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SOFTWARE Open Access

Sensitive detection of circular DNAs at
single-nucleotide resolution using guided
realignment of partially aligned reads
Iñigo Prada-Luengo1* , Anders Krogh1,2, Lasse Maretty3† and Birgitte Regenberg1*†

Abstract

Background: Circular DNA has recently been identified across different species including human normal and
cancerous tissue, but short-read mappers are unable to align many of the reads crossing circle junctions hence
limiting their detection from short-read sequencing data.

Results: Here, we propose a new method, Circle-Map that guides the realignment of partially aligned reads using
information from discordantly mapped reads to map the short unaligned portions using a probabilistic model. We
compared Circle-Map to similar up-to-date methods for circular DNA and RNA detection and we demonstrate how
the approach implemented in Circle-Map dramatically increases sensitivity for detection of circular DNA on both
simulated and real data while retaining high precision.

Conclusion: Circle-Map is an easy-to-use command line tool that implements the required pipeline to accurately
detect circular DNA from circle enriched next generation sequencing experiments. Circle-Map is implemented in
python3.6 and it is freely available at https://github.com/iprada/Circle-Map.

Keywords: Structural variation, Next generation sequencing, circRNA, eccDNA, ecDNA, Extra chromosomal circular DNA

Background
Circular DNA from all parts of the genome has recently
been discovered in model organisms [1, 2], as well as both
normal [3, 4] and cancerous human tissues [5, 6] using
short-read sequencing based approaches. The primary cir-
cular DNA signals in short read data are “discordantly”
mapped paired-end reads and “split-reads” crossing the
circle breakpoint. Yet standard short read aligners do not
reliably detect the latter signal, which is vital for determin-
ing the exact circle coordinates, as only alignments that
are collinear with the reference sequence are typically con-
sidered. Reads that cross the breakpoint of a circular DNA
will therefore typically be reported either as two or more
separate alignments (a primary and some supplementary
alignments) when the read has long “anchors” on both
sides of the breakpoint or with a major aligned part and a
minor, “soft-clipped” (i.e. unaligned) part. While some

tools have used short read aligners to detect the circular
DNA signals [2, 4], these methods are unable to detect
split reads signals shorter than 19 base-pairs due to the
constraints imposed by the standard short read alignment
algorithms.
We have developed a new bioinformatic method,

Circle-Map, to accurately identify circular DNA break-
points. The overall idea in this method is to use infor-
mation from discordantly mapped paired-end reads as a
prior for realigning the soft clipped parts of breakpoint
reads, which in turn should allow for more accurate de-
tection of circle breakpoints. Circle-Map consists of
three main steps: 1) circular DNA candidate read identi-
fication, 2) breakpoint graph construction and 3) soft-
clip realignment (Fig. 1).

Implementation
Candidate read identification
The Circle-Map workflow begins by performing an ini-
tial pass through a query name sorted alignment file to
extract reads potentially originating from circular DNA
(“circular DNA candidate reads”): discordant read pairs,
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soft-clipped reads and hard clipped reads (Fig. 1a). For
every read pair, Circle-Map labels the pair as discordant
if the reads have aligned in opposite orientation and the
leftmost mapping position for the second read is smaller
than the leftmost mapping position of the first read. If
the read pair is not extracted as discordant, Circle-Map
will independently extract read pairs with any unaligned
bases (soft-clipped and hard clipped).

