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Abstract

Interesting discoveries have recently been made in the area of solid state physics and

nano technology regarding electronic systems that are confined to reduced spatial

dimensions. Under these circumstances the quantum nature of the electrons begins

to surface. In the one-dimensional case this class of systems is therefore called

quantum- or nano wires. The conductance in such quantum wires becomes quantized

and is dominated by electronic correlations.

The goal of this thesis was to develop a fast and efficient procedure to describe a

realistic transport measurement for such systems. The method presented here is in-

spired by the work of Dan Bohr et al. who used the Density Matrix Renormalization

Group algorithm(DMRG) to evaluate the Kubo formula for the linear response to

an applied potential. In a similar way the procedure of this thesis also computes the

Kubo formula using the dynamical DMRG in order to calculate the low frequency

response to an AC source-drain voltage of finite systems. Making use of a special

finite size scaling allows to extrapolate the results into the thermodynamic limit and

to finally obtain the linear DC-conductance.

First, the theoretical framework for the new method was developed. This was fol-

lowed by testing the new approach in different model systems. The first model com-

prised of a tight-binding chain that was filled with spinless, noninteracting fermions.

In subsequent steps the model was expanded by introducing a homogeneous in-

teraction in the Luttinger liquid regime followed by inhomogeneous interaction for

different chain sections. The potential impact of impurities was assessed in the above

models.

Lastly, the two cases of the Hubbard chain of spin-1
2

electrons and of the Holstein

model in one dimension, where Einstein phonons interact with spinless fermions,

were studied.

The results of the proposed method are consistent with Luttinger liquid and Lan-

dauer scattering theory. In the Luttinger liquid regime the influence of phonons

to the charge structure factor was confirmed. A dependency on the length of the

quantum wire in the form of dissipation effects for the conductance was not observed.
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Zusammenfassung

Im Bereich der Festkörperphysik und Nanotechnologie haben sich in jüngster Zeit

interessante Beobachtungen in elektronischen Systemen machen lassen, die räumlich

auf wenige Dimensionen eingeschränkt sind. Entgegen der klassischen Erwartung

kommen hier Quantenphänomene der betrachteten Fermionen zum Vorschein. Im

eindimensionalen Fall werden diese Systeme daher auch Quanten- oder Nanodrähte

genannt. Die Leitfähigkeit in solchen Quantendrähten wird durch quantenmecha-

nische Elektronenkorrelationen dominiert und ist quantisiert.

In dieser Arbeit wird eine schnelle und effiziente numerische Methode entwickelt,

die den Anspruch hat eine Transportmessung an einem Quantendraht möglichst re-

alitätsnah zu beschreiben. Diese Methode ist inspieriert von der Arbeit Dan Bohrs

et al., der bereits gezeigt hat, dass mithilfe der Dichte-Matrix Renormierungsgrup-

penalgorithmus(DMRG) die Kuboformel für die lineare Antwort auf ein Potential

berechnet werden kann. Ähnlich dazu wird auch hier die Kuboformel mithilfe der dy-

namischen DMRG für eine AC Source-Drain Spannung für endliche Systeme berech-

net. Ein spezielles Finite Size Scaling erlaubt es, die Ergebnisse für diese endlichen

Systeme in den thermodynamischen Grenzfall zu extrapolieren und schließlich die

lineare DC-Leitfähigkeit zu erhalten.

Zunächst wird das theoretische Grundgerüst für die Methode erläutert. Im da-

rauf folgenden Teil wird die Methode an verschiedensten Modellsystemen getestet.

Als erstes Modell wird eine Tight-Binding Kette untersucht, in der die Fermio-

nen weder Spin besitzen, noch in irgendeiner Form wechselwirken. Das Modell

wird dann langsam erweitert, indem erst homogene Wechselwirkung im Luttinger

Flüssigkeitsbereich und dann inhomogene Wechselwirkung in unterschiedlichen Teil-

abschnitten der Kette untersucht werden. Des Weiteren wird der Einfluss von

Störstellen in diesen Systemen untersucht. Zuletzt werden schließlich die beiden

Fälle einer Hubbard Kette mit Spin-1
2

Elektronen und des Holstein Modells in einer

Dimension mit Einsteinphononen, die mit spinlosen Fermionen wechselwirken, be-

trachtet.

Die Ergebnisse der Methode sind konsistent mit der Luttinger Flüssigkeits- und

mit der Landauer Streutheorie. Außerdem lässt sich ein Einfluss von Phononen auf

den Ladungsstrukturfaktor im Luttinger Regime beobachten. Eine Abhängigkeit

der Leitfähigkeit durch eine Änderung der Länge des Quantendrahtes und etwaigen

Dissipationseffekten ließ sich in allen Fällen nicht beobachten.

Schlagwörter:

Leitfähigkeit von Nanodrähten, Dichte-Matrix Renormierungsgruppe, Tomonaga-

Luttinger-Flüssigkeit

iii





Contents

1. Introduction 1

1.1. Conductivity and Conductance . . . . . . . . . . . . . . . . . . . . . 1

1.2. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Model and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Shape of the Perturbation 11

3. Density Matrix Renormalization Group 16

3.1. Infinite-system DMRG . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Finite-system DMRG . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. Finite Size Scaling DDMRG 22

4.1. Dynamical Density Matrix Renormalization Group . . . . . . . . . . 22

4.2. Converting DDMRG Output into broadened Conductance . . . . . . 25

5. Verifying the Method 30

5.1. Tight-Binding Chain - Correlator Calculation . . . . . . . . . . . . . 30

5.2. Tight-Binding Chain - Numerical Results vs. Analytical Expectation 35

6. Luttinger Liquids and Fermionic Interaction 39

6.1. Homogeneous Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2. Homogeneous Interaction - Single Barrier . . . . . . . . . . . . . . . . 41

6.3. Homogeneous Interaction - Double barrier . . . . . . . . . . . . . . . 44

7. Inhomogeneous Interaction 50

8. Boson Interaction - Holstein Chain 56

9. Spinfull Fermions - Hubbard Chain 61

10.Conclusion 66

A. Appendix 69

A.1. Current Operator as Linear Response to an External Field . . . . . . 69

A.2. Kubo Formulation of the Conductance . . . . . . . . . . . . . . . . . 71

B. Appendix 74

B.1. Scaling Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C. Appendix 81

C.1. Elastic Scattering - Single Barrier . . . . . . . . . . . . . . . . . . . . 81

v



C.2. Elastic Scattering - Two Barriers . . . . . . . . . . . . . . . . . . . . 83

vi



List of Abbreviations

AC - Alternating Current

CDW - Charge Density Wave

DC - Direct Current

DDMRG - Dynamical Density Matrix Renormalization Group

DMRG - Density Matrix Renormalization Group

vii





1. Introduction

The area of solid state physics is one of the largest fields of physics that treats solid

matter as systems of ordered atomic particles to describe their physical properties.

These are usually consisting of more or less stationary atomic cores, where electrons

display a much larger contribution to the dynamics of the systems [1,2]. This thesis

focusses on the electronic transport in a subclass of such bodies in which the electrons

are confined to reduced spatial dimensions. Especially, when the structures are close

to being one-dimensional the electron transport is dominated by their fermionic

quantum nature. In the three dimensional description electrons can be treated as a

Fermi liquid [3] which fails to provide a viable description in one dimension. While

in three dimensions nearly individual excitations of single electrons can contribute

to the transport, in one dimension only collective excitations are possible because

of the strong confinement [1].

1.1. Conductivity and Conductance

Here, the related quantities of conductivity and conductance are discussed for the

specific case of a one-dimensional conductor. These quantities are important when

one is interested in the description of a transport measurement. The derivation

presented is close to Reference [3].

At first, assume that a current j(x, τ) in the one-dimensional system is generated

as the linear response to an electromagnetic potential φ(x, τ). This potential is

very weak and slowly changing in space. Therefore, linear response theory allows to

express the current as

j(x, τ) = −q
2

h̄

∫ τ

−∞

∫
χ(x− x′, τ − τ ′)φ(x′, τ ′)dτ ′dx′, (1.1)

where q is the electric charge and the susceptibility χ(x, τ) is the retarded current

density correlation function

χ(x− x′, τ − τ ′) =− iθ(τ − τ ′) 〈[ĵ(x, τ), n̂(x′, τ ′)]〉 . (1.2)

Here, θ(τ) denotes the Heaviside step function that expresses time retardation. The

hat denotes the interaction picture version of the respective current probability

density operator and the density operator. Fourier transforming (1.1) and using the

convolution theorem delivers the k- and ω- dependent conductivity that connects
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an electric field E(k, ω) to the current by

j(k, ω) = σ(k, ω)E(k, ω). (1.3)

In order to simulate a potential that is switched on adiabatically the frequency

receives an additional very small and positive imaginary part δ. This ensures that

for τ → 0 the contributions to the integral become smaller [4]. For homogeneous

interacting fermions in one dimension Luttinger Liquid theory provides the retarded

current density correlation function (1.2). Then, the momentum- and frequency-

dependent conductivity can be described by

σ(k, ω) =
4q2

h̄
uK

i(ω + iδ)

(ω + iδ)2 − u2k2
, (1.4)

where the Luttinger parameter K is depending on the interaction(see chapter 6) and

u is the charge velocity. For the noninteracting case K = 1 and the charge velocity

equals the Fermi velocity u = vkF
. When the fermions are spinless the prefactor of

4 is replaced by 2.

There are two interesting cases regarding the electric field E(k, ω). For one the

case of a periodic and uniform field E(0, ω) such that

σ(0, ω) =
4q2

h̄
uK

i

ω + iδ
. (1.5)

The real part of the conductivity is then

Re{σ(0, ω)} =
4q2

h̄
uK

δ

δ2 + ω2
,

δ→0
= 2πDδ(ω), (1.6)

where D is the Drude weight

D =
2q2π

h̄
uK. (1.7)

The other case is that of a static field that is spatially inhomogeneous E(k, 0) and

consequently

σ(k, 0) =
4q2

h̄
uK

δ

δ2 + u2k2
,

δ→0
= 2πGδ(k), (1.8)
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with the conductance

G =
2q2

h
K. (1.9)

Note that σ(k, 0) is already a real conductivity. In the special case of noninteract-

ing fermions G = G0. This is the so called quantum of conductance that is also

mentioned in chapter 5.

G0 =
q2

h
. (1.10)

These two cases describe two different measurements. The first case would need

a field with finite frequency over the finite length of the probe that will measure

the conductivity σ(0, ω). The second case is realized by applying the field only

over a part of the sample. Here, the wavenumber dependent conductivity σ(k, 0)

is probed. These two cases become relevant when in chapter 2 the shape of an

applied perturbation is discussed. The conductance is what is usually measured in a

transport measurement as seen in Figure 2. Therefore, the second case is preferred.

The conductance takes the length over which the electromagnetic field is applied L

into account as can also be seen if one compares the units in equation (1.8). In the

DC-limit ω → 0 the linear DC-conductance G follows the relation

GLin = lim
ω→0

σ(k, ω)

L
= lim

ω→0

j(k, ω)

LE(k, ω)
= lim

ω→0

j(k, ω)

VSD(k, ω)
, (1.11)

where the electric field over only a section of the probe is the result of a source-drain

voltage VSD(k, ω). This is the definition of the linear DC-conductance, but there also

exists a definition for the differential conductance. I will assume a small source-drain

voltage such that only states at the Fermi edge contribute to the transport. In this

limit both definitions are equal. Separating the frequency dependency from the

source-drain voltage and using j(ω) = Re{q 〈J(ω)〉} leads to the final expression for

the DC-conductance

G = lim
ω→0

lim
VSD→0

Re

{
q 〈J(ω)〉
VSDf(ω)

}
. (1.12)

The heart of this equation is the expectation value 〈J(ω)〉 that is a linear response

to perturbation as in equation (1.1). In appendix A.1 I show how to derive this

expression and in appendix A.2 the resulting DC-conductance [5]. Treating the

current as a linear response to a perturbation is also known as the Kubo formalism [4,

6] and consequently the description for the conductance that is obtained by using this

approach is called the Kubo-conductance (see Appendix A.2) [7]. This formulation

of the conductance is the one I will use throughout this thesis for a model that uses
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finite chains with discrete sites.

The approach is based on the assumption that a limited amount of orbitals in

a linear chain can be occupied by electrons that are contributing to the transport.

An electron can then hop from one orbital into a neighboring orbital, but has to

respect Paulis principle and interactions. There are several theoretical models that

include different kinds of interactions and degrees of freedom. Most famous examples

are the simple tight-binding model of spinless fermions [8], the spinfull Hubbard

model [9, 10] and the Holstein model [11], that includes vibrations in the form of

additional Einstein phonons. The problems inherent to these models is that their

chains would have to consist of infinitely many links in order to describe a realistic

experiment in the thermodynamic limit. In the next two chapters I explain how the

systems I am using are modelled and how the problem of the thermodynamic limit

is overcome.

1.2. Setup

In this section the general transport setup and ways to model specific systems are

discussed. A realization of the concept of one-dimensional wires can be found in

semiconductor wires [12], carbon nanotubes [13] and atomic wires that are deposited

on a substrate [14,15] and atomic and molecular wire junctions [16–19].

A transport measurement on these objects is performed by attaching metal fingers

on each side of the wire serving as leads. The setup is then exposed to a source-

and drain voltage which is transferred through the leads into the wire. In the leads

and the wire this results in a local electric field that gives rise to a current. Usually

these structures are very fragile and therefore the wires can only be created in very

short lengths in the nanometer regime.

Fig. 1 and Fig. 2 are two examples of different quantum wires in an actual exper-

iment. The images are taken from the two experimental groups in [20] and [21]. In

both pictures the thin wire structure is attached to the mentioned leads that are of

much bigger proportions.

In the first figure the probed object is a semiconducting carbon nanotube. The

research group measured the conductance of the setup at different temperatures.

Their measurements indicate that the resistance is dominated by the channel re-

sistance of the device and not the contact resistance. However they argue that for

specific gate voltages other mechanisms like Schottky barriers forming at the con-

tacts might take over the dynamics [22]. They also derive that the conductivity

of the carbon nanotube may be tunable from an insulator up to that of a good

conducting metal.

The second experiment was conducted with a semiconductor nanowire with the
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Figure 1: The picture shows a very thin semiconductor nanotube transistor by field-
emission scanning electron micrographs. On both sides of the wire there
are metallic Au/Cr leads attached. The scale bar possesses a length of
100µm. The figure is adapted from Ref. [20]

Figure 2: Example of nanowire transport setup. On the left there is a false color
SEM-Image of InSb nanowire that is connected to Ti/Al leads. On the
right hand side the depiction shows the measured conductance for different
values of gate-voltage. This image is adapted from Ref. [21]

long term goal in mind to use them in nanoelectronics [23]. The group was mea-

suring the ballistic transport in an InSb nanowire. The results were the charac-

teristic plateaus in the conductance and were found consistent with the Landauer

approach [24].

In conclusion, these transport experiments serve as example setups and show that

they can be represented by a lead-wire system. In the next section I discuss how the

setup is modelled into a one-dimensional finite chain taking into account the essential

characteristics described so far. I also layout the concept that allows studying finite

systems in order to gain insight into the thermodynamic limit behavior.

1.3. Model and Outline

As mentioned in the introduction about conductivity and conductance 1.1 this part

is dedicated to the explanation of how a lead wire structure can be mapped into

a one-dimensional finite chain. The last two sections provided the insight in the

characteristics of an experimental transport setup. The following properties are of
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Figure 3: Schematics for the mapping of the experimental lead-wire setup into a
one-dimensional chain and applied potential.

importance.

• The setups consists of two leads and one wire section.

• The lead structure has much bigger proportions then the quantum wire.

• A source- and drain voltage is applied to the two leads and falls off over the

wire section.

• The current is generated by the voltage through an effective electric field.

The influence of the source and drain voltage will be treated as perturbation to the

equilibrium system. The equilibrium Hamiltonian of the system will be called H0

and the time dependent perturbation that is responsible for the dynamics δH(τ)

such that the total system Hamiltonian is the combined

H(τ) =H0 + δH(τ). (1.13)

At first, a base system will be modelled for the setup in equilibrium. For simplicity

the kinetic movement of the electrons will be restricted to nearest neighbor hopping

such that the kinetic part of H0 for a chain of M sites would be

HKin = −
M∑
j=2

∑
σ

t(j)
(
c†j,σcj−1,σ + h.c.

