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the neurocognitive gains of 
diagnostic reasoning training using 
simulated interactive veterinary 
cases
Maaly nassar1,2,3

the present longitudinal study ascertained training-associated transformations in the neural 
underpinnings of diagnostic reasoning, using a simulation game named “Equine Virtual Farm” (EVF). 
Twenty participants underwent structural, EVF/task-based and resting-state MRI and diffusion tensor 
imaging (DTI) before and after completing their training on diagnosing simulated veterinary cases. 
comparing playing veterinarian versus seeing a colorful image across training sessions revealed 
the transition of brain activity from scientific creativity regions pre-training (left middle frontal and 
temporal gyrus) to insight problem-solving regions post-training (right cerebellum, middle cingulate 
and medial superior gyrus and left postcentral gyrus). Further, applying linear mixed-effects modelling 
on graph centrality metrics revealed the central roles of the creative semantic (inferior frontal, 
middle frontal and angular gyrus and parahippocampus) and reward systems (orbital gyrus, nucleus 
accumbens and putamen) in driving pre-training diagnostic reasoning; whereas, regions implicated in 
inductive reasoning (superior temporal and medial postcentral gyrus and parahippocampus) were the 
main post-training hubs. Lastly, resting-state and DTI analysis revealed post-training effects within 
the occipitotemporal semantic processing region. Altogether, these results suggest that simulation-
based training transforms diagnostic reasoning in novices from regions implicated in creative semantic 
processing to regions implicated in improvised rule-based problem-solving.

The question of how medical practitioners develop their expert performance has been a subject of research in the 
fields of cognitive science and informatics over the last 40 years1. Many psychologists and educators have evalu-
ated the validity of diverse cognitive theories, such as semantic network2,3, deliberate practice4, dual-process of 
thinking5,6 and Bayes’ rule7, in capturing the complexity of clinical reasoning - the cognitive processes involved in 
disease diagnosis and therapy8. Converging hypothetical evidence suggests that the cognitive underpinnings of 
professional medical practice pertain to the relational reasoning processes9 involved in: (1) the structural organ-
ization of medical concepts within semantic knowledge networks (semantic network theory); (2) the semantic 
clustering of knowledge into illness scripts (script theory10) through deliberate practice (deliberate practice the-
ory); and (3) the heuristic (pattern recognition11) and analytic (hypothetic-deductive12, Bayesian thinking13,14) 
clinical problem solving (dual process theory15). Yet, no current studies have directly observed the transformation 
dynamics of these reasoning processes throughout medical training and practice16.

Rather, most – if not all – of the clinical reasoning research embraced expert-novice study designs that 
analyzed the intuitive and analytic cognitive processes of clinicians in terms of dual-process theory. These 
cross-sectional studies have mainly employed think-aloud protocols17–19 and neuroimaging measures20–22 to 
explore the reasoning strategies used by novice and expert clinicians during answering non- and authorized 
multiple-choice questions. Think-aloud protocols revealed experts having better organized knowledge struc-
tures and involving more cue-related reasoning strategies18,19. Furthermore, analyzing the dual processes of rea-
soning in experts showed them using both heuristic and analytic reasoning systems simultaneously in solving 
problems17. Although the think-aloud method is thought to provide insight into the cognitive underpinnings of 
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clinical reasoning, many scholars doubted the validity of verbal reports in reflecting real-time thinking – con-
scious (analytic) and unconscious (nonanalytic) reasoning processes23–25.

Consequently, studies using functional magnetic resonance imaging (fMRI), have recently explored the neu-
rocognitive correlates of clinical reasoning through dual-process theory21,22. Prefrontal activations showed signif-
icant hemispheric differences between students (novices) and practitioners (experts) during analytic reasoning: 
experts showed significant activities in their right ventrolateral and dorsolateral prefrontal and right parietal 
cortices; whereas novices demonstrated greater activations in their left ventrolateral prefrontal and left anterior 
temporal cortex22. According to the authors22, these distinct hemispheric prefrontal activities suggest the involve-
ment of semantic memory and experiential knowledge in novices’ and experts’ analytical reasoning, respectively. 
Although experience seems to be associated with a left-to-right hemispheric shift in prefrontal activities during 
analytical reasoning, Durning et al.21 revealed significantly less activation in frontal regions for experts during 
nonanalytic reasoning. Those identified frontal deactivations were interpreted as an indicator for expert neural 
efficiency. However, despite the interpretations of the authors21,22, these findings show that experts activate and 
deactivate their prefrontal regions as a function of clinical case complexity (nonanalytic vs. analytic) rather than 
as a function of experiential knowledge (novice vs. experts). Thus, it is still unclear whether the development of 
expertise is associated with concurrent prefrontal neurocognitive transformations. Moreover, whereas expert’s 
nonanalytic reasoning was associated with greater activations in regions implicated in pattern recognition (infe-
rior occipital gyrus, middle occipital and parahippocampus), rule-based reasoning (cerebellum) and knowledge 
updating (lateral orbitofrontal cortex), no significant differences were observed in these regions between nov-
ices and experts21. This was not entirely surprising as the novices and experts in this study were postgraduate 
interns and board-certified internists. Thus, both of them seemed to have developed, from their repeated clini-
cal experiences, more abstract knowledge representations, known as illness scripts10, that are believed to allow 
experts to discern and process meaningful patterns faster26 – another feature of experts’ efficiency. Consequently, 
these insignificant and discrepant findings raise the question of whether cross-sectional studies are suitable study 
designs for investigating the neurocognitive transformations that novices go through to become experts.

