes contain several frequencies. A wheeze can be 

located at the site of an anatomic obstruction or can be diffused in cases of asthma. The frequency 

of wheezes lies within 100 and 2500 Hz. 

 

 

Fig. 3 - Time-domain characteristics and spectrogram of (a) normal, (b) wheeze, and (c) crackle lung sound cycle [7]. 
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2.3. Discussion 

 

It is important to note that the detection range for crackles and wheezes lies within 100 to 2500 

Hz, therefore any other sounds that are outside this range, such as noise, can be safely discarded 

or filtered without significant loss of quality of the adventitious sounds. 
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Chapter 3: Machine Learning for Pulmonary 

Auscultation 

This chapter provides a detailed description of the machine learning tools and sound processing 

techniques that were used in this work for the classification of lung sounds. Specifically, we dive 

deeper into artificial neural networks for classification and sound signal processing techniques for 

feature extraction. We begin by describing the feedforward neural network and the convolutional 

neural network architectures. Then, we present some of the building blocks and optimization 

techniques of deep learning. Finally, we then present the spectral and cepstral analysis 

techniques used to convert audio signals into 2D images. 

3.1. Deep artificial neural networks 

In this section, we explain in more detail the background of deep artificial neural networks by 

mentioning the types of architectures, activation functions, loss functions, optimization methods 

and regularization methods. 

3.1.1. Feedforward Neural Networks 

Feedforward neural networks (FNNs), or multilayer perceptrons (MLPs) [53], are the archetypes 

of deep learning models. These networks were inspired by neuroscience and how we believe 

neurons work in the brain. 
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Fig. 4 - Structure of a feed-forward ANN with two hidden layers1. 

 

 

The purpose of these networks is to approximate some function 𝑓 by mapping an input domain 

to an output domain, which can be applied to solving complex problems such as prediction or 

classification from high dimensional data to a set of labels. 

 

These networks consist of multiple layers, where the first layer is the input layer and the last is 

the output layer. The intermediate layers in the network are called the hidden layers and their 

number can vary. The use of multiple layers is what originated the term “Deep Learning”, with 

each additional layer creating an additional level of abstraction or representation. 

 

Each layer is comprised of a number of neurons that represent activation values and it determines 

the width of that layer. Each neuron has a number of input weights that connect to each of the 

neurons of the previous layer, with the exception of the neurons in the input layer.  

 

The activation values of the input layer are propagated forward in the direction of the output layer 

with no feedback connections where the outputs of the neurons are fed to previously activated 

neurons, hence the designation of “feedforward”. 

                                                
1  Image was obtained from https://bulyaki.wordpress.com/2012/11/04/feedforward-neural-networks/. 
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The network is associated with a directed acyclic weighted graph describing how the functions 

are composed together. The network’s parameters consists of the weights and biases between 

layers. 

 

The output activation values of a layer is represented as a vector, with each entry of the vector 

representing the activation value of a single neuron. The size of the vector corresponds to the 

number of neurons in that layer. 

 

The weights between layers are represented as a 2D matrix, with each entry of the matrix at 

coordinates 𝑖, 𝑗 representing the weight connecting the neuron 𝑖 from layer 𝑙 − 1 to the neuron 𝑗 

in the layer 𝑙. 

 

The biases between layers is represented as a vector with the same size as the number of 

neurons in the next layer. 

 

The mathematical notation of an FNN is defined as: 

 

● 𝐿 , the number of layers in the network 

● 𝑙 ∈ {1, . . . , 𝐿 − 1} , the index of the layer, starting at 1 as the first hidden layer and 𝐿 −

1 as the output layer 

● 𝑁𝑙 , the number of neurons in layer 𝑙 

● 𝑛 ∈ {1, . . . , 𝑁𝑙 − 1} , the neuron index in layer 𝑙 

● ℎ𝑙 , the output vector of the activation values of the layer 𝑙 

● ℎ𝑛
𝑙  , the activation value of the neuron 𝑛 in ℎ𝑙 

● 𝑊𝑙 , the weight matrix of layer 𝑙 

● 𝑊𝑖,𝑗
𝑙  , the weight connecting the neuron 𝑖 from layer 𝑙 − 1 to the neuron 𝑗 in the layer 𝑙  

● 𝑏𝑙 , the bias vector of layer 𝑙 

● 𝑔𝑙(. ) , non linear activation function of layer 𝑙, it is assumed that the activation function 

of the input layer is a linear function. The activation function of the output layer is usually 

a different one from the hidden layers. 

● 𝑦 , the output vector of the network 

● 𝑦𝑛 , the output neuron 𝑛 of the network 
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The mathematical equation for the calculation of the output of each layer of the feedforward model 

is defined as: 

● ℎ𝑙 = 𝑔𝑙(𝑊𝑙ℎ𝑙−1 + 𝑏𝑙) , the activation values of a layer. With 𝑊𝑙ℎ𝑙−1 being the dot product 

operation between the weight matrix of the current layer and the output values of the 

previous layer. 

● 𝑦 = ℎ𝐿−1 , the activation values of the final output layer of the network 

 

3.1.2. Convolutional Neural Networks 

 

Convolutional neural networks (CNNs) [54] are very similar to feedforward neural networks, in the 

sense that they still use the concept of neurons and that each neuron receives an input and 

performs an operation. The main distinction between the two architectures is that CNNs are a 

specialized kind of network for processing data that has a grid-like topology, such as time series 

and images. 

 

A CNN is comprised of three types of layers: convolutional layers, pooling layers and fully 

connected layers. 

 

 

 

Fig. 5 - Structure of a convolutional neural network [55]. 
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Unlike a FNN, a CNN uses parameter sharing to decrease the number of parameters needed for 

high-dimensional input grids. A CNN always has the same number of parameters, even with 

bigger or smaller sized input grids. The parameters that a CNN uses are called kernels and they 

can be thought of as detectors for local patterns in data. 

 

In a convolutional layer, the kernels are a set of small matrices or tensors that are applied to the 

input grid, by sliding the kernel across the grid with a defined stride length. Like in a neuron, the 

input values in each window are convolved with the weights of the same kernel, summed with a 

bias and then fed into a nonlinear function, giving a single output value for each input window. 

The result of applying one kernel to the input grid is another grid which is now designated as a 

channel or feature map. By applying multiple kernels to the same grid we get the same number 

of feature maps as the number of kernels in the convolutional layer. The resulting output grid now 

has a new depth of n feature maps and the remaining spatial dimension size depend on the 

previously defined window size, stride and input spatial dimension size. 

