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Radiative nucleon-deuteron capture and two- and three-body photodisintegration of the three-nucleon bound
state are described. The description uses the purely nucleonic charge-dependent CD-Bonn potential and its
coupled-channel extension CD Bonn +D. The D-isobar excitation yields an effective three-nucleon force and
effective two- and three-nucleon currents beside otherD-isobar effects; they are mutually consistent. Exact
solutions of three-particle equations are employed for the initial and final states of the reactions. The current
has one-baryon and two-baryon contributions and couples nucleonic withD-isobar channels.D-isobar effects
on the observables are isolated. Shortcomings of the theoretical description are discussed and their conse-
quence for the calculation of observables is estimated.
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I. INTRODUCTION

Photoreactions in the three-nucleon system are described
allowing for the excitation of a nucleon to aD isobar. The
available energy stays below pion-production threshold;
thus, the excitation of theD isobar remains virtual. TheD
isobar is therefore considered a stable particle; it yields an
effective three-nucleon force and effective exchange currents
beside otherD-isobar effects. The effective three-nucleon
force simulates the two-pion exchange Fujita-Miyazawa
force[1] and the three-pion ring part of the Illinois forces[2]
in a reducible energy-dependent form. The effective ex-
change currents are of two-nucleon and three-nucleon nature.
Since the effective nucleonic forces and currents are built
from the same two-baryon coupled-channel potential and
from the corresponding one-baryon and two-baryon coupled-
channel current, they are consistent with each other. Since
the two-baryon coupled-channel potential is based on the
single exchanges of the standard isovector mesons pispd and
rho srd and of the isoscalar mesons omegasvd and sigma
ssd, the same meson exchanges are contained in the effective
nucleonic forces and in the effective nucleonic currents. E.g.,
beside thep exchange of Refs.[1,2] also r exchange is
included in forces and currents.

The exact solution of the three-particle scattering equa-
tions is used for the description of the initial- and final-state
interactions; the coupled-channel formulation for nucleon-
deuteron scattering is developed in Refs.[3–5]; radiative
nucleon-deuteron capture and electromagnetic(e.m.) two-
body breakup of the three-nucleon bound state are described
in Ref. [6]. Whereas a separable expansion of the Paris po-
tential [7] is used in those early calculations, Ref.[8] solves
the three-particle scattering equations exactly by Chebyshev

expansion of the two-baryon transition matrix as interpola-
tion technique; that technique is found highly efficient and
systematic. In this paper, the technique of Ref.[8] is also
used for the description of photoprocesses in the three-
nucleon system. In contrast to Ref.[6] the underlying purely
nucleonic reference potential is charge-dependent CD Bonn
[9]. Furthermore, the coupled-channel extension of CD
Bonn, called CD Bonn+D and employed in this paper, is
fitted in Ref.[10] to the experimental two-nucleon data up to
350 MeV nucleon lab energy; it is as realistic as CD Bonn.
Thus, this paper updates our previous calculations[6] of tri-
nucleon photoreactions. Compared to Ref.[6], the descrip-
tion is extended to higher energies, and three-nucleon
breakup is also included. An alternative description of e.m.
processes in the three-nucleon system is given in Refs.
[11–13]; Refs. [11–13] employ a different two-nucleon po-
tential, an explicit irreducible three-nucleon force, and a dif-
ferent e.m. current; nevertheless, the theoretical predictions
of Refs.[11–13] and of this paper will turn out to be quali-
tatively quite similar.

Section II recalls our calculational procedure and espe-
cially stresses its improvements. Section III presents charac-
teristic results for observables;D-isobar effects on those ob-
servables are isolated. Section IV discusses the technical
shortcomings of the given results. Section V gives a sum-
mary and our conclusions.

II. CALCULATIONAL PROCEDURE

The calculational procedure, including the notation, is
taken over from Ref.[6]. We remind the reader shortly of
that procedure in order to point out changes and to describe
the extension to three-body photodisintegration, not dis-
cussed in Ref.[6].

A. Nonrelativistic model for the electromagnetic and hadronic
interaction of baryons

The e.m. current acts in a baryonic Hilbert space with two
sectors, i.e., one sector being purely nucleonic and one in
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which one nucleonsNd is turned into aD isobar. The current
operator is employed in its Fourier-transformed formJmsQd
and in a momentum representation, based on the Jacobi mo-
mentaspqK d of three particles in the definition of Ref.[3],
i.e.,

kp8q8K 8uJmsQdupqK l = dsK 8 − Q − K d

3 kp8q8u jmsQ,K +dupql. s1d

In Eq. s1d Q is the three-momentum transfer by the photon; it
will take on particular values depending on the considered
reaction; in the photoreactions of this paper it is given by the
photon momentumkg. A total-momentum conservingd
function is split off; the remaining current operator
jmsQ ,K +d only acts on the internal momenta of the three-
baryon system with a parametric dependence on the combi-
nation K +=K 8+K of total momenta. Since all meson de-
grees of freedom are frozen, the operator has one-baryon and
many-baryon pieces. Beside the standard nucleonic-current
part there are additional parts involving theD isobar which
then make effective two- and three-nucleon contributions to
the exchange current, the contributions being consistent with
each other. We take one-baryon and two-baryon contribu-
tions into account, shown in Figs. 1–3 and described in detail
in the respective figure captions. The explicit forms of the
considered contributions are collected in Appendix A. The
horizontal lines in the diagrams indicate that the meson ex-
changes are instantaneous. The dominant meson-exchange
contributions arise fromp andr exchanges; note that those
are the only contributions of two-baryon nature taken into
account in the calculations of Refs.f11–13g. In our calcula-
tions also the nondiagonalrpg and vpg contributions are
taken into account for the currents of Figs. 1 and 2. The
current of Fig. 2 couples purely nucleonic states with states
containing oneD isobar. In contrast to Ref.f6g, the contri-
butions betweenD-isobar states of one- and two-baryon na-
ture are kept as shown in Fig. 3, though the corresponding
two-baryon contributions will turn out to be quantitatively
entirely irrelevant; we therefore take only the diagonalp
contribution into account. The current is derived by the ex-
tendedS-matrix method of Refs.f14–17g; however, it satis-
fies current conservation only approximately with the corre-

spondingp and r exchanges in the employed two-baryon
interactionHI of CD Bonn and CD Bonn+D. The spatial
current is systematically expanded up to first order in
k/mN, k being a characteristic baryon momentum andmN
the nucleonic rest mass. The charge density is used in
zeroth order ink/mN for the standard calculations of Sec.
III; even photoreactions require the charge-density opera-
tor, i.e., for the Siegert form of the current.