Indeed, it is extremely challenging to trace and evaluate the neural correlates of reasoning processes through-
out clinical training and practice, but current advances in gamification and neuroimaging technologies provide 
brilliant possibilities to develop simulation games that can accurately replicate real-life scenarios and capture 
performance, using reliable and objective measures. These gamification technologies have led to a cascade of 
simulations that attempt to engage medical practitioners in a variety of safe but challenging clinical scenarios 
that enable repeated practice, trial-and-error learning and problem-solving, and feedback, without jeopardiz-
ing patient health. The data gathered from these simulations have clearly emphasized their potential value in 
capturing expert performance27,28 in medical domains29–33. Nonetheless, none of those simulation-based studies 
investigated the differences in clinical reasoning across novices and experts. And, no longitudinal studies have 
used simulators in combination with neural process-tracing measures (neuroimaging) to investigate the cognitive 
transformations accompanying novice to expert transition. Thus, it is still questionable whether simulation-based 
trainings can go beyond their entertainment-, engagement- and procedural learning outcomes and establish ben-
eficial neurocognitive foundations for creative clinical reasoning.

Therefore, the current study presents a game-based paradigm, using a simulation game known as “Equine 
Virtual Farm” (EVF)34, to investigate the neural foundations of diagnostic reasoning in novices before and after 
5-days of training on diagnosing simulated veterinary cases. The present study is the first longitudinal study 
conducted to ascertain whether the development of expert reasoning is accompanied by parallel transformations 
in the activity and connectivity of brain networks and whether these transformations will conform to clinical rea-
soning theories. Based on clinical reasoning theories, it was hypothesized that playing veterinarian without prior 
experience would involve regions implicated in semantic processing, whereas problem-solving brain regions 
would be more involved after training.

Methods
Subjects. A total of 20 healthy participants (11 females, mean age: 25.65, age range: 20–55) were invited 
twice to the Center of Cognitive Neuroscience (CCNB) at the Free University Berlin (FUB) to have their pre- and 
post-training MRI scans. All participants were right handed and had no history of neurological and psychiatric 
diseases or medications. All sections of the experiment were performed in accordance with the guidelines in the 
Declaration of Helsinki. The CCNB review board and the ethics committee of FUB approved all procedures. All 
participants provided written informed consent before MRI scans and were paid 70 € for their participation.

Experimental design and procedure. Following the designs of cognitive training studies35,36, our study 
encompassed three phases: (1) the pre-training phase (day 1); (2) the home training phase (days 2–6); and (3) 
the post-training phase (day 7). The pre-training phase started with inviting participants to have their first MRI 
scan at CCNB. After receiving information about MRI safety requirements and signing a consent form, partici-
pants started their MRI scan with a 5 min structural MRI (sMRI), followed by 20 min task-based functional MRI 
(fMRI), 10 min eye-opened resting-state MRI (rsMRI) and a final 15 min diffusion tensor imaging (DTI). The 
home training phase started on the next day and for another 4 consecutive days, during which participants played 
with EVF (see Supplementary Fig. 1) for a minimum of 1 hour per day. To ensure that participants adhered to 
this training regimen, they were asked to save their work progress and send their saved files (XML files) by email 
daily. Those XML files included all the laboratory procedures they achieved within the virtual laboratory as well as 
their diagnostic and therapeutic hypotheses for the horses. Based on their performance, additional tips and rein-
forcement emails were sent to each participant to keep them on track. After 5 consecutive days of training, each 
participant was invited again to CCNB to have their last post-training scan and all participants were reimbursed 
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for their participation. Both pre- and post-training scans were similar in terms of acquisition parameters and 
sequences.

During fMRI, each participant played a veterinarian within EVF for 20 minutes, using a trackball mouse 
(Fig. 1e). Within those 20 minutes, participants interacted with five horses in the horse yard and examined their 
physical performance on treadmill and during feeding, drinking and walking. Next, they started collecting and 
preparing blood samples from horses to perform laboratory tests, followed by writing a laboratory report. And, to 
reach a final diagnosis, EVF was provided with an office, where participants can read interactive books and scien-
tific papers on a virtual laptop. Because EVF was developed as a stand-alone desktop application, C++ script was 
implemented into MATLAB to generate scanner-synchronized and accurate presentation of EVF (Fig. 1a,c,d), 
alternating with static visual stimuli (Vis) (Fig. 1b). Each participant played through a total of 24-time blocks: 
twelve 80-sec EVF blocks, and twelve 20-sec Vis blocks. To meet the study aims of investigating the neural corre-
lates of analytic reasoning, another version of EVF was developed for the second post-training scan. In that new 
version, problem-based scenarios (3D animations and positions) were modified and assigned to different horses. 
These modifications aimed for providing uncertainty conditions, allowing participants to activate their analytic 
reasoning strategies.