Realignment graph construction
Circular DNA identification begins by identifying clusters
of candidate reads that are less than K nucleotides apart
(discordant, soft-clipped and hard-clipped reads). For
every cluster, we construct a weighted graph G= (N,E)
with nodes N= {n0,…,ni}, which correspond to regions
containing at least one breakpoint of unknown exact loca-
tion, and edges E = {e0, …, ei}, which correspond to circle

Fig. 1 Circle-Map read realignment strategy. a Reads are mapped to the reference genome and discordantly aligned reads (green) and
alignments containing soft clips (blue) are extracted; concordantly aligned reads (grey) are ignored. b Using the extracted reads, a graph of
putative breakpoint connections between genomic regions is constructed and used as a prior to narrow down the genomic search space for
realigning soft clipped reads. c Non-aligned parts of the soft clipped reads are realigned probabilistically using the breakpoint graph as guide. d
Evidence from split-reads and discordant reads are combined to create the final circle calls together with information about concordant, split-read and
discordant read coverage for each circle
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variants represented as connections between breakpoint
regions (Fig. 1b). For every node ni, we obtain the set of
edges connected to ni by connecting the alignment posi-
tions of the reads belonging to node ni with the alignment
positions of their mates (for the discordant read pairs) and
supplementary alignments (for the hard-clipped and soft-
clipped reads). We then estimate edge weights wei for
every edge ei using the mapping quality scores of the dis-
cordant mates and supplementary alignments that support
the edge using:

wei ¼
P

x∈ei
10

−Qx
10

P
ei∈E

P
x∈ei10

−Qx
10

where x indicates a discordant read or supplementary
alignment that supports ei and Qx indicates the phred
scaled mapping quality of read x. Edges with weights
below 0.01 are removed before the realignment step as it
is very unlikely that the edges with low weight contain
the true circular DNA breakpoint.
To define the final search space for the realignment

step, node intervals are extended to [−μ - 5σ, μ + 5σ],
where μ and σ denote the mean and standard deviation
of the insert size distribution estimated from concor-
dantly mapped reads, to ensure that nodes originating
from discordant reads will contain the breakpoint.

Soft-clip realignment
In order to realign non-aligning bases of soft-clipped
reads and obtain the circular DNA breakpoints at nu-
cleotide resolution, we realign the soft-clipped parts of
the reads probabilistically to the pruned realignment
graph (Fig. 1c). We build a probabilistic model of the
alignment using a Position-Specific Scoring Matrix
(PSSM) that takes into account alignment mismatches
and indels caused by sequencing errors.
Our algorithm begins by obtaining all possible align-

ments to the realignment graph using the infix Myers
bit-vector algorithm as implemented in the Edlib library
[7, 8]. In practice, we obtain the top scoring alignments
to the graph by aligning the read and then masking the
alignment coordinates, in order to keep searching for
suboptimal alignments. For every alignment, we con-
struct a PSSM using the following error model for
matches and mismatches:

1−pe ai ¼ g j

pe
3

ai≠g j

8
<

:

where ai and gj denote the identity of the bases on the
read and the genome, respectively, and pe indicates the
probability of the base being sequenced wrong as deter-
mined from the base quality scores. Next, we compute

the log-odds score for every base in the read by diving
P(ai|gi) by the frequency of base gj in the realignment
graph, denoted as q(gj):

Sai ¼ log2
P aijg j

� �

q g j

� �

A score for the read is calculated by summing over the
base scores in the PSSM:

Sa ¼
X

i
Sai

We then add an additional penalty to the PSSM score
in order to account for insertions and deletions using an
affine gap scoring scheme (adapted from [9]) to yield the
final alignment log-odds score:

Sx ¼ Sa þ log2 2−p− a−1ð Þe
� �

where p indicates the insertion and deletion penalty, a
indicates the length of the event and e is the affine gap
penalty. Finally, Circle-Map converts the estimated
alignment scores to alignment probabilities using:

P xð Þ ¼ 2Sx
P

x02
Sx0

where the summation in the denominator runs over
all possible alignments in the realignment graph. We
only consider soft-clipped reads as realigned if the prob-
ability for its high scoring alignment is greater than 0.99,
which should maintain the number of incorrect realign-
ments low. The final realignment coordinates define pu-
tative circle coordinates (Fig. 1d). We consider a circular
DNA as called if it is supported by a minimum of two
breakpoint reads and contains at least one split read.
Circle-Map reports all called circles with coordinates
(chromosome, start and end), number of supporting
reads (discordant and soft-clipped) and concordant
coverage metrics (Material and methods).

