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ABSTRACT

Taking a satisfactory picture in a low-light environment remains a challenging

problem. Low-light imaging mainly suffers from noise due to the low signal-to-noise ra-

tio. Many methods have been proposed for the task of image denoising, but they fail to

work with the noise under extremely low light conditions. Recently, deep learning based

approaches have been presented that have higher objective quality than traditional meth-

ods, but they usually have high computation cost which makes them impractical to use

in real-time applications or where the computational resource is limited. In this paper,

we propose a new residual learning based deep neural network for end-to-end extreme

low-light image denoising that can not only significantly reduce the computational cost

but also improve the performance over existing methods in both objective and subjective

metrics. Specifically, in one setting we achieved 29x speedup with higher PSNR. Subjec-

tively, our method provides better color reproduction and preserves more detailed texture
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information compared to state of the art methods.
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CHAPTER 1

INTRODUCTION

Figure 1: (a) Extreme low-light image from Sony α7S II exposed for 1/10 second . (b)
100x intensity scaling of image in (a). (c) Ground truth image captured with 10 second
exposure time. (d) Output from [1]. (e) Output from our method.

Low light imaging [1–4] is one of the most challenging tasks in image processing

and computer vision, especially when the environment is extremely dark. Current image

sensors are still suffering from low signal-to-noise ratio (SNR) in extremely low light en-

vironment and will produce very noisy images if there are not enough photons reaching

the sensors. Enlarging the aperture will reduce the depth of field and lead to blurry images

in most cases, while extending exposure time will cause motion blur and is not feasible

when capturing videos. There are extensive studies on how to reproduce the natural scene

with correct exposure, accurate color and detailed texture from noisy short exposure ex-

treme low-light images. Traditional image denoising approaches, for instance BM3D [5],

work reasonably well for moderate amount of noise in normal lighting conditions. How-

ever, they perform poorly in extreme low-light condition.

Recently, a deep learning based method [1] was proposed to deal with the extreme

low light image denoising problem, using raw image captured from the sensor as input.
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The authors introduce a dataset of raw short-exposure low-light images, with the corre-

sponding long-exposure reference images. They propose to use U-Net [6] as the network

architecture and reported promising results on this dataset. However, the U-Net architec-

ture used in this work causes two problems. First, the autoencoder based network with

the use of max pooling layer for feature downsampling will lose image details and result

in smoother output with blurry edges, although the skip connections could mitigate the

degradation. Second, the U-Net architecture is slow at inference time, which makes it

difficult to be used for fast imaging and video applications under low light conditions.

To solve the problem of the previous work, we propose a novel residual learning

based end-to-end network to deal with the extreme low-light image enhancement prob-

lem. In our proposed residual blocks, we replace ReLU layer with LeakyReLU as the

nonlinear activation function, remove the batch normalization layers, and add Squeeze-

and-Excitation (SE) block [7] for feature re-calibration.

Comparing with the U-Net architecture in [1], the use of residual learning in our

proposed network help in better learning of the color and texture information of the low-

light images. Furthermore, using LeakyReLU as activation function in the residual block

introduces slope in the negative region of the feature, thus preserves the information of the

features with negative values. Finally, the SE block in residual block improves the rep-

resentation quality by re-calibrating the convolutional features, and also helps converge

faster to a stable network. We have found that the integration of above modifications is

effective in speeding up the training process and improving the denoising performance.

Compared with previous work, our proposed method not only leads to much faster
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inference time, but also results in better objective and subjective qualities. A typical

example of the comparison between our proposed method and the work in [1] is shown

in Figure 1. Our proposed network is able to reconstruct the image from the extreme low

light image with better color accuracy and higher image quality.

Figure 2 shows the traditional Image Signal Processor (ISP) pipeline. These block

of ISP are tuned differently for different ISP vendors. Based on the vendors these block

might interchanged or some extra blocks may be added to further enhance the perfor-

mance. However, this architecture of ISP works for normal lighting condition and fails

when used under under or over exposed environment. Hence in this work, we propose an

end-to-end solution for joint denoising and demosaicing approach for the enhancement of

low light images.

Figure 2: Overview of traditional imaging pipeline
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CHAPTER 2

RELATED WORK

Extensive research has been conducted on low light image denoising and enhance-

ment. Here we provide a brief literature review of existing research work.