 

The pooling layer is used to downsample along the spatial dimension of the input grid. A pooling 

layer, like a convolutional layer, defines a window size and a stride, on which a pooling operation 

is performed on the window’s input values. The most common pooling types are the max pooling 

and average pooling operations where the max or the average value of the window is returned. 

The result of a pooling operation is one value per window and it is combined with the other 

resulting values to create another smaller grid. 

 

There is another type of pooling operation such as global pooling. Instead of applying a pooling 

operation on a window, global pooling applies the operation to each feature map individually 

without using a window, i.e. a global pooling operation transforms an input grid with a depth of n 

feature maps to a vector of size n. These pooling operations can be useful for transforming a 

dynamic sized input into a fixed sized output, like time series data. 

 

When global pooling is not used and the input grid size is constant, the output grid of the 

convolution and pooling layers are flattened into a vector, which is then fed into a fully connected 

layer. 
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The fully connected layer serves to close the gap between feature detection and classification or 

prediction by using the flattened feature vector as input. A fully connected layer uses the exact 

same architecture as a FNN. 

 

The mathematical notation for convolutional neural networks, while also referencing some of the 

previously defined notations for feedforward neural networks is defined as: 

● 𝐾𝑙 , number of kernels in convolutional layer 𝑙 or the number of output feature maps 

● 𝑘 ∈ {1, . . . , 𝐾𝑙}, the index of feature map in layer 𝑙 

● 𝑏𝑘
𝑙  , bias parameter for kernel 𝑘 in convolutional layer 𝑙 

● 𝑋𝑖,𝑗
𝑙  , window of the input grid of convolutional layer 𝑙 at position 𝑖, 𝑗 

● 𝑊𝑘,𝑙 , weight matrix of kernel 𝑘 in convolutional layer 𝑙 

 

The equation to obtain a feature map 𝑘 in layer 𝑙 is defined as: 

● ℎ𝑖,𝑗
𝑘,𝑙  =  𝑔𝑙(𝑊𝑘,𝑙  ∗  𝑋𝑖,𝑗

𝑙  + 𝑏𝑘
𝑙 ) , where 𝑊𝑘,𝑙  ∗  𝑋𝑖,𝑗

𝑙  denotes the convolution operation 

between the kernel and input window, which have the same number of dimensions and 

size. 

 

3.1.3. Gradient Descent 

 

Gradient descent is a first order optimization algorithm [56][57] that utilizes the partial derivatives 

of the parameters to effectively decrease the value of a function. 

 

To apply gradient descent to a neural network, the output must be a scalar value, which is often 

not the purpose of using neural networks. To circumvent this problem, a neural network is 

assigned a loss function that outputs a scalar value relating to the total classification or prediction 

loss of the network. 

 

The main condition to make this method work is that both the functions used in the network and 

the loss function must be differentiable. 

 

Most results inside a neural network can be expressed as a product of applying functions to the 

results of other functions: 
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● 𝐹(𝑥) = 𝑓(𝑔(𝑥)) 

 

To calculate the partial derivatives of a neural network, the chain rule is applied: 

● 𝐹′(𝑥) = 𝑓′(𝑔(𝑥))𝑔′(𝑥) 

 

And in the case of a neural network, we seek to calculate: 

● 
𝛿𝐸

𝛿𝑤𝑖,𝑗

 , the partial derivative of each weight with respect to the loss 

 

The implementation of this optimization method for neural networks is called backpropagation 

[58], which propagates the derivatives backwards starting from the output loss in the direction of 

the input layer using the chain rule, thereby making the calculation of the partial derivatives 

computationally efficient. The gradients are multiplied by a constant scalar called the learning rate 

and it can be thought of as the step size of the model. A smaller learning rate leads to a slow but 

accurate traversal of the loss landscape, while a larger learning rate can lead to faster but 

inaccurate traversal of the loss landscape. 

 

Using a stochastic gradient descent method, the dataset is split into mini-batches. These batches 

are used to calculate an estimate of the true loss of the neural network model, which then give an 

approximate gradient. This method leads to faster convergence and robustness with less 

computational efforts. 

3.1.4. Loss Functions 

There are several types of loss functions [56] which correspond to different purposes of machine 

learning such as regression, semantic segmentation and classification. The one we will present 

is a loss function used for the classification of data samples. 

 

Categorical cross entropy 

 

The categorical cross entropy loss is used for single label classification, meaning that each data 

sample belongs to only one class. It compares the predicted class distribution with the true class 

distribution, where the true class is represented as a one-hot encoded vector. 
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The categorical cross entropy loss is defined as: 

● − ∑ (𝑡𝑖 𝑙𝑜𝑔(𝑝𝑖))𝐶
𝑖  , where 𝐶 is the number of classes, 𝑡𝑖 is the true probability of class 

𝑖 and 𝑝𝑖 is the predicted probability of class 𝑖. 

 

Since only one class is set to the value of 1 and the remaining values in 𝑡 are 0, it is equivalent 

to: 

● −𝑙𝑜𝑔(𝑝𝑐)  , where 𝑐 is the class index where 𝑡𝑐 = 1. 

 

 

 

Fig. 6 - Plot of the log loss of the categorical cross entropy loss function. 

 

 

And this loss function can be viewed in figure 6, which can be interpreted as the heavy 

penalization of confident predictions that are wrong, i.e. predictions that approach the value of 0, 

although the true value is 1. 

3.1.5. Activation Functions 

Activation functions [56] are one of the essential components in deep learning that allow the 

generalization of neural networks in solving various tasks. Activation functions are required to be 

nonlinear so that neural networks can solve nonlinear problems, as is the case of the majority of 

real world problems. The careful design and choice of activation functions can improve training 

speed and convergence. Some of these are also loosely inspired by neuroscientific observations 

about how biological neurons compute. 
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Rectified Linear Unit 

 

The rectified linear unit (ReLU) [59] activation function is the most popular in the deep learning 

community [60]. It has allowed deeper models to converge faster during training and achieve state 

of the art results. 

 

It is defined as: 

● 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

 

It is faster to compute than previously used activation functions, allows simpler initialization of 

network parameters, it induces sparse activation of the network’s hidden units, which is only about 

50% that are activated with a non-zero output and it has less vanishing gradient problems when 

compared to the logistic sigmoid and hyperbolic tangent activation functions. 