Image acquisition. MRI data were collected using a Siemens Vision 3-T Tim Trio scanner (Siemens, 
Erlangen, Germany) with a standard 12-channel head coil. Anatomical data (sMRI) was acquired using 
the MPRAGE sequence (TE = 2.52 ms, TR = 1,900 ms, TI = 900 ms, flip angle = 9°, FOV = 256 mm, voxel 
size = 1 × 1 × 1 mm3, 176 sagittal slices). An Echo planar imaging (EPI) sequence (TE = 30 ms, TR = 2,000 ms, 
flip angle = 70°, voxel size = 3 × 3 × 3 mm3, FOV = 192, 37 interleaved axial volumes) was performed for acquir-
ing both task-based (fMRI) and resting-state (rsMRI) data. Finally, Diffusion tensor imaging (DTI) was acquired 
using an EPI-based single-shot spin-echo diffusion sequence (mz_ep2d_diff_free; TE = 94 ms, TR = 10000 ms, 
voxel size = 2 × 2 × 2 mm3, FOV = 208, phase FOV = 100%, 69 transversal slices, Phase Partial Fourier = 6/8 flip 
angle = 90°, b-value = 1000 s/mm2, bandwidth = 1602 Hz/Px, echo spacing = 0.69 ms, EPI Factor = 104, diffusion 
directions = 61). Distortion correction was implemented using a 3 min point spread function (psf) calibration 
scan (mz_ep2d_psf) with the same previous diffusion acquisition parameters37. Motion was corrected during 
reconstruction using a previously acquired reference scan. Total scanning time was ~1 hour (50 min) encompass-
ing one sMRI, one fMRI, one rsMRI and two DTI scans (mz_ep2d_psf and mz_ep2d_diff_free). Cushions were 
placed around the head to minimize head movements and stimuli were presented through a mirror mounted on 
the head coil.

Image preprocessing. Functional MRI Preprocessing: Images from fMRI, sMRI and rsMRI were preprocessed 
using SPM12 (Wellcome Trust Center for Neuroimaging, UCL). For each participant, preprocessing started 
with the realignment of functional images using rigid-motion transform, followed by slice-timing correction. 
Each structural T1 image was normalized to MNI space, using the unified segmentation and normalization in 
SPM12, and co-registered to the mean functional image. Then, the estimated parameters of these transformations 
(i.e. co-registration and normalization) were used to normalize functional and resting-state images (fMRI and 
rsMRI), which were then smoothed using a Gaussian smoothing kernel (FWHM = 6 mm).

DTI preprocessing and tensor fitting: DTI acquisitions were preprocessed using FSL (FMRIB, Oxford, UK, 
www.fmrib.ox.ac.uk/fsl) Diffusion Toolbox (FDT) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). First, eddy cur-
rents and head movements were corrected with the FDT “eddy_correct” tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
eddy). Next, non-brain tissue was removed using the FSL brain extraction tool “bet” (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/BET). Finally, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1) and radial dif-
fusivity (L2, L3) maps were estimated for each participant by fitting a diffusion tensor model at each voxel of the 
corrected DTI images with the FDT “dtifit”.

Voxel-based morphometry: A voxel-based morphometry (VBM38) analysis was performed with the 
Computational Anatomy Toolbox (CAT-12) to investigate the voxel-wise grey matter changes before and after 
EVF training. CAT-12 default settings were used to segment T1-weighted MRI data into gray matter (GM), white 
matter, and cerebrospinal fluid, followed by their spatial normalization using the DARTEL template into MNI 
space. Next, the preprocessed GM data were smoothed using a 6 mm FWHM Gaussian kernel.

Figure 1. Schematic diagram for the block design of a single fMRI run. Both EVF (80-sec) (a,c,d) and Vis 
(20-sec) (b) conditions were displayed alternatively for 24-time blocks (12 blocks per condition). During EVF 
blocks, participants were asked to freely interact with the virtual horses (a) and use the laboratory equipment 
(c) and books (d) to reach the correct clinical diagnosis. For interaction, subjects used MRI compatible trackball 
mouse (e).
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Brain activity analysis. Functional MRI Analysis: For each subject, both fMRI and rsMRI data were modelled 
using the General Linear Model (GLM). For fMRI data, the GLM included two predictors for EVF and Vis con-
ditions and 6 nuisance regressors for the realignment parameters. In the first-level analysis four contrasts were 
specified: 1) EVF > baseline [1 0]; 2) Vis > baseline [0 1]; 3) Vis > EVF [−1 1]; 4) EVF > Vis [1–1]; and t- and 
beta-maps were generated for each contrast per subject. On the other hand, the GLM of rsMRI included rea-
lignment parameters only as six nuisance regressors and no contrasts. Next, between-group analyses were per-
formed on fMRI data using second-level random-effects analysis. Second-level analysis started with performing 
one sample t-test on EVF > Vis contrasted beta-maps from pre-training (PRE) and post-training (POST) groups, 
separately. Then, paired t-tests were performed to compare EVF > Vis contrasted beta estimates between PRE 
and POST groups. Between-group analysis generated two t-maps: 1) pre- vs. post-training (PRE > POST), and 2) 
post- vs pre-training (POST > PRE). Activation clusters were regarded as significant at P < 0.05 FWE-corrected 
(family-wise error corrected for multiple comparisons) and cluster size k ≥ 10.