)
. (1.14)

c†j,σ and cj,σ denote the fermionic operators that create or annihilate a fermion at

position j. The so called hopping amplitude t(j) determines the likelihood of one

site hopping process from site j− 1 to j. Most of the time it is not necessary to use

spinfull electrons to explain certain behaviors of the setup as explained later in this

thesis. In this case, there will not be a summation over the spin parameter.

In addition electrons can interact in the form of the Coulomb interaction where

the strength can be described by the nearest neighbor interaction parameter V
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or for spinfull fermions by U . The Hamiltonian part for the Coulomb interaction

depending on whether a spinfull model is used or not then reads

HC1 =V
M∑
j=2

(
nj −

1

2

)(
nj−1 −

1

2

)
, (1.15)

HC2 =U
M∑
j=1

nj,↑nj,↓. (1.16)

The number operator nj,σ = c†j,σcj,σ counts the fermions of spin σ at site j or in the

spinless case nj = c†jcj the number of fermions.

The chain splits naturally into three regions that consist of one wire section in

the middle and the two leads in the outer parts. This separation is due to the

different material or the difference in dimensionality and size. The differentiation

could be modelled in various ways. For example the hopping amplitudes t(j) or the

interaction between the electrons could be different for the three regions. In this

thesis most of the time the three sections are accounted for by the shape of the

potential of the perturbation as seen in Fig. 3 and in one specific case by different

interactions for the wire and leads in chapter 7. Therefore, the hopping amplitude

will always be constant t(j) = t.

Another degree of freedom that can be taken into account would be vibrations.

A setup as seen in Figure 2 may be subject to vibrations that can be modelled in

the form of quasi particles called phonons. These bosons could manifest at each site

and could be described in the form of a phonon Hamiltonian

HPhonon =ωb

M∑
j=1

b†jbj − g ωb

M∑
j=1

(
b†j + bj

)
nj, (1.17)

where b†j and bj are the boson creation and annihilation operators that either create

or destroy a phonon at site j. ωb is associated with the phonon frequency. Via

coupling g an electron at site j is able to create phonons at the same site.

The next step is to define the form of the perturbation. δH(τ) will be composed

as

δH(τ) =eVSDf(τ)A. (1.18)

Here e stands for the electron charge and VSD the source and drain voltage. f(τ)

is function that represents a slow oscillation of the electric field in time τ . A is

the operator that couples the field to the fermions. That means it is composed of

fermion number operators nj,σ and also describes the shape of the potential. How

the shape of the potential is chosen and the consequences of this choice is discussed
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Figure 4: Schematics of the iteration process to reach the DC-conductance in the
thermodynamic limit by enlarging finite setups and calculating their finite
broadened conductance.

in the next chapter.

The next question is how to determine the conductance of such a linear chain

that is composed of these sub-parts in the thermodynamic limit. Analytically even

for finite chains the theoretical methods are quite limited. However, I will rely on

one of the most powerful numerical methods, the Density Matrix Renormalization

Group(DMRG) [25–28]. The algorithm works especially well in one dimension as

later explained in detail in section 3.

In Figure 4 the concept for reaching the thermodynamic limit is depicted in form

of a schematic. At first, the DC-conductance for a system of length M is calculated.

The system then is grown in size. During the enlargement the wire stays at a

constant length. The DC-conductance is calculated for the bigger system. This

continues for systems as big as the DMRG can handle. In the end the values can be

extrapolated from the finite systems into the thermodynamic limit.

This might sound easier than it is in practice. The DC-conductance for finite

systems has discrete spectra, but for the limit of an infinite chain, these spectra

are expected to be continuous. For this reason the spectra have to be broadened in

order to prepare an extrapolation. The full process is explained later in section 4.2.

One might now assume that the combination of the three sub parts form a suitable

base Hamiltonian

H0 = HKin +HC1/2 +HPhonon. (1.19)

In practice, this is not feasible because of the computational demand each of these

parts contribute to the numerical calculations. It is far more pragmatic to use
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smaller combinations like

H0 = HKin +HC1, (1.20)

HHubbard = HKin +HC2. (1.21)

to study the effects of different Coulomb interaction onto the conductance. Or if

interested in the influence of phonon interactions one might use

HHolstein = HKin +HPhonon. (1.22)

Since, now the underlying concept and the model are elaborated I will discuss

the shape of the perturbation that is ultimately responsible for the charge cur-

rent (2nd chapter). This will be followed by the introduction of the Density Matrix

Renormalization Group algorithm (3rd chapter). Based on this introduction the al-

gorithm is extended to the Dynamical Density Matrix Renormalization Group for

the special problem of quantities that are the linear response to a perturbation.

In addition, the finite size scaling is explained that is necessary to extrapolate the

DC-conductance of finite systems into the thermodynamic limit. After clarifying

the model details the new method will be used in the fourth chapter for a one-

dimensional Fermi gas for which the behavior can be calculated analytically. This

serves as verification process for the viability of the procedure. The method will be

further applied to several different configurations, in the Luttinger liquid regime of

homogeneous interaction in chapter 6, in the inhomogeneous regime in chapter 7, for

the noninteracting chain that is coupled to phonons, also known as Holstein model

in chapter 8 and finally the Hubbard model of spinfull fermions in chapter 9.

In summary, the extension into more complex systems serves the purpose to model

realistic experiments conducted with one-dimensional electronic conductors [12–19].

9





Figure 5: Schematics for homogeneous one-dimensional chains of fermion sites that
are numbered by j. The first and last wire sites are named j1 and j2.
The three depictions show different shapes C(j) of the applied electric
potential. Only in depiction b) and c) the wire regions are distinct from the
leads through the shape of the perturbation. Schematics c) was adapted
from Ref. [33]

2. Shape of the Perturbation

As pointed out in the first chapter, the main focus of interest is the dynamic be-

havior of a quantum wire. In the previous chapter the quantity of conductance was

introduced. In Appendix A.2 the formula of the Kubo-conductance [5, 7] G(ω) is

derived by using linear response theory such that

G(ω) = lim
η→0+

q2

ω

∑
m

| 〈0| J |m〉 |2
(

h̄η

(Em − E0 − h̄ω)2 + (h̄η)2
− h̄η

(Em − E0 + h̄ω)2 + (h̄η)2

)
.

(2.1)

Since Ȧ = J , that means that the current operator is equivalent to

J =
i

h̄
[H,A] =

i

h̄
[H0, A]. (2.2)

Usually, the Hamiltonian for relevant systems H0 can be separated into two parts,

where the first part is the kinetic term and the second part is dependent on some
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combination of number operators: c†ici = ni.

H0 =−
N∑
j=2

t(j)(c†jcj−1 + c†j−1cj) +
N∑
i=1

Θ(ni, ni−1). (2.3)

In addition, a perturbation is added according to equation (1.18). The operator of

the perturbation A will also consist of a combination of single site number operators

such that

A =
N∑
i=1

C(i)ni. (2.4)

t(j) and C(i) can be set to zero if necessary and the Θ denotes the parts of the

Hamiltonian that only contains combinations of number operators. They can be

ignored, because they commute as

[c†jck, ni] =


0, ∀ i 6= j, k

0, ∀ j = k

−c†ick, ∀ i = j 6= k

c†jci, ∀ i = k 6= j

. (2.5)

With that in mind the commutator in (2.2) reads

J =
i

h̄
[H0, A] =

i

h̄

[
−

N∑
j=2

t(j)(c†jcj−1 + c†j−1cj) ,
N∑
i=1

C(i)ni

]
=

N∑
i=2

∆C(i)Ji,

(2.6)

with ∆C(i) = C(i)− C(i− 1) and the probability current operator Ji defined as

Ji =
i

h̄
t(i)(c†ici−1 − c†i−1ci). (2.7)

It is worth to note that a positive current expectation value 〈J〉 by this definition

in (2.6) describes a current from the left to the right direction of the chain if one

were to allow only positive values for t(j).

The question arises how to choose the shape of the applied external potential C(i),

in order to model a transport measurement. For example a linear potential drop

over the chain as seen in Figure 5 a) would definitely generate a positive current(for

an infinite chain), although it still might be suppressed by the other parts of the
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Hamiltonian. That would mean

ALinear =
N∑
i=1

CLinearni(i), (2.8)

CLinear(i) =

(
− i− 1

N − 1
+

1

2

)
, (2.9)

∆CLinear(i) =− 1

N − 1
, (2.10)

which results in the respective JLinear

JLinear =−
N∑
i=2

1

N − 1
Ji. (2.11)

An apparent downside of this shape is, that for a homogeneous non-interacting chain

there is no distinction between lead and wire parts. Then, the effective current

operator (2.11) is simply the sum over all the single site currents normalized by the

length of the chain.

In order to emphasize the different constituents of the setup a different shape for

the applied external potential can be selected. A more step like perturbation that

is constant over the lead sections and zero in the wire section as seen in Figure 5

b) would encourage a current but keep the distinction between different chain parts

preserved. Therefore, the effective current would be formed through

AStep =
N∑
i=1

CStep(i)ni, (2.12)

CStep(i) =


1
2

for i < j1,

−1
2

for i ≥ j2,

0 else,

(2.13)

∆C(i)AStep
=


−1

2
for i = j1,

−1
2

for i = j2,

0 else.

(2.14)

into JStep

JStep =− 1

2
(Jj1 + Jj2). (2.15)

The effective current only depends on the two sites where the potential drops.

A scaling analysis that uses the correlator (5.15) that is calculated in chapter 5

reveals that ALinear leads to a measurement of the Drude weight and not the con-

ductance. This corresponds to the conductivity of equation (1.6) where the electric
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field is uniformly distributed over the sample. Astep on the other leads to a scaling

that is proportional to the conductance in the leading order corresponding to equa-

tion (1.8). For this thesis I decided to take a mixture of the Alinear and the Astep

according to Figure 5 c) where I have a constant potential over the lead sections and

a linear drop in the middle of the setup over the wire. This shape prevents probing

the Drude weight and still takes a more realistic approach of a dropping voltage over

the wire.

At the same time this distinguishes the wire from lead sections, even in the ho-

mogeneous interacting setup

AMixed =
N∑
j=1

CMixed(j)nj, (2.16)

CMixed(j) =


1
2

for j ≤ j1,

− j−j1
j2−j1 + 1

2
for j1 < j < j2,

−1
2

for j ≥ j2,

(2.17)

∆C(j)AMixed
=

{
− 1
MW−1

for j1 < j ≤ j2,

0 else.
(2.18)

Therefore, the effective current for the mixed field is

J = − 1

MW − 1

i

h̄

j2∑
j1+1

t(j)(c†jcj−1 − c†j−1cj). (2.19)

This operator has the other computational advantage, that it does not scale with

M like JLinear, but with MW , which is the number of wire sites and therefore the

length of the wire section. This is very beneficial during the enlargement of the

finite scaling process described later in this thesis, because the wire length is held

constant.
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Figure 6: The figure shows a schematic depiction of the infinite-system DMRG al-
gorithm. Step 1. starts with two blocks. In step 2. two new sites are
added. In step 3. these are incorporated into a superblock. The Hilbert
space that represents the superblock is truncated. The algorithm then
turns back to step 1. by splitting up the new superblock into two blocks.

3. Density Matrix Renormalization Group

In the previous chapter the modelling of the setup into one-dimensional chains of M

sites was discussed. The physics of this setup can be described by a Hilbert space

of dM dimensions, where d denotes the local Hilbert space dimension of a single

site. It is easy to see that for big site number M the Hilbert space becomes too

large to handle. Therefore, the Density Matrix Renormalization Group(DDMRG)

algorithm is introduced as numerical method that can reduce the Hilbert space to a

dominant subspace. The subspace then contains enough information to determine

the physics of the transport properties. This decimation process works especially well

in the present case of one-dimensional short-range Hamiltonians. The explanation

I present here is very close to the reference of Ulrich Schollwöck [27] who not only

delivers a good introduction to the field of DMRG, but also connects it to the field

of matrix product states.

The DMRG can be split into two kinds of DMRG procedures. The first is the

infinite-system DMRG in which the system size is continuously growing, and the

second the finite-system DMRG where the total system size stays constant. These

two types are explained in detail in the following sections. In practice these two

versions are combined into one by using the infinite-system DMRG as preparation

until the desired system size is reached and then one switches to the finite-system

DMRG that keeps the system at the desired size.
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3.1. Infinite-system DMRG

The infinite-system DMRG employs iterations as depicted in Figure 6. As seen in

the figure the algorithm can be divided into three substeps. At first a system of size

M is split into two blocks. The smallest system to start with would consist of only

M = 2 sites that is then split into a left and right block. In the next step two new

sites are inserted in between the two blocks such that the total system grows by two

sites. The sites are then absorbed into new left and right blocks that effectively grow

by one site each. While this procedure continues the total system size is growing by

two and the sub-block size by one, whenever this three substeps are executed.

The Hilbert space of the complete system can either be described through the

basis of the two blocks, {|i〉L} for the left block and {|j〉R} for the right block, or by

treating the two single sites in the middle of the wire isolated by using the tensor

product of the sub-block states {|a〉L} and {|a〉R} and the local basis of the two sites

{|s〉L} and {|s〉R}. Any state |ψ〉 of the system can therefore be expressed as

|ψ〉 =
∑
iL,jR

ciL,jR |i〉L |j〉R =
∑

aL,sL,sR,aR

caL,sL,sR,aR |a〉L |s〉L |s〉R |a〉R . (3.1)

For small block sizes the Hilbert space might actually be small enough to be

handled by the numeric resources available. But once, a certain size is reached a

truncation back to a Hilbert space of maximum dimension D has to be performed.

If one is interested in the ground state of the system |0〉 one can minimize the

functional

E(ψ) =
〈ψ|H|ψ〉
〈ψ|ψ〉

(3.2)

with respect to ψ, where the Hamiltonian is expressed in the basis of the com-

bined blocks. Since the systems of interest are one-dimensional with short range

interactions most matrix elements of the Hamiltonians are zero which opens up pos-

sibilities to use sparse Eigensolver techniques. This usually happens in the form of

diagonalization algorithms like the powerful Lanczos algorithm [29].

When the system is now enlarged and a single site of local dimension d is added

to the basis of the former left block the Hilbert space dimension for the complete

left side would grow from D to dD, because the former left block takes over the role

of the new sub-block. In order to calculate the targeted state |ψ〉 one now has to

minimize 3.2 in the basis (3.1) of dimension D2d2. At this point the basis that is

used has to be truncated, because the limit was set to a maximum of D dimensions

for a block. This happens by first forming the reduced density operator for the
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combination of sub-block and single site

ρ(L+site) = Tr(site+R) |ψ〉 〈ψ| , (3.3)

ρ(L+site)ii′ =
∑
j

ci,jc
∗
i′,j . (3.4)

Diagonalizing the reduced density operator and then ordering the resulting eigen-

states by their eigenvalues allows to determine the eigenstates with the most in-

fluence on the system. Only the D most influential eigenstates {|b〉} are kept to

determine the new basis for the left block {|i〉L} by expanding with the coefficients

that are formed by 〈a|L ⊗ 〈s|L |b〉.

The question arises why forming the reduced density matrix and then diago-

nalizing it will actually provide a good representation for the truncated system.

Still following the explanation in Ref. [27] at first the linear algebra method of the

singular-value-decomposition(SVD) has to be introduced. It states that any rect-

angular matrix Ψ of dimensions (m × n) can be decomposed into three matrices

by

Ψ = USV †. (3.5)

The matrices U and V have the properties

U †U = I, (3.6)

V V † = I. (3.7)

U is completely unitary if m ≤ n and V is unitary if n ≤ m. The matrix S on the

other hand is diagonal, where the diagonal values are all positive and can be listed

and ordered as Saa = sa. The sa are called singular values and are assumed to be

ordered by size, such that the biggest value is the first entry of S.