In the perturbative spirit for the evolution of photopro-
cesses, the e.m. interactionHI

e.m. acts only once, whereas the
hadronic interactionHI has exactly to be taken into account
up to all orders. We use hadronic channel states, seen in the
initial and final statesuiPil and ufPfl of the photoreactions
with total momentaPi andPf in the form

uFBK l = uBluK l, s2ad

uFasqdnaK l = ufasqdnaluK l, s2bd

uF0spqdn0K l = uf0spqdn0luK l, s2cd

with the energies

EBsK d = EB +
K 2

6mN
, s3ad

EasqK d = ed +
3q2

4mN
+

K 2

6mN
, s3bd

E0spqK d =
p2

mN
+

3q2

4mN
+

K 2

6mN
, s3cd

mN, ed, andEB being the average rest mass of the nucleon,
the deuteron, and the trinucleon binding energies; in contrast
to the notation of Ref.[6], but consistent with our notation of
hadronic reactions[3,8], the rest mass of three nucleons is
removed from the energies of Eqs.(3). The internal tri-
nucleon bound state isuBl, which is normalized to 1. The
product nucleon-deuteron and breakup channel states in the
three-nucleon center-of-mass(c.m.) frame areufasqdnal and
uf0spqdn0l in the notation of Ref.[3], na andn0 denoting all

FIG. 1. One- and two-baryon processes contained in the used
e.m. current. In this figure only the purely nucleonic processes are
depicted; the nucleon is indicated by the thin solid line, the photon
by the wavy line, and the instantaneous meson exchange by the
dashed line. In nonrelativistic order the one-nucleon process con-
tributes to the charge density and to the spatial current, the two-
nucleon processes only to the spatial current. The diagonal isovec-
tor p and r exchanges are taken into account in the two-nucleon
processes as well as the nondiagonalrpg andvpg contributions.

FIG. 2. One- and two-baryon processes contained in the used
e.m. current. In this figure processes are depicted in which one
nucleon is turned into aD isobar, indicated by a thick line. The
Hermitian adjoint processes are taken into account, but are not dia-
grammatically shown. In nonrelativistic order the one-baryon and
two-baryon processes contribute only to the spatial current. In the
one-baryon current only the magnetic dipole transition is kept. The
diagonal isovectorp andr exchanges are taken into account in the
two-baryon processes as well as the nondiagonalrpg and vpg
contributions.
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discrete quantum numbers. In both cases the c.m. motionuK l
is explicitly added to the internal motion; in the three-
nucleon channel with a photon, the total momentumP is
different from the total momentumK of the three nucleons,
bound in the trinucleon bound stateuBl; in the channels with-
out photonP=K .

The matrix elements of the e.m. interaction require fully
correlated hadronic states, i.e.,

uFBK l = ± i0 G„EBsK d ± i0…uBluK l, s4ad

uCa
s±dsqdnaK l = ± i0 G„EasqK d ± i0…

3
1
Î3

s1 + PduFasqdnaK l, s4bd

uC0
s±dspqdn0K l = ± i0 G„E0spqK d ± i0…

3
1
Î3

s1 + PduF0spqdn0K , s4cd

with the full resolvent

GsZd = sZ − H0 − HId−1; s5d

the free HamiltonianH0 contains the motion of the center of
mass, but the rest mass of three nucleons is taken out, con-
sistent with Eqs.s3d; the permutation operatorP symme-
trizes the product states; the individual kinetic energy opera-
tors are of nonrelativistic form; they yield the eigenvalues of
Eqs.s3d. The hadronic statess4bd ands4cd are normalized to
d-functions without additional normalization factors. Since
the hadronic interaction HamiltonianHI acts on relative co-
ordinates only, the full resolvent reproduces the bound state
uBl and correlates the scattering states only in their internal
parts, i.e.,

uCa
s±dsqdnaK l = uca

s±dsqdnaluK l, s6ad

uC0
s±dspqdn0K l = uc0

s±dspqdn0luK l. s6bd

B. S matrix for three-body photodisintegration of the
trinucleon bound state

The S matrix and the spin-averaged and spin-dependent
cross sections for radiative nucleon-deuteron capture and for
two-body photodisintegration of the trinucleon bound state
are given in Ref.[6]. We add now the corresponding quan-
tities for three-body photodisintegration. The kinematics of
all considered photoprocesses is shown in Fig. 4. The figure

also defines the employed notation for the individual particle
momenta of the trinucleon bound state, deuteron, a nucleon,
the three-nucleons of breakup, and the photon;kB, kd, kN, ki,
and kg are on-mass-shell four-momenta. The corresponding
particle energies are the zero components of those momenta,
i.e.,kB

0c, kd
0c, kN

0c, ki
0c, andkg

0c; they are relativistic ones with
the complete rest masses in contrast to those of the nonrela-
tivistic model calculation of baryonic states in Eqs.(3).

We give various alternative forms for theS-matrix ele-
ments:

kfPfuSuiPil = − is2p"d4dsk1 + k2 + k3 − kg − kBdksfuMusil

3s2p"d−15/2f2kg
0c 2kB

0c 2k1
0c 2k2

0c 2k3
0cg−1/2,

s7ad

kfPfuSuiPil = − 2pi d„ENsk1d + ENsk2d + ENsk3d − kg
0c

− EBskBd…dsk1 + k2 + k3 − kg − kBd

3
s4pd1/2"

s2p"d3/2s2kg
0cd1/2

3kc0
s−dsp fq fdn0fu jmskg,K +demskglduBl. s7bd

Equation(7a) introduces a covariant form, whereas Eq.(7b)
is the noncovariant quantum mechanical realization of it.
emskgld is the polarization vector of the real photon with
helicity l. ksfuMusil is the singularity-free matrix element for
three-nucleon photodisintegration, from which the differen-
tial cross section

dsi→f = uksfuMusilu2
dLipsskg + kB,k1,k2,k3d

4c2 kB ·kg

s8d

is obtained. Its dependence on the helicityl of the photon
and on the spin projectionMB of the trinucleon bound state

FIG. 3. One- and two-baryon processes contained in the used e.m. current. In this figure processes are depicted which connect states with
a D isobar. In nonrelativistic order the one-baryon process contributes to charge density and spatial current, the two-baryon processes only
to the spatial current. Only the diagonal isovectorp exchange is taken into account in the two-baryon processes.

FIG. 4. Schematic description of all considered three-nucleon
photoreactions. The lines for the two-baryon and three-baryon par-
ticles are drawn in a special form to indicate their compositeness.
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in the initial channel, collectively described bysi, and on the
spin projectionsmsf

of nucleons in the final channel, collec-
tively described bysf, are explicitly indicated.ksfuMusil is
Lorentz invariant in a relativistic description and can there-
fore be calculated in any frame. However, in our model it is
calculated in the framework of nonrelativistic quantum me-
chanics and therefore loses the property of being a Lorentz
scalar; equating Eqs.s7ad and s7bd, ksfuMusil is defined by

ksfuMusil =
Î4p

c
s2p"d3f2kB

0c 2k1
0c 2k2

0c 2k3
0cg1/2

3kc0
s−dsp fq fdn0fu jmskg,K +demskglduBl. s9d

We calculate that matrix element in the c.m. system of the
final hadronic state using the following computational strat-
egy. The strategy is nonunique, since the model calculations,
due to dynamic limitations, miss the trinucleon binding en-
ergy; the necessary correction for that miss has arbitrary fea-
tures. In contrast, theS matrix of Eq.s7ad is based on proper
relativistic kinematics with experimental rest masses.

(1) The experimental photon momentumkg in the lab
frame with kB=0 determines the total momentumPf and
energyE0sp fq fK fd of the final three-nucleon system in the
lab frame, i.e.,Pf =K f =kg and E0sp fq fK fd=EB+ ukguc. This
step is done using the experimental trinucleon binding en-
ergy. The resulting energyE0sp fq fK fd of the final state is the
true experimental one. Thus, the experimental two-body and
three-body breakup thresholds are exactly reproduced. In
nonrelativistic approximation for baryon kinematics, the in-
ternal three-nucleon kinetic energy part of the final state is
p f

2/mN+3q f
2/4mN=E0sp fq fK fd−K f

2/6mN.
(2) The matrix elementksfuMusil is calculated in the c.m.

system ason-energy-shell elementunder nonrelativistic
model assumptions. Under those assumptions the internal en-
ergy of the initial state is ukg c.m.uc+EB+kg c.m.