It is not without issues though. It is non-differentiable at zero, due to it being a piecewise function, but 

can be arbitrarily chosen to be either a 0 or 1. Some hidden units can become stuck in inactive states 

regardless of the input, which means that the gradient of the unit will always be 0 and the unit will stop 

training entirely. This will eventually decrease the model’s capacity to learn if the hyperparameters are 

not chosen carefully. 

 

Leaky ReLU 

 

The Leaky ReLU (LReLU) activation function [61] can be seen as an answer to the problem of 

inactive neurons which are a result of using the ReLU activation function. 

 

It is defined as: 

● 𝑓(𝑥) = 𝑥 , if 𝑥 > 0 

● 𝑓(𝑥) = 𝛼𝑥 , otherwise 

 

The 𝛼 value is a static value that is defined during the creation of the neural network. It represents 

the slope of the negative section of the function and it allows the gradient to be different from 0, if 

𝛼 ≠ 0, allowing the gradient to propagate through the neuron and to train the weights. 
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Softmax 

 

The softmax function [56] converts a vector of arbitrary real values into another vector of the same 

shape such that the values are positive real numbers and their combined sum is equal to 1. This 

is useful for converting the raw non normalized outputs of a neural network into the probability of 

the input belonging to each one of the classes. 

 

It is defined as: 

● 𝑓(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒
𝑦𝑗𝑗

𝑗=1

  

 

Where 𝑦𝑖 is the raw output value of the neural network at index 𝑖 and 𝑓(𝑦𝑖) is the probability of 

the data sample belonging to class 𝑖. 

3.1.6. Regularization 

Regularization is an important process in machine learning for the improvement of the 

generalization power of a model [56]. Dropout is a popular example of a regularization method for 

neural networks. Other regularization methods include the constraining of weights values of a 

neural network to be within a certain range. 

 

Unit Norm Constraint 

 

The unit norm constraint is a rule imposed on the model’s parameters such that their norm must 

be equal to 1. During training, the model updates its weights normally through gradient descent 

methods. After that, the weights are then normalized accordingly to have a vector norm of 1. This 

method can be effective as it allows the network to focus on training in terms of weight direction 

instead of scale, therefore increasing convergence speed and generalization. The unit norm 

constraint can also be specified to be for each individual neuron or for the entire weight matrix of 

the neural network’s layer. 
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3.2. State of the art pulmonary auscultation signal processing 

3.2.1. Fourier Transform 

The Fourier transform [62] is an integral transformation of a signal from the time domain to the 

frequency domain, allowing us to examine the signal in terms of the presence and strength of the 

various frequencies. The frequency domain has many advantages compared to the time domain 

of a signal. It is used to implement the most important methods of signal processing such as 

filtering, modulation and sampling of a signal. Therefore, it is the basis for most signal processing 

techniques and learning it is an important step towards understanding signal processing in 

general. 

 

The calculation of the Fourier transform of a finite sequence of values is done with the Discrete 

Fourier Transform (DFT) method. The Fast Fourier Transform (FFT) is an efficient algorithm to 

calculate the DFT of a signal [62]. A spectrogram is the result of applying the DFT to multiple 

equally spaced overlapping small windows of the signal and stacking each window’s spectral 

result to create a new time-frequency representation, that shows the evolution of the signal’s 

frequency spectrum over time. 

3.2.2. Power Spectral Density 

The Power Spectral Density (PSD) [63] represents which frequency variations are strong and 

which are weak. The unit of the PSD is energy per frequency. PSD is an analysis method used 

when a measured signal in the time domain is transformed into the frequency domain through a 

Fourier transform. It is a useful tool to detect the frequencies and amplitudes of oscillatory signals 

and any periodicities in data. 

3.2.3. Mel Spectrogram 

A Mel Spectrogram (MS) represents an acoustic time-frequency representation of a sound. It is 

the result of transforming a spectrogram’s values into the mel scale [64]. The mel scale is a 

perceptual scale of pitches judged by humans to be equal in distance from one another. It is a 

way to mimic how the human ear responds to varying frequencies. 
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The mel frequency scale is defined as: 

● 𝑚𝑒𝑙 =  2595 ∗ 𝑙𝑜𝑔 10(1 + ℎ𝑒𝑟𝑡𝑧/700) 

and its inverse is: 

● ℎ𝑒𝑟𝑡𝑧 = 700 ∗ (10 𝑚𝑒𝑙/2595 − 1) 

 

The general method to obtain the mel spectrogram is through the following steps: 

1. Separate signal to windows: Sample the input with windows of size n_fft, making hops of 

size hop_length each time to sample the next window. 

2. Compute FFT for each window to transform from time domain to frequency domain. 

3. Generate a mel scale: Take the entire frequency spectrum, and separate it into n_mels 

evenly spaced frequencies according to the mel distance. 

4. Generate Spectrogram: For each window, decompose the magnitude of the signal into its 

components, corresponding to the frequencies in the mel scale. 

 

3.2.4. Mel-frequency Cepstral Coefficients 

Mel-frequency cepstral coefficients (MFCCs) [65] are coefficients that collectively make up an mel-

frequency cepstrum (MFC). MFCCs also take into account human perception for sensitivity at appropriate 

frequencies by converting the conventional frequency to mel scale. It is the most widely adopted and tested 

method for audio signal processing and speech recognition. 

 

To calculate the MFCCs of a signal: 

1. Separate signal to windows 

2. Compute FFT for each window 

3. Map the powers of the spectrum onto the mel scale 

4. Compute the logs of the powers at each of the mel frequencies 

5. Compute the Discrete Cosine Transform (DCT) of the mel log powers 

6. Keep N amount of MFCCs 
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3.3. Discussion 

We will not be utilizing the Dropout technique, since CNNs already have a form of parameter 

regularization because of its shared parameters. 
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Chapter 4: Materials and Methods 

In this chapter, we describe the dataset that was used in this work to develop the classification 

methods, we describe the signal processing methodology, the libraries and tools used to 

implement the methods and the experimental methodology for comparing results of different 

methods. We also describe the implementation challenges, the proposed solutions, the 

advantages and limitations, our choices and our reasoning. 

4.1. Dataset 

Introduction 

 

The International Conference on Biomedical and Health Informatics (ICBHI) 2017 respiratory 

sound database [66] was part of an organized scientific challenge to test and compare the 

robustness of state of the art techniques for lung sound processing and classification. 