Brain connectivity analysis. Functional Connectivity Analysis: Task-based (f-) and resting-state (rs-) connec-
tivity analysis started with extracting the mean time-series of 120 anatomically-defined regions (VOIs) (see 
Supplementary Table 1), using the “Volume of Interest” batch function in SPM12 Utilities. GLM adjusted BOLD 
responses represented both task-based and resting-state time-series, but task-based time-series were further cor-
rected for EVF > Vis contrast at each voxel (see Supplementary Equations 1–3). Mean time-series were esti-
mated by averaging the voxels composing each anatomical region at each time point, using Neuromorphometrics 
probabilistic atlas masks (http://www.neuromorphometrics.com). Then, Pearson’s correlation coefficients were 
computed for each pair of time-series, resulting in the generation of 4 adjacency matrices (2 time-series classes 
[fMRI and rsMRI] x 2 training sessions) per participant (see Supplementary Fig. 2a). To approach a normal 
distribution, Fisher’s r-to-z transformation was applied to the correlation coefficients, using MATLAB’s “atanh” 
function. (see Supplementary Fig. 2b). Next, the generated adjacency matrices were represented for each subject 
as undirected graphs G (V,E), where the nodes (V) were the VOIs and the edges (E) were the absolute values of 
the z-transformed correlation coefficients (weighted edges)39. For each graph, the total number of nodes (V) 
were 120 and the total number of edges (E) were 1\2 V(V-1) (the upper triangular subset of adjacency matrix; 
see Supplementary Fig. 2b). Graph centrality metrics, including degree, eigenvector, closeness, betweenness and 
PageRank40, were then computed for each region (node), using graph centrality functions in MATLAB 2017 
(https://de.mathworks.com/help/matlab/ref/graph.centrality.html). To explore the training-associated transfor-
mations in brain region centralities, linear mixed-effect models (LME) were fitted for each graph centrality meas-
ure, using the “fitlme” function in MATLAB 2017 (https://de.mathworks.com/help/stats/fitlme.html). For each 
centrality (C) measure, a linear mixed-effect model (LME) was fitted for each time-series class (i.e. task-based or 
resting-state), separately, where the centrality metric (C) was the response variable and the interaction between 
training sessions (T) and VOIs (V) were the fixed effects. Both T and V predictor variables were presented as 
dummy variables with values indicating their corresponding categorical levels across 20 (subjects) x 117 (VOIs) x 
2 (Training) centrality observations. To account for both between- and within subject variance components, LME 
intercepts were allowed to randomly vary across subjects (S), VOIs grouped by subjects (S:V), or training sessions 
(T) grouped by VOIs and subjects (S:V:T) (Table 1). Based on previous studies41–43, accounting for these mixed 
random effects will accurately model the true variability and offer superior statistical power in detecting longi-
tudinal group differences. The resulting LME models were fitted using maximum likelihood estimation (ML) 
with resting-state, white matter and pre-training set as reference levels (i.e. coefficients set to zero). The random 
effect structure for each model was independently determined by model comparisons using likelihood ratio test 
(LRT). LRT compared the observed likelihood ratio (LR) statistic of the compared models with its chi-squared 
reference distribution and the best fitted models were identified with their appropriate random effects based on 
“smaller-is-better” Akaike information criterion (AIC) (see Supplementary Table 2). Because the present study 
aimed for exploring the different central roles of VOIs across training sessions (PRE and POST), significant inter-
action effects (coefficients) between individual VOIs and training sessions were reported at P < 0.05 and visual-
ized using the BrainNet Viewer software (www.nitrc.org/projects/bnv).