A system that is split into a left(L) and right part(R) can be described by a pure

state

|ψ〉 =
∑
ij

cij |i〉L |j〉R . (3.8)

Here, {|i〉L} and {|j〉R} are orthonormal bases for the left and right side of dimensions

m and n. Let’s assume a matrix Ψ as described in equation (3.5) consists of the

coefficients cij of the pure state. Then the pure state can be rewritten by using the
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SVD to

|ψ〉 =
∑
ij

min(m,n)∑
a=1

UiaSaaV
∗
ja |i〉L |j〉R , (3.9)

=

min(m,n)∑
a=1

sa

(∑
i

Uia |i〉L

)(∑
j

V ∗ja |j〉R

)
, (3.10)

=

min(m,n)∑
a=1

sa |a〉L |a〉R . (3.11)

When the sum now is not completely executed and only the r first terms that are

associated with the largest sa are taken into account the result is the so called

Schmidt decomposition.

|ψ〉 =
r∑

a=1

sa |a〉L |a〉R . (3.12)

Using this decimated version of the pure state the reduced density operators are

formed for the left and right block by

ρL =ΨΨ† =
r∑

a=1

s2
a |a〉L 〈a|L , (3.13)

ρR =Ψ†Ψ =
r∑

a=1

s2
a |a〉R 〈a|R . (3.14)

The surprising result is that the eigenvalues directly present themselves as s2
a. To

answer the earlier question, it turns out that to ask if a truncated state |ψ′〉 is a good

approximation to |ψ〉 can be done by relating the 2-norm of |ψ〉 to the Frobenius

matrix norm by

|| |ψ〉 ||22 =
∑
ij

|cij|2 = ||Ψ||2F. (3.15)

The consequence is that the optimal approximation of |ψ〉 by |ψ′〉 in the 2-norm can

be found by the optimal approximation of a matrix Ψ through Ψ′ in the Frobenius

norm. Constructing Ψ′ as

Ψ′ = US ′V †, (3.16)

where S ′ is consisting of the r biggest singular values of Ψ on the diagonal and a

rest of zeros. This is the optimal approximation for a matrix in the Forbenius norm.

19



Figure 7: Here the iteration of the finite-system DMRG is depicted. In contrast to
the infinite-system DMRG the enlargement of one of the subsystems by
incorporating the single sites is simultaneous to the shrinking of the other
subsystem, such that the total system size stays the same at every step.

It means the optimal approximation for a state |ψ〉 is

|ψ′〉 =
r′∑
a=1

sa |a〉L |a〉R . (3.17)

Therefore, forming the reduced density matrices like in equation (3.3) and equa-

tion (3.4) is doing exactly this and delivering the optimal approximation.

3.2. Finite-system DMRG

The finite-system DMRG depicted in Figure 7 is the next procedure that is executed

after the infinite-system DMRG. When the desired system size is reached the grow-

ing process of the infinite-system DMRG can be stopped and a sweeping process

through a system that stays constant in size called finite-system DMRG is contin-

ued. In contrast to the previous type of DMRG the growing process of one block

happens at the expense of the other block(ensuring the constant system size). Dur-

ing the process of forming the reduced density operator the infinite-system DMRG

effectively assumed an environment of the same size as the block it was formed for.

Here, in the finite-system DMRG this assumption gets corrected by composing the

environment only from the available ”left over” block. This correction leads for most

non trivial systems to a drastic change in results. When the sweeping starts a block

is enlarged and the reduced density matrix uses a shrunk version of the other block.

The growth of one block and reduction of the other block continues until a dimen-

sional limit for the Hilbert space is reached or the environment block is consisting of

a single site. Now the small block takes over the role of the growing block and the

direction of the growth and reduction is reversed. During this sweep process a lot
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of the blocks have already been calculated in previous iterations. Therefore, these

can be stored and reused to save computation time.
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4. Finite Size Scaling DDMRG

In Appendix A.2 the frequency dependant Kubo-conductance was derived. Recalling

the formula (2.1)(here h̄ = 1) shows that the center of interest lies within the

correlator | 〈m|J |0〉 |2.

G(ω) = lim
η→0+

q2

ω

∑
m

| 〈m|J |0〉 |2
(

η

(Em − E0 − ω)2 + η2
− η

(Em − E0 + ω)2 + η2

)
.

(4.1)

It determines the weight of the m-th distribution of symmetric Lorentzians around

the origin. For very simplistic systems like the non-interacting tight-binding setup

it is actually possible to calculate the correlator analytically, but once the system

becomes more complex this does not work anymore. At this point numeric methods

like the DMRG presented in the last section have to be relied on.

Additionally, it should be noted that although I will call this quantity the fre-

quency dependant conductance throughout the thesis it is only in the DC-limit

ω → 0 confirmed to be equivalent to the real DC-conductance Gexp that is ob-

tained in an actual measurement. It was never investigated what happens for other

frequencies, such that

G(ω)
?
= Gexp(ω),

lim
ω→0

G(ω) = Gexp(0). (4.2)

This means that G(ω) will only be used in the DC-limit when describing a transport

measurement.

The entire chapter 4 is focused on the numeric evaluation of this expression. It is

divided into two parts. The first section introduces the Dynamical Density Matrix

Renormalization Group Algorithm(DDMRG) from Ref. [30,31] which is an extension

to the DMRG algorithm and it is pointed out why it works so well with this kind

of dynamic quantities. In the second part the actual method is presented of scaling

finite setups in combination with DDMRG to reach the thermodynamic limit of the

DC-conductance G.

4.1. Dynamical Density Matrix Renormalization Group

The dynamical variant of DMRG published in Ref. [30, 31] is explained here. This

algorithm will be of great use to numerically evaluate correlation functions like the

one found in conductance in (4.1). As mentioned in the papers this method focusses

on the class of correlation functions that are the result for a response of a system to a
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time dependent perturbation. This set of correlation functions follows the structure

GO(ω + iη) = 〈0|O† 1

E0 −H + ω + iη
O |0〉 , (4.3)

where O is the operator, that is observed. Therefore, in the present case the operator

O can directly be replaced by the current operator J .

Looking at the imaginary part of this equation yields

Im(GJ(ω) + iη) = 〈0| J† η

(E0 −H + ω)2 + η2
J |0〉 . (4.4)

This is exactly the correlator, that is the building block of the frequency dependent

conductance (4.1). Once there is a way to calculate this correlator the frequency

dependent conductance can be easily obtained.

Following the References [30, 31] I continue by introducing a correction vector

|ψJ(ω + iη)〉, that helps to express the correlator as

Im(GJ(ω + iη)) =− 〈0| J† |ψJ(ω + iη)〉 , (4.5)

with |ψJ(ω + iη)〉 =
1

E0 −H + ω + iη
J |0〉 . (4.6)

The correction vector can be written as the sum of two parts,

|ψJ(ω + iη)〉 = |XJ(ω + iη)〉+ i |YJ(ω + iη)〉 , (4.7)

which are connected through the equation

|XJ(ω + iη)〉 =
H − E0 − ω

η
|YJ(ω + iη)〉 . (4.8)

Although these do not have to be the actual real and imaginary parts of |ψJ(ω + iη)〉.
In general both might be complex. Nevertheless, the second part is useful, because

it is related to the correlator by

Im(GJ(ω + iη)) = −〈0|J |YJ(ω + iη)〉 . (4.9)

|YJ(ω + iη)〉 can be obtained by solving the inhomogeneous linear equation

((E0 −H + ω)2 + η2) |ψ〉 = −ηJ |0〉 . (4.10)

A common way to solve equations like this is to minimize a functional with respect
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to ψ

WJ,A(ω, ψ) = 〈ψ|((E0 −H + ω)2 + η2)|ψ〉+ η 〈0| J† |ψ〉+ η 〈ψ| J |0〉 . (4.11)

The resulting |ψmin〉 is

|ψmin〉 = |YJ(ω + iη)〉 . (4.12)

The functional for the minimal ψmin is related to the correlator (4.4) by

WJ,A(ω, ψmin) = −ηIm(GJ(ω + iη)) (4.13)

These are all the relations needed to calculate the frequency dependent conduc-

tance (4.1). The algorithm uses three steps, that are important for the thesis

method. The first two steps are equivalent to, what a normal DMRG program

explained in chapter 3 does, while the third contains the dynamical part concerning

the functional WJ,A(ω, ψ).

1. Since DDMRG is based on the normal DMRG algorithm it starts by minimiz-

ing the energy functional

E(ψ) =
〈ψ|H|ψ〉
〈ψ|ψ〉

(4.14)

and looking for a good approximation to the ground state |0〉 according to

chapter 3.

2. |0〉 then is used to calculate J |0〉. The action of J onto the ground state is

the right half of the expression (4.9).

3. By minimizing the functional WJ,A(ω, ψ) with respect to ψ in this part one can

directly obtain the correlation function of interest Im(GJ(ω + iη)) via (4.13).

All these steps together open up the possibility to calculate (4.1) via

G(ω) = lim
η→0+

q2

ω
[Im(GJ(ω + iη))− Im(GJ(−ω − iη))] (4.15)

Note: The article referenced [30] describes a fourth step, which completes the cor-

rection vector via equation (4.8). But since I am only interested in the imaginary

part of the correlation function, the results of the first three steps are sufficient for

the thesis’ method.

In a previous study [32] Bohr et al. evaluated equation (4.15) analytically which

lead to a different correlator that is effectively the derivative of equation (4.4) with
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respect to ω. Thus, they were able to evaluate the conductance directly at ω = 0

by also using DMRG. For the correlator in this thesis this is not possible. Here,

DDMRG is used as described above for a narrow frequency interval around ω = 0

and then (4.15) calculated numerically for ω → 0. This approach allows to calculate

the conductance for systems up to a size of M = 2000 sites with less than 200

eigenstates kept in the density-matrix, while Bohr et al. in Ref. [32] used system

lengths up to M = 200 sites that kept 1200 density-matrix eigenstates.

The factor 1/ω seems at first to be problematic for calculating equation (4.15),

but it is in fact the derivative of equation (4.4) for ω → 0. When the limit η → 0 is

taken properly the expression is smooth around ω = 0. A problem arises for finite

systems as are studied in this thesis where the system size is fixed to a maximum

number of M sites. This can be overcome by using a proper finite-size scaling that

is introduced in the next section.

4.2. Converting DDMRG Output into broadened Conductance

The final goal is the evaluation of the DC-conductance in the thermodynamic limit.

However, the earlier equation (4.15) describes the conductance only in the limit

ω → 0 for an infinite chain.

G = lim
ω→0

lim
η→0+

lim
M→∞

q2

ω
[Im(GJ(ω + iη))− Im(GJ(−ω − iη))]. (4.16)

As already indicated by the factor 1/ω together with the limit ω → 0 the order

of the limits is very important. At some point the other limits have to counter

act this factor in order to arrive at a finite value for G. Before explaining how to

deal with these limits in the actual procedure to calculate G, I want to focus on

the shape of the spectrum of the finite systems and what happens if the system

size is increased. Since the limit η → 0+ in connection with the Lorentzians in the

correlator Im(GJ(ω + iη)) results in a sum of δ-distributions, G(ω) is depicted in

figure 8 by just using very ”slim” Lorentzians of a small finite width η

G(ω, η) =
q2

ω

∑
m

| 〈m|J |0〉 |2
(

η

(Em − E0 − ω)2 + η2
− η

(Em − E0 + ω)2 + η2

)
.

(4.17)

Because finite systems only ever lead up to discrete spectra an increase in system size

M will add more delta-peaks in a symmetric manner around 0. The distributions

also appear closer to each other the further the system grows. Although for very

high numbers M there are more and more distributions clustered together, they will

never lead to a continuous spectrum as expected for an infinite system.
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Figure 8: Example spectrum for the broadened frequency dependent conductance
for different broadening C = ηM . It is clearly visible how an increased
scaling suppresses the discrete nature of the finite spectrum. The examples
of C = 48t, 96t show that it is much easier to extract a value for the DC-
conductance at ω = 0.

This problem is solved by combining the two limits of η and M , meaning the

width of the Lorentzians and the system size into one parameter that can by scaled

as

η =
C

M
. (4.18)

Where C is a constant in units of energy. That means that the frequency depen-

dent conductance changed from a distribution of delta peaks to a distribution of

Lorentzians. These get slimmer the longer the setup is, but remember that also

more of the Lorentzians appear closer to each other. The key is to choose the broad-

ening well enough, such that for the limit M → ∞ the conductance of the system

converges to the correct value.

Figure 8 shows a finite sample spectrum for a spinless tight-binding chain half

filled with fermions for a system length M = 100. Three different scaling relations

are chosen to point out the direct influence on the spectra. While a very small scaling

C = 0.48t still resembles the discrete nature in form of the Lorentzian shapes, the

other two examples C = 48t, 96t show an already more smooth appearing shape.

As will be seen later in figure 9, the first case is actually unable to reach the correct

value of the DC-conductance, because of a too low scaling.

One extreme case would be that the Lorentzians are so slim that the spectrum

has very sharp fluctuations that make it impossible to read off values in the infinite

limit. In conclusion the scaling has to be chosen carefully, to preserve the actual

behavior of the system.
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Figure 9: The plot shows the extrapolation of analytically calculated spectra for
the noninteracting tight-binding chain at different finite size scaling. This
emphasizes how important it is to choose a good scaling. Only the samples
of a scaling order of O(10t) converge towards the expected value of G0 = 1.
In the other two cases the scaling was either to small or to large to reach
convergence in the limited system size.

Another note is, that smoothing the spectra this way, applies only to the investi-

gation of the infinite limit behavior. These spectra do not have any physical meaning

for the finite systems. In fact, as seen in Figure 8, the relation (4.18) can be used

to tune to several finite DC values (G(ω → 0.48t/M) 6= G(ω → 0.96t/M)), just

by changing the width, but the limit of the conductance (4.16) will be ultimately

unaffected by the tuning and remain the same as can be seen in Figure 9.

The last step on the way to the DC-conductance is to execute the DC-limit,

ω → 0. The finite size scaling allows to directly read of the DC-values for the finite

systems. As pointed out, they are dependent on the scaling and do not represent

meaningful quantities, but their limit is in fact the desired DC-conductance in the

thermodynamic limit.

In Figure 9 the effect of different scaling parameters C can be observed. As

explained in the next chapter the expected value of the conductance would be unity

for this specific normalized y-axis. Using the low scaling of C = 0.48t leads to an

analytical DC-conductance limit that is differing from the other ”well chosen” values

of C = 48t, 72t, 96t. A much to broader value of C = 480t on the other hand leads

to a very slow convergence, that becomes impractical if one is limited to a maximum

system size during numeric evaluation.

This completes all the necessary tools for the thesis’ method. The final procedure

consists of three steps.

1. Specify the Hamiltonian of the system, that is investigated for a specific set
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of increasing finite lengths {Mi}.

2. Use the first three steps of the DDMRG algorithm to calculate the correlator

Im(GJ(ω + iη)) and construct the broadened version of the frequency depen-

dent conductance, that is properly scaled,

G(ω, η = C/Mi,Mi) =
q2

ω
[Im(GJ(ω + iη))− Im(GJ(−ω − iη))]. (4.19)

3. Look for the DC-values of the conductance, G(Mi) = G(ω = 0, η = C/Mi,Mi),

and extrapolate them into the thermodynamic limit G(0, η = 0,∞) = G.

Of note, although I will call the quantities G(ω, η = C/Mi,Mi) finite frequency

dependent conductance and G(M) finite-system conductance throughout the thesis,

strictly speaking they are not the equivalent of a conductance for a finite system

due to the already mentioned reasons. Only in the limit M → ∞ that is obtained

in step 3. G(M) becomes the physical DC-conductance.