 

The creation of this dataset was motivated by the lack of large publicly available datasets that 

could be used to develop and compare different lung sound processing methods. Additionally, 

most of the sounds of small private datasets are clear and do not include environmental noise, 

which is unrealistic in clinical practice. 

 

The dataset consists of a set of respiratory sound recordings and their respective annotation files. 

The audio samples were collected independently by two research teams: “Respiratory Research 

and Rehabilitation Laboratory of the School of Health Sciences, University of Aveiro” (Lab3R) and 

“Aristotle University of Thessaloniki” (AUTH) in two different countries, over several years. The 

dataset contains 920 annotated audio recordings which were collected from 126 participants. 

 

Data collection 

 

Each audio recording was obtained using multi-channel or single-channel acquisition method, 

with each channel representing an auscultation point of the participant and each channel is stored 

in a separate file. The auscultation points are: Anterior left (Al), Anterior right (Ar), Lateral left (Ll), 

Lateral right (Lr), Posterior left (Pl), Posterior right (Pr) and Trachea (Tc). 
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The types of equipment used by Lab3R to collect the lung sounds were: 

● “Welch Allyn Meditron Master Elite Plus Stethoscope Model 5079-400” digital stethoscope 

● Seven “3M Littmann Classic II SE” stethoscopes with a microphone in the main tube 

● Seven air coupled electret microphones (C 417 PP, AKG Acoustics) located in capsules 

made of teflon. 

 

And the types of equipment used by AUTH were: 

● “WelchAllyn Meditron Master Elite Plus Stethoscope Model 5079-400” digital stethoscope 

● “3M Littmann 3200” digital stethoscope. 

 

For the sake of simplicity, we will refer to these types of equipment with the following 

abbreviations:  

● AKGC417L for “air coupled electret microphones” 

● Litt3200 for “3M Littmann 3200” 

● LittC2SE for “3M Littmann Classic II SE” 

● Meditron for “Welch Allyn Meditron Master Elite Plus Stethoscope Model 5079-400” 

 

Due to different equipment types used for the capture of the lung sounds, the sampling rate of 

each audio recording differs based on which was used. 

 

Annotation 

 

Each audio recording was annotated manually into individual respiratory cycles, where each cycle 

is given a starting timestamp, an ending timestamp, a binary number to indicate if the cycle 

contains a crackle and a binary number to indicate if the cycle contains a wheeze. The annotation 

process was done by respiratory health professionals. 

 

In the case of the sound files originating from the Lab3R database, they were annotated by only 

one expert. And in the case of the AUTH database, they were annotated by three experienced 

physicians, two specialized pulmonologists, and one cardiologist. 
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Challenge 

 

The official scientific challenge that was created for this dataset in the ICBHI 2017 is the 

classification of each individual respiratory cycle into one of four classes: Normal, Crackle, 

Wheeze, Both. 

 

The dataset was split into training (60%) and testing (40%) sets, 2063 respiratory cycles from 539 

recordings derived from 79 participants were included in the training set, while 1579 respiration 

cycles from 381 recordings derived from 49 patients were included in the testing set. 

 

The challenge defines a set of metrics to evaluate the classification methods: Specificity (SP), 

Sensitivity (SE), Average score (AS) and Harmonic score (HS). These metrics are calculated as: 

● SE = (Cc + Ww + Bb)/(C + W + B) 

● SP = Nn/N 

● AS = (SE + SP)/2 

● HS = (2 ∗ SE ∗ SP)/(SE + SP) 

 

Where N is the total number of normal sounds, Nn is the number of correctly classified normal 

sounds, C is the total number of crackle sounds, Cc is the number of correctly classified crackle 

sounds, W is the total number of wheeze sounds, Ww is the number of correctly classified 

wheezes, B is the total number of sounds that contain both crackle and wheeze sounds and Bb 

is the number of correctly classified sounds that contain both adventitious sounds. 

 

SP can be interpreted as the method’s capability to correctly identify normal healthy sounds and 

SE is the method’s capability to correctly identify abnormal sounds. 

 

Five international research teams submitted 18 systems in the first phase, then three of those 

teams uploaded 11 entries, then in the final phase of the challenge the two best teams presented 

their algorithms at ICBHI 2017. 

 

The results of the two best teams and the baseline comparison method is summarized in table 1. 
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Table 1 - Test metrics for each method in the challenge. The best results for each of the metrics are highlighted in bold. With the 

mean and standard deviation for each metric. 

 Average Score Harmonic Score SP SE 

 M(%) SD(%) M(%) SD(%) M(%) SD(%) M(%) SD(%) 

JL old 40 13 22 20 50 34 31 28 

JL new 39 12 23 19 38 28 41 29 

SUK old 47 12 30 20 71 27 29 25 

SUK new 47 11 24 22 78 21 20 21 

Baseline 43 8 15 16 75 23 12 16 

 

 

For more detailed information on the challenge dataset, like participant demographics or data 

distributions, please refer to the source paper [66]. 

 

New papers 

 

Since the public release of the challenge dataset, there have been five studies [6-10], that we are 

aware of, that utilize this dataset.  

 

So far, the best results that were obtained were from [6], by achieving SE = 0.56, SP = 0.736 and 

AS = 0.648 with a Noise Masking Recurrent Neural Network (NMRNN). 
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Dataset statistics 

 

We did some preliminary statistics on the dataset before we started with the implementation of 

the methods, to get a better perspective and perform some early observations. 

 

Table 2 - Statistics for each of the cycle classes. 
 

Cycle Classes Cycle Count Patient Count Maximum Dur. (s) Minimum Dur. (s) Average Dur. (s) 

Normal 3,642 124 16.163 0.2 2.6 

Crackle 1,864 74 8.736 0.367 2.785 

Wheeze 886 63 9.217 0.228 2.703 

Crackle and Wheeze 506 35 8.592 0.571 3.06 

 

 

Table 3 - Duration statistics for all recordings and cycles. 
 

Duration Stats Recordings (s) Cycles (s) 

Maximum Duration 86.2 16.163 

Minimum Duration 7.9 0.2 

Mean Duration 21.5 2.7 

 

 

Table 4 - The patient sample count, the recording sample count and the cycle sample count for 
each of the equipment types. 