Structural Connectivity Analysis: Tract-Based Spatial Statistics (TBSS) preprocessing and analysis were per-
formed on the generated DTI parameters maps in FSL. TBSS preprocessing started with the nonlinear align-
ment of all participants’ FA maps to a standard space (FMRIB58_FA), followed by their affine transformation 
into MNI152 space. Then, a mean FA image was generated and thinned to create a mean FA skeleton from all 
subjects’ FA standard-space images. Finally, each participant’s FA, MD, L1, L2 and L3 maps were projected onto 
the mean FA skeleton after applying a FA threshold of 0.1. The resulting projected maps were then used for 
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Table 1. LME models with different random effects. C = Centrality response variable and the fixed-effects for 
all models are T and V, T = dummy variable representing 2 training groups categories, V = dummy variable 
representing 117 VOIs categories (4 white-matter regions were set to the same category, hence 117 instead 
of 120), S = subjects variable, m = 1,2,3…,4800 (centrality observations indices = 20 subjects x 120 VOIs x 2 
training groups), k = 1,2 (T categories indices), i = 1,2,3 … 117 (V categories indices). S*V = intercept variance 
across V grouped by S, S*V*T = intercept variance across V grouped by T and S.
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TBSS group analyses. To identify significant differences in DTI parameters between PRE and POST groups, 
voxel-wise paired t-tests were performed on FA, MD, L1, L2 and L3 maps using the nonparametric FSL permuta-
tion tool “randomize” (http://www.fmrib.ox.ac.uk/fsl/randomise). To correct for multiple comparisons, the con-
trasts (PRE > POST, POST > PRE) were analyzed with 5000 random permutations using threshold-free cluster 
enhancement (TFCE) with a significance threshold of P < 0.05 FWE-corrected.

Voxel-based morphometry. To identify the significant differences in grey matter density between PRE and POST 
groups, volume differences were first assessed for PRE and POST groups using a voxel-wise GLM analysis. Then, 
paired t-tests were performed to compare GLM beta estimates between PRE and POST groups. Clusters were 
considered significant at P < 0.05 FWE-corrected and cluster size k ≥ 10.

Results
Behavioral results. 19 of 20 participants successfully completed their functional MRIs and training sessions; 
one participant successfully completed all other requirements but did not have a pre-training DTI scan. Post-
training MRI revealed significant improvement in participants’ laboratory and diagnostic skills. The number 
of solved cases was significantly higher (p < 0.016, t (19) = 2.65, SD = 0.76) during the post-training session. 
However, only 35% of the participants managed to submit an accurate diagnosis for at least one case during their 
20-min post-training MRI session. On the other hand, the remaining participants needed more time to gather 
additional information for corroborating their unresolved premature diagnosis. Most of those remaining partic-
ipants highlighted after their MRI sessions that despite they knew the correct diagnosis, they needed to test all 
their hypotheses before submitting their final report. Accordingly, accounting for the reported behavioral results 
in brain activity and connectivity models was not performed because it was hypothesized that they might lead to 
faulty neural correlates assumptions.

Functional activity analysis. Using random-effects analysis, comparing pre-training with post-training 
sessions (PRE > POST) for EVF > Vis contrast revealed significant activation clusters within the left inferior fron-
tal gyrus (L-IOpFG) and inferior/middle temporal gyrus (L- ITG/MTG). Both clusters overlapped with mid-
dle frontal gyrus (MFG) and middle temporal/fusiform gyrus (MTG/FuG), respectively. On the other hand, 
the reverse contrast (POST > PRE) showed significant cluster activity in the right cerebellum, middle cingulate 
(R-MCG) and medial superior frontal gyrus (R-MSFG) and left postcentral gyrus (L-POG). (Table 2, Fig. 2).

k Brain region

Peak MNI

T Zx y z

PRE > POST

300 L- MFG/IOpFG −42 11 29 7.762 5.149

216 L- ITG/MTG/FuG −45 −52 −13 6.916 4.831

POST > PRE

106 R-Cerebellum 18 −46 −22 6.393 4.615

245 L-POG −36 −25 50 6.096 4.484

272 R-MCG 3 −16 35 5.522 4.214

116 R-MSFG 3 59 26 5.206 4.054

Table 2. Random-effects (between-group) analysis contrasting pre- and post-training (PRE > POST & 
POST > PRE) for the contrast EVF > Vis. k = cluster size, Z = Z value of peak voxel, L- = left, R- = right, Results 
are corrected for multiple comparisons (PFWE-corr < 0.01). MFG = middle frontal gyrus; IOpFG = inferior frontal 
gyrus (opercular part); ITG = inferior temporal gyrus; MTG = middle temporal gyrus; FuG = fusiform gyrus; 
POG = postcentral gyrus; MCG = middle cingulate gyurs; MSFG = medial superior frontal gyrus.