It is also worth to note that in the second step during the construction of the

finite frequency dependent conductance the numeric error produced by the DDMRG

algorithm is effectively doubled due to the sum. During the calculation of the

procedure the quantities are set to t = q = h̄ = 1. The extrapolation into the

thermodynamic limit is done via polynomial fits and is usually plotted against 1/M ,

in order to move the thermodynamic limit (M → ∞) to the y-axis. The value for

the DC-conductance can then be easily obtained by following the fit as guide to the

eyes to the intersection with the axis.
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5. Verifying the Method

In order check, if the procedure, that was introduced in the previous chapters,

actually works, this chapter starts by providing the analytical results for the DC-

conductance of non-interacting spinless fermions in a half filled chain. Once several

of the broadened spectra (4.19) are calculated analytically, the new procedure is run

for the same system setups. This allows comparison of the numerical and analytical

results and to see if they subsequently converge to the same values of G in the

thermodynamic limit.

5.1. Tight-Binding Chain - Correlator Calculation

In order to evaluate correlators like in equation (4.17) and (4.19) analytically the

setup of interest has to be very simple. This section has the purpose to deliver a

well-structured entry for the reader, which is new to this field of physics. The more

advanced reader on the other hand might skip this section. This sort of calculation

is well known and can be found in [8].

Starting with systems where the fermions are not interacting the Hamiltonian is

reduced to the simple tight-binding Hamiltonian

HTB =−
M∑
j=2

t(j)(c†jcj−1 + c†j−1cj). (5.1)

The single particle wave function 〈j|k〉 = ψk(j) for a particle at position j with

momentum k helps to transform the creation and annihilation operators into the

momentum picture by

a†k =
M∑
j=1

〈j|k〉 c†j =
M∑
j=1

ψk(j)c
†
j, (5.2)

c†j =
∑
k

ψ∗k(j)a
†
k, (5.3)

where a†k creates and ak annihilates a fermion of momentum k. Assuming the particle

to be forced to the chain, as if a box shaped potential would be present outside the

chain, the single particle wave function is given as

ψk(j) =

√
2

M + 1
sin(kj), k =

πn

M + 1
(5.4)

n ∈ {1, . . . ,M}

Using this conversion rules and having t(j) = t constant allows to transform the
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tight-binding Hamiltonian into the diagonal momentum space representation

HTB =−
∑
k

2t cos(k)a†kak. (5.5)

During the transformation the identity

2

M + 1

M∑
j=1

sin(kj) sin(k′j) = δkk′ (5.6)

was used as in [8]. (5.5) is the well-known result of the cosine shaped energy spectrum

of the tight-binding model. There is only a discrete number of possible momentum

vectors k, that depends on the total length M of the chain. For the ground state

configuration this spectrum is filled up to the energy level of the Fermi vector denoted

by kF.

Just plugging in the expression for the effective current operator (2.6) into the

correlator of (4.19) leads to

∑
m

| 〈m|J |0〉 |2L(ω, η,m) =
∑
m

| 〈m|
M∑
i=2

∆C(j)Jj|0〉 |2L(ω, η,m)

=
∑
m

∣∣∣∣ M∑
j=2

∆C(j) 〈m|Jj|0〉
∣∣∣∣2L(ω, η,m), (5.7)

where L(ω, η,m) represents the Lorentzian distributions. In order to make use of

this result the single site current Jj has to be transformed into the momentum

picture. Furthermore, it might be of interest if the action of Jj on the ground state

|0〉 can be derived. In the same way as for the Hamiltonian, the transformation

rules (5.2) and (5.3) can also be used to express the single site currents Jj as

Jj =
∑
k,k′

a†kak′J
k,k′

j , (5.8)

where using the single particle wave functions (5.4) directly leads to

Jk,k
′

j =
it

h̄

[
〈k|j〉 〈j − 1|k′〉 − 〈k|j − 1〉 〈j|k′〉

]
(5.9)

=− 2it

h̄(M + 1)

[
sin(kj) sin(k′(j − 1)− sin(k(j − 1)) sin(k′j))

]
. (5.10)

The next step on the way to calculate the correlator | 〈m|J |0〉 |2 is to look at how

Jj acts on the ground state |0〉. The ground state can be formed by filling up the

vacuum state |vac〉 with fermions of momentum k, until the Fermi level with kF is
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reached

|0〉 =
∏
k≤kF

a†k |vac〉 . (5.11)

The action of the current operator onto the ground state can then be rewritten as

Jj |0〉 =
∑
kk′

Jk,k
′

j a†kak′
∏
q≤kF

a†q |vac〉

=
∑
k′≤kF

k>kF

Jk,k
′

j |k, k′〉 , (5.12)

where in the second line the second term only contributes when an electron with

momentum k′ < kF is destroyed and a new one with momentum k is created. The

notation |k, k′〉 denotes such a state. Using this knowledge simplifies the correlator

and opens up the possibility to evaluate it analytically.

∑
m

| 〈m|J |0〉 |2L(ω, η,m) =
∑
m

| 〈m|
M∑
i=2

∆C(i)Ji|0〉 |2L(ω, η,m)

=
∑
q,q′

∣∣∣∣ M∑
i=2

∆C(i) 〈q, q′|Ji|0〉
∣∣∣∣2L(ω, η,m)

=
∑
q,q′

∣∣∣∣ M∑
i=2

∆C(i) 〈q, q′|
∑
k′≤kF
k>kF

Jk,k
′

i |k, k′〉
∣∣∣∣2L(ω, η,m)

=
∑
q,q′

∣∣∣∣ M∑
i=2

∆C(i)
∑
k′≤kF
k>kF

Jk,k
′

i 〈q, q′|k, k′〉
∣∣∣∣2L(ω, η,m)

=
∑
k′≤kF
k>kF

∣∣∣∣ M∑
i=2

∆C(i)Jk,k
′

i

∣∣∣∣2L(ω, η,m), (5.13)

because the single particle wave function (5.4) can be directly inserted in the defi-
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nition of Jk,k
′

j

M∑
j=2

∆C(j)Jk,k
′

j

=− 2it

h̄(M + 1)(j2 − j1)

j2∑
j1+1

[
sin(kj) sin(k′(j − 1))− sin(k(j − 1)) sin(k′j)

]
(5.14)

=− 2it

h̄(M + 1)(j2 − j1)

[ j2∑
j1+1

sin(kj) sin(k′(j − 1))−
j2∑
j1+1

sin(k(j − 1)) sin(k′j)

]

=− 2it

h̄(M + 1)(j2 − j1)

[ j2∑
j1+1

sin(kj) sin(k′(j − 1))−
j2−1∑
j1

sin(kj) sin(k′(j + 1))

]

=− 2it

h̄(M + 1)(j2 − j1)

[ j2−1∑
j1+1

sin(kj)

(
sin(k′(j − 1))− sin(k′(j + 1))

+ sin(k(j2)) sin(k′(j2 − 1))− sin(kj1) sin(k′(j1 + 1))

]
=

2it

h̄(M + 1)(j2 − j1)

[
2

j2−1∑
j1+1

sin(kj) cos(k′j) sin(k′)

.+ sin(k(j2)) sin(k′(j2 − 1))− sin(kj1) sin(k′(j1 + 1)

]
(5.15)

Inserting this expression into the conductance (4.19) gives a manageable expression

that results in concrete values for G(ω,M). The computation effort to calculate

this expression still grows with M2 for a constant wire region in the enlargement

process, as can be seen in (5.13).

Equation (5.15) was used to study the scaling of the frequency dependent conduc-

tance and broadened conductance for the earlier proposed shapes of the perturbation

∆CLinear(i) and ∆CStep(i) in appendix B.1 The linear case resulted in an expression

GLinear(ω, η) for a finite η

GLinear(ω, η) ≈ =
D

πηM
(5.16)

that is scaling with the Drude weight, while the step like potential resulted in an

expression

GStep(ω) ≈q
2

h

[
1 + cos2(kFMW)

1

4

ω2

v2
F

]
(5.17)

that is proportional to the quantum of conductance in the leading order. These

two calculations show what was already expected from the two equations (1.6) and
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(1.8) of the conductivity in their respective limit. The same calculations where not

possible for GMixed, but in Figure 12 GMixed(Mi) = G(Mi) for finite systems of length

Mi that are calculated via equation (5.15) are compared with DMRG results. Both

the analytical and numeric results approach the quantum of conductance in the

thermodynamic limit.

This behavior leads to finally choosing the mixed variant in which the linear drop

only occurs in the wire region to ensure the study of the conductance and not the

Drude weight.
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Figure 10: DDMRG output Im(G(ω + iη)) against frequency. The results for dif-
ferent system sizes M and frequencies ω are shown as symbols that are
explained in the inset. The DMRG results are then interpolated as seen
in the figure. The most notable part is that in the interval around ω = 0
this interpolation is smooth. This is necessary to calculate the finite
frequency dependent DC-conductance depicted in Figure 11.

5.2. Tight-Binding Chain - Numerical Results vs. Analytical

Expectation

The previous chapter presented the necessary tools to calculate the DC-conductance

for the tight-binding model in a very analogous but analytical way to the DMRG

procedure. In order to verify the results of the numeric method, the outlined steps

of the procedure are run twice. For the first run only the analytical expressions are

used to obtain Im(G(ω + iη)). This value for the imaginary part is then used to

evaluate the frequency dependent conductance (4.19) and to finally extrapolate the

DC-values into the thermodynamic limit, such that a precise value for G is yielded.

In the second run numeric results of the DMRG algorithm of the correlators are

used in the same way as described in 4.1, such that they replace the analytically

calculated correlators. This way both the numeric and analytical spectra before and

after the extrapolation can be compared step by step. In Fig. 9 the extrapolation of

the analytical DC-conductance for different scaling parameters of the tight-binding-

chain could already be observed. The analytical result therefore predicts a value of

G = 1/(2π). This matches the value of the so called quantum of conductance

G0 =
q2

h
=

1

2π
, (5.18)

because t = q = h̄ = 1. This is the reason why the plots are scaled in units of

2πG = G/G0.
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Figure 11: Finite frequency dependent conductance calculated from the in Figure 10
depicted Im(G(ω + iη)) according to equation (4.15). Since the main
interest lies within the DC-behavior only a small region around ω = 0
is necessary, in order to extract the scaled DC-conductance for a finite
system of size M .

In the second run the process relies purely on the output of the DDMRG algorithm

for the imaginary parts Im(G(ω+iη)) for different system size M . A sample of these

can be observed in Fig. 10. The shown spectra are for a constant wire region of

MW = 10 sites. Because I am only interested in the finite DC-values, after forming

G(ω = 0, η = C/Mi,Mi) out of Im(G(ω+ iη)), only a small frequency range around

ω = 0 has to be taken into account and calculated. The G(ω = 0, η = C/Mi,Mi)

that are the direct result of the Im(G(ω+iη)) in Fig. 10 are depicted in Fig. 11. Here

again, only a small frequency range around ω = 0 is needed for the extrapolation

into the thermodynamic limit. The final extrapolation for both cases is depicted

in Fig. 12. The limit of the analytical and numeric routes are both matching the

quantum of conductance. The analytical solution was derived using equation (5.13)

with equation (5.15).

Additionally the extrapolation for other wire lengths MW = 34, 58, 82 are also

included and the conductance is plotted against MW/M . From the result it can

be concluded that a large ratio of M/MW is desired, to ensure a fast convergence.

Therefore, the method works as intended and a small wire section is sufficient to

observe the DC-conductance in the thermodynamic limit. Thus, in all following

plots only systems of a wire lengths of MW = 10 sites are shown.
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Figure 12: The figure shows the extrapolation of the broadened DC-conductance of
the finite systems into the thermodynamic limit. The studied systems
differ in wire length MW. The x-axis is scaled by MW/M , which shows
that for all systems the limit does not change and small wires with large
system sizes converge faster. The figure is adapted from Ref. [33].
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Figure 13: DMRG results for the conductance of a homogeneous interacting chain
for different interaction parameters V . G(M) is plotted against an in-
verse system size 1/M . At 1/M = 0 the exact values according to a
Luttinger liquid (6.2) and the Bethe ansatz solution (6.3) is depicted as
red pentagons. For all cases the wire has MW = 10 sites. The figure was
published in Ref. [33].

6. Luttinger Liquids and Fermionic Interaction

In this section the procedure is expanded to interacting systems, where theory

predicts the behavior of a Luttinger liquid. In this kind of systems fermions behave

as the name implies like a liquid and can be described by a few parameters. The

first part starts by investigating only homogeneous interacting chains of different

interaction strength V and its effect on the DC-conductance in the thermodynamic

limit. Then, in the second part in addition to the interaction a potential barrier [1,

34–36] in form of an on site potential in the middle of the wire section is added.

The potential strength can be varied. And then in the last part going even further

a second barrier is added where the parameters of the potential can be adjusted

individually. All the results of this chapter were published in [33].

6.1. Homogeneous Interaction

The setup is a one-dimensional chain half filled with spinless fermions and effec-

tively the same as the tight-binding setup from before with an added homogeneous

interaction term. The Hamiltonian to describe the unperturbed base system is then

HHI = HKin +HC1 = −t
M∑
j=2

(
c†jcj−1 + c†j−1cj

)
+ V

M∑
j=2

(
nj −

1

2

)(
nj−1 −

1

2

)
.

(6.1)
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Figure 14: Conductance G(M) for non-interacting chain with impurity of strength
ε in the middle of the wire section against 1/M . Red pentagons at the
vertical axis indicate the exact values from the Landauer formula (6.5).
For all cases the wire is of MW = 10 sites. The figure was published in
Ref [33].

The model can be solved using the Bethe ansatz solution for the one-dimensional

spin-1
2

Heisenberg model [37]. For an interaction parameter V that is restricted to

the interval (−2t, 2t], for t > 0, a gapless excitation spectrum is expected in the

thermodynamic limit. Because here, the fermions are assumed to be spinless, this

means that only one type of charge carrier is present. The DC-conductance for a

one channel Luttinger liquid GLL [34] is given by

GLL = KG0. (6.2)

Here, K is the Luttinger Liquid parameter [34–36]. The parameter can be obtained

by the Bethe ansatz solution for the spin-1
2

Heisenberg chain, that connects the

parameter and the interaction by

K =
π

2

1

π − arccos
(
V
2t

) . (6.3)

This enables us to directly compare the predicted DC-conductance GLL with the

numeric results of the procedure.

The outcome of the method is displayed in Figure 13. The exact values for the

Bethe ansatz solution are marked on the y-axis for different values of the interaction

V . The polynomial fits match the theoretical predictions well. An outlier is the

extrapolation for the case of V = 2, where it overshoots the expected value. This

may be due to additional finite size effects that are not taken into account for by the

scaling η = C/M . Nevertheless, in the broader picture this shows that the method
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Figure 15: Conductance G(M) for a homogeneous chain with repulsive interaction
V = 2t in addition to a single on site barrier in the middle of the wire
region of strength ε. For all cases the wire has MW = 10 sites. The figure
was published in Ref. [33]

is a viable tool for the dynamical quantities of interacting one-dimensional systems.

6.2. Homogeneous Interaction - Single Barrier

The previous system is expanded on by adding a potential barrier modelled as a

chemical potential of strength ε at a specific site ja. The site is roughly located in

the middle of the wire region. The setups are usually chosen with even number M

of total sites, such that there is no middle site. So the potential is applied to one

of the closest two sites (ja ≈ j1+j2
2

). The single barrier Hamiltonian then consists

of the same parts as the homogeneous interaction Hamiltonian with the addition of

the chemical potential

HSB = HHI + ε nja (6.4)

For starters it is best to look at the results for the case of the non-interacting chain

V = 0 with a potential barrier. This specific case can be compared to the Landauer

theory of elastic scattering at a barrier [11] and with the results of Kane and Fisher

in Ref. [36]. The conductance is controlled by the transmission T through

GL = G0T. (6.5)

The idea is that an incoming wave is partially transmitted and reflected at the

barrier, which is represented in the amplitude of the respective waves. The resulting

set of equations can then easily be solved for the transmission coefficient T (see
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Figure 16: DMRG results for the case of a homogeneous interacting chain with at-
tractive interaction V = −t and on-site barrier of strength ε. The wire is
of MW = 10 sites and the scaling is chosen as η = 48t/M . The plot was
adapted and slightly modified from Ref. [33]

appendix C.1), which yields

T =
4t2 sin2(kF )

4t2 sin2(kF ) + ε2
. (6.6)

kF is the Fermi wave number and is here π/2 for the simple tight-binding model.