2.1 Image Denoising

Many conventional methods have been developed for image denoising. Plotz and

Roth [8] proposed a benchmark dataset of real noisy images to compare traditional im-

age denoising methods and found that the sparse 3D transform-domain collaborative fil-

tering (BM3D) [5] outperforms other methods such as Weighted Nuclear Norm Mini-

mization (WNNM) [9], K-SVD [10], Expected Patch Log Likelihood (EPLL) [11], Field

of Experts (FoE) [12] and Nonlocally Centralized Sparse Representations (NCSR) [13].

More recently deep learning based image denoising methods have gained popularity.

DnCNN [14] uses Batch Normalization (BN) and ResNet [15] to perform image denoising

and has shown significant performance gain over traditional methods including BM3D.

This network not only performs image denoising, but also achieves super-resolution to the

denoised images and makes the image looks more satisfying to the eyes. However both

of these network suffers to produce good quality images when processed with extremely

low light images.
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2.2 Low-light Image Enhancement

Histogram equalization and gamma correction are the most common traditional

methods for image enhancement. Although these methods work well on normal dark im-

ages, they fail on extremely low light condition because of introduction of quantization

errors. Deep learning based methods that use multi-exposure fusion like [16] uses a burst

of images taken with different exposure time and use deep network to fuse them and pro-

duce single denoised image. These methods are not very practical because of the complex

network behind image fusion and time inefficiency for capturing and processing. In addi-

tion, this type of methods are not possible for video application. More recent work in low

light image processing is Learning to See in the Dark (SID) [1] that proposed to use an

end-to-end fully convolutional network on raw sensor data to replace the whole traditional

image processing pipeline. They also introduced a dataset of raw short-exposure low light

images, with the corresponding long-exposure reference images. Their work uses U-Net

as the main network architecture which causes some quality issue in resulting image, and

is also slow in inferencing.

Inspired by the residual learning (DnCNN) and See-in-Dark (SID), we propose a

new network architecture to address the issues with these methods.
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CHAPTER 3

METHOD

Figure 3: (a) Raw sensor image is separated into different color planes on which an ampli-
fication ratio is multiplied. After residual learning, the output is upsampled x2 using con-
volution layers with pixel shuffling. The network for residual learning contains a number
of residue blocks. (b) Residual block details. Each residual block contains LeakyReLU
layer and an SE block.

In this section, we will describe our proposed method for extreme low-light image

denoising and enhancement. The overall network architecture of our proposed method

is shown in Figure 3. Raw sensor image is separated into RGBG color planes with half

size, before an amplification ratio is multiplied. The main structure of our network is a

residual learning framework. The residual learning assumes that the residue can be more

easily learned by the network rather than the whole image itself. After residual learning,

the output is upsampled x2 using convolution layers with pixel shuffling [17].
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3.1 Network Architecture

The main network contains 32 residue blocks [15], and the structure of each

residue block is shown in Figure 3[b]. For this task we design a residue block that con-

tains a first 3x3 convolution layer, followed by a Leaky ReLU layer, a second 3x3 convo-

lution layer, a constant linear scaling unit, and finally the output of the residual block is

re-calibrated by an Squeeze-and-Excitation block [7].

Compared with the network in SID, we replaced the U-Net architecture with resid-

ual learning. We argue that the use of the maxpool layer and reduction of feature size in

U-Net architecture will remove the important information from the feature. Therefore, on

contrary to the U-Net architecture which has the contracting and expanding structure, in

this paper we propose to use the network architecture without the downscaling structure.

In our proposed network, we uses a constant feature size throughout residual part of the

network.

Figure 4: LeakyReLU as activation function
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Several modifications are introduced in our network architecture compared to re-

cent residual network [14, 15, 18] which are successfully applied for image super reso-

lution task. In these network, rectified linear unit(ReLU) was adopted as the activation

function for each residual block. ReLU zeros out the negative information from the fea-

ture, which also carries important information about the local structure and should be pre-

served for better reconstruction of the output image. In our design, we use LeakyReLU

instead of ReLU as the activation function for the residual block. LeakyReLU with the

negative slope of 0.2 showed better model convergence with no extra computational cost.

Figure 4 shows the non linearity curve of LeakyReLU activation function compared to

ReLU.

Within each residual block, we also add a Squeeze-and-Excitation block, which

has shown improvement in network performance of ResNet and Inception module [7]. It

is observed that integration of SE block within the residual block is effective in speeding

up the training and boosting the denoising performance. SE block improves the feature

representation of network by using the channel wise feature scaling.