Figure 2. Random-effects (between-group) results for PRE > POST and POST > PRE contrasts, showing 
significant pre-training activations (blue) in inferior frontal (IFG)/middle frontal (MFG) and inferior temporal 
(ITG)/fusiform gyrus (FuG) and post-training activation clusters (yellow) in cerebellum (Cereb.), postcentral 
gyrus (POG), middle cingulate gyrus (MCG) and medial superior frontal cortex (MSFG).
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Functional connectivity analysis. Functional graph analysis started by fitting linear-mixed effects 
(LME) models for each centrality measure. Model comparisons with different random effects revealed signifi-
cant improvements and better smaller Akaike Information Criterion (AIC) across centrality measures and MRI 
groups (see Supplementary Table 2). For both task-based (fMRI) and resting-state (rsMRI) centrality metrics, 
comparing LME models showed model (1a) fitting significantly better than models (1b) and (1c) for degree 
and closeness; whereas model (1b) was the best fitted model for eigenvector and PageRank. On the other hand, 
model (1b) was the best model that explained the variance in betweenness data for fMRI, while model (1c) was 
the best model for rsMRI. Table 3 and Fig. 3A,B focus on the significant interaction between the individual 
VOIs categories (V) and the training sessions (T) in fMRI and rsMRI. For each centrality measure, regions (V) 
with significant training (T) interaction coefficients were reported with their related t-values at P < 0.05. Within 
task-based brain network (fMRI), inferior frontal gyrus (IOpFG), angular gyrus (AG), MFG, parahippocam-
pus (PHG) and orbital gyrus (OrFG) showed significant negative post-training effects (negative coefficients) for 
eigenvector. Similarly, PageRank revealed negative post-training interactions for eigenvector regions as well as 
superior temporal gyrus (STG) and frontal operculum (FO). In addition, degree models’ coefficients showed only 
IOpFG with negative post-training effects. Lastly, for betweenness, PHG and medial postcentral gyrus (MPOG) 
showed positive post-training interactions, whereas the accumbens area, frontal pole (FP), putamen, amygdala 
and cerebellum showed post-training negative effects (Fig. 3A). Alternatively, within resting-state brain network, 
eigenvector and PageRank LME modelling revealed the fusiform gyurs (FuG), frontal pole (FP) and inferior 
occipital gyrus (IOG) with positive post-training interactions.

Centrality MRI (Model) V:T interaction β3 T P < 0.05

Degree fMRI (1a)
R-IOrFG:POST −7.4512 −2.3050 0.0212

L-IOrFG:POST −7.2774 −2.2513 0.0244

Eigenvector

fMRI (1b)

R-IOrFG:POST −0.0014 −2.9644 0.0030

L-IOrFG:POST −0.0013 −2.7243 0.0065

R-AG:POST −0.0012 −2.5175 0.0119

R-MFG:POST −0.0012 −2.3887 0.0169

L-AG:POST −0.0011 −2.3661 0.0180

R-IOpFG:POST −0.0010 −2.0840 0.0372

R-LOrG:POST −0.0010 −2.0136 0.0441

R-PHG:POST −0.0010 −1.9910 0.0465

R-MOrG:POST −0.0010 −1.9668 0.0493

rsMRI (1b)

R-FuG:POST 0.0003 2.3747 0.0176

L-FP:POST 0.0003 2.2136 0.0269

R-IOG:POST 0.0003 2.1018 0.0356

Betweenness fMRI (1b)

R-MPOG:POST 549.675 3.8730 0.0001

L-Accumbens:POST −324.775 −2.2884 0.0222

R-PHG:POST 323.875 2.2820 0.0225

L-FP:POST −311.675 −2.1961 0.0281

R-Amygdala:POST −288.325 −2.0315 0.0423

R-Putamen:POST −286.925 −2.0217 0.0433

Cerebellum:POST −279.775 −1.9713 0.0488

PageRank

fMRI (1b)

R-IOrFG:POST −0.0010 −2.9305 0.0034

L-IOrFG:POST −0.0009 −2.6908 0.0072

R-AG:POST −0.0008 −2.2816 0.0226

R-MFG:POST −0.0008 −2.1705 0.0300

L-AG:POST −0.0008 −2.1535 0.0313

R-IOpFG:POST −0.0007 −2.1266 0.0335

R-PHG: POST −0.0007 −2.1045 0.0354

L-STG: POST 0.0007 1.9962 0.0460

R-FO: POST −0.0007 −1.9786 0.0479

rsMRI (1b)

R-FuG:POST 0.0003 2.4777 0.0133

L-FP:POST 0.0002 2.3483 0.0189

R-IOG:POST 0.0002 2.1294 0.0333

Table 3. LMEs results for graph centrality measures showing task-based (fMRI) and resting-state (rsMRI) 
regions (V) with significant (p < 0.05, df = 4566) post-training (POST) interaction (V:T) coefficients (β3). 
R- = right; L- = left; IOrFG = inferior frontal gyrus (orbital part); IOpFG = inferior frontal gyrus (opecular 
part) AG = angular gyrus; MFG = middle frontal gyrus; LOrG = lateral orbital gyurs; PHG = parahippocampus 
gyrus; MOrG = medial orbital gyurs; FuG = fusiform gyrus; FP = frontal pole; IOG = inferior occipital gyrus; 
MPOG = medial postcentral gyrus; STG = superior temporal gyrus; FO = frontal operculum.
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Structural connectivity analysis (DTI). TBSS analyses of multiple diffusion metrics (FA, MD, MO, L1, L2, 
L3) revealed no significant differences in the mean diffusivity (MD), axial diffusivity (L1) or radial diffusivity (L2, 
L3). However, fractional anisotropy (FA) showed one significant cluster in right occipitotemporal (ITG/MTG) 
(t(18) = 7.54, P < 0.047 FWE-corrected) (Fig. 3C).