2 /6mN

=E0sp fq fK fd−K f
2/6mN,kg c.m. being the photon momentum

in the c.m. system, in which the trinucleon bound state is
moving with momentumkB=−kg c.m.; thus, K +=−kg c.m..
Taking the computed trinucleon model binding energyEB
and the average nucleon massmN, i.e., mNc2

=938.919 MeV, the magnitude of the photon momentum
ukg c.m.u to be used for the current matrix element results.
Since the model binding energyEB is not the experimental
one, neither for3He nor for3H, and since the c.m. contribu-
tion to total three-nucleon energies is assumed to be nonrel-
ativistic with mass 3mN and to separate from its internal part
that photon momentumkg c.m. does not have the experimen-
tal value.

In contrast to the matrix elementksfuMusil which carries
the dynamics, the kinematical factors in Eq.(8), i.e., the
standard Lorentz-invariant phase-space elementdLipsskg

+kB,k1,k2,k3d [6,18] and the factor 4c2 kB·kg, which con-
tains the incoming flux, the target density, and projectile and
target normalization factors can be calculated relativistically.

As in Ref. [5] for hadronic nucleon-deuteron breakup the
scattering angles of two nucleons with respect to the beam
direction, i.e.,su1,w1d andsu2,w2d, notationally shortened to

su1,u2,w2−w1d, and the arclengthS along kinematical curve
are chosen as independent variables. The lab cross section
therefore takes the compact form

d5si→f = uksfuMusilu2fps dS d2k̂1 d2k̂2, s10ad

with the abbreviation fps for the phase-space factor in the lab
frame, resulting from integrating out the four-dimensionald
function, i.e.,

fps =
1

s2p"d532c7kg
0mB

k1
2k2

2hk1
2fuk2usk2

0 + k3
0d

− k2
0k̂2 · skg − k1dg2 + k2

2fuk1usk1
0 + k3

0d

− k1
0k̂1 · skg − k2dg2j−1/2. s10bd

The cross sections10ad is still spin dependent. The spin-
averaged fivefold differential cross section is

d5s

dS dV1 dV2
=

1

4 o
MBl

o
ms1

ms2
ms3

d5si→f

dS d2k̂1 d2k̂2

. s11d

Spin observables are defined as in Refs.f4,5g. The experi-
mental setup determines the isospin character of the two de-
tected nucleons 1 and 2.

The calculational strategy of Eqs.(9) and (10) is in the
spirit of Ref.[6]; it chooses the kinematics differently for the
dynamic matrix elementksfuMusil on one side and for the
phase spaced Lipsskg+kB,k1,k2,k3d and the factor 4c2kB·kg

on the other side. That strategy can be carried out with ease
for the observables of exclusive processes. However, when
total cross sections in hadronic and e.m. reactions or inelastic
structure functions in electron scattering are calculated as
described in Appendix B for the total photo-cross-section,
the energy conservingd function is rewritten as imaginary
part of the full resolvent and has to be made consistent with
the employed nonrelativistic dynamics. Thus, as described in
Appendix B, the split calculational strategy, developed in
Ref. [6] and so far here, cannot be carried through for total
cross sections and inelastic structure functions; furthermore,
as discussed in Ref.[5] for the hadronic reactions, such a
split calculational strategy would also be inconsistent with
the fit of the underlying baryonic potentials.

We shall therefore use nonrelativistic kinematics in the
framework of quantum mechanics throughout. The corre-
sponding expressions, derived from quantum mechanics di-
rectly, can also be obtained formally from Eqs.(9) and (10)
by replacing the hadron energieskj

0c by their rest masses
mjc

2 and using nonrelativistic energies for the energy con-
serving d functions and for the definition of the kinematic
locus. The lab cross section is constructed from the following
building blocks, i.e., the matrix element:

ksfuMusil =
Î4p

c
s2p"d3f2mBc2s2mNc2d3g1/2

3kc0
s−dsp fq fdn0fu jmskg c.m.,− kg c.m.d

3emskg c.m.lduBl s12ad
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and the phase-space factor fps of Eqs.(10) which takes the
following changed form:

fps =
1

s2p"d532c8kg
0mNmB

k1
2k2

2hk1
2f2uk2u− k̂2 · skg − k1dg2

+ k2
2f2uk1u− k̂1 · skg − k2dg2j−1/2. s12bd

Section IV will discuss the differences between the present
fully nonrelativistic calculational scheme of cross sections
and that of Eqs.s9d and s10d with some relativistic features.

III. RESULTS

We present results for spin-averaged and spin-dependent
observables of nucleon-deuteron radiative capture and of
three-nucleon photodisintegration; results of two-body pho-
todisintegration are transformed to corresponding ones of ra-
diative capture. The results are based on calculations derived
from the purely nucleonic CD-Bonn potential[9] and its
coupled-channel extension[10], which allows for single
D-isobar excitation in isospin-triplet partial waves. TheD
isobar is considered to be a stable particle of spin and isospin
3
2 with a rest massmDc2 of 1232 MeV. In contrast to the
coupled-channel potential constructed previously by the sub-
traction technique[19] and used in the calculations of Ref.
[6], the new one of Ref.[10] is fitted properly to data and
accounts for two-nucleon scattering data with the same qual-
ity as the original CD-Bonn potential. We describe first the
standard calculational procedureadopting the strategy of
Sec. II B.

The hadronic interaction in purely nucleonic and in
nucleon-D partial waves up to the total two-baryon angular
momentumI =4 is taken into account. The calculations omit
the Coulomb potential between charged baryons. Neverthe-
less, the theoretical description is charge dependent. For re-
actions on3He the pp and np parts of the interaction are
used, for reactions on3H the nn and np parts. Assuming
charge independence, the trinucleon bound state and
nucleon-deuteron scattering states are pure states with total
isospin T= 1

2; the three-nucleon scattering states have total
isospinT= 1

2 and T= 3
2, but those parts are not dynamically

coupled. Allowing for charge dependence, all three-baryon
states haveT= 1

2 and T= 3
2 components which are dynami-

cally coupled. For hadronic reactions that coupling is found
to be quantitatively important in the1S0 partial wave[20]; in
other partial waves the approximative treatment of charge
dependence as described in Ref.[20] is found to be suffi-
cient; it does not couple total isospinT= 1

2 and 3
2 channels

dynamically. The same applies for photoreactions considered
in this paper. The effect of charge dependence is dominated
by the 1S0 partial wave; it is seen in some particular kine-
matics of radiative capture and of three-body photodisinte-
gration; we do not discuss it in this paper. Furthermore, the
calculations of e.m. reactions require total isospinT= 3

2 com-
ponents of scattering states inall considered isospin-triplet
two-baryon partial waves, since the e.m. current couples the
T= 1

2 andT= 3
2 components strongly.

The three-particle equations for the trinucleon bound state

uBl and for the scattering states are solved as in Ref.[8]; in
fact, the scattering states are calculated only implicitly as
described in Appendix B. The resulting binding energies of
3He are −7.941 and −8.225 MeV for CD Bonn and CD
Bonn+D, respectively. If the Coulomb interaction were
taken into account, as proper for3He, the binding energies
shift to −7.261 and −7.544 MeV, whereas the experimental
value is −7.718 MeV. Nevertheless, we use the purely had-
ronic energy values and bound-state wave functions for con-
sistency when calculating the current matrix elements, since
we are unable to include the Coulomb interaction in the scat-
tering states.