 

Equipment Patient Count Recording Count Cycle Count 

AKGC417L 32 646 4346 

Litt3200 11 60 502 

LittC2SE 22 86 583 

Meditron 64 128 1467 
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Table 5 - The patient sample count, recording sample count and cycle sample 
count for each of the auscultation points. 

 

Location Patient Count Recording Count Cycle Count 

Al 80 162 1237 

Ar 74 168 1277 

Ll 42 77 604 

Lr 54 112 819 

Pl 61 139 1039 

Pr 59 132 1003 

Tc 53 130 919 

 

 

 

 

Table 6 - The patient sample count, recording sample count and cycle sample count for each acquisition method. 
 

Acquisition Mode Patient Count Recording Count Cycle Count 

Multi-Channel 53 732 4929 

Single-Channel 73 188 1969 

 

 

Table 7 - Which equipment produces each of the sampling rates, as well as the patient sample count, recording sample count 
and cycle sample count for each of the sampling frequencies. 

 

Sampling Rates Equipment Patient Count 
Recording 

Count 
Cycle 
Count 

44,100 Hz AKGC417L, LittC2SE, Meditron 109 824 5,821 

4,000 Hz Litt3200, Meditron 16 90 1,016 

10,000 Hz Meditron 1 6 61 
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Fig. 7 - Recording duration distribution histogram with a log scaled y axis. 

 

 

 

Fig. 8 - Cycle duration distribution histogram with a log scaled y axis. 
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Discussion 

 

Overall the dataset is unbalanced. The number of class samples in this dataset is very 

unbalanced, the duration of each recording session and individual respiratory cycle has a high 

variability, some participants lack a recording sample for at least one of their auscultation points 

or they have too many samples for some auscultation points. 

 

Some recordings have extremely large respiratory cycles, which is actually due to an area of 

contact placement noise. The smaller duration respiratory cycles are most commonly the ending 

or starting cycles of a recording, which are most likely cut off. 

 

And finally, the different sampling rates of the recordings, the equipment properties, noise artifacts 

and patient demographics also make it difficult to apply a simple method for classification. 

4.2. Libraries 

The project was implemented using the Python programming language [67] and Google 

Colaboratory’s notebook environment [68]. The module that was used to load and downsample 

the audio files was the Librosa module [69]. The Scipy module [70] was used to filter the audio 

files with a butterworth bandpass filter. The Tensorflow [71] library was used as the calculation 

method for MFCCs of an audio signal, while the kapre module [72] was used to calculate the PSD 

and MS of the signal. Finally, the Keras library [73] was used to implement the various neural 

network models, train the models and test them. 

4.3. Signal processing methodology 

To solve the problem of having different sampling rates, the audio recordings were downsampled 

to 4000 Hz, therefore the frequency range of the signal goes from 0 to 2000 Hz. The fundamental 

frequency range needed to detect crackles and wheezes is still within 0 to 2000 Hz. 

 

To remove signal noise artifacts, we applied a 12th order butterworth bandpass filter [74] with 

cutoff frequencies of 120 Hz to 1800 Hz. This filter and cutoff frequencies were chosen from the 

method that obtained the best results in the official ICBHI 2017 challenge dataset paper [66]. 
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Because of the varying amplitudes of the signals, which is caused by the different auscultation 

points and participant demographics, we chose to normalize the signal with respect to the mean 

and standard deviation of the signal. We normalized the respiratory cycles individually, so that 

other cycles with differing durations could not influence the resulting distribution. 

 

We then calculate the PSD, MS and MFCCs of the signal at runtime, during cycle classification. 

The PSD and MS of the signal are converted to the decibel scale from 0 to -80, then the values 

are normalized to be within the range from 0 to 1 by adding 80 and then dividing by 80. The 

MFCCs are normalized with respect to the mean standard deviation of the coefficient values of 

the whole respiratory cycle signal. 

4.4. Experimental methodology 

In this section we present and discuss the methods used to solve various challenges that occurred 

during the project as well as the reasoning behind the choices that were made. We also present 

the methods for model evaluation and hyperparameter search. 

 

Batch size issues 

 

A critical aspect of Keras [73] is that, during the training process, the mini-batch used to train the 

model must be a static tensor, in other words, it cannot be a list of input tensors with differing 

sizes. Since a respiratory cycle can vary in duration length, in order to fit multiple audio signals in 

the same mini-batch, some form of padding or masking would be necessary. Other similar 

machine learning libraries have the same problem. 

 

Masking a convolutional operation is a complex process and is time consuming. Padding the 

signals to fit the same size is easier to implement, although there was some concern that the 

model might learn to memorize the amount of padding in the signal or the border region between 

the actual signal and the padding values, resulting in overfitting and decreasing generalization 

capabilities. 

 

A more reasonable way to get around these issues would be to calculate the gradients of the 

model for each input signal individually then averaging the gradients, which would be equivalent 

to the mini-batch gradient descent method. Unfortunately, the Keras library does not currently 



FCUP     41 
Crackle and wheeze detection in lung sound signals using convolutional neural networks      . 

 

allow for this type of method of mini-batch gradient calculation. This would then lead us to the 

manual implementation of such a method, but it would require us an extensive amount of time to 

accomplish, since there are many more underlying functions that happen during training. 

 

In light of this, we decided to keep it much simpler by just using a mini-batch size of 1. There are 

other issues that arise from training a model using one sample at a time, such as training and 

optimizer stability. But we have found that utilizing the stochastic gradient descent optimization 

method [56] works better than other optimizers and can lead to less overfitting by using learning 

rate annealing. 

 

This phenomenon can be explained roughly in the following way: 

● Sharp local minima in the loss landscape are associated with poorer generalization and 

they produce larger gradients; 

● By applying quick gradient updates to the model, it can end up on local sharp minima 

which would, in a way, propel the model to escape the region. By repeatedly applying this, 

the model will eventually reach a region that has flatter local minima that correlate with 

better generalization properties; 

● By decreasing the learning rate gradually, the model becomes less sensitive to local 

minima, allowing it to decrease model loss; 

 

Class imbalance 

 

Due to the class imbalance in the dataset, all methods are trained with class undersampling. 

Undersampling is a technique with the purpose of balancing the number of samples per class 

during the training of machine learning models. It gives a more balanced estimate on the loss and 

statistics during model training, preventing the model from memorizing the minority classes first, 

which would technically increase the total accuracy, but the resulting model would be useless in 

practice. 