From this formula one can directly see that it should not matter if the potential is of

attractive or repulsive nature, because the potential strength ε only occurs squared.

Also the DC conductance should decrease with increasing potential strength |ε|.

The procedures output depicted in Fig. 14 matches the values predicted by equa-

tion 6.5 surprisingly well. The polynomial extrapolations converge in the thermo-

dynamic limit to the values of the Landauer theory.

However, these results dramatically change, once the interaction is turned on.

Fig. 15 and Fig. 16 show the results for V = 2t and V = −t. These findings clearly

point out how different the conductance is for a Luttinger liquid compared to a

non-interacting chain in case of barrier scattering. For the repulsive interaction one

can observe a complete breakdown in transport, once the potential slightly differs

from ε = 0. The result is a universal insulator.

For attractive interaction on the other hand the strength of the impurity does

not affect the conductance at all. As Figure 16 depicts this setup stays conducting

regardless the strength of the impurity. This behavior is completely different to

the results for the homogeneous noninteracting chain where the barrier controls the

conductance. Of note, the polynomial extrapolation in Fig. 16 does not exactly

match the predicted value for stronger barriers, because a much higher ratio of
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MW/M is needed to make the fits more accurate.

This shows that the results are in strong agreement with the literature [36] and

outline the viability of the method in case of a single barrier that is located in the

wire section.

43



Figure 17: Schematic depiction of several homogeneous interacting setups with dif-
ferent kind of impurities in the middle of the chain. All studied examples
of a combination of attractive (green(-)) and repulsive (red(+)) impuri-
ties are shown in a)-f). The schematics in the bottom indicate the charge
density wave like structure of the ground state that has additional contri-
butions composed of the domains of these charge density waves. In these
the periodicity is broken at the so called domain walls (dashed line).

6.3. Homogeneous Interaction - Double barrier

Adding a second barrier to the wire section opens up a variety of different problems

to investigate. There are several combinations of how one can place two barriers next

to each other. But one has to take into account that the wire is only of MW = 10

sites in contrast to the very large growing lead sections. This means that where

exactly these two barriers are placed, when their relative constellation is kept the

same, should not make a significant difference. Another characteristic to consider

is, whether the impurities are modelled both attractive or repulsive, or one mixes

up an attractive and repulsive barrier in one setup.

Regardless of which setup exactly is chosen the Hamiltonian will also follow the

previous structure of a single barrier by just adding another on site potential of

strength εb at site jb to the first impurity εa at site ja. The double barrier Hamilto-

nian therefore is

HDB = HHI + εa nja + εb njb . (6.7)

From a theoretical perspective the behavior of this kind of systems is more compli-

cated to describe than that of a the single barrier.

For the behavior of a single impurity Kane and Fisher proposed a solution for the
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Figure 18: ConductanceG(M) for repulsive homogeneous chain with V = 2t and two
non-resonant barriers (case c)) of strength ε in the middle of the chain.
For all cases the wire has MW = 10 sites. The figure was published in
Ref. [33]

repulsive Luttinger Liquid (V > 0, K < 1) in Ref. [36]. In this system fermions tend

to follow a structure that is called a charge density wave (CDW) with additional

contributions. This CDW without these contributions is the insulating ground state

for nearest neighbor interactions V > 2t outside the Luttinger liquid regime. For

a half filled chain of spinless fermions it follows a pattern of periodicity 2 with

two possibilities for the ground state as depicted in the bottom of the schematics

in Fig. 17 as CDW 1 and CDW 2. As mentioned this structure itself would be

insulating, but the additional contributions that are also depicted allow for particles

to move through the setup and therefore a current. The contributions are composed

of the ”domains” of the two CDW’s, such that the point in the setup where they

meet is called a domain wall (indicated by a dashed line in the schematics).

If one were to add an impurity to such a setup it would directly affect one of the

two CDW domains. The system then is pinned down to either CDW solution of the

respective domain which in turn makes a current less likely or completely inhibits

it. It can be argued that placing an attractive potential into one of the occupied

CDW sites (see fig. 17 a)) makes this exact CDW domain preferable to the other

one and thus a current is also unlikely. A repulsive barrier (fig. 17 b) ) on the other

hand results in a similar outcome, by dampening the CDW contributions depending

on the site placement and preferring the non disturbed CDW domain. This also

suppresses fluctuations. The result can be seen in figure 15, where a single barrier

lead to an insulating setup.

The question is now what happens, when a second barrier is added. An interesting

idea is to use a second barrier to undo the effect of the first one. This could be
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Figure 19: Conductance G(M) for two impurities of opposite signs in their strength
ε that are placed next to each other (case d)). The present setup is a
chain of homogeneous interaction V = 2t. For all cases the wire has
MW = 10 sites.

accomplished in two ways. The first approach comprises of adding an impurity of

the opposite sign to the same CDW domain the first barrier is already influencing.

Thus, for example a repulsive barrier that rejects one of the CDW domains can be

counteracted by an attractive impurity with a gap of one site to the first, such that

it prefers the same CDW domain and therefore undoes the rejection (Fig. 17 f)).

The second approach adds a barrier with the same sign as direct neighbor to the

first impurity, in order to affect the other CDW domain in the same way as the

first as depicted in Fig. 17 c). Remember this thought experiment is of qualitative

nature, which means that one might not be able to completely undo, but still limit

the effects of the first impurity. These effects are schematically explained in figure 17

by pointing out the expected effect of the impurity to the CDW domain it is placed

in.

In summary, the method was tested on the four distinct cases c), d), e) and f).

The strength of the pairs of impurities was always set as |εa| = |εb| = ε. The first

result can be observed in figure 18. Here the two barriers are of the same sign

and adjacent to each other. After scheme 17 both barriers should suppress the

two CDW configurations at the same time by the same amount depending on the

impurity strength ε. This matches the resulting extrapolations quite well, because a

low strength like ε = 0.5 only slightly diminishes the DC conductance, while greater

values (ε = 1.5) for the two barriers can produce an insulator. So the conductance

is gradually tuned down for barriers that are growing in strength. The next two

cases represented in scheme 17 d) and e) are both cases, where the second barrier

should enhance the effect of the first one. This is clearly reflected in the results in
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Figure 20: Conductance G(M) for the case of two repulsive barriers that are next-
nearest neighbors(case e)). The present setup is a chain of homogeneous
interaction V = 2t. For all cases the wire has MW = 10 sites.

Fig. 19 and Fig. 20. Both show a universal insulator for all impurity strengths that

were chosen and are actually matching so well that it is impossible to distinguish

the two plots with the eyes. It is quite astonishing that not only the extrapolated

limit, but the results for the finite systems do not differ.

For the last and most surprising case I followed scheme 17 f) - the barrier was

placed as next nearest neighbor to the first with opposite sign in strength: εa =

ε = −εb. The attractive potential at jb = ja + 2 enhances the formation of the

CDW in the same way as the repulsive barrier at ja disrupts it. The result in

Fig. 21 shows therefore an unchanging conductance compared to the homogeneous

chain. The strength of the two barriers seems to have no influence at all on the DC

conductance. This behavior matches the predictions by field theoretical models [36]

for a resonant double barrier, that enables resonant transmission, where on the other

hand a single one of these impurities leads to total reflection.

Although the CDW picture is able to provide a qualitative explanation for the

observed results one should still compare to the predictions of Landauer theory for

double barrier scattering. Therefore, I calculated in appendix C.2 several different

example transmissions for multiple barriers in the same way as is elaborated in

Ref. [38]. Landauer theory that is neglecting the Luttinger liquid behavior results

in a qualitatively stronger reduction in conductance for case d) than c) depending

on the strength of the impurity. This is also observable here. Also the cases d) and

e) should not scale the same regarding barrier strength. Here, we see the opposite

behavior of the same scaling. In fact, case d) and e) are indistinguishable which

rejects that explanation. The last case f) provides a better fit with Landauer theory

as the transmission is unaffected by the impurities.
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Figure 21: Conductance G(M) for the case of homogeneous interaction V = 2t and
two next-nearest neighbor barriers of a strength ε of opposite sign(case
f)). For all cases the wire has MW = 10 sites. The figure was published
in Ref. [33]

This concludes the experimentation scenarios using different barriers in interacting

one-dimensional chains. The method of finite scaling in connection with DDMRG

delivered some interesting results which are still not fully understood and remain a

topic of debate. Nevertheless, the procedure is able to produce results that are in

line with other methods and support their qualitative explanations.
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Figure 22: Schematic depiction of a wire-lead setup that has different interactions
between the sites belonging to the wire section of MW sites and the outer
lead sections. The shape of the applied perturbation is depicted as C(j).
The figure was published in Ref. [39]

7. Inhomogeneous Interaction

The Hamiltonian 6.1 of the unperturbed system does not differentiate between wire

and lead sections inside the chain. So far the hopping and interaction was homo-

geneous for the entire setup. In reality setups that follow the structure presented

in section 1 may use different materials for the wire and leads. This distinction

only ever was accounted for by the shape of the perturbation as it was discussed in

chapter 2. In this section the model is extended to a chain, which differs in wire and

lead interaction. The results of this section were published in Ref. [39]. The new

base Hamiltonian for inhomogeneous interaction becomes

HII =− t
M∑
j=2

(
c†jcj−1 + c†j−1cj

)
+ VW

j2∑
j=j1+1

(
nj −

1

2

)(
nj−1 −

1

2

)

+ VL

j1∑
j=2

(
nj −

1

2

)(
nj−1 −

1

2

)
+ VL

M∑
j=j2+1

(
nj −

1

2

)(
nj−1 −

1

2

)
. (7.1)

Here, VL describes the interaction in the leads and VW denotes for the wire sections.

All the other parameters are kept the same, meaning the system is still half filled

with spinless fermions. Since the perturbation is also not changed, the current

operator is still the same 2.19. Theory predicts in the form of a field-theoretical

approach [40,41] that the lead interaction determines the conductance of the whole

setup. This means that for the still viable relation G = KG0 the factor K is the

Luttinger liquid parameter of the leads. The field theoretical approach is based

on the assumption that there is a perfect transition from the leads into the wire.

Therefore, the possibility of single particle backscattering events at a sharp transition

zone is completely neglected. Interested in which of these predictions holds true three

different setups with attractive, repulsive and no lead interaction were studied. In all

cases the wire interaction was varied. In order to conduct a transport measurement

of a nanostructure one of the most common ways is to attach metallic leads to the
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Figure 23: Polynomial extrapolations of the finite-system conductance G(M)
against inverse system length 1/M for the case of metallic leads VL = 0
and different wire interactions VW. The wire is of MW = 10 sites. The
figure was published in Ref. [39].

structure and expose them to a source and drain voltage. Electrons in metals are

usually treated as Fermi liquids, which justifies to treat them as noninteracting [32,

42–49]. Therefore, the first case to study is that of noninteracting leads attached to

an interacting wire.

The result for metallic leads with differing wire interaction can be observed in

Figure 23. Several conclusions can already be drawn from the extrapolation starting

with the division of the results into attracting and repulsive wire interactions.

For attractive interaction the conductance matches the expected conductance of

a Luttinger liquid of a homogeneous chain for V = 0 at G = G0. This supports

the prediction of field theory for a smooth transition from the leads into the wire.

The results for the wire interaction close to the border of the Luttinger liquid phase

at VW = −1.9t cannot be extrapolated by a simple polynomial as applicable to the

other results. Again I want to note that the polynomial fits should just be treated

as guide to the eyes.

For repulsive interaction in the wire the picture looks completely different. The

extrapolated conductance clearly decreases according to the strength of the wire

interaction or in other words: The sharper the transitions from the noninteracting

leads to the wire region becomes, the stronger the effect on the diminishing con-

ductance. This behavior caused by single particle backscattering looks similar to

what was observed before for the case of a homogeneous noninteracting chain with

an impurity that was located in the middle of the wire in Fig. 14. Here, although

heavily diminished this still holds true for values up to VW = 3t which would al-

ready be too high for the Luttinger liquid description of a homogeneous chain. For
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Figure 24: Conductance in the thermodynamic limit for metallic leads VL = 0 and
a short interacting wire MW = 10 is plotted against wire interaction
VW. The circles are the extrapolated values of the DMRG data points in
figure 23, while the triangles are DMRG data points taken from Ref. [42]
for comparison. The figure was published in Ref. [39].

a homogeneous chain of V = 3t the Luttinger phase is already left in favor of an

insulating charge density wave state. Therefore, it is expected that for the limit

MW →∞ in this specific case the setup becomes also insulating.

There was a similar study(see Ref. [42]) conducted by V. Meden and U. Schollwöck

for a setup with a slightly longer wire section of MW = 12 sites. In figure 24 a direct

comparison of their data and the results of the present DMRG method is illustrated.

The data points are matching quite well and show a similar behavior of the setup

for the different repulsive wire interactions.

The next logical step is to investigate the linear conductance of setups that also

have interacting leads. I looked into a case of repulsive interaction of VL = 2t and

of attractive interaction VL = −t. The results and their extrapolation are depicted

in Figure 25 and in Figure 26. In contrast to the previous case of non-interacting

leads less research has been conducted so far.

In the case of VL = 2t illustrated in Fig. 25 the Luttinger liquid parameter for

the homogeneous setup (compare with Fig.14) is determined by the Bethe ansatz

solution (6.3) to be KL = 1/2 which corresponds to a conductance of G = (1/2)G0.

Extrapolation of the data for a wire interaction VW close to the value of the leads

clearly converges against the Luttinger liquid value of the conductance. For the

values VW = 0 and VW = −t, that are further away from the lead interaction

backscattering is already occurring in form of a reduced conductance.

For attractive lead interaction VL = −t illustrated in Fig 26 the field theoretical

approach for the smooth transition is also confirmed. When the value of VW is close
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Figure 25: The same setup as figure 23 but with repulsive interaction in the leads
VL = 2t. The figure was published in Ref. [39].
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Figure 26: The same setup as figure 23 but with attractive interaction in the leads
VL = −t. The figure was published in Ref. [39].
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to the lead interaction VL = −t as it is for example for the two cases VW = −1.5t, 0

the leads dominate the behavior of the conductance. But as soon as the wire inter-

action deviates too much the single particle backscattering kicks in and diminishes

the conductance.

In both interacting cases the wire interaction of VW = 3t shows a decreased but

still finite conductance in the thermodynamic limit. However, the Luttinger liquid

regime would already have been left for the homogeneous setup of this interaction.

As for the case of noninteracting leads an insulator phase is expected for the limit

MW →∞.

In all three cases the extrapolation of the data close to the border of the Luttinger

liquid phase at VW = −2t cannot be performed accurately. This could change if

longer setups were studied, but due to computational limitations the maximum

chain length was capped at M = 2000 sites.

In conclusion, the field theoretical predictions hold for a smooth transition from

the leads into the wire region in all studied cases. When the difference between

wire and lead interaction becomes to great the behavior deviates from field theory

and shows signs of backscattering due to sharp transitions. Overall, the method

presented in this thesis proved again to be a viable tool for this kind of problems.
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Figure 27: Schematics for the homogeneous noninteracting Holstein chain. On each
site there are now two pseudo sites that can hold up to three phonons.
The perturbation shape is described by C(j) .

8. Boson Interaction - Holstein Chain

It is realistic to assume an experimental setup for a transport measurement like

shown in Fig. 1 to be subject to vibrations, that affect the transport of the quantum

wire. This becomes especially relevant for systems of atomic dimensions that are

connected to lead structures [16–19].

Therefore, I focus on a setup that integrates electron-boson interaction into the

chain also known as the Holstein chain. The results were published in [39]. The

vibrations can be described in the form of quasi particle bosons, called phonons. For

a noninteracting chain the general Holstein Hamiltonian reads

HHolstein = HKin +HPhonon

= −t
M∑
j=2

(
c†jcj−1 + c†j−1cj

)
+ ωb

M∑
j=1

b†jbj − g ωb

M∑
j=1

(
b†j + bj

)
nj. (8.1)

Here, in addition to the familiar kinetic part of the tight-binding Hamiltonian for

fermions there are now terms containing the boson creation and annihilation oper-

ators b† and b. The second term describes the collective energies of the phonons

of frequency ωb, while the last term indicates the interaction between the spinless

fermions and bosons via the coupling g. An electron at site j thus creates or de-

stroys a phonon of frequency ωb according to the magnitude of the electron-phonon

coupling g.