Results
We evaluated the performance of Circle-Map on both
simulated data and real, circle-enriched data from hu-
man muscle tissue [3]. We compared the performance
of Circle-Map with two split read based methods for the
detection of DNA and RNA sequences of circular na-
ture: Circle_finder [4], a circular DNA detection method,
and CIRCexplorer2 [10], which has been ranked as one
of the best choices for circular RNA detection [11]. Im-
portantly, CIRCexplorer2 does not use splice-site or ref-
erence transcriptome information in the split read
detection step. We further included Circle-Map without
the realignment step as a baseline.
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In the simulation benchmark, we simulated both
high (30X) and low (7.5X) coverage sequencing of
13,097 circular DNAs across different lengths (range:
150–10,000 nts) and including SNVs and indels
based on reference data from the 1000 genomes pro-
jects [12]. To evaluate performance, we measured
sensitivity, defined as the number of called circles
present in the simulation set and precision defined
as the fraction of correctly called circles found on
the simulated set. On high coverage data (30X),
Circle-Map attained a sensitivity of 0.943 by detect-
ing 12,351 of the simulated circles and outperformed
CIRCexplorer2 and Circle_finder by 12 and 17 per-
centage points, respectively (Fig. 2a). A high sensitiv-
ity was also found on low coverage data (7.5X)
where Circle-Map detected 75% of all circles in con-
trast to CIRCexplorer2 that detected 61% of the cir-
cles, and Circle_finder, that only detected 30% of the
circles (Fig. 2b). All three methods attained precision
higher than 0.97 on both high and low coverage data
sets (Fig. 2c and d). To gain more insights into the
performance of Circle-Map on short circles, we sim-
ulated reads at 30X from 5384 very short circles
with lengths ranging from 150 to 350 nts including
indels and SNVs as described above. Again, Circle-
Map performed well by achieving a sensitivity of
0.89 and a precision of 0.98 on short DNA circles.
Importantly, the accuracy gain does not come with
substantially increased computational costs (Fig. 3).
Our programs longest runtime was less than 40 min
with a maximum memory footprint of 5 gigabytes.
We assessed the performance on real data using a

paired-end sequencing dataset from a previous study [3],
where circular DNA had been enriched from human
muscle tissue by removal of linear DNA and amplifica-
tion of the circular DNA prior to sequencing. As we lack
a ground truth on real data, we instead used the fact that
the data were enriched for circles and hence that most
coverage from concordantly and contiguously aligned
reads (i.e. non split-reads) across the genome should ori-
ginate from circular DNA. We used the circle coverage
fraction as an orthogonal proxy for correctness of the
circle. Circle-Map detected 2318 DNA circles with simi-
lar sizes to the ones found in the original study [3]. From
those, 2170 circles had > 80% coverage while only 148
potential circles had a coverage less than 80% (Fig. 2e).
In comparison, CIRCexplorer2 and Circle_finder de-
tected substantially less high coverage circles than
Circle-Map (Fig. 2e). CIRCexplorer2 detected only 1655
DNA circles with a coverage > 80% and also detected a
larger number of circles with coverage less than 20%
(289 circles). Circle_finder, detected less than half of the
high coverage circles detected by Circle-Map (1013 cir-
cles) while keeping the number of low coverage circles

small (16 circles). Compared to the original published
circles from human muscle tissue, we found that Circle-
Map gave similar circle size ranges with minor differ-
ences in the data distribution (Fig. 4).
Finally, we investigated the relationship between the