Whereas the hadronic interaction is considered up toI
=4, the e.m. current is allowed to act between partial waves
up to I =6, the higher partial waves being created by the
geometry of antisymmetrization. The e.m. current is taken
over from Refs.[14,21] with some necessary modifications.

(1) The e.m. current is richer than the one used in Ref.[6];
diagonal two-baryon currents connecting states withD isobar
are taken into account.

(2) Values for the e.m. couplings of theD isobar are taken
from Refs.[22,23].

(3) Meson coupling constants, meson masses, and had-
ronic form factors used in meson-exchange currents are cho-
sen consistently with the employed hadronic interactions CD
Bonn and CD Bonn+D; they are listed in Refs.[9,10]. The
employed contributions to the e.m. current are collected in
Appendix A. The current is expanded in electric and mag-
netic multipoles as described in Refs.[6,21]. The technique
for calculating multipole matrix elements is developed in
Ref. [21]; a special stability problem[6] arising in the cal-
culation requires some modifications of that technique as de-
scribed in Ref.[18]. The magnetic multipoles are calculated
from the one- and two-baryon parts of the spatial current.
The electric multipoles use the Siegert form of the current
without long-wavelength approximation; assuming current
conservation, the dominant parts of the one-baryon convec-
tion current and of the diagonalp- and r-exchange current
are taken into account implicitly in the Siegert part of the
electric multipoles by the Coulomb multipoles of the charge
density; the remaining non-Siegert part of the electric multi-
poles not accounted for by the charge density is calculated
using explicit one- and two-baryon spatial currents. The
charge density contributing to the Siegert term has diagonal
single-nucleon and single-D isobar contributions only; the
nucleon-D transition contribution as well as two-baryon con-
tributions are of relativistic order and are therefore omitted in
the charge-density operator when calculating Coulomb mul-
tipoles.

The number of considered current multipoles is limited by
the maximal total three-baryon angular momentumJmax

= 15
2 taken into account for the hadronic scattering states. The

results for the considered photoreactions up to pion-
production threshold appear fully converged with respect to
higher two-baryon angular momentaI, with respect to
D-isobar coupling and with respect to higher three-baryon
angular momentaJ on the scale of accuracy which present-
day experimental data require.

That is thestandard calculational procedure.Section IV
describes the shortcomings of that standard description. In
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the rest of this section we focus onD-isobar effects in sample
observables.

A. Nucleon-deuteron radiative capture

Figures 5 and 6 present results for spin-averaged and
spin-dependent observables of radiative nucleon-deuteron
capture at 100 and 150 MeV nucleon lab energy; a result for
200 MeV will be shown later in Sec. IV C 3. Results for the
time-reversed two-body photodisintegration of the trinucleon
bound state are not shown separately. The energies are well
above those of Ref.[6], but remain below pion-production
threshold. Control calculations at lower energies indicate that
the results of Ref.[6] do not get any essential physics
change, though the hadronic interaction and the e.m. current
are improved compared with Ref.[6].

There are noticeableD-isobar effects on the considered
observables, especially on the nucleon analyzing power
AysNd; it is described rather well with the inclusion of theD
isobar. Reference[24] presents new experimental data for the
differential cross section and deuteron vector analyzing
power at 200 MeV deuteron lab energy, corresponding to
100 MeV nucleon lab energy. There is a discrepancy be-
tween new[24] and old[25] differential cross section data in
the maximum region; the new data are in good agreement

with our results including theD isobar. However, there is a
clear disagreement between theoretical predictions and ex-
perimental data at small scattering angles getting more pro-
nounced at higher energies; one possible reason for that dis-
crepancy is discussed in Sec. IV C 3. There is also a modest
beneficialD-isobar effect on the deuteron vector analyzing
powerAysdd. The theoretical prediction for one-deuteron ten-
sor analyzing power, i.e.,Axx, is also given in Fig. 5; our
motivation for showingAxx is the fact that an experiment
determining deuteron tensor analyzing powers is in progress
[24].

Our results are qualitatively consistent with those of Refs.
[11–13].

B. Three-body photodisintegration of three-nucleon
bound state

Experimental data for three-nucleon breakup are much
scarcer than for two-body photodisintegration. To the best of
our knowledge, there are no fully exclusive experimental
data in the considered energy regime; we therefore show in
Figs. 7–9 our predictions for inclusive and semiexclusive
observables and compare them with existing experimental
data. Figure 7 shows our results for the total3H three-
nucleon photodisintegration cross section in the low energy

FIG. 5. Differential cross section and analyzing powers of proton-deuteron radiative capture at 100 MeV nucleon lab energy as a function
of the c.m. nucleon-photon scattering angle. Results of the coupled-channel potential withD-isobar excitation(solid curves) are compared
with reference results of the purely nucleonic CD-Bonn potential(dashed curves). The experimental data are from Ref.[24] (circles) and
from Ref. [25] (crosses).
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region; there is no significantD-isobar effect. In contrast,
Ref. [13] sees a larger three-nucleon force effect for this
observable; this discrepancy is partly due to a larger three-
nucleon force effect on trinucleon binding and subsequent
scaling and partly due to a different computational strategy
as discussed in Sec. IV B 1. Figures 8 and 9 show semiex-
clusive fourfold differential cross sections of3He photodis-
integration at higher energies; they are obtained from the
fivefold differential cross section(11) by integrating over the
kinematical curveS. Again, theD-isobar effect for those par-
ticular observables appears rather small, smaller than the ex-
perimental error bars. There is also disagreement between
theoretical predictions and experimental data in some kine-
matical regimes which in part may be caused by experimen-
tal conditions, e.g., by finite geometry, not taken into account
in our calculations.

Finally, in Fig. 10 we show fully exclusive sample five-
fold differential cross sections of three-nucleon photodisinte-
gration at 120 MeV photon lab energy for two kinematical
configurations which were shown semiexclusively in Fig. 9;
even at that higher energy theD-isobar effect is rather mild.

IV. SHORTCOMINGS OF THE DESCRIPTION

The present description of photoreactions is with respect
to the dynamic input, i.e., with respect to the hadronic inter-

action and to the e.m. current, and with respect to the scope
of applications a substantial improvement compared with
Ref. [6]. But it is still not a unique and in itself consistent
description. We are unable to repair the existing deficiencies.
However, this section points those shortcomings out and tries
at least to estimate their size. We identify three different
problem areas.

A. Shortcomings of the theoretical form of the cross section

Our standard strategy uses the nonrelativistic form(12)
for cross sections; this choice appears to be consistent with
the underlying two-baryon dynamics, though inconsistent
with the experimental relativistic kinematics. We therefore
compare results obtained from Eqs.(12) with corresponding
ones obtained from the relativistic form of the cross section
(10) which uses relativistic kinetic energies for the Lorentz-
invariant phase-space element and the kinematic locus com-
bined with the nonrelativistic matrix element(9). The com-
parison is possible for observables in fully exclusive
reactions.

The difference between those aspects of relativistic and
nonrelativistic kinematics is minor for all considered observ-

FIG. 6. Differential cross section and nucleon analyzing power of proton-deuteron radiative capture at 150 MeV nucleon lab energy as
a function of the c.m. nucleon-photon scattering angle. Curves as in Fig. 5. The experimental data are from Ref.[25].