Voxel-based morphometry (VBM). T1-weighted MRI data were analyzed using VBM comparing PRE 
and POST training groups. VBM analysis revealed no significant differences in GM volumes between PRE and 
POST groups at cluster size k ≥ 10. However, at cluster size k = 1, POST training groups showed significant 
increases in GM within left and right nucleus putamen, caudate and accumbens as well as left thalamus, left 
Entorhinal area, right anterior insula and right hippocampus.

Discussion
The present longitudinal study ascertained training-associated transformations in novices’ whole-brain activity 
and connectivity during diagnostic reasoning, using a simulation game known as Equine Virtual Farm (EVF). 
Comparing the primary contrast (EVF > Vis) of playing veterinarian (EVF) versus seeing a colorful station-
ary image (Vis) across training sessions revealed significantly greater activations in the left inferior/middle 
frontal gyrus (L- MFG/IOpFG) and inferior- or middle temporal/fusiform gyrus (L- ITG/MTG/FuG) during 
pre-training session (PRE > POST); whereas, the right cerebellum (R-Cerebellum), middle cingulate (R-MCG) 
and medial superior frontal gyrus (R-MSFG) and left postcentral gyrus (L-POG) showed significantly increased 
post-training engagement (POST > PRE). Further, graph-based functional connectivity analysis, using LME 
modelling of centrality metrics, revealed IOpFG, MFG, orbital (OrFG), angular gyrus (AG) and parahippocam-
pus (PHG) with significantly higher connectivity (i.e. eigenvector and PageRank) during pre-training diagnos-
tic reasoning; whereas the superior temporal gyrus (STG) was the only post-training highly connective node. 
Moreover, LME modelling of betweenness centrality metric showed the central roles of the dopaminergic sys-
tem (nucleus accumbens and putamen), amygdala and cerebellum in driving pre-training diagnostic reasoning 
processes; while the PHG and medial postcentral gyrus (MPOG) were the main post-training mediating hubs. 
On the other hand, resting-state connectivity analysis, using the same task-based LME modelling approach on 
centrality metrics, revealed higher post-training connectivity for the inferior occipital (IOG) and fusiform gyrus 
(FuG) and frontal pole (FP). And lastly, structural connectivity analysis using tract-based spatial statistics (TBSS) 
seems to show diagnostic reasoning training inducing significant structural changes in the occipitotemporal part 
of middle temporal gyrus (MTG). As hypothesized, these findings suggest the transition of novices’ whole-brain 
activity and connectivity during diagnostic reasoning from regions implicated in creative semantic processing 
(MFG/IOpFG, MTG and AG)44,45 before training to regions implicated in improvised rule-based problem solving 
(cerebellum and POG, MSFG and MCG17,46–48) after training.

The activations of L- MFG/IOpFG have been consistently shown in neuroimaging studies of creative seman-
tic cognition. For instance, Beaty et al.45 have revealed the involvement of both regions in generating unstudied 

Figure 3. Functional (A,B) and structural (C) connectivity analysis results. Node sizes in fMRI (A) and 
rsMRI (B) networks indicate the t-values for the V:T interaction coefficients of LME centralities models. 
Node colors in (A,B) indicate regions with insignificant (grey) and significant pre-training (blue) and post-
training (yellow) interaction coefficients. For TBSS results (C), yellow brain clusters indicate regions with 
significant post-training fractional anisotropic values. PRE = pre-training; POST = post-training; R- = right; 
L- = left; IOrFG = inferior frontal gyrus (orbital part); IOpFG = inferior frontal gyrus (opecular part); 
AG = angular gyrus; MFG = middle frontal gyrus; LOrG = lateral orbital gyurs; MOrG = medial orbital gyurs;; 
PHG = parahippocampus gyrus; FO = frontal operculum.; STG = superior temporal gyrus; MPOG = medial 
postcentral gyrus; Put. = Putamen; Acc. = Accumbens; Amyg. = Amygdala; Cereb. = Cerebellum; 
FuG = fusiform gyrus; FP = frontal pole; IOG = inferior occipital gyrus; MTG = middle temporal gyrus; 
OTG = occipitotemporal gyrus.
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(low-constraint) and novel (high-constraint) semantically related words. In addition, Zhou et al.46 found that 
searching for numerical relations among conceptual knowledge while solving mathematical problems elic-
its greater activations in the L-IOpFG, AG, MTG, FuG, PHG, MSFG and posterior cingulate gyrus (PCG). 
According to Binder et al.44, these seven regions were identified to form the semantic network system. Moreover, 
on comparing artistic and scientific creativity, Shi et al.49 found a positive correlation between the gray matters 
of the L- MFG and IOG and scientific creativity, emphasizing the crucial role of semantic reasoning in scientific 
rather than artistic achievements. Also the significant activities observed in the left MTG and FuG were consistent 
with a recent meta-analysis study50, where the activities of the left MTG and FuG were attributed to creative ide-
ation during semantic divergent thinking tasks. Thus, the activation pattern observed in the present study within 
the IOpFG, MFG and FuG suggest that novices relied exclusively on creative semantic processing to explore and 
reason about the novel relationships among medical concepts, objects (e.g. laboratory equipment) and events (e.g. 
blood sampling).