 

The way this was implemented in this work is as follows: 

● Repeat for N number of training epochs: 

○ Sample random X amount of samples from each class 

○ Shuffle samples 

○ Train model on the samples 
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The maximum amount of samples to sample from each class is defined as the number of samples 

in the minority class. Undersampling is applied to both train and test sets during model training. 

 

Dataset train/test split 

 

During the splitting of the dataset into training and testing sets, we had the consideration of 

including all sounds belonging to a single patient in the same set to get a more accurate estimation 

of the model’s predictive power. 

 

The methods were compared using the train/test split defined by the challenge [66].  Some of the 

audio samples that belong to the same patient are in different sets, therefore they were moved to 

the test set. 

 

Lastly, the dataset was split into five folds to perform five-fold cross validation [75] and test the 

robustness of methods. The split was done in a random process so that the number of ‘Both’ class 

samples of each fold would be approximately the same. 

 

Table 8 - Data distribution of the five folds. 

Folds Normal Crackles Wheezes Both Total 

1 1,168 415 265 100 1,948 

2 847 521 217 107 1,692 

3 590 280 150 99 1,119 

4 533 476 143 101 1,253 

5 504 172 111 99 886 

 

 

All audio samples of the dataset were used in both data distributions. 
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Method evaluation and comparison 

 

To evaluate and compare different methods, we use the metrics defined by the challenge [66],  

classification accuracy and the classification confusion matrix to assess and troubleshoot 

potential pitfalls in the training process. We evaluate and compare the final methods utilizing the 

five-fold cross validation method [75]. 

 

Model hyperparameter search method 

 

The hyperparameter search process can be the most time consuming task relating to machine 

learning algorithms. To search for the best value combinations of the hyperparameters, we would 

have to perform an extensive search of all possible combinations. However, we have decided to 

experiment with only the most promising combinations based on facts and simple observations. 

We perform the hyperparameter search using the challenge train/test split. We don’t apply five-

fold cross validation during the hyperparameter search due to the five fold increase in computation 

time of model training. 

 

We test different signal features as input for the networks: 

● Raw filtered audio signal (1D) 

● PSD of the signal (2D) 

● MS of the signal (2D) 

● MFCCs of the signal (2D) 

 

The hyperparameters for the networks and signal features are as follows: 

● PSD parameters: PSD_N_DFT (DFT window size), PSD_N_HOP (DFT window stride), 

PSD_FMIN and PSD_FMAX (Resulting spectrum’s Y axis cutoff range, where only the 

frequencies inside FMIN to FMAX range are kept); 

● MS parameters: MS_N_DFT (DFT window size), MS_N_HOP (DFT window stride), 

MS_FMIN, MS_FMAX (Resulting spectrum’s Y axis cutoff range, where only the 

frequencies inside FMIN to FMAX range are kept) and MS_N_MELS (How many mel 

conversion kernels to generate to then convert the spectrum to the mel scale); 

● MFCC parameters: MFCC_N_DFT (DFT window size), MFCC_N_HOP (DFT window 

stride), MFCC_FMIN, MFCC_FMAX (Resulting spectrum’s Y axis cutoff range, where only 

the frequencies inside FMIN to FMAX range are kept), MFCC_N_MELS (How many mel 
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conversion kernels to generate to then convert the spectrum to the mel scale) and 

MFCC_N_MFCCS (How many DCT coefficients to keep); 

● Number of convolutional layers; 

● Number of fully-connected layers; 

● Number of kernels per convolutional layer; 

● Kernel size and stride; 

 

The minimum duration of a respiratory cycle in the dataset is 0.2 seconds and the signal has a 

sampling rate of 4000 Hz which equates to 800 signal samples. The DFT [62] cannot be applied 

to the signal if the window size is larger than the signal size. Therefore, we chose 512 (128 ms) 

as the window size for the DFT of the PSD, MS and MFCC since it is the closest binary number 

to 400 (100 ms). Having a larger window size increases the spectrum’s frequency resolution, but 

it also increases the size of the spectrum grid on the frequency axis. 

 

We experimented with different values for the number of mels in the mel filter bank: 32, 64 and 

128. The best results of the three possible values was by using 64. 

 

Increasing the number of convolutional layers leads to overfitting behavior, but having too few 

layers hinders the models ability to learn the signal patterns. We kept the number of convolutional 

layers at 3. Increasing the number of fully-connected layers to a number larger than 1 also exhibits 

overfitting behavior, so it was kept at 1. 

 

Experimentation with the number of kernels in the convolutional layers with the possible values 

of 32, 64 and 128 led to the conclusion that utilizing 64 is the best option. 

 

With a kernel size of (3,3) and stride of (1,1) the receptive field size of the kernel in the first layer 

is 1024 signal data points (256 ms) and 3 data points in the frequency axis. In the second layer it 

is 1536 signal data points (384 ms) and 5 data points in the frequency axis. In the final third layer 

it is 2048 signal data points (512 ms) and 7 data points in the frequency axis. Increasing the 

receptive field in any axis increases overfitting. 

 

After several experiments, we eventually settled by defining the hyperparameters as follows: 

● PSD parameters: PSD_N_DFT = 512, PSD_N_HOP = 256, PSD_FMIN = 120, 

PSD_FMAX = 1800; 
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● MS parameters: MS_N_DFT = 512, MS_N_HOP = 256, MS_FMIN = 120, MS_FMAX = 

1800 and MS_N_MELS = 64; 

● MFCC parameters: MFCC_N_DFT = 512, MFCC_N_HOP = 256, MFCC_FMIN = 120, 

MFCC_FMAX = 1800, MFCC_N_MELS = 64 and MFCC_N_MFCCS = 13; 

● Number of convolutional layers: 3; 

● Number of fully-connected layers: 1; 

● Number of kernels per convolutional layer: 64; 

● Kernel size: (3,3); 

● Kernel stride: (1,1); 

 

Model architecture 

 

The type of neural network model architecture chosen for this work is a CNN. We choose to utilize 

a CNN instead of a Recurrent Neural Network (RNN) architecture [76] due to the innate ability of 

a CNN to detect local patterns in grid-like data structures. A RNN has advantages over a CNN in 

terms of temporal correlation detection in data, but the computation architecture of an RNN is 

non-parallelizable, meaning that when utilizing dedicated hardware, it has little to no effect in 

reducing the computation time of an RNN. Additionally, there are very few known studies [7] that 

implement CNN classification for pulmonary sounds. 