FIG. 7. Total3H three-nucleon photodisintegration cross section
as a function of the photon lab energyEg. Curves as in Fig. 5. The
experimental data are from Ref.[26].

FIG. 8. The fourfold differential cross section of the
3Hesg ,pndp reaction at 85 MeV photon lab energy as a function of
the pn opening angle atup=81°. Curves as in Fig. 5. The experi-
mental data are from Ref.[27].
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ables of radiative capture, i.e., less than 1%, but more sig-
nificant, i.e., up to 10%, for three-nucleon photodisintegra-
tion as shown in Fig. 11. In all considered cases, the
relativistic and nonrelativistic kinematical curves are very
close to each other, e.g., for the configuration of Fig. 11 the
distance between them in theE1-E2 plane is 0.5 MeV at
most, and their total arclengths are 140.2 MeV and
142.0 MeV, respectively. For the comparison the nonrelativ-
istic results in Fig. 11 are scaled down to the relativistic
arclength by the factor 140.2/142.0; the shown change, how-
ever, is due to the difference in the phase-space factors fps of
Eqs.(10b) and (12b).

We emphasize that the effect indicated in this section does
not represent the true difference between nonrelativistic
quantum mechanical and fully relativistic quantum field the-
oretical results, but it may indicate the order of magnitude of

the shortcomings of nonrelativistic calculations. In the light
of the accuracy of present-day data, this shortcoming of the
theoretical description is rather inconsequential.

B. Shortcomings of the dynamics

1. Nonunique choice of kinematics

Our computational strategy in choosing the kinematics for
the matrix elementksfuMusil is described in Sec. II B.
ksfuMusil is calculated in the c.m. system. We opt to let the
experimental beam energy determine the energy of hadronic
nucleon-deuteron state in radiative capture and the energy of
the hadronic two-body and three-body final states in photo-
disintegration exactly. Since the trinucleon model binding
energy is not the experimental one and the kinematics is
nonrelativistic for baryons when calculatingksfuMusil, the en-
ergy of the photon does not have the experimental value
when assuming energy conservation. At very low energies
the deviation can get as large as 10%, whereas at higher
energies considered in this paper it remains around
1% -2%. In contrast, in a second option we could let the
experimental beam energy determine the c.m. photon energy
exactly; then the energies of the hadronic nucleon-deuteron
and three-nucleon states are not experimental ones. A third

FIG. 9. The fourfold differential cross section of the
3Hesg ,ppdn reaction as a function of the photon lab energyEg in
various kinematical configurations:s81.0° ,81.3° ,180.0°d (top),
s92.2° ,91.4° ,180.0°d (middle), and average ofs81.5° ,90.8° ,
180.0°d and s91.7° ,80.9° ,180.0°d (bottom). Curves as in Fig. 5.
The experimental data are from Ref.[28].

FIG. 10. The fivefold differential cross section of three-nucleon
photodisintegration at 120 MeV photon lab energy as a function of
the arclengthS along the kinematical curve for configuration
s92.2° ,91.4° ,180.0°d on the top ands81.5° ,90.8° ,180.0°d on the
bottom. Curves as in Fig. 5.
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option may use experimental energies for both initial and
final states, but then the matrix element determining physical
amplitudes is slightly off-shell; this is the computational
strategy of Refs.[12,13]. The difference in results between
those three choices is minor at higher energies, i.e., above
100 MeV nucleon lab energy, for all considered observables
in all considered kinematical regimes. However, there are
differences up to 10% for observables at low energies. There,
the observedD-isobar effect depends strongly on the choice
of computational strategy. An example is shown in Fig. 12.

2. Omission of Coulomb interaction between protons

We are unable to include the Coulomb interaction in the
three-nucleon scattering states. In contrast, the selected in-
clusion of the Coulomb interaction in the trinucleon bound
state is easily possible, but this inclusion creates an addi-
tional inconsistency: Initial and final hadronic states become
eigenstates of different Hamiltonians, and, strictly speaking,
the Siegert form of the current operator is not applicable.
Nevertheless, we do such an inconsistent calculation which
Refs.[12,13] chooses to do as standard calculation, in order
to estimate the effect of the omitted Coulomb interaction at
least partially. The inclusion of the Coulomb interaction in
the trinucleon bound state systematically reduces the spin-
averaged cross sections; in contrast, spin observables appear
to be almost unaffected. A characteristic result is shown in
Fig. 13. Even at higher energies the observed Coulomb effect
may be of the same order of magnitude as the fullD-isobar
effect; however, it is not clear whether the indicated effect
represents a true Coulomb effect or just the inconsistency
between bound and scattering states.

C. Shortcomings of the e.m. current

1. Lack of current conservation

The continuity equation is not fulfilled for the nonlocal
potentials CD Bonn and CD Bonn+D together with the e.m.

current employed in a local nonrelativistic form as given
explicitly in Appendix A. The various sources of current
nonconservation are(a) the explicit nonlocality of the em-
ployed potential structures,(b) the implicit nonlocality due to
the general partial-wave dependence of meson exchanges,(c)
the neglect of spin-orbit currents due tor, v, and s ex-
changes and the neglect of additional contributions to the
r-exchange current, and(d) the charge dependence of the
employed potentials. As measure for this deficiency predic-
tions are compared based on two different approaches for the

FIG. 11. Differential cross section of three-nucleon photodisin-
tegration at 120 MeV photon lab energy as a function of the ar-
clength S along the kinematical curve for configuration
s91.7° ,80.9° ,180.0°d. Results of the coupled-channel potential
with D-isobar excitation based on nonrelativistic phase space(solid
curve) according to Eqs.(12) are compared with results based on
relativistic phase space(dashed curve) according to Eqs.(10).

FIG. 12. Differential cross section of proton-deuteron radiative
capture at 19.8 MeV deuteron lab energy as a function of the c.m.
nucleon-photon scattering angle. Results of the coupled-channel po-
tential with D-isobar excitation derived from the standard approach
(solid curve) are compared with results of option three which uses
experimental energies for both initial and final states, but the matrix
element(12a) is off-shell (dashed-dotted curve). The results of op-
tion two are rather close to the solid curve. In order to appreciate
the effect of the nonunique choice of kinematics in relation to the
size of theD-isobar effect, results of a standard calculation with the
purely nucleonic reference potential are also given as dashed curve.
The experimental data are from Ref.[29].

FIG. 13. Differential cross section of proton-deuteron radiative
capture at 95 MeV deuteron lab energy as a function of the c.m.
nucleon-photon scattering angle. Results of the coupled-channel po-
tential with D-isobar excitation derived from the standard approach
(solid curve) are compared with results including the Coulomb in-
teraction in the three-nucleon bound state(dashed curve). The ex-
perimental data are from Ref.[30].
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electric multipoles, i.e.,(1) the standard calculation with the
Siegert operator accounting for the two-baryon currents im-
plicitly by assumed current conservation and(2) the explicit
use of the meson-exchange currents for all of the electric
multipoles. The discrepancy between those two calculations
measures the importance of the existing lack of current con-
servation; indeed the violation can be significant as Fig. 14
proves. Furthermore, the size of contributions arising from
nonstandard additional exchange currents in both approaches
(1) and (2) is checked.