number breakpoint reads (i.e. split and discordant reads)
and the concordant reads within the circle coordinates.
We reasoned that in circle enriched data, the number of
breakpoint reads should correlate with the abundance of
the concordant reads. Hence, strong disagreements be-
tween breakpoint and concordant read counts should be
indicative of erroneous circle detections and a plot of
the number of breakpoint reads against the circle mean
coverage can serve as a diagnosis tool to verify the agree-
ment between breakpoint and concordant reads. Circle-
Map obtained a Pearson’s correlation coefficient of 0.868
and showed a strong concordance between breakpoint
reads and concordant reads (Fig. 2f). In contrast, CIR-
Cexplorer2 (Fig. 2g) and Circle_finder (Fig. 2h) achieved
correlation coefficients of 0.583 and 0.329, respectively,
and both methods had numerous data points substan-
tially deviating from the central data trend. Taken to-
gether, these data indicate that Circle-Map has higher
sensitivity than CIRCexplorer2 and Circle_finder while
maintaining a high precision.

Conclusion
In conclusion, we have developed a new method for
detection of circular DNA based on a full probabilis-
tic model for aligning reads across the breakpoint
junction of the circular DNA structure. Using this
model in combination with our guided realignment
procedure, we are able to accurately align even very
short soft clips (> 4 nts). Using both simulated and
real datasets, we have shown that this approach is
both highly sensitive and precise - and significantly
better than state-of-the-art methods from the circular
DNA field and the related field of circular RNA de-
tection, when applied to DNA. We expect our algo-
rithm to obtain its maximum accuracy on circle
enriched data. Our method may also be applicable to
standard whole genome sequencing data, however this
will required additional testing of the method. Fur-
thermore, we note that our method is restricted to
detect reads crossing the circular DNA breakpoints
and hence cannot determine variation within DNA
circles; this problem can be solved using methods de-
signed to reconstruct the internal structure of the
DNA amplifications [13].
We predict that Circle-Map will find widespread

usage across the expanding field of circular DNA re-
search spanning from healthy and cancerous human
tissues to model organisms such as yeast, worm and
mouse. Finally, we speculate that Circle-Map will
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likely also improve upon the state-of-the-art methods
for detection of circular RNA.

Availability and requirements
Project name: Circle-Map
Project home page: https://github.com/iprada/Circle-

Map
Operating system(s): Platform independent
Programming language: Python3.6
Other requirements: None
License: MIT License
Any restrictions to use by non-academics: None

Material and methods
Circle-Map simulation tool
In order to create a synthetic benchmark dataset we
created a circular DNA simulation tool, included in
the Circle-Map package. Our tool requires the gen-
ome reference sequence indexed with SAMtools [14]
and the number of reads to simulate, and it will pro-
duce the simulated FASTQ files together with a BED
file indicating the chromosomal coordinates of the
circular DNA. The procedure involves three parts to
simulate circular DNA. First, to consider genetic
variation not present in the linear reference genome,
it will introduce base substitutions and indels with

Fig. 2 Evaluation of the circular DNA detection methods. a-d Circle-Map (orange), CIRCexplorer2 (blue), Circle_finder (green) and Circle-Map with
no realignment (grey) were evaluated on simulated circular DNA datasets with varying sequencing depths (e-g) and on real circle enriched data
from human muscle. a Sensitivity at 30X and b 7.5X measured as the number of called circles found in the simulation set divided by the total
number of simulated circles. Precision at (c) 30X (d) and 7.5X measured as the number of correctly called circles divided by the total number of
called circles, true and false. e Histogram with the percentage of bases covered by sequencing reads for every circular DNA detected. The
number of breakpoint reads (e.g. split and discordant reads) relative to the mean sequencing coverage within the circular DNA coordinates for f
Circle-Map, g CIRCexplorer2 and h Circle_finder
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BBMap (https://sourceforge.net/projects/bbmap/).
Then, it will select the circle coordinates and the
length from a uniform distribution (default range:
150–10,000 nts) and sample the reads from the mu-
tated genome. To generate all kinds of ordinary and
circular DNA candidate reads our tool begins by de-
fining the start and end read alignment coordinates
and the insert size generated from a user defined
normal distribution. Then, if the coordinates directly
overlap the defined breakpoint coordinates, It will
obtain both anchors of the read and join them to-
gether to generate the split read. Likewise, if the
reads do not overlap the breakpoints but the insert
within the paired reads spans the circle breakpoint it
will generate a discordant read pair by sampling
both reads from each side of the breakpoint. If any
of the above mentioned conditions are not met,
Circle-Map will sample a regular concordant read

pair. Finally it will introduce instrument specific se-
quencing errors on the reads with ART [15].