 

In the case of the raw signal input, we use 1D convolutional layers and in the case of the other 

input features, we use 2D convolutional layers. 

 

The model should output the probability for the input to belong to each of the four classes (Normal, 

Crackle, Wheeze, Both), such that the sum of the class probabilities equals 1. The class with the 

highest probability is considered as the predicted class for the input. To accomplish this, we use 

a softmax activation function in the output layer of the network. 

 

The CNN architecture is kept simple to prevent model overfitting, with just 3 convolutional layers 

and 1 fully-connected layer as the output layer. The convolutional layer type will change 

depending on the input used for the model. 

 

We also add a Global Max Pooling layer between the final convolutional layer and the fully-

connected layer, to transform the dynamic sized grid, which is the result of applying the 
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convolutional layers to the input, into a static size feature vector. This feature vector is then fed 

as input to the fully-connected layer. There was also the option to choose a Global Average 

Pooling layer, but we argue that the average pooling operation would in some way help the model 

memorize the duration of the input, therefore overfitting. 

 

We use LeakyReLU with an alpha of 0.001 as the activation function for the convolutional layers 

and we use the unit norm constraint for the weights of the individual kernels of the convolutional 

layers and the weights of the fully-connected layer. 

 

For the 2D convolutional layers, we use 64 kernels of size (3,3) and stride of (1,1) for each layer. 

For the 1D convolutional layers we use 64 kernels for each layer, the first has kernels of size 

(600) and stride of (200), the second and third layer have kernels of size (3) and stride of (1).  

 

The network architecture contains 74,756 trainable parameters in the case of 2D convolutional layers 

for 2D spectrum processing, and contains 63,428 trainable parameters in the case of 1D 

convolutional layers for raw audio processing. 

 

Model training 

 

To train the model, we used the categorical cross entropy loss function and the Stochastic 

Gradient Descent [56] optimizer with mini-batches of size 1. We trained the models for 30 epochs 

with a learning rate of 0.01, then for 10 epochs with a learning rate of 0.001 and for another 10 

epochs with a learning rate of 0.0001, making it a total of 50 epochs. The number of class samples 

that the undersampling method takes is defined as 300. Meaning that for each epoch, 1200 total 

samples are used to train the model. 

 

To train the model, using five-fold cross validation, we defined the number of class samples for 

the undersampling method to be 50. To be roughly equal to the training time of the previous 

training method, we increase the number of epochs to be 6 times more. Therefore, we train each 

fold model for 180 epochs with a learning rate of 0.01, then for 60 epochs with a learning rate of 

0.001 and for another 60 epochs with a learning rate of 0.0001, making it a total of 300 epochs 

for each fold and 1500 epochs in total. 
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Chapter 5: Results 

In this chapter, we present the results for the different methods. We begin by showing the results 

for the raw audio, PSD, MS and MFCC processing methods, using the challenge’s data split. 

Namely, the challenge metrics results for the test set as well as the training statistics of the 

models. We then finish by demonstrating the mean metric results as well as the mean recall for 

each class for the five-fold cross validation method. 

5.1. Challenge train/test split results 

We present the final test results for each of the different input features that were used in table 9, 

after several hyperparameter experiments. These methods were trained using the challenge’s 

data split that was previously mentioned. 

 

We also present the training statistics of the methods in figures 9, 10 and 11, to give us further 

insight on each method’s weaknesses and strengths. The training statistics were obtained using 

undersampling, except for the confusion matrices, which were calculated using all the data. 

 

Table 9 - Test results for each of the input feature types of the CNN model, using the challenge’s data split. The best results for 
each of the metrics are highlighted in bold. 

 

Input features Num. param. 
Total Test 
accuracy 

AS HS SP SE 

Raw audio 63,428 41% 0.40 0.38 0.49 0.32 

PSD 74,756 38% 0.38 0.37 0.32 0.45 

MS 74,756 40% 0.41 0.40 0.34 0.48 

MFCC 74,756 34% 0.35 0.33 0.27 0.42 
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Fig. 9 - Loss history for each method, using the challenge’s data split. 
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From these preliminary tests, it can be observed that the raw audio processing method obtained 

a better SP score than other methods and that the MS processing method obtained a much better 

SE score. In figures 9 and 10, the raw audio method shows the worst overfitting behavior of all 

four methods, while the MS and PSD methods show the least. In table 9, the total test accuracy 

is not an accurate measure of the method’s capabilities because of the class imbalance. In figure 

10 we can clearly see that when we use undersampling, the raw audio method’s test accuracy 

estimate is around 30%. Having a test accuracy of 25% is no better than randomly guessing to 

which class the sound belongs to, therefore it seems that the raw audio method is the worst. This 

is further evidenced by the high SP score and the confusion matrix in figure 11 of the method. 
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Fig. 10 - Accuracy history for each method, using the challenge’s data split. 
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The MS method obtained the best test accuracy estimate of around 42% (fig. 10), a shorter test 

loss and training loss gap (fig. 9) and the best SE score by a margin of 0.03 (table 9). It also had 

the lowest training accuracy estimate (fig. 10) and a low SP score. All of these factors indicate 

that the MS method showed the least overfitting and the capability to generalize better than the 

other tested methods. 

 

Of course, this is only the initial estimate of each method’s predictive capabilities and our results 

after the hyperparameter tuning process. It is also for the purpose of comparing with the methods 

used in the ICBHI 2017 Challenge dataset [66], as well as the recent studies that utilize the same 

dataset and data train/test split that was defined in the challenge. 
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Fig. 11 - Classification test and train confusion matrix for each method, using the challenge’s data split. The rows represent the true 

labels and the columns represent the predicted labels. 
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5.2. Five-fold cross validation results 

We further test the robustness of each method by performing five-fold cross validation, with the 

results being presented in table 10. The results of the methods are the result of the arithmetic 

mean of the metrics of the five folds of each method. 

Table 10 - Five-fold cross validation mean test metrics for each method. The best results for each of the metrics are highlighted 
in bold. 

Input 
features 

Num. 
param. 