Details of the rather involved investigation can be found
in Ref. [18]. The conclusion is that the nonstandard addi-
tional exchange currents arising from the shortcomings(b)–
(d) make rather insignificant contributions when the Siegert
form of the current is used, but some of them are important
for calculations based fully on explicit exchange currents. In
contrast, the explicit nonlocality(a) of CD Bonn and CD
Bonn+D, also responsible for current nonconservation, is of
serious concern; its consequence on the non-Siegert parts of
the current could not be estimated yet in the study of Ref.
[18]. Still, we believe that our standard calculation, based on
the Siegert form of the current, effectively corrects the cur-
rent nonconservation and is therefore quite reliable for the
observables of photoreactions considered in this paper.

2. Lack of covariance

If a fully covariant description of dynamics were avail-
able, the current matrix elementksfuMusil were a Lorentz
scalar and could therefore be calculated in any frame with
identical results. However, our description of hadron dynam-
ics is nonrelativistic, and the results therefore are frame de-
pendent. We investigate that frame dependence calculating
the same matrix elements in lab and in c.m. frames, i.e., in
the rest frames of the initial and final three-nucleon systems.

The two frames differ by the three-nucleon total momentum
and by the photon momentum. However, we found that for
the observables considered in this paper the frame depen-
dence is minor and at present of no real theoretical concern;
we do not document that finding, since the differences are
only hardly seen in plots.

3. Higher order contributions to the current operator
in „k /mN… expansion

In the standard calculational scheme the Siegert form of
the current operator is used together with explicit meson-
exchange contributions not accounted for by the Siegert part.
The charge-density operator in the Siegert part is of one-
baryon nature and is taken to be nonrelativistic in the stan-
dard calculations. However, the one-baryon purely nucleonic
charge-density operator has relativistic corrections of order
sk/mNd2. Contributions to the nucleon-D transition charge
density and to the two-nucleon charge density, used in Ref.
[17] for calculation of trinucleon elastic charge form factors,
are also included; both are of the relativistic ordersk/mNd2.
The resulting special relativistic corrections, taken into ac-
count in this paper, reduce the cross sections; they appear
beneficial; a characteristic result is shown in Fig. 15. The
effect shown there is dominated by the one-nucleon charge-
density correction; the two-nucleon charge-density shows
noticeable effects in some spin observables, whereas the
nucleon-D transition charge appears to be insignificant for all
calculated observables of this paper. Correspondingly large
corrections of the same origin were also found in photoreac-
tions on the deuteron[32]. Thus, the results of this section
are not surprising. The current corrections of this section
should be included in future calculations of e.m. reactions.

V. SUMMARY AND CONCLUSIONS

The paper improves our preliminary description of photo-
reactions in the three-nucleon system[6]; the present de-

FIG. 15. Differential cross section of proton-deuteron radiative
capture at 200 MeV nucleon lab energy as a function of the c.m.
nucleon-photon scattering angle. Results of the coupled-channel po-
tential withD-isobar excitation derived from our standard approach
(solid curve) are compared with results including relativistic one-
nucleon charge corrections(dashed curve). The experimental data
are from Ref.[25].

FIG. 14. Differential cross section of proton-deuteron radiative
capture at 190 MeV nucleon lab energy as a function of the c.m.
nucleon-photon scattering angle. Results of the coupled-channel po-
tential with D-isobar excitation derived from the Siegert approach
for electric multipoles(solid curve) are compared with results based
on the explicit use of meson-exchange currents(dashed curve). In
order to appreciate the size of the two-baryon current contribution,
the results of a non-Siegert calculation with one-baryon currents
only are also given as dashed-dotted curve. The experimental data
are from Ref.[31].
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scription includes three-body photodisintegration. The had-
ronic interaction is based on CD Bonn and its realistic
coupled-channel extension CD Bonn+D. The initial and final
hadronic states are calculated without separable expansion of
the underlying interaction. The contributions to the e.m. cur-
rent correspond to the hadronic interaction, though full cur-
rent conservation could not be achieved.

The paper isolates theD-isobar effects on the considered
observables. BesideD-isobar effects of effective two-
nucleon nature theD isobar yields an effective three-nucleon
force of the Fujita-Miyazawa type and of the Illinois pion-
ring type; meson exchanges other than pion exchange are
included. The exchange currents mediated by theD isobar
are of effective two-nucleon and three-nucleon nature; they
are structurally consistent with corresponding hadronic con-
tributions; they are predominantly due to the transition con-
tributions of Fig. 2 and due to the one-baryon part of Fig. 3;
the diagonal two-baryon contributions of Fig. 3 connect
small wave function components and are found to be quan-
titatively entirely irrelevant. In the considered observables
the hadronic and the e.m.D-isobar effects are intertwined;
they are not separated; their total effects are not very impor-
tant given the scarcity of data, often still carrying large error
bars. TheD-isobar effects are more pronounced at higher
energies; they are somehow smaller than the irreducible
three-nucleon force effects of Refs.[12,13]; nevertheless,
qualitatively both effects are quite similar. In contrast to the
three-nucleon force effects of Refs.[12,13] we see very
small D-isobar effects at low energies; the reason, at least in
part, is due to the different choice of kinematics for correct-
ing the theoretical failure in accounting for three-nucleon
binding.
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APPENDIX A: COUPLED-CHANNEL CURRENT
OPERATORS

Equation(1) defines the general momentum-space form
of the e.m. currentJmsQd in the Jacobi coordinates of the
three-particle basis. In contrast, this appendix gives its em-
ployed one-baryon and two-baryon parts, i.e.,JmsQd
=Jf1gmsQd+Jf2gmsQd, in respective one-particle and two-
particle bases. We keep the three-momentum transferQ and
not the four-momentum transferQ as independent variable
since usuallyQ0 is determined by the three-momenta of the
involved baryons. Despite that strategy,Q2=Q2−Q0

2 is the
magnitude of the full four-momentum transfer to the nucleus
in the e.m. form factors; thus, it is taken to be zero in all e.m.
form factors for photoreactions. The step from the single-
particle representation of the current contributions to the

three-particle Jacobi momenta is straightforward[21] and not
repeated here. The objective of this appendix is the definition
of the used input for the current.

1. One-baryon operators in nonrelativistic order

The momentum-space matrix elements of the one-baryon
current operator have the general form

kk8b8uJf1gmsQdukbl = dsk8 − Q − kd jb8b
f1gmsQ,k8,kd,

sA1d

with k8skd andQ being the finalsinitiald single-baryon mo-
mentum and the three-momentum transfer by the photon,
respectively, andb8sbd beingN or D depending on the bary-
onic content of the finalsinitiald state. All components of
j
b8b
f1gmsQ ,k8 ,kd are still operators in spin and isospin space;

the spinsisospind operators of the nucleon,D isobar, and the
nucleon-D transition are denoted bysstd ,sDstDd, andSsTd,
respectively. The one-baryon charge-density and spatial cur-
rent operators, diagrammatically defined in Figs. 1–3 and
used in the calculations of this paper, are listed below:

rNN
f1g sQ,k8,kd = esQ2d, sA2ad

j NN
f1g sQ,k8,kd =

1

2mN
hesQ2dfk8 + kg + msQ2dfis 3 Qgj,

sA2bd

j DN
f1g sQ,k8,kd =

1

2mN
gDN

M1sQ2dfiS3 QgTz, sA2cd

rDD
f1g sQ,k8,kd = gD

E0sQ2d, sA2dd

j DD
f1g sQ,k8,kd =

1

2mD

hgD
E0sQ2dfk8 + kg + gD

M1sQ2dfisD 3 Qgj.