In training, we set our input size to 256x256 pixel and used 4 channel RGBG

image extracted from the raw images of SID dataset [1]. Since our proposed network

is less complex than its counterpart SID [1], we are able to increase the depth of the

network to 32 residual blocks, while keeping the inference speed of 4K resolution image

fast enough for realtime processing. Increasing the depth of the residual learning helps

in learning better features. The input raw sensor image is first linearly scaled by the

amplification ratio which is the difference of the exposure time between short and long
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exposure images.

3.2 Loss function

We use L1 loss as the loss function for our network. L1 Loss function minimizes

the absolute differences between the predicted value and the ground truth value. The L1

loss is implements as follows,

L1 = |x̂− x| (3.1)

where, x̂ is predicted image and x is corresponding long exposure ground truth image.
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CHAPTER 4

EXPERIMENTS

4.1 Dataset and Experimental Setup

We use See-in-the-Dark dataset [1] that contains the real world extreme low-light

images with its corresponding noise-free ground truth images. The dataset contains 5094

raw images from Sony a7S II and Fujifilm X-T2 sensors with dark short exposed images

and its respective bright long exposed images. Our network is trained with images from

Sony sensor that uses the full-frame Bayers filter array. The dataset contains the dark

images with three different exposure time of 1/10, 1/25 and 1/30 seconds and the corre-

sponding ground truth images with exposure of 10 seconds. The time difference between

the shutter speed is taken as the amplification ratio for dark image and ground truth pair.

There were some misalignment found in the test set of the SID. So, we removed such

images from the dataset for performance evaluation.

The input to the network is raw sensor image with short exposure and the output is

sRGB image. The ground truth is the corresponding standard RGB long exposure image

produced from the raw sensor image with the libraw library. In training, the input size

is 256x256, randomly cropped from input image set with flipping and rotation for data

augmentation and the output is 3 channel 512x512 sRGB image. We experimented with

both 16 and 32 residual blocks. The negative slope parameter of LeakyReLU is set as 0.2.

L1 loss is used as our loss function and Adam is used as optimizer. The network is trained
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Figure 5: Example of SID Dataset. For each scene there are at most three different images
with three exposure time

for 6000 epochs, with learning rate set to 10−4 initially and reduced by factor of 10 after

every 2000 epochs. Our training process are carried out on a PC with Intel i5-8400 CPU,

16GB memory and Nvidia GTX 1080 GPU.

4.2 Performance metrics

We use peak signal to noise ratio (PSNR) and SSIM [19] as our performance

metrics. The PSNR is calculated as,

MSE =
1

N

N∑
n=1

(x̂(n)− x(n))2 (4.1)

PSNR = 10 log10(
1

MSE
) (4.2)

whereN is the number of pixels andMSE is the mean square error between the predicted

and the ground truth image. The higher value of PSNR is expected. Since the PSNR alone

cannot determine the perceptual quality of the image, we also used SSIM as performance

metric. The SSIM value closer to 1 represents predicted image is perceptually similar to

ground truth.
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Figure 6: (a) Ground truth image (b) Output from SID. Noise is still present in few parts
of the image (c) Output from BM3D. Denoised image is darker than the ground truth. (d)
Denoised output from our network

4.3 Subjective Quality

4.3.1 Denoising

The proposed network reduces the noise of low-light images while preserving the

color and texture information. Figure 11 shows the results of our method compared with

SID [1] and BM3D [5].

BM3D is applied after linear scaling up of the original images with corresponding

amplification scaling. For each scaling factor, multiple sigma values are tried and the best

one is used to obtain the results. Specifically, the sigma value is set to 200 for the 100x

scaling and 300 for the 250x and 300x amplification scaling of the image. Even with the

optimal sigma level setting, the BM3D results are still poor as compared to our method

for these extreme low light image cases. This is expected as explained in [1]. SID results

are obtained using the source code provided in [1].
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Figure 7: (a) Input dark image (b) 100x scaled version of dark images (c) Ground truth
with exposure time of 10 seconds (d) SID output with missing color information, PSNR:
20.48dB (e) Output from our network with close approximation to ground truth image,
PSNR: 27.17dB.

Figure 8: (a) Input dark image form Sony 300x subset (b) 300x amplification of dark
image (c) Ground truth image with exposure time of 10 seconds (d) U-Net output with
unnecessary color spread at the ground. (e) Output from our network with close approxi-
mation to ground truth image.

4.3.2 Color Accuracy

The output image color is more accurately recovered in the our proposed network

than in SID, when compared to the ground truth image. Most of the images reproduced

by SID are either discolored or have no color information, while our proposed method

produce the color closer to the ground truth.