Since, in comparison to the setups in previous chapters, the fermion interaction

is dropped the distinction between wire and lead sections is only found in the shape

of the applied potential as explained in section 2. The chain is half filled with

spinless fermions as it was the case in the previous setups. The major problem

regarding phonons that now have to be added to each fermion site is that due to

their bosonic nature in principle an unlimited amount of phonons can occupy a

single site. This would require an infinite dimensional Hilbert space to represent the

setup and make the DMRG method not viable. Therefore, a cutoff for a maximum

56



g = 0.5

g = 1

g = 1.2

g = 1.4

g = 1.5

0. 0.0025 0.005 0.0075 0.01
0.

0.2

0.4

0.6

0.8

1.

1.2

1/M

2
π
G
(M

)

Figure 28: DMRG conductance G(M) for the spinless fermion Hosltein model in the
adiabatic regime ωb = 0.1t against inverse system length 1/M for differ-
ent electron-phonon couplings g. The figure was published in Ref. [39].

number of phonons per site Nb has to be chosen to ensure a finite setup.

Another factor to take into account is in which form the boson sites are attached to

the fermion sites. Simply adding an additional site per fermion site that is reserved

for the bosons might lead to an extreme computational effort despite a seemingly

small phonon cut off. In fact, the computational demand scales with N3
b as described

in Ref. [50].

Let us assume for example that one decides to allow at maximum Nb = 7 phonons

per fermion site, such that a local Hilbert space of eight dimensions is added to a

fermion site. Part of the DMRG algorithm is to take a subsystem of the full lattice

and to enlarge it by one site. After the enlargement one has to truncate the now

bigger subsystem space to a predetermined maximum dimension. After evaluating

the contribution to the new merged system, the least contributing states are omitted.

Computationally it is more effective to add three two dimensional pseudo sites one

after the other instead of one 8 dimensional site, such that there are now three easier

consecutive subsystem truncations instead of one very ineffective big truncation.

The pseudo site mapping introduced in Ref. [50] translates between a boson level

|α〉 with α ∈ {1, 2 . . . , 2N − 1} phonons and an N-pseudo site state |r1, r2, . . . , rN〉
with rj ∈ {0, 1} by

α =
N∑
j=1

2j−1rj. (8.2)

This is very similar to the binary representation of decimal numbers and conse-

quently means that the boson operators also have to be mapped to new pseudo site
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Figure 29: Same system as in Fig. 28 but for an intermediate phonon frequency
ωb = t. The figure was published in Ref. [39].

operators via the relation

Nb = b†b =
N∑
j=1

2j−1a†jaj. (8.3)

The trade off for this method is that typically the operators are much more compli-

cated in the pseudo site basis and are formed of multiple terms depending on the

number of pseudo sites N .

In all calculations the boson cutoff was chosen as Nb = 3 and therefore there are

two pseudo sites per fermion site. Figure 27 shows schematically the Holstein chain

setup in pseudo site representation.

The computation turned out to be much more demanding than the previous ex-

amples which limited the simulated chains to a maximum length of M = 800. The

calculation for the longest setups took up to 600 CPU hours and 4GB of memory.

The DMRG procedure was used to study two different regimes. One in which the

phonon frequency lies within in the adiabatic regime at ωb = 0.1t and another where

the frequency is of the same magnitude as the nearest neighbor hopping ωb = t in

the intermediate regime. The results and the extrapolation into the thermodynamic

limit are depicted in Figure 28 and in Figure 29.

The conductance for the adiabatic case ωb = 0.1t is very close to the quantum of

conductance G ≈ G0 and decreases by a small amount for higher values of g. For

the intermediate frequency ωb = t the same principle is observed at a higher effect.

For increasing g the conductance is deviating even stronger from G0 in comparison

to the first case.

According to the phase diagram for the Holstein model (see Ref. [51]) one ex-
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Figure 30: Luttinger parameter K for the Holstein chain in the case of a phonon
frequency of ωb = t against electron-phonon coupling g. The Luttinger
parameter was determined from the conductance according to the data
in Fig.29 (circles) and on the other hand from the charge structure factor
in Ref. [51](triangles). The figure was published in Ref. [39].

pects a Luttinger liquid behavior for high phonon frequencies or small couplings.

S. Ejima and H. Fehske computed the static charge structure factor, which allowed

to extract the Luttinger liquid parameter in Ref. [51] for several different frequencies

and electron-phonon couplings. Using the relation G = KLG0 allows to compare

their results to the output of the DMRG method of this thesis. Figure 30 illustrates

the comparison for the specific case of the intermediate phonon frequency ωb = t.

The data matches astonishing well and points to a similar behavior for phonon cou-

pled homogeneous chains. An increase in electron-phonon coupling g decreases the

Luttinger liquid parameter K and therefore also decreases the conductance of the

setup. There are no superconducting effects occurring and furthermore, there is no

metal-insulator phase transition visible due to the weak coupling g restricted by the

low phonon number per site. In order to see this phase transition a larger phonon

cut off would be needed.

In summary, this shows that the DMRG method is a powerful tool for homoge-

neous noninteracting chains coupled to a small number of phonons. The method

confirms that the relation for the conductance of a Luttinger liquid which was de-

veloped using pure fermion systems is extendable to the here discussed regime of

weak phonon coupling.
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Figure 31: Schematics for a one-dimensional Hubbard chain half filled with spin-1
2

electrons for each kind of spin. Each site has now the possibility to harbor
one electron of each spin. The shape of the perturbation is illustrated as
C(j).

9. Spinfull Fermions - Hubbard Chain

So far, the fermions were spinless in all models that were studied. Incorporating the

spin degree of freedom allows to generalize the fermion description to electrons. The

results were published in Ref. [39]. The Hamiltonian that describes the system of

spinfull electrons with spin-spin Coulomb interaction is the Hubbard Hamiltonian

HHubbard = HKin +HC2

= −t
M∑
j=2

∑
σ

(
c†j,σcj−1,σ + h.c.

)
+ U

M∑
j=1

nj,↑nj,↓. (9.1)

The kinetic tight-binding term is now spin selective and the second term describes

the interaction between fermions of different spin σ. The chain is half filled with each

kind of fermion such that there are twice as much charge carriers in the system as

in the previous examples. Since now both kind of particle contribute to the current

the effective charge current JC is formed as

JC =J↑ + J↓, (9.2)

Jσ =
1

MW − 1

it

h̄

j2∑
j=j1+1

(
c†j,σcj−1,σ − c

†
j−1,σcj,σ

)
. (9.3)

In addition, adding spin to the system allows to look at a different kind of con-

ductance that is dependent on the spin current instead of the charge current. The

quantity of spin conductance can be derived in a very analogous way to the charge

conductance by

GS(ω) = lim
VSD→0

Re

{
q 〈JS(ω)〉
VSDf(ω)

}
(9.4)
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Figure 32: Charge conductance for the Hubbard chain against inverse system size
1/M . There are polynomial fits for several Hubbard interactions U illus-
trated in the inset.

Key interest for this quantity is the expectation value of a generated spin current.

The first step is to add a different perturbation to the system because an applied

electrical field (1.18) like in the previous examples would not generate a spin current.

In order to express this current as a linear response to the perturbation, the applied

field has to couple selectively to the spins. Therefore, for the spin conductance the

perturbation δH(τ) is of the nature of a magnetic field

δH(τ) = qVSDf(τ)
M∑
j=1

C(j) (nj,↑ − nj,↓) . (9.5)

Note that there is no other interaction in the base Hamiltonian of this model and

the chain is therefore homogeneous. The leads and wire parts are only determined

by the shape of this perturbation as depicted in Fig. 31. The spin current operator

then can be formed by (9.3) as

JS =J↑ − J↓. (9.6)

Analytically the model is solvable using the Bethe ansatz method [9]. The most

interesting property of its low energy states is that charge- and spin excitations are

separated. The gapless excitation modes can then be described as a Luttinger liquid.

For the present case of half filling this leads to a symmetry between charge- and spin

conductance regarding the interaction strength U and −U . For U > 0 the system

is a Mott Insulator that still allows for gapless spin excitations, while for U < 0 the

system changes to a Luther-Emery liquid [1], where the roles are reversed and spin

excitation is gapped with gapless charge spectrum.
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Figure 33: Spin conductance for the Hubbard chain against inverse system size 1/M .
There are polynomial fits for several Hubbard interactions U illustrated
in the inset. The figure was published in Ref. [39].

Now all prerequisites are developed to use the DMRG method on the one-dimensional

homogeneous Hubbard chain for the linear charge and spin conductance in the ther-

modynamic limit. In Figures 32 and 33 both quantities where extrapolated from

a set of setups of different length and with different interaction parameters U . In

direct comparison the mentioned symmetry is quite noticeable. There is not only

symmetry visible in the values of the thermodynamic limits of the conductance but

also in the finitely scaled systems as well. The limit of the case U = 0 shows a slight

scattering and deviation from G = 2G0, which would be the expected value for a

tight-binding setup with two types of charge(spin) carriers. The reason is that the

Hubbard model here has two gapless excitation modes while there is only a single

one for any other interaction value. This decreases the accuracy of the DMRG algo-

rithm for this specific example. For attractive values of U < 0 both the charge and

spin conductance follow the expected behavior. The spin conductance completely

vanishes due to the spin gap but the charge conductance is still finite because the

spectrum is gapless. A qualitative difference in the extrapolation behavior of the

spin conductance of these two examples might be due to the different correlation

lengths associated with U = −2t and U = −8t. We would expect a Mott insulator

with gapped charge excitations and gapless spin excitations for repulsive interac-

tions U > 0. That means the spin conductance GS should approach 2G0. For the

case of U = 2t this can be extracted from the results. However, for U = 8t this is

not clear. The reason is that the spin excitations have a much smaller band width

than in the previous examples. A different broadening η ∝ 4t2/U would be needed

and as a result a much larger system size to reach a higher resolution.

To conclude this chapter the procedure is still a viable tool for spinfull fermions,
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but one has to be aware of its limitations. This chapter provides a good insight about

what happens, when the DMRG loses its accuracy due to too many excitation modes,

while on the other hand produces reliable results for nonvanishing interaction U .
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10. Conclusion

The thesis presents a powerful procedure for the DC-conductance of one-dimensional

correlated systems. It has shown its effectiveness for various model setups and also

where its limits are.

At first the procedure was checked against simple noninteracting tight-binding

chains (chapter 5) where the results were compared to the analytically calculated

DC-conductance. Here, a variety of the surrounding parameters like an appropriate

finite size scaling and wire length were determined.

For the models of homogeneous interacting chains presented in chapter 6 the

method was able to reproduce the Luttinger liquid behavior in the respective regime

of V ∈ (−2t, 2t]. After adding a barrier in the middle of the wire the results of the

method were consistend with Landauer theory of elastic scattering [11]. Then the

model was extended further to two barriers that were positioned either in neighbor-

ing sites or with a one site gap. Here, the results showed an either insulating phase

or resonance depending on where the impurities are placed in relation to each other.

This behavior was consistent with Kane and Fishers CDW picture explanation from

Ref [36]

In chapter 7, an extension to the inhomogeneous interacting model was devel-

oped with setups that allow more realistic simulations of lead and wire material

differences. The results were in strong agreement with field theory for a smooth

transition [40, 41] from the leads through the wire and yielded backscattering once

the transition became too sharp.

The DMRG method was able to retain up to 384 states after the truncation. The

algorithm set out with a warmup for a maximum of 128 states and then performed

a total of nine sweeps according to the infinite DMRG described in chapter 3. The

number of states kept was increased after every three sweeps - after the first three

sweeps reaching 256 states followed by 384 states after the second set of three sweeps.

For the more simple setups of homogeneous interaction the computation time

required to calculate G(M) for the largest chains was less than 100 CPU hours. For

the Holstein setup of chapter 8 on the other hand the computation time was capped

at 600 CPU hours and a total memory of 4GB was used. In addition, the maximum

chain length in the Holstein chain was kept at M = 800 which is much smaller than

the M = 2000 for the other setups. Nevertheless, the comparison of the results

to similar studies [51] showed that even for this rather small setup the method is

still a viable tool. One way to increase the calculation speed would be to reduce

the number of frequencies for which G(ω, η,Mi) from equation (4.19) is calculated.

However, this comes at the cost of a lower resolution around the value ω = 0 when

G(M) is estimated.
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In chapter 9 a spin and on site interaction was given to the fermions in the

form of a Hubbard chain. The method was able to confirm some of the expected

behavior but was limited by a broadening that turned out to be too large to resolve

excitations for the smaller band gaps in the charge and spin conductance. In this

specific example we saw that it also allows for the analysis of quantities that are

similar to the conductance, in this case the spin-conductance. This only requires

that the quantity is based on a Greens function [30] of the kind

GJ,η(ω) =

〈
0

∣∣∣∣J η

(E0 −H + h̄ω)2 + η2
J

∣∣∣∣ 0〉 , (10.1)

where J can be a current of any form that is the result of a linear response to a

perturbation. This indicates that the method is also capable of studying quantities

that would be based on other currents like an energy current [52–55].

Another field of study opens up when the underlying models are changed to

disordered wires or ladder systems [56,57]. The method should definitely be suitable

for such kind of systems as long as the current-current correlation functions can be

calculated around ω = 0 by the DMRG algorithm.

During the finite scaling process the wire length was not changed during the

enlargement of the systems. This was based on the discovery in chapter 5 that

the conductance scales with MW/M . As a result a very small wire together with

very large leads were chosen in all subsequent studies. In some cases like in the

inhomogeneous interacting chain (chapter 7) the limit for an infinitely long wire

would also be worth studying. This would definitely be something to investigate in

the future.
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A. Appendix

A.1. Current Operator as Linear Response to an External Field

The quantity of conductance discussed in chapter 1 is dependent on the expectation

value of the current operator 〈J〉. Here, I show how to derive the current operator

of equation (1.12) by following the explanations of the book [4] on linear response

theory.

The lead-wire setup of chapter 1 was represented by a Hamiltonian H0. In order

to generate an electron current a source-drain potential has to act on this system in

the form of an perturbation δH(τ). The expectation value of the current operator

can be expressed by making use of the corresponding density matrix ρ(τ).

〈J〉 (τ) = 〈J〉ρ(τ) = Tr(Jρ(τ)). (A.1)

Switching into the interaction picture gives J also time dependency

Tr(Jρ(τ))→ Tr(Ĵ(τ)ρ̂(τ)), (A.2)

Ô =ei
H0
h̄
τOe−i

H0
h̄
τ . (A.3)

Here, the interaction picture is denoted by a hat for an arbitrary operator O. The

Von Neumann equation then reads

d

dτ
ρ̂(τ) =− iqVSDf(τ)

h̄
[Â(τ), ρ̂(τ)]. (A.4)

Before the voltage is applied to the leads the system is in a state of equilibrium. In

the chosen time scale this moment has happened long ago and lies infinitely far in

the past. This means for τ → −∞ the density operator can be expressed as

ρ0 =ρ(−∞) =
1

Z0

e−βH0 , (A.5)

where Z0 =
∑
n

e−βEn (A.6)

and β is the inverse temperature. This expression helps to integrate the Von Neu-

mann equation (A.4) to arrive at

ρ̂(τ) =ρ0 −
iqVSD

h̄

∫ τ

−∞
[Â(τ ′), ρ̂(τ ′)]f(τ ′)dτ ′. (A.7)
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Iterating this formulation repeatedly yields

ρ̂(τ) =ρ0 −
i

h̄

∫ τ

−∞
[Â(τ ′), ρ0]VSDf(τ ′)dτ ′

− q2V 2
SD

h̄2

∫ τ ′′

−∞

∫ τ ′

−∞
[Â(τ ′′), [Â(τ ′), ρ0]]f(τ ′′)f(τ ′)dτ ′′dτ ′ + ... . (A.8)

Because higher orders are assumed to have a lower impact on the density matrix, this

leaves only the first order contribution and thus the system is responding linearly

to an external perturbation, which is why it is called linear response.