Simulated data
We used Circle-Map Simulate to generate 13,097 circu-
lar DNA from the canonical chromosomes of the hg38
version of human genome, excluding the gap regions,
downloaded from the UCSC genome browser [16] on
the 1st of February, 2019. We simulated the circular
DNA with a circle length distribution ranging from 150
to 10,000 nts. Altogether, we generated 2 × 10007326
paired end reads with a normally distributed insert size
(mean = 300, s.d = 25) and a read length of 100 nts. We
introduced indels and base substitutions on the refer-
ence at rates of 0.0001 and 0.001 respectively. Then, we
generated reads with an Illumina HiSeq 2500 error pro-
file without masking any bases (−nf option set to 0) and

Fig. 3 Evaluation of the computation time and memory usage of the circular DNA detection methods. The runtimes and maximum memory
usage of Circle-Map (orange), CIRCexplorer2 (blue) and Circle_finder (green) were evaluated on simulated (a-b) and real (c-d) circular DNA
datasets. a Wall time and b maximum memory usage on the 30X simulated dataset. c Wall time and d maximum memory usage on the real
circular DNA enriched dataset from human muscle
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leaving the rest of the parameters as suggested by the
ART authors.
We aligned the simulated reads to the canonical chro-

mosomes of the canonical hg38 assembly using BWA-
MEM [17] (v0.7.17-r1188) without modifying the map-
ping qualities of the supplementary alignments (−q op-
tion turn on) and we used SAMtools [14] (v1.9) to
perform all the post processing step of the alignment
files. In order to remove low quality alignments, we re-
moved split reads where any of the split anchors had
mapping qualities below 20 for both segments for CIR-
Cexplorer2 [10] (v2.3.5) and Circle_finder (version hash
in github: ca7c0f2), and we implemented the same filter
internally on Circle-Map. Afterwards, we executed CIR-
Cexplorer2, Circle_finder and Circle-Map leaving all the
parameters as default and we removed the circular DNA
containing less than two breakpoint reads, requiring
Circle-Map to contain at least 1 split read in the set of
the 2 breakpoint reads. Finally, as benchmark criteria for
the simulated dataset, we used sensitivity, defined as the
fraction of predicted circular DNA overlapping the sim-
ulated set by a fraction of 0.95, and precision, defined as
the fraction of simulated circular DNA overlapping the
predicted set by a fraction of 0.95.
To evaluate the performance of Circle-Map on the

short circles, we generated 2 × 200040 Illumina
paired-end reads with a read length of 100 nts. All in
all, we generated 5384 circles at 30X coverage with a
length ranging from 150 to 350 nts. We considered
sequencing errors and genetic variants not present in

the reference genome as described for the 30X simu-
lated data, and we used the same circular DNA call-
ing strategy as described above.

Real data
We downloaded a dataset (SRA ID: SRR6315430) from
human muscle where the circular DNA was enriched
prior to sequencing using the Circle-Seq [18] proced-
ure. Briefly the Circle-Seq procedure purifies DNA in 4
steps: isolation of the DNA by column separation, elim-
ination of the residual linear DNA using exonuclease
digestion followed by rolling circle amplification and
paired sequencing on an Illumina HiSeq 2500 machine.
In total, the dataset consisted of 2 × 12829402 paired
reads with a length of 100 nts. We used prefetch and
fasterq-dump from the SRA toolkit (https://github.
com/ncbi/sra-tools v2.9.1) to download and convert the
SRA files to FASTQ, respectively. We used the same
strategy as described for the simulated data to detect
the circular DNA in the real dataset. As performance
measure for the real dataset, we first plotted a histo-
gram representing the number of circular DNA against
the percentage of bases covered within the detection
coordinates of every circular DNA. We set the bins of
the histogram to intervals of 10%. Finally, as a second
performance measure, we plotted the number of dis-
cordant reads and split reads against the mean sequen-
cing coverage within the circular DNA coordinates, and
we calculated the Pearson’s correlation coefficient as
implemented in SciPy [19].