sA2ed

The nucleonic e.m. form factorsesQ2d and msQ2d of Eqs.
(A2) are the Sachs form factors, which atQ2=0 are the
charge and the full magnetic moment of the nucleon, but
they can alternatively be parametrized in terms of the Dirac
and Pauli form factorsf1sQ2d and f2sQ2d which atQ2=0 are
the charge and the anomalous magnetic moment of the
nucleon. The nucleonic e.m. form factors are isospin depen-
dent, e.g.,

esQ2d = 1
2feSsQ2d + eVsQ2dtzg, sA3ad

with the superscriptsS andV denoting the isoscalar and is-
ovector parts, respectively. The e.m. form factors related to
the D isobar are normalized atQ2=0 according to Refs.
[19,22,23] by gDN

M1s0d=mDN,gD
E0s0d= 1

2s1+tDzd, and gD
M1s0d

=smD /6mNdmD1/2s1+tDzd with the parametersmDN=3mN

andmD=4.35mN, mN being the nuclear magneton.
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2. Two-baryon operators in nonrelativistic order

The matrix elements of the two-baryon current operator
have the general form

kk18k28B8uJa
f2gmsQduk1k2Bl=dsk18 + k28 − Q − k1 − k2d

3 jaB8B
f2gm sQ,k18 − k1,k28 − k28d,

sA4d

with k i8sk id being the finalsinitiald single-baryon momenta;
a denotes the exchanged meson or the two mesons in case of
nondiagonal currents; the baryonic contentsB8 andB being
NsDd correspond to the two-nucleonsnucleon-D-isobard
states. All componentsj

aB8B
f2gm sQ ,k18−k1,k28−k2d are still op-

erators in spin and isospin space. The two-baryon spatial
current operators, diagrammatically defined in Figs. 1–3 and
used in the calculations of this paper, are listed below:

j pNN
f2g sQ,p1,p2d = − eVsQ2dhfit1 3 t2gzFpNN

con sp2
2dsp2 · s2ds1 + s1 ↔ 2dj+ eVsQ2dfit1 3 t2gzFpNN

mes sp1
2,p2

2d

3sp1 · s1dsp2 · s2dsp1 − p2d, sA5ad

j rNN
f2g sQ,p1,p2d = − eVsQ2dhfit1 3 t2gzFrNN

con sp2
2dfss2 3 p2d 3 s1g + s1 ↔ 2dj+ eVsQ2dfit1 3 t2gzFrNN

messp1
2,p2

2d

3fsp1 3 s1d · sp2 3 s2dgsp1 − p2d+ eVsQ2dfit1 3 t2gzFrNN
mes 1sp1

2,p2
2dsp1 − p2d

− eVsQ2dfit1 3 t2gzFrNN
messp1

2,p2
2dQ 3 fsp1 3 s1d 3 sp2 3 s2dg, sA5bd

j rpNN
f2g sQ,p1,p2d = − frpgsQ2dhst1 · t2dFrpNN

dis sp1
2,p2

2dsp2 · s2dfip1 3 p2g + s1 ↔ 2dj, sA5cd

j vpNN
f2g sQ,p1,p2d = − fvpgsQ2dht2zFvpNN

dis sp1
2,p2

2dsp2 · s2dfip1 3 p2g + s1 ↔ 2dj, sA5dd

j pDN
f2g sQ,p1,p2d = − eVsQ2dhfit1 3 T2gzFpDN

con sp2
2dsp2 ·S2ds1 + s1 ↔ 2dj− eVsQ2dhfiT1 3 t2gzFpDN

con sp2
2dsp2 · s2dS1 + s1 ↔ 2dj

+ eVsQ2dhfit1 3 T2gzFpDN
mes sp1

2,p2
2dsp1 · s1dsp2 ·S2dsp1 − p2d + s1 ↔ 2dj, sA6ad

j rDN
f2g sQ,p1,p2d = − eVsQ2dhfit1 3 T2gzFrDN

con sp2
2dfsS2 3 p2d 3 s1g + s1 ↔ 2dj− eVsQ2dhfiT1 3 t2gzFrDN

con sp2
2dfss2 3 p2d 3 S1g

+ s1 ↔ 2dj+ eVsQ2dhfit1 3 T2gzFrDN
messp1

2,p2
2dfsp1 3 s1d · sp2 3 S2dgsp1 − p2d + s1 ↔ 2dj

− eVsQ2dhfit1 3 T2gzFrDN
messp1

2,p2
2dQ 3 fsp1 3 s1d 3 sp2 3 S2dg + s1 ↔ 2dj, sA6bd

j rpDN
f2g sQ,p1,p2d = − frpgsQ2dhst1 ·T2dFrpDN

dis sp1
2,p2

2dsp2 ·S2dfip1 3 p2g + s1 ↔ 2dj, sA6cd

j vpDN
f2g sQ,p1,p2d = − fvpgsQ2dhT2 zFvpDN

dis sp1
2,p2

2dsp2 ·S2dfip1 3 p2g + s1 ↔ 2dj, sA6dd

JpDD
f2g sQ,p1,p2d = − eVsQ2dhfit1 3 tD 2gzFpDD

con,dsp2
2dsp2 · sD 2ds1 + s1 ↔ 2dj− eVsQ2dhfitD 1 3 t2gzFpDD

con,dsp2
2dsp2 · s2dsD 1

+ s1 ↔ 2dj+ eVsQ2dhfit1 3 tD 2gzFpDD
mes,dsp1

2,p2
2dsp1 · s1dsp2 · sD 2dsp1 − p2d + s1 ↔ 2dj

− eVsQ2dhfiT1
† 3 T2gzFpDD

con,esp2
2dsp2 ·S2dS1

† + s1 ↔ 2dj− eVsQ2dhfiT1 3 T2
†gzFpDD

con,esp2
2dsp2 ·S2

†dS1 + s1 ↔ 2dj

+ eVsQ2dhfiT1
† 3 T2gzFpDD

mes,esp1
2,p2

2dsp1 ·S1
†dsp2 ·S2dsp1 − p2d + s1 ↔ 2dj. sA7d

The e.m. form factors of the meson-diagonal contributions
are often usedf15g in a form in which the Sachs form factor
esQ2d is replaced in nonrelativistic expansion byf1sQ2d; in
photoreactions there is no difference between those choices,
since es0d= f1s0d. The e.m. form factors of the meson-
nondiagonal contributions atQ2=0 have the valuesfrpgs0d
=grpg=0.56 and fvpgs0d=gvpg=0.68 according to Ref.
f33g.

We note that the contribution to the two-nucleon
r-exchange current, proportional toFrNN

mes 1sp1
2,p2

2d, Eq.

(A5b), is not contained in the standard collection of ex-
change currents of Refs.[6,14,17,21], used by us till now in
the context of other potentials; it is necessitated in this paper
by the full form of ther exchange implemented in the CD-
Bonn potential. Other contributions arising from the fullr
exchange[15] are of higher order compared toFrNN

mes 1sp1
2,p2

2d
and therefore are neglected in our standard calculations; their
effect is discussed in Sec. IV C 1.