ρ̂(τ) =ρ0 −
iqVSD

h̄

∫ τ

−∞
[Â(τ ′), ρ0]f(τ ′)dτ ′. (A.9)

For the expectation value of the current operator equation (A.1) translates to

〈J〉ρ(τ) = 〈J〉ρ0
− iqVSD

h̄

∫ τ

−∞
Tr(Ĵ(τ)[Â(τ ′), ρ0])f(τ ′)dτ ′, (A.10)

= 〈J〉ρ0
− iqVSD

h̄

∫ τ

−∞
Tr(ρ0[Ĵ(τ), Â(τ ′)])f(τ ′)dτ ′. (A.11)

This expression is the basis for the formulation of the Kubo-conductance [7] in the

next appendix chapter A.2.
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A.2. Kubo Formulation of the Conductance

This section follows the derivation of the Kubo-conductance [7] by Dan Bohr in his

PhD.-thesis (Ref. [5]). My derivation is a nearly one to one match, and the result

is a well known formula in physics [4] and the basic quantity, which the method of

this thesis is concerned about. Starting with the result of the last section, there are

already two assumptions that can be made. First, there should be no equilibrium

current and secondly for low temperatures the density matrix becomes

ρ0(β →∞) ≈e−β(H0−E0) = |0〉 〈0| ,

〈J〉ρ0
=0. (A.12)

Then equation (A.11) can be changed to

〈J〉 = −iqVSD

h̄

∫ τ

−∞

∑
m

〈m| e−β(H0−E0)[Ĵ(τ), Â(τ ′)] |m〉 f(τ ′)dτ ′,

= −iqVSD

h̄

∫ τ

−∞

∑
m,n

〈m|n〉 e−β(En−E0)︸ ︷︷ ︸
δn0

〈n| [Ĵ(τ), Â(τ ′)] |m〉 f(τ ′)dτ ′,

= −iqVSD

h̄

∫ τ

−∞
〈0| [Ĵ(τ), Â(τ ′)] |0〉 f(τ ′)dτ ′. (A.13)

Applying the Fourier transform F{} to this result opens up the frequency depen-

dency of J(ω).

F{〈J〉} =− iqVSD

h̄

∫ ∞
−∞

eiωτ
∫ τ

−∞
〈0| [Ĵ(τ), Â(τ ′)] |0〉 f(τ ′) dτ dτ ′,

〈J(ω)〉 =− iqVSD

h̄

∫ ∞
−∞

eiωτ
∫ ∞
−∞

θ(τ − τ ′) 〈0| [Ĵ(τ), Â(τ ′)] |0〉 f(τ ′) dτ dτ ′,

=− iqVSD

h̄

∫ ∞
−∞

eiωτ
∫ ∞
−∞

θ(τ − τ ′) 〈0| [e
i
h̄
H0τJe−

i
h̄
H0τ , e

i
h̄
H0τ ′Ae−

i
h̄
H0τ ′ ] |0〉 f(τ ′) dτ dτ ′,

=− iqVSD

h̄

∫ ∞
−∞

eiωτ
∫ ∞
−∞

θ(τ − τ ′) 〈0| [Ĵ(τ − τ ′), A] |0〉 f(τ ′) dτ dτ ′,

=F

{
qVSDf(τ ′) ∗ − i

h̄
θ(τ − τ ′) 〈0| [Ĵ(τ − τ ′), A] |0〉

}
,

=F

{
qVSDf(τ ′)

}
F

{
− i
h̄
θ(τ − τ ′) 〈0| [Ĵ(τ − τ ′), A] |0〉

}
,

=− iqVSD

h̄
f(ω)

∫ ∞
0

eiωτ
∑
m

(
〈0| J |m〉 〈m|A |0〉 e

i
h̄

(E0−Em)τ

− 〈0|A |m〉 〈m| J |0〉 e−
i
h̄

(E0−Em)τ

)
dτ, (A.14)
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where in the last step the replacement τ − τ ′ → τ happened and

f(ω) =F

{
f(τ)

}
=

∫ ∞
−∞

eiωτf(τ)dτ. (A.15)

Continuing following Dan Bohrs explanation by inverting the time axis transforms

the operator A into the interaction picture representation Â

〈J(ω)〉 =
iqVSD

h̄
f(ω)

∫ −∞
0

e−iωτ
∑
m

〈0| J |m〉 〈m| Â |0〉 − 〈0| Â |m〉 〈m| J |0〉 dτ,

=
iqVSD

h̄
f(ω)

∫ −∞
0

e−iωτ 〈0| [J, Â] |0〉 dτ,

= lim
η→0

iqVSD

h̄
f(ω)

([
e−(iω−η)τ

−iω
〈0| [J, Â] |0〉

]τ=−∞

τ=0

−
∫ −∞

0

e−(iω−η)τ

−iω
〈0| [J, ˆ̇A] |0〉 dτ

)
,

= lim
η→0
−VSD

h̄ω
f(ω)

∫ −∞
0

e−(iω−η)τ 〈0| [J, Ĵ ] |0〉 dτ , (A.16)

where a factor of lim
η→0

eητ helps the integral to converge and
˙̂
A = −Ĵ . Now inserting

the factor
∑

m |m〉 〈m| = 1.

〈J(ω)〉

= lim
η→0
−qVSD

h̄ω
f(ω)

∫ −∞
0

e−(iω−η)τ
∑
m

(
〈0| J |m〉 〈m| Ĵ |0〉 − 〈0| Ĵ |m〉 〈m| J |0〉

)
dτ,

= lim
η→0
−qVSD

h̄ω
f(ω)

∫ −∞
0

e−(iω−η)τ

×
∑
m

(
〈0| J |m〉 〈m| J |0〉 e

i
h̄

(Em−E0)τ − 〈0| J |m〉 〈m| J |0〉 e−
i
h̄

(Em−E0)τ
)

dτ,

= lim
η→0
−qVSD

ω
f(ω)

∑
m

| 〈0| J |m〉 |2
[

e
i
h̄

(Em−E0−h̄ω−ih̄η)τ

i(Em − E0 − h̄ω − ih̄η)
− e−

i
h̄

(Em−E0+h̄ω+ih̄η)τ

−i(Em − E0 + h̄ω + ih̄η)

]τ=−∞

τ=0

,

= lim
η→0

qVSD

iω
f(ω)

∑
m

| 〈0| J |m〉 |2
(

1

H0 − E0 − h̄ω − ih̄η
+

1

H0 − E0 + h̄ω + ih̄η

)
,

= lim
η→0

qVSD

iω
f(ω)

∑
m

| 〈0| J |m〉 |2
(

H0 − E0 − h̄ω + ih̄η

(H0 − E0 − h̄ω)2 + (h̄η)2
+

H0 − E0 + h̄ω − ih̄η
(H0 − E0 + h̄ω)2 + (h̄η)2

)
.

(A.17)

Only the real part contributes to the expectation value of J(ω). Therefore,

Re{〈J(ω)〉} =

lim
η→0

q2VSD

ω
f(ω)

∑
m

| 〈0| J |m〉 |2
(

h̄η

(Em − E0 − h̄ω)2 + (h̄η)2
− h̄η

(Em − E0 + h̄ω)2 + (h̄η)2

)
.

(A.18)
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with formula (1.12) this leads to the Kubo formulation of conductance:

G(ω) = lim
VSD→0

Re

{
〈J(ω)〉
VSDf(ω)

}
= lim

η→0

q2

ω

∑
m

| 〈0| J |m〉 |2
(

h̄η

(Em − E0 − h̄ω)2 + (h̄η)2
− h̄η

(Em − E0 + h̄ω)2 + (h̄η)2

)
(A.19)
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B. Appendix

B.1. Scaling Analysis

In this chapter the scaling behavior forG(ω, η) forM >> 1 and ω → 0 is investigated

for the special cases of a linear applied electromagnetic potential and a step like

potential over the whole chain. As discussed in chapter 2 the shape of these two

cases is described through the coefficients ∆C(i)

G(ω, η) =
q2

ω

∑
m

| 〈m|J |0〉 |2L(ω, η,m) (B.1)

∆CLinear =− 1

M − 1
, (B.2)

∆C(i)AStep
=


−1

2
for i = j1,

−1
2

for i = j2,

0 else,

(B.3)

, where L(ω, η,m) represents the Lorentzian terms. The model system is the non

interacting tight-binding chain of spinless fermions that is used in chapter 5. The

wavefunctions from the chapter help to express the sum in G(ω, η) as in expres-

sion (5.14) as

∑
m

| 〈m|J |0〉 |2L(ω, η,m) =
∑
k′≤kF
k>kF

∣∣∣∣ M∑
i=2

∆C(i)Jk,k
′

i

∣∣∣∣2L(ω, η,m). (B.4)

Starting with the linear case the inner part becomes

M∑
j=2

∆CLinearJ
k,k′

j =
2it

h̄(M2 − 1)

M∑
j=2

[
sin(kj) sin(k′(j − 1))− sin(k(j − 1)) sin(k′j)

]
,

(B.5)

=
4it

h̄(M2 − 1)
sin(k′)

M∑
j=1

sin(kj) sin(k′j), (B.6)

The
∑M

j=1 sin(kj) cos(k′j)-term can now be expressed as

M∑
j=1

sin(kj) cos(k′j) =
1

4i

M∑
j=1

(
eikj − e−ikj

)(
eik
′j + e−ik

′j

)

=
1

4i

M∑
j=1

ei(k+k′)j + ei(k−k
′)j − ei(k′−k)j − e−i(k+k′)j. (B.7)
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In the next step the finite geometric series
∑b

j=a r
j = ra−rb−1

1−r will be used, such that

1

4i

M∑
j=1

ei(k+k′)j + ei(k−k
′)j − ei(k′−k)j − e−i(k+k′)j

=
1

4i

(
ei(k+k′) − ei(k+k′)(M+1)

1− ei(k+k′)
+
ei(k−k

′) − ei(k−k′)(M+1)

1− ei(k−k′)

− ei(k
′−k) − ei(k′−k)(M+1)

1− ei(k′−k)
− e−i(k+k′) − e−i(k+k′)(M+1)

1− e−i(k+k′)

)
. (B.8)

Here the interesting terms are

ei(k+k′)(M+1) = eiπ(n+n′) = (−1)n+n′

ei(k−k
′)(M+1) = eiπ(n−n′) = (−1)n−n

′
.

(B.9)

Therefore, the sum changes to

M∑
i=1

sin(ki) cos(k′i) =
1

4i

(
ei(k+k′) − (−1)n+n′

1− ei(k+k′)
+
ei(k−k

′) − (−1)n−n
′

1− ei(k−k′)

− ei(k
′−k) − (−1)n

′−n

1− ei(k′−k)
− e−i(k+k′) − (−1)n+n′

1− e−i(k+k′)

)
=

1

4i

(
ei(k+k′) − (−1)n+n′

1− ei(k+k′)
+
ei(k−k

′) − (−1)n−n
′

1− ei(k−k′)

− ei(k
′−k) − (−1)n

′−n

1− ei(k′−k)
− e−i(k+k′) − (−1)n+n′

1− e−i(k+k′)

)
=

1

4i

(
1 + ei(k+k′)

1− ei(k+k′)
+

1 + ei(k−k
′)

1− ei(k−k′)
− 1 + ei(k

′−k)

1− ei(k′−k)
− 1 + e−i(k+k′)

1− e−i(k+k′)

)
,

(B.10)

if n+ n′ is odd and zero otherwise. Additionally, with

cot(x) =
cos(x)

sin(x)
= i

1 + e−2x

1− e−2x
(B.11)

it becomes

M∑
i=1

sin(ki) cos(k′i) =
1

2

(
cot

(
k + k′

2

)
+ cot

(
k − k′

2

))
=

1

2

sin(k)

sin(k+k′

2
) sin(k−k

′

2
)

=
sin(k)

cos(k′)− cos(k)
h(k, k′), (B.12)
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where h(k, k′) = 1 when n + n′ is odd and 0 for the even case. Therefore, for the

linear case GLinear(ω, η) becomes

GLinear(ω, η) =
q2

ω

∑
k′≤kF
k>kF

∣∣∣∣ M∑
i=2

∆C(i)LinearJ
k,k′

i

∣∣∣∣2( h̄η

(Em − E0 − h̄ω)2 + (h̄η)2
− h̄η

(Em − E0 + h̄ω)2 + (h̄η)2

)
,

=
q216t2

h̄2(M2 − 1)2ω

∑
k′≤kF
k>kF

sin(k)2 sin(k′)2

(cos(k′)− cos(k))2
h(k, k′)

×
(

h̄η

(Em − E0 − h̄ω)2 + (h̄η)2
− h̄η

(Em − E0 + h̄ω)2 + (h̄η)2

)
.

(B.13)

Next an expression GStep(ω, η) for the step potential is derived. For this case only

two terms in the sum of (B.4) contribute.

M∑
j=2

∆CStep(j)Jk,k
′

j =
it

h̄(M + 1)

[
sin(kj1) sin(k′(j1 − 1))− sin(k(j1 − 1)) sin(k′j1)

+ sin(kj2) sin(k′(j2 − 1))− sin(k(j2 − 1)) sin(k′j2)

]
,

=
it

h̄(M + 1)

[
sin(k(

M −MW

2
+ 1)) sin(k′(

M −MW

2
))

− sin(k(
M −MW

2
)) sin(k′(

M −MW

2
+ 1))

+ sin(k
M + 1 +MW

2
+ 1) sin(k′(

M +MW

2
))

− sin(k(
M +MW

2
)) sin(k′

M +MW

2
+ 1)

]
,

=
it

h̄(M + 1)

[
sin(k

M + 1−MW

2
+
k

2
) sin(k′

M + 1−MW

2
− k′

2
)

− sin(k
M + 1−MW

2
− k

2
) sin(k′

M + 1−MW

2
+
k′

2
)

+ sin(k
M + 1 +MW

2
+
k

2
) sin(k′

M + 1 +MW

2
− k′

2
)

− sin(k
M + 1 +MW

2
− k

2
) sin(k′

M + 1 +MW

2
+
k′

2
)

]
.

(B.14)
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Replacing A+ = M+1+MW

2
and A− = M+1−MW

2
reveals the following pattern for the

four occurring terms

sin(lA± +
l

2
) sin(mA± −

m

2
) =

(
sin(lA±) cos(

l

2
) + cos(lA±) sin(

l

2
)

)
×
(

sin(mA±) cos(
m

2
)− cos(mA±) sin(

m

2
)
)
,

= sin(lA±) sin(mA±) cos(
l

2
) cos(

m

2
)

+ cos(lA±) sin(mA±) sin(
l

2
) cos(

m

2
)

− sin(lA±) cos(mA±) cos(
l

2
) sin(

m

2
)

− cos(lA±) cos(mA±) sin(
l

2
) sin(

m

2
). (B.15)

This transforms the previous expression to

M∑
j=2

∆CStep(j)Jk,k
′

j =
it

h̄(M + 1)

[
sin(kA− +

k

2
) sin(k′A− −

k′

2
)− sin(kA− −

k

2
) sin(k′A− +

k′

2
)

+ sin(kA+ +
k

2
) sin(k′A+ −

k′

2
)− sin(kA+ −

k

2
) sin(k′A+ +

k′

2
)

]
,

=
2it

h̄(M + 1)

[
cos(kA−) sin(k′A−) sin(

k

2
) cos(

k′

2
)

− sin(kA−) cos(k′A−) cos(
k

2
) sin(

k′

2
)

+ cos(kA+) sin(k′A+) sin(
k

2
) cos(

k′

2
)

− sin(kA+) cos(k′A+) cos(
k

2
) sin(

k′

2
)

]
. (B.16)

Using the definitions (5.4) reveals the following relations

kA+ =
nπ

2
+ k

MW

2
, (B.17)

kA− =
nπ

2
− kMW

2
. (B.18)

(B.19)
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M∑
j=2

∆CStep(j)Jk,k
′

j =
2it

h̄(M + 1)

[
cos(

nπ

2
− kMW

2
) sin(

n′π

2
− k′MW

2
) sin(

k

2
) cos(

k′

2
)

− sin(
nπ

2
− kMW

2
) cos(

n′π

2
− k′MW

2
) cos(

k

2
) sin(

k′

2
)

+ cos(k
nπ

2
+ k

MW

2
) sin(

n′π

2
+ k′

MW

2
) sin(

k

2
) cos(

k′

2
)

− sin(k
nπ

2
+ k

MW

2
) cos(

n′π

2
+ k′

MW

2
) cos(

k

2
) sin(

k′

2
)

]
.