Fig. 4 Size distribution of the DNA circles found the circular DNA enriched muscle dataset. Evaluation of the circular DNA size distributions found
by the method described by Møller et al., from a previous study [3] (a) and the size distribution found by Circle-Map (b)
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Comparison of computational resources
All the computational comparisons were done by re-
serving a single computing node containing 128 GB of
RAM memory and an Intel(R) Xeon(R) CPU E5–2670
0 @ 2.60GHz processor with 16 cores. The node was
connected to a BeeGFS storage system via Infiniband
4X QDR.

Size distribution of the circles found in human muscle
In order to compare the circular DNA size distribution
in human muscle described in the original study [3] with
the size distribution described in Circle-Map we down-
loaded the Supplementary file 1 from the original study
and processed the detected DNA circles with the same
procedure as the one we used for Circle-Map: all the cir-
cles that did not contain at least 2 breakpoint reads with
at least 1 split read between those were excluded from
the analysis.

Circle-Map default circular DNA filtering
Circle-Map implements hard filters at the alignment and
interval level to control for circle detection errors not
accounted by the probabilistic model. At the alignment
level, Circle-Map removes BWA-MEM flagged discord-
ant reads pairs and split read primary alignments with
mapping qualities below 20. The secondary alignments
of the split reads with mapping qualities below 20 are
not removed, but remapped using Circle-Map realign-
ment algorithm in order to consider them as supportive
for circular DNA. Furthermore, under Circle-Map re-
alignment model, realigned reads with an edit distance
greater than 0.05 as fraction of the read length are not
considered. Circle-Map applies two hard filters to the
detected intervals. First, Circle-Map removes circular
DNA with allele frequencies smaller than or equal to
0.1, calculated as the number of split reads crossing the
breakpoint divided by the mean sequencing coverage at
the breakpoint nucleotides. Finally, to avoid redundant
circular DNA identifications, circular DNA overlapping
reciprocally by a fraction of 0.99 are combined into one
interval.

Circle-Map default output
Circle-Map will provide a tab separated file containing
all the detected circular DNA. For every circular DNA it
will provide information containing the circular DNA
mapping and information about the sequencing coverage
in the circular DNA coordinates. Regarding the mapping
based metrics, Circle-Map provides the mapping coordi-
nates (chromosome, start and end), breakpoint read sup-
port (discordant and split reads) and a circular DNA
mapping score, calculated by multiplying the length of
the split read by its mapping probability, and summing
over all the scores for the split reads supporting a circle.

In relation to the sequencing coverage information,
Circle-Map provides the mean sequencing coverage
within the detection coordinates, standard deviation of
the sequencing coverage, the fraction of circular DNA
bases not covered by sequencing reads and, finally, the
sequencing coverage increase upstream and downstream
of the detection coordinates. We calculated the increase
in coverage as the ratio between the number of reads
aligned 100 nts inside the breakpoint boundaries of the
circular DNA and the same region extended 200 nts
downstream (for the left part of the breakpoint) and up-
stream (for the right part of the breakpoint).

Code availability
Circle-Map is implemented in python3 with the compu-
tational bottlenecks accelerated through multiprocessing
and just-in-time compilation with Numba [20]. Circle-
Map can be easily installed through the Python Package
Index and the bioconda project [21]. The source code is
released under the MIT license and it is freely available
at https://github.com/iprada/Circle-Map.