Further, modelling graph centrality metrics using LME analysis has extended brain activity findings in the 
present study and emphasized the central roles of semantic network as well as reward systems in diagnosing novel 
simulated cases. Specifically, three out of seven semantic network regions44, including IOpFG, AG and PHG, 
showed higher connectivity (i.e. eigenvector and PageRank) to other brain regions. In addition, the higher con-
nectivity of the orbitofrontal cortex (I-, M- and L-OrFG) suggest that novices relied continuously on monitoring 
and evaluating the reward values of EVF’s various reinforcers51. Moreover, the evident increases in betweenness 
centrality metric within the dopaminergic system (nucleus accumbens and putamen), amygdala and cerebellum 
suggest the incessant contribution of the amygdala, putamen and nucleus accumbens in maintaining the balance 
between cognitive stability (e.g. inhibiting prepotent responses) and cognitive flexibility (e.g. reward-oriented 
switching between different options, reversal learning)52,53, while the cerebellum repeatedly simulate proper learn-
ing behaviors for providing spontaneous improvisation54. Thus, besides semantic processing, novices seem to 
engage affective reward processing and improvised creativity in solving novel problems through trial-and-error.

Alternatively, having experience in diagnosing diseases seems to shift brain activity and connectivity from cre-
ative semantic processing to insight problem solving. Based on previous neuroimaging studies47,48, the activities 
in MSFG, POG and cerebellum were found to be associated with a distinct type of mental preparation that leads 
to successful insight problem solving (spontaneous problem solving, “Aha” experience). Moreover, Crescentini 
et al.55 found increased activations in STG, cingulate gyrus (CG), cerebellum, putamen and precentral gyrus for 
rule following during inductive reasoning. These findings seem to connect the observed post-training activa-
tions in the cerebellum, POG, MSFG and MCG to rule-based problem solving. Further, the higher connectivity 
(PageRank) of STG and the increased betweenness of the MPOG emphasize the central roles of semantic priming 
and rule following in recognizing solutions quickly (insightful problem solving)48,56. Thus, according to the dual 
process theory15, it is evident that participants engaged the intuitive (associative) and analytical (rule-based) 
reasoning systems in diagnosing EVF’s swapped simulated cases in EVF new version after training. Also, it is 
worth noting that in the present study, prefrontal activations shifted with experience from left to right hemi-
spheres. These distinct hemispheric activations were consistent with recent neuroimaging research on clinical 
decision-making22 that connected the left hemisphere to semantic processing and the right hemisphere to epi-
sodic memory retrieval57. These studies explain further the observed engagement of PHG, a region that has been 
consistently associated with visuospatial processing and episodic memory58. And intriguingly, it is noteworthy 
that the observed pre- and post-training brain activities were found to be closely similar to the activation pattern 
implicated in visuo-spatial creative problem solving (MFG, IOpFG, MCG and MSFG)59. This later finding seems 
to point IOpFG and MFG to creativity and connect MCG and MSFG to problem-solving. However, future studies 
will be needed to confirm this indication.

Finally, although the post-training changes observed in resting-state and structural connectivity were unex-
pected, they were consistent with recent neuroimaging research on scientific creativity, which implicated IOG 
and MTG in scientific semantic processes60 and insight problem solving61. However, a potential limitation might 
arise from the possibility that these changes might not fully account for EVF training due to the lack of a control 
group in the present study design.

Taken together, the present study used a novel simulation-based paradigm to study the training-associated 
transformations in the neural underpinnings of diagnostic reasoning. The present results extend previous neu-
roimaging studies by clarifying the contribution of semantic processing and insight problem-solving to creative 
diagnostic reasoning. Moreover, the distinct neural foundations observed in experienced versus inexperienced 
novices revealed how simulation-based training can shift diagnostic reasoning from creative to rule-based cog-
nitive processes. This neural difference emphasizes the importance of maintaining novelty and challenge within 
medical training environments for improving the creativity of medical practitioners.

Further, through the LME analysis of functional connectivity, this study showed the contribution of affective 
(amygdala) and reward-based (nucleus accumbens, putamen, orbital gyrus) processing in driving creative rea-
soning (middle frontal gyrus and, inferior frontal gyrus) and the engagement of semantic processing (parahip-
pocampus) and insight problem solving (superior temporal) in mediating analytical reasoning. However, whereas 
resting-state and structural connectivity analysis revealed potential post-training effects within regions implicated 
in scientific semantic processing, future research should replicate these findings in the presence of control groups.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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