(B.20)

The expression has now four possibilities depending on if n and n′ are even or odd,

where only two are non-zero

M∑
j=2

∆CStep(j)Jk,k
′

j =

(−1)
n+n′−1

2
2it

h̄(M + 1)

{
cos( (k+k′)MW

2
) sin(k−k

′

2
)− cos( (k−k′)MW

2
) sin(k+k′

2
) for n odd, n′ even,

cos( (k−k′)MW

2
) sin(k+k′

2
) + cos( (k+k′)MW

2
) sin(k−k

′

2
)) for n even, n′ odd.

(B.21)

Using these results GStep(ω, η) finally becomes

GStep(ω, η) =
k′2

ω

∑
k′≤kF
k>kF

∣∣∣∣ M∑
i=2

∆C(i)StepJ
k,k′

i

∣∣∣∣2( h̄η

(Em − E0 − h̄ω)2 + (h̄η)2
− h̄η

(Em − E0 + h̄ω)2 + (h̄η)2

)
,

=
k′24t2

h̄2(M + 1)2ω

∑
k′≤kF
k>kF

2

[
cos2((k + k′)

MW

2
) sin2(

k − k′

2
) + cos2((k − k′)MW

2
) sin2(

k + k′

2
)

]

×
(

h̄η

(Em − E0 − h̄ω)2 + (h̄η)2
− h̄η

(Em − E0 + h̄ω)2 + (h̄η)2

)
. (B.22)

Now the two expressions GLinear(ω, η) and GStep(ω, η) can be investigated for their

scaling behavior for M >> 1 and ω → 0. Starting with the linear case and by using

E(k, k′) = −2t cos(k) + 2t cos(k′) (B.23)
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GLinear(ω, η) can be written as

GLinear(ω, η) =
q216t2

h̄2(M2 − 1)2

∑
k′≤kF
k>kF

sin(k)2 sin(k′)2

E(k, k′)(cos(k′)− cos(k))2
h(k, k′)

×
(

h̄η

(E(k, k′)− h̄ω)2 + (h̄η)2
− h̄η

(E(k, k′) + h̄ω)2 + (h̄η)2

)
. (B.24)

Now assuming a fixed η and a very large system size M >> 1 the difference k − k′

is assumed to be close to zero. This is only possible if k → k+
F and k′ → k−F . This

allows for the following approximations

sin2(k) ≈ sin2(kF), (B.25)

sin2(k′) ≈ sin2(kF), (B.26)

(cos(k′)− cos(k))2 ≈ sin2(kF)(k′ − k)2, (B.27)

E(k, k′) ≈2t sin(kF)(k − k′), (B.28)

h̄η

(E(k, k′)± h̄ω)2 + (h̄η)2
≈ 1

h̄η
. (B.29)

This brings the finite frequency dependent conductance down to

GLinear(ω → 0, η) ≈q
216t sin(kF)

h̄2π3ηM

nF∑
n=1

M∑
n′=nF+1

1

(n′ − n)3
for n+ n′ odd. (B.30)

Using d = n− n′ the sum can be transformed to

nF∑
n=1

M∑
n′=nF+1

1

(n′ − n)3
for n+ n′ odd,

=
∑

d is odd

1

d3

nF∑
n=1

M∑
n′=nF+1

δn−n′,d,

=
∑

d is odd

1

d2
=
∑
d

1

d2
−

∑
d is even

1

d2
=
π2

6
− 1

4

∑
d

1

d2
=
π2

8
(B.31)

So finally the expression can be approximated by

GLinear(ω → 0, η) ≈q
22t sin(kF)

h̄2πηM
=
q2vF

h̄

1

πηM
=

D

πηM
(B.32)

This means the finite conductance for the linear perturbation is proportional to the

Drude weight D, which fits the observation that was made for the conductivity in

equation (1.6). It also means that GLinear(ω, η), is not useful in order to determine

the real DC-conductance because of the potential shape that is spanned across the
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whole setup.

Now the other case GStep(ω, η) will be investigated. Since in this expression only

two terms of the sum remain we look at the limit lim
η→0+

GStep(ω, η) = GStep(ω) and

also transform the infinite sums into integrals via

∑
|k′|≤kF

∆k f(k′) =
M→∞

∫ kF

0

dk′ f(k′),

∆k =
π

M + 1
(B.33)

such that

GStep(ω) =
k′28t2π

h̄2(M + 1)2ω

(M + 1)2

4π2

∫ kF

0

dk′
∫ π

kF

dk[
cos2((k + k′)

MW

2
) sin2(

k − k′

2
) + cos2((k − k′)MW

2
) sin2(

k + k′

2
)

]
×
(
δ(E(k, k′)− h̄ω)− δ(E(k, k′) + h̄ω)

)
. (B.34)

As before k − kF andkF − k′ only contribute when they are small in the regime of

small ω .

GStep(ω) =
k′28t2π

h̄2(M + 1)2ω

(M + 1)2

4π2

∫ kF

0

dk′
∫ π

kF

dk[
cos2(kFMW)

(k − k′)2

4
+ sin2(kF)

]
×
(
δ(E(k, k′)− h̄ω)− δ(E(k, k′) + h̄ω)

)
.

=
q2

h

[
1 +

1

h̄ω

∫ εF

−2t

dε′
∫ 2t

εF

dε cos2(kFMW)
ε− ε′

4(vF)2

×
(
δ(ε− ε′ − h̄ω)− δ(ε− ε′ + h̄ω)

)]
.

=
q2

h

[
1 +

1

h̄ω
cos2(kFMW)

1

4

ω2

v2
F

×
(∫ εF

εF−h̄ω
dε′θ(ω)−

∫ εF

εF+h̄ω

dεθ(−ω)

)]
.

=
q2

h

[
1 + cos2(kFMW)

1

4

ω2

v2
F

]
, (B.35)

where θ(ω) is the Heaviside function. This shows that in accordance with the con-

ductivity in equation (1.8) a locally restricted potential leads to a result that is

proportional to the quantum of conductance G0 = q2

h
for ω → 0.
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C. Appendix

C.1. Elastic Scattering - Single Barrier

This section calculates the transmission coefficient of a single particle scattering

problem for a barrier of strength ε in one dimension. The following calculations

are very basic and resemble the standard problems taught in quantum mechanics

classes as in Ref. [58]. For the two sections on the left and right side of the barrier

the single particle wave function is assumed to follow the structure

ψL(x) =eikx +
√
Re−ikx,

ψR(x) =
√
Teikx, (C.1)

where ψL(ψR) describes the left(right) part of the wave function. At the site of the

impurity which is chosen to be at x = 0 the wave function has to have a definitive

value such that

ψL(0) =ψR(0),

⇒ 1 +
√
R =
√
T . (C.2)

Schroedingers Equation in conjunction with the energy 5.5 of the homogeneous non-

interacting chain delivers additional information about the wave function by

Eψ(x) =− tψ(x+ 1)− tψ(x− 1) + εψ(0)δx0,

Eψ(0) =− tψ(1)− tψ(−1) + εψ(0),

E =− 2t cos(k). (C.3)

The ansatz is to calculate the amplitude for the wave function that is transmitted.

Expressing these conditions in terms of the transmission amplitude results in

E
√
T =− t(

√
Teik)− t(e−ik +

√
Reik) + ε

√
T ,

E
√
T =− t(

√
Teik)− t(e−ik + [

√
T − 1]eik) + ε

√
T

E
√
T =− t

√
T (eik + eik)− t(e−ik − eik) + ε

√
T ,

[E − ε+ 2t(eik)]
√
T = i2t sin(k),

√
T =

i2t sin(k)

2teik − 2t cos(k)− ε
. (C.4)
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Thus, the transmission coefficient is

T = |
√
T |2 =

4t2 sin(k)2

(2t[eik − cos(k)]− ε)(2t[e−ik − cos(k)]− ε)
,

=
4t2 sin(k)2

4t2[e−ik − cos(k)][eik − cos(k)]− 2tε[e−ik − cos(k)]− 2tε[eik − cos(k)] + ε2
,

=
4t2 sin(k)2

4t2[1− cos(k)eik − cos(k)e−ik + cos(k)2]− 2tε[e−ik + eik] + 4tε cos(k) + ε2
,

=
4t2 sin(k)2

4t2[1− cos(k)[eik + e−ik] + cos(k)2]− 4tε cos(k) + 4tε cos(k) + ε2
,

=
4t2 sin(k)2

4t2[1− 2 cos(k)2 + cos(k)2] + ε2
,

=
4t2 sin(k)2

4t2[sin(k)2] + ε2
. (C.5)

This is the transmission coefficient for just one particle. For a half filled chain of

non-interacting fermions the transmission can be evaluated by using the expression

for k = kF = π/2.
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C.2. Elastic Scattering - Two Barriers

Here the calculation for the transmission T of a system of two barriers placed in a

one-dimensional chain at positions x = 0 and x = a is presented in very analogous

way to the bachelor’s thesis of Jerome Jebai(Ref. [38]). The ansatz is the same as

before for one barrier just that this time the wave function can be expressed in three

sectional functions that are created by the two impurities.

ψ(x) =


eikx +

√
R1e

−ikx for x ≤ 0,
√
T1e

ikx +
√
R2e

−ikx for 0 < x < a,
√
T2e

ikx for x ≥ a.

(C.6)

The amplitudes of the waves are denoted by
√
R and

√
T for the reflected and

transmitted part. The wave vectors k are real and the amplitude of the incoming

wave is normalized to 1. The wave functions have to coincide at the specific location

of the impurities such that two conditions are formed as

1 +
√
R1 =

√
T1 +

√
R2, (C.7)√

T1e
ika +

√
R2e

−ika =
√
T2e

ika. (C.8)

In addition, Schroedingers equation together with the energy spectrum for a chain

with non interacting fermions 5.5 evaluated at the two impurities delivers two more

constraints. Here the barriers are modelled as chemical potentials at the specific

site.

Eψ(x) =− tψ(x+ 1)− tψ(x− 1) + ε1ψ(x)δx0 + ε2ψ(x)δxa, (C.9)

Eψ(0) =− tψ(1)− tψ(−1) + ε1ψ(0)δ00, (C.10)

Eψ(a) =− tψ(a+ 1)− tψ(a− 1) + ε2ψ(a)δaa. (C.11)

There are now four unknown amplitudes that can be solved for by a system of four

equations. The transmission is the absolute value of the amplitude of the transmitted

wave after the second barrier

T = |
√
T2|2. (C.12)

Solving first for
√
T2 results in

√
T2 =

2it sin(k)

2it sin(k)− ε1 − ε2 − ε1ε2(e2ika−1)
2it sin(k)

, (C.13)
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which in turn provides a general formulation for the transmission of a single particle

of wave number k for two barriers placed at x = 0 and x = a of respective barrier

strength ε1 and ε2 as

T (a, ε1, ε2) =
4t2 sin2(k)

4t2 sin2(k) + ε21 + ε22 + ε1ε2

(
2 cos(2ka) + ε1+ε2

t
sin(2ka)
sin(k)

+ ε1ε2
t2

sin2(ka)

sin2(k)

)
(C.14)

This formula is used in section 6.3 to make qualitative comparison to the interacting

case.

T (k, a, ε1, ε2) = |
√
T2|2 =

4t2 sin2(k)

4t2 sin2(k) + ε21 + ε22 + ε1ε2

(
2 cos(2ka) + ε1+ε2

t
sin(2ka)
sin(k)

+ ε1ε2
t2

sin2(ka)

sin2(k)

)
(C.15)

The following expressions are calculations according to the cases a)-f) depicted in

the schematics 17 for different types of impurity combinations.

Case: nearest neighbor a = 1

T (k, a = 1, ε1, ε2) =
4t2 sin2(k)

4t2 sin2(k) + ε21 + ε22 + ε1ε2

(
2 cos(2k) + ε1+ε2

t
sin(2k)
sin(k)

+ ε1ε2
t2

sin2(k)

sin2(k)

)
=

4t2 sin2(k)

4t2 sin2(k) + ε21 + ε22 + ε1ε2
(
2 cos(2k) + ε1+ε2

t
2 cos(k) + ε1ε2

t2

)
(C.16)

Case: nearest neighbor a = 1, half filling kF = π/2

T (a = 1, kF = π/2) =
4t2 sin2(k)

4t2 sin2(k) + ε21 + ε22 + ε1ε2
(
2 cos(2k) + ε1+ε2

t
2 cos(k) + ε1ε2

t2

)
=

2t2

2t2 + ε21 + ε22 + ε1ε2
(
−2 + ε1ε2

t2

)
=

2t2

2t2 + ε21 + ε22 + ε1ε2
(
ε1ε2
t2
− 2
)

(C.17)

84



Case c): nearest neighbor a = 1, half filling kF = π/2, both repulsive ε1 = ε2 = ε

T (a = 1, kF = π/2) =
2t2

2t2 + ε2 + ε2 + ε2
(
ε2

t2
− 2
)

=
2t2

2t2 + ε4

t2

(C.18)

Case c): nearest neighbor a = 1, half filling kF = π/2, both repulsive ε1 = ε2 = t

T (a = 1, kF = π/2) =
2t2

2t2 + ε4

t2

=
2

3

(C.19)

Case d): nearest neighbor a = 1, half filling kF = π/2, opposite sign ε1 = −ε2 = ε

T (a = 1, kF = π/2) =
2t2

2t2 + ε21 + ε22 + ε1ε2
(
ε1ε2
t2
− 2
)

=
2t2

2t2 + ε2 + ε2 − ε2
(
− ε2

t2
− 2
)

=
2t2

2t2 + 4ε2 + ε4

t2

(C.20)

Case d): nearest neighbor a = 1, half filling kF = π/2, opposite sign ε1 = −ε2 = t

T (a = 1, kF = π/2) =
2t2

2t2 + 4ε2 + ε4

t2

=
2

7

(C.21)

Case: next nearest neighbor a = 2

T (a = 2, ε1, ε2) =
4t2 sin2(k)

4t2 sin2(k) + ε21 + ε22 + ε1ε2

(
2 cos(4k) + ε1+ε2

t
sin(4k)
sin(k)

+ ε1ε2
t2

4 cos2(k)
)

(C.22)
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Case: next nearest neighbor a = 2, half filling kF = π/2

T (a = 2, kF = π/2) =
2t2

2t2 + ε21 + ε22 + ε1ε2
(
2 + ε1+ε2

t
0 + ε1ε2

t2
0
)

=
2t2

2t2 + ε21 + ε22 + 2ε1ε2

(C.23)

Case e): next nearest neighbor a = 2, half filling kF = π/2, ε1 = ε2 = ε

T (a = 2, kF = π/2) =
2t2

2t2 + ε21 + ε22 + 2ε1ε2

=
2t2

2t2 + ε2 + ε2 + 2ε2

=
2t2

2t2 + 4ε2

(C.24)

Case f): next nearest neighbor a = 2, half filling kF = π/2, ε1 = −ε2 = ε

T (a = 2, kF = π/2) =
2t2

2t2 + ε21 + ε22 + 2ε1ε2

=
2t2

2t2 + ε2 + ε2 − 2ε2

=1

(C.25)
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[6] J. Sólyom. Fundamentals of the Physics of Solids: Volume 3 - Normal, Broken-

Symmetry, and Correlated Systems. Theoretical Solid State Physics: Interac-

tion Among Electrons. Springer Berlin Heidelberg, 2010.

[7] Ryogo Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General

Theory and Simple Applications to Magnetic and Conduction Problems. J.

Phys. Soc. Jpn., 12(6):570–586, 1957.

[8] W. Barford. Electronic and Optical Properties of Conjugated Polymers. Inter-

national Series of Monographs on Physics. OUP Oxford, 2013.
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