The F functions used in the above expressions are poten-
tial dependent. For meson-exchange potentials they are built
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from meson-baryon coupling constants, hadronic form fac-
tors, and meson propagators. For contact currents theF func-
tions have the following forms:

FpNN
con sp2d =

1

8p2mN
2

gp
2

4p

FpNN
2 sp2d

mp
2 + p2 , sA8ad

FrNN
con sp2d =

1

8p2mN
2

gr
2s1 + fr/grd2

4p

FrNN
2 sp2d

mr
2 + p2 , sA8bd

FpDN
con sp2d =

1

8p2mN
2

gp
2

4p

fpND

fpNN

FpNNsp2dFpDNsp2d

mp
2 + p2 ,

sA8cd

FrDN
con sp2d =

1

8p2mN
2

gr
2s1 + fr/grd2

4p

frND

frNN

FrNNsp2dFrDNsp2d

mr
2 + p2 ,

sA8dd

FpDD
con,dsp2d =

1

8p2mN
2

gp
2

4p

fpDD

fpNN

FpNNsp2dFpDDsp2d

mp
2 + p2 ,

sA8ed

FpDD
con,esp2d =

1

8p2mN
2

gp
2

4p

fpND
2

fpNN
2

FpDN
2 sp2d

mp
2 + p2 . sA8fd

For meson-in-flight currents the corresponding expressions
are

FaB8B
mes sp1

2,p2
2d = −

1

p1
2 − p2

2fFaB8B
con sp1

2d − FaB8B
con sp2

2dg,

sA9ad

FrNN
mes 1sp1

2,p2
2d =

4mN
2

s1 + fr/grd2FrNN
messp1

2,p2
2d, sA9bd

FpDD
mes,dsedsp1

2,p2
2d = −

1

p1
2 − p2

2fFpDD
con,dsedsp1

2d − FpDD
con,dsedsp2

2dg.

sA9cd

Finally, the functions for nondiagonal meson-exchange cur-
rents(also called dispersion currents) are defined to be

FabNN
dis sp1

2,p2
2d =

1

4p2mN
2

gagb

4p

mN

ma

FaNNsp1
2d

ma
2 + p1

2

FbNNsp2
2d

mb
2 + p2

2 ,

sA10ad

FabDN
dis sp1

2,p2
2d =

1

4p2mN
2

gagb

4p

fpND

fpNN

mN

ma

FaNNsp1
2d

ma
2 + p1

2

FbDNsp2
2d

mb
2 + p2

2 .

sA10bd

The meson-nucleon coupling constantsga and fr are listed in
Table I of Ref.[9], whereas other hadronic parameters, i.e.,

coupling constantsfaB8B, meson massesma, and hadronic
form factorsFaB8Bsp2d are those of Ref.[10].

Operator corrections of lowest relativistic order

Sample operator corrections of relativistic order for the
charge density are given. They are of one-baryon and of
two-baryon nature:

rNN
f1grcsQ,k8,kd = −

esQ2d
8mN

2 Q2 −
2msQ2d − esQ2d

8mN
2

3fis 3 sk8 + kdg ·Q, sA11ad

rDN
f1grcsQ,k8,kd = −

1

4mNmD

gDN
M1sQ2dfiS3 sk8 + kdg ·Q Tz,

sA11bd

rpNN
f2grcsQ,p1,p2d =

1

2mN
ff1

SsQ2dt1 · t2 + f1
VsQ2dt2 zg

3 FpNN
con sp2

2dss1 ·Qdss2 ·p2d + s1 ↔ 2d.

sA11cd

The contributions(A11) are the Darwin-Foldy and spin-orbit
corrections of the one-nucleon charge density, the one-
baryon correction due to nucleon-D transition, and the two-
nucleon correction due top exchange, respectively. The
Darwin-Foldy term in Eq.(A11a) is used in the form of Ref.
[34]; there Q2, in contrast to the general strategy of this
paper, is interpreted as the square of the four-momentum
transfer to the whole nucleus and is zero for photoreactions.
The two-nucleon contribution(A11c) is local and in electron
scattering often used[14] together with the Dirac form factor
f1sQ2d; it is the only two-nucleon contribution used in Sec.
IV C 3 for the Siegert form of the current; however, there are
other nonlocal two-nucleon contributions of the same order.
Since the contributions(A11) are relativistic corrections,
they violate current conservation in the considered order.
However, the calculated trinucleon elastic charge form fac-
tors need all three contributions in order to become almost
quantitatively consistent with the experimental data[17].

APPENDIX B: INTEGRAL EQUATION FOR CURRENT
MATRIX ELEMENT

This appendix calculates the current matrix elements of
two- and three-body photodisintegration of the trinucleon
bound state, i.e., kca

s−dsq fdnaf
u jmskg ,K +demskglduBl and

kc0
s−dsp fq fdn0f

u jmskg ,K +demskglduBl.
The antisymmetrized fully correlated three-nucleon scat-

tering states of internal motion in nucleon-deuteron channels,
i.e., kca

s−dsq fdnaf
u, and in three-body breakup channels, i.e.,

kc0
s−dsp fq fdn0f

u, are not calculated explicitly; they are calcu-
lated only implicitly when forming current matrix elements.
We introduce the stateuXsZdl, defined according to

uXsZdl = s1 + Pd jmskg,K +demskglduBl + PTsZdG0sZduXsZdl,

sB1ad
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uXsZdl = o
n=0

`

fPTsZdG0sZdgns1 + Pd jmskg,K +demskglduBl,

sB1bd

as intermediate quantity withZ=Ei + i0 being the three-
particle available energy andTsZd being the two-baryon tran-
sition matrix. Equation(B1a) is an integral equation for
uXsZdl, analogous to that for the multichannel transition ma-
trix UsZd of Ref. [8]: Both equations have the same kernel,
only their driving terms are different. We therefore solve Eq.
(B1a) according to the technique of Ref.[8], summing the
Neumann series(B1b) for uXsZdl by the Padé method. Once
uXsZdl is calculated, the current matrix elements required for
the description of two- and three-body photodisintegration of
the trinucleon bound state are obtained according to

kca
s−dsq fdnaf

u jmskg,K +demskglduBl=
1
Î3

kfasq fdnaf
uXsZdl,

sB2ad

kc0
s−dsp fq fdn0f

u jmskg,K +demskglduBl

=
1
Î3

kf0sp fq fdn0f
us1 + Pdf jmskg,K +demskglduBl

+ TsZdG0sZduXsZdlg. sB2bd

The current matrix element required for the description of
radiative nucleon-deuteron capture is related to that of two-
body photodisintegration by time reversal as described in
Ref. [6]. When calculating total two- and three-body photo-

disintegration cross sections, the integration over all final
states can be performed implicitly, i.e.,

s =
s2p"d2

"c2kg
0

1

4 o
MBl

kBuf jnskg,K +denskgldg†dsEi − H0 − HId

3 jmskg,K +demskglduBl, sB3ad

s = −
s2p"d2

4p"c2kg
0 o

MBl

ImhkBuf jnskg,K +denskgldg†

3GsEi + i0d jmskg,K +demskglduBlj. sB3bd

The auxiliary stateGsEi + i0d jmskg ,K +demskglduBl of Eq.
(B3b) is related touXsEi + i0dl according to

GsEi + i0d jmskg,K +demskglduBl

=
1

3
s1 + PdG0sEi + i0df jmskg,K +demskglduBl

+ TsEi + i0dG0sEi + i0duXsEi + i0dlg. sB3cd

The total cross section is then obtained in the form

s = −
s2p"d2

12p"c2kg
0 o

MBl

ImhkBuf jnskg,K +denskgldg†

3s1 + PdG0sEi + i0df jmskg,K +demskglduBl

+ TsEi + i0dG0sEi + i0duXsEi + i0dlgj. sB3dd

We note that Eqs.sB3d perform the integration over all final
states implicitly using the nonrelativistic Hamiltonian in con-
trast to the strategy of Eqs.s9d and s10d.
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