Mean 
Test 

accuracy 

Mean 
AS 

Mean 
HS 

Mean 
SP 

Mean 
SE 

Mean 
‘Normal’ 

recall 

Mean 
‘Crackle’ 

recall 

Mean 
‘Wheeze’ 

recall 

Mean 
‘Both’ 
recall 

Raw 
audio 

63,428 37% 0.37 0.36 0.41 0.33 0.41 0.45 0.22 0.09 

PSD 74,756 40% 0.40 0.39 0.37 0.42 0.37 0.52 0.33 0.28 

MS 74,756 43% 0.43 0.42 0.36 0.51 0.36 0.62 0.37 0.34 

MFCC 74,756 43% 0.42 0.42 0.42 0.42 0.42 0.55 0.26 0.26 
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The results in table 10 further indicate the generalization capabilities of the MS method, by 

obtaining the best mean SE score by a margin of 0.09. It detects the adventitious sounds more 

accurately than the other methods, but it also has the worst SP. 

 

The weakness of the raw audio method is also shown, where it can only distinguish normal and 

crackle sounds decently, with wheeze containing sounds being the hardest to distinguish 

effectively. As is also evidenced in figure 11, the raw audio method just learned to memorize or 

predict sounds as normal or crackle since they are the majority classes. 

 

It is worthy to note that although the MFCC method is one of the standards in the state of the art 

in signal processing, it didn’t generalize as well as was expected. The MFCC method utilizes the 

discrete cosine transform to compress and decorrelate the signal features. This would explain 

why it works better when combined with a RNN instead of a CNN. A CNN architecture takes 

advantage of local patterns in data, therefore it makes inefficient use of the MFCCs. An RNN is 

built using a FNN as the interior network, which has access to all input features without the 

utilization of shared parameters, combined with the temporal context of the data, making it a much 

better architecture for interpreting MFCC input. 

 

During training of the folds, the MS method consistently had the smallest gap in train/test loss and 

train/test accuracy, followed by the PSD method, the MFCC method and the raw audio method. 

Meaning that the MS method is the most stable and generalizable input feature for the CNN 

architecture, within the hyperparameters that were tested. 

 

It could be argued that the raw audio input is too high dimensional, which would require a lot more 

data to be able to generalize better. However, all methods can achieve good generalization results 

if they are given enough data and training time. 

 

A possible explanation of why the MS method works better than the PSD method, although they 

are both spectral features, is that the conversion to the mel scale mimics how the human ear 

differentiates sound pitches, but it is also due to a ‘smoothing’ effect in the frequency axis of the 

image. 
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Chapter 6: Conclusion 

We found that utilizing a Mel Spectrogram for lung sound classification utilizing a Convolutional 

Neural Network architecture is more beneficial than utilizing MFCC features. However, these 

results were not better than the results obtained in the study [6] that also utilizes the same dataset 

but uses a RNN architecture with MFCC features. 

 

Based on these findings, we can infer that utilizing a Recurrent Neural Network architecture 

combined with the use of MFCCs is a better approach than utilizing a convolutional based 

approach, for the classification of lung sounds. We argue that our results suffer from the use of 

mini-batches of size 1 and a small search space for the many hyperparameters of the signal 

processing techniques and of the neural network architecture. 

 

Thesis Summary 

 

In this thesis we presented the problem of pulmonary disease, its impact on the people of the 

world and its causes. We discussed the possibility of utilizing auscultation as a simple tool for 

early detection. We discussed the problems with the diagnosis of auscultation sounds, in the 

sense that physicians require experience and ear acuity to provide a higher quality diagnosis. We 

propose digital signal processing as an effective means of automating lung sound diagnosis and 

we discuss its problems of practical real world application. We presented and discussed the state 

of the art in lung sound signal processing and classification. 

 

We presented the background relating to pulmonary auscultation, the basic anatomy of the human 

respiratory system, the auscultation procedure, the characteristics of the modern stethoscope, 

the nomenclature of lung sounds and the fundamental characteristics of adventitious lung sounds 

such as crackles and wheezes. 

 

We presented the background relating to the machine learning techniques used for pulmonary 

auscultation. Specifically, we presented the inner workings of popular deep learning architectures 

such as Feedforward Neural Networks and Convolutional Neural Networks, their components and 

optimization methods. Then we presented the techniques used to convert lung sound signals into 

usable 2D images for classification. 
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We proposed the utilization of state of the art lung signal processing techniques combined with 

the use of deep learning techniques. We proposed the utilization of a Convolutional Neural 

Network architecture. We presented the different methods of converting the lung sound signal 

into a usable 2D image for classification with a 2D CNN architecture. We also experimented with 

the use of a 1D CNN architecture for the processing and classification of the lung sound signal. 

 

We presented the ICBHI 2017 challenge dataset and its overall characteristics and statistics. We 

discussed the various problems of the dataset. 

 

We filtered the lung sound signal utilizing a 12th order butterworth bandpass filter with cutoff 

frequencies from 120 to 1800 Hz. We then normalized the signal amplitude with respect to the 

mean and standard deviation of the signal. 

 

We discussed the challenges of applying our proposed method to the classification of lung 

sounds. Namely, the problem of fitting different sized inputs into a mini-batch without zero padding 

to avoid potential overfitting. We discussed solutions such as convolution masking and individual 

sample gradient calculation, and we also discussed the problems with those solutions and 

decided to continue with the use of mini-batches of size 1. We then mentioned the problems with 

this solution and how they could be solved effectively. We showed how it is possible to convert a 

dynamic input grid into a static sized vector of features utilizing Global Pooling layers. We 

discussed and proposed a solution for the dataset’s class imbalance by utilizing class 

undersampling. We then presented our methods for splitting the dataset into training and testing 

sets, the metrics used to different method comparison, the training process of the different 

methods, the hyperparameter search methodology and the final architecture of the convolutional 

neural network we use to obtain the final classification results. 

 

Then we finally presented the results for the different signal processing methods, i.e. 1D raw 

sound processing, 2D PSD processing, 2D MS processing and 2D MFCC processing. We first 

showed the results utilizing the challenge’s train/test data split for comparison purposes, then we 

showed the result for the five-fold cross validation method. We then concluded that the utilization 

of an RNN with MFCC features is still a better approach than utilizing a CNN with spectral and 

audio features. 
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Future work 

Our lung sound classification approach still has room for further improvement. We propose the 

acquirement of more data samples to stabilize the number of class samples in the dataset and 

the implementation of a custom training algorithm to allow the use of bigger batch sizes, without 

the use of value padding. And as the final step, the exhaustive search of the hyperparameter 

space for the different signal processing features and neural network architecture. 
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