Figure 7 shows an example where the output of the SID has completely different

color on the wall. It only produces some color at the edge of the wall. The floor in the

image is slightly discolored. Our proposed method is able to reproduce the wall color and

the floor color more accurately.
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4.3.3 Color Spreading

We also notice a common green and yellow color spread in the output of SID re-

sults. As we can see in Figure 8 the grass is replaced by the barren land like structure in the

SID output. However, our proposed method is able to generate the close approximation

to the ground truth.

Figure 9: (a) Ground truth (b) 300x amplified dark image (c) U-Net output. Image not
clear due to pixelated effect. (d) Output from our network with higher image quality
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Figure 10: More example on color accuracy

4.3.4 Image Details

Since we do not reduce the feature size, we find our approach can better preserve

the texture and edge details in the output images. On the contrary, SID produces out-

put with smoother texture and lost details due to contracting and symmetric expanding

structure of U-Net applied. Figure 9 shows the output image in the zoom-in area is much

clearer in the results from our proposed network than from SID.
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Figure 11: Example showing preservation of textural information

4.4 Objective Quality

Figure 12 shows comparison in loss curve for our proposed method vs SID. The

loss in our proposed approach is converging faster as compared to SID. The use of the

Squeeze-and-Excitation (SE) [7] block in the our network is effective in speeding up

the training and boosting the denoising performance. As we can see in the figure, our

proposed method converges much faster at the beginning and keep a big margin along the

way for the entire training process.

We uses peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [19]

as performance metrics for objective image quality compared to the ground truth image,

and the comparison results are shown in Table 1. As we can see in the table, our methods

outperforms SID in terms of PSNR. At the same time, in terms of average SSIM, our

results are comparable to SID. In Table 1, we can also see that the performance of our
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Figure 12: (a) L1 loss curves for our proposed method vs SID for 100 epochs.

methods with SE block is much better than the one without SE block.

We further break the input images into three categories based on the amplification

ratio, and find that our methods has better results for the amplification ratios of x100 and

x250. We compared our method with the state-of-the-art SID and traditional approach

BM3D. For the fair comparison of BM3D with the deep learning based method we first

scaled the dark image by the amplification factor similar to our proposed method and used

C-BM3D in sRGB version of low-light image generated by ’Rawpy’ similar to the ground

truth image. The sigma value of the BM3D is selected such that it generates the highest

PSNR value. Table 2 shows the performance for each of the scaling factor in comparison

to SID and BM3D.

17



Table 1: Results Comparison

Experiments PSNR SSIM

SID 28.97 0.8857

Ours - No SE Block 28.49 0.8817

Ours - 16 Residual Blocks 29.15 0.8829

Ours - 32 Residual Blocks 29.16 0.8856

Table 2: Performance Analysis

Experiments x100 x250 x300

BM3D 21.23 19.97 19.01

SID 30.08 28.42 28.52

Ours - 32 Residual Blocks 30.53 28.78 28.38

4.5 Complexity Analysis

The proposed network architecture in this paper has much less model parameters

compared to the neural network architecture of U-Net in SID [1]. Table 3 shows the

complexity analysis of our proposed network compared with SID and BM3D. There are

two configurations of our proposed network, one with 32 residual blocks and the other

has 16 residual blocks. On our proposed network with 32 residual block we get around

21x faster processing time, while in another setting with 16 residual block we get 29x

faster processing speed with higher PSNR than the SID. In particular, our residual based

learning has almost three times less trainable parameters than the U-Net, which allowed

to train deeper network in limited amount of GPU resource. Also, the inference time of

our network is 0.11 sec for 4K full frame image hence making more practical in real-time

18



Table 3: Complexity Analysis

Experiments # of parameters Time(sec)

BM3D - 385.90

SID 7.76M 0.235

Ours - 16 Residual Blocks 1.38M 0.008

Ours - 32 Residual Blocks 2.5M 0.011

application.
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CHAPTER 5

CONCLUSION

In this paper we propose a new deep residual learning network with Squeeze-

and-Excitation block for denoising and enhancement of extreme low-light images.Our

experimental results show that our network has not only better PSNR gain over the SID

counterpart but also has reduced computational cost. With our residual network we are

able to denoise the image under extremely low light condition while preserving most of

the color and texture information. This advantage makes our network suitable for fast

processing of low light images and videos on resource constrained devices. In the future

we plan to design low light image understanding solution via end-to-end deep learning

for various vision tasks. Further, we will use a decomposition-based network to divide

and conquer the problem. Additionally, we will optimize our work for low-end mobile

devices with limited resources and computation power.
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