Abbreviations
Gb: Gigabytes; Indels: Insertions and deletions; Nts: Nucleotides;
PSSM: Position-Specific Scoring Matrix; SNV: Single Nucleotide Variation

Acknowledgements
All of the computing for this project was performed on the GenomeDK
cluster. We would like to thank GenomeDK and Aarhus University for
providing computational resources and support that contributed to these
research results.

Authors’ contributions
IPL, AK, LM and BR designed the algorithm. IPL implemented the algorithm
and performed the computational experiments. LM and BR supervised the
work. IPL, LM and BR wrote the manuscript with input from all the authors.
All the authors approved the final version of the manuscript.

Funding
This research was supported by the Danish Council for Independent
Research (FNU 6108-00171B) and Innovation Fund Denmark (8088-00049B).
The funding bodies did not play any role in the design, data collection, ana-
lysis, interpretation and writing of any of data presented in this study.

Availability of data and materials
The sequencing dataset from human muscle are publicly available under the
Sequence Read Archive with the ID: SRR6315430

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Biology, University of Copenhagen, Ole Maaløes Vej 5,
DK-2200 København N, Denmark. 2Department of Computer Science,
University of Copenhagen, Universitetsparken 1, DK-2100 København Ø,
Denmark. 3Department of Molecular Medicine, Aarhus University, Palle
Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.

Prada-Luengo et al. BMC Bioinformatics          (2019) 20:663 Page 8 of 9

https://github.com/iprada/Circle-Map


Received: 20 June 2019 Accepted: 14 October 2019

References
1. Møller HD, Parsons L, Jørgensen TS, Botstein D, Regenberg B.

Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci.
2015;112:E3114–22. https://doi.org/10.1073/pnas.1508825112.

2. Shoura MJ, Gabdank I, Hansen L, Merker J, Gotlib J, Levene SD, et al.
Intricate and cell type-specific populations of endogenous circular DNA
(eccDNA) in Caenorhabditis elegans and Homo sapiens. G3. 2017;7:3295–
303. https://doi.org/10.1534/G3.117.300141.

3. Møller HD, Mohiyuddin M, Prada-luengo I, Sailani MR, Halling JF, Plomgaard
P, et al. Circular DNA elements of chromosomal origin are common in
healthy human somatic tissue. Nat Commun. 2018;9(1069):1–12.

4. Shibata Y, Kumar P, Layer R, Willcox S, Gagan JR, Griffith JD, et al.
Extrachromosomal microDNAs and chromosomal microdeletions in normal
tissues. Science. 2012;336:82–6. https://doi.org/10.1126/science.1213307.

5. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, et al.
Extrachromosomal oncogene amplification drives tumour evolution and
genetic heterogeneity. 2016.

6. Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and
cancerous tissues release extrachromosomal circular DNA (eccDNA) into the
circulation. Mol Cancer Res. 2017;15:1197–205. https://doi.org/10.1158/1541-
7786.MCR-17-0095.

7. Myers G. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.332.9395&rep=rep1&type=pdf. Accessed 18 Jan 2018.

8. Šošić M, Šikić M. Edlib: A C/C ++ library for fast, exact sequence alignment
using edit distance. Bioinformatics. 2017;33:1394–5.

9. Kerpedjiev P, Frellsen J, Lindgreen S, Krogh A. Adaptable probabilistic
mapping of short reads using position specific scoring matrices. BMC
Bioinformatics. 2014;15:100. https://doi.org/10.1186/1471-2105-15-100.

10. Zhang X-O, Dong R, Zhang Y, Zhang J-L, Luo Z, Zhang J, et al. Diverse
alternative back-splicing and alternative splicing landscape of circular RNAs.
Genome Res. 2016;26:1277–87.

11. Zeng X, Lin W, Guo M, Zou Q. A comprehensive overview and evaluation of
circular RNA detection tools. PLoS Comput Biol. 2017;13:1–21.

12. Consortium T 1000 GP. A global reference for human genetic variation.
Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393.

13. Deshpande V, Luebeck J, Nguyen N-PD, Bakhtiari M, Turner KM, Schwab R,
et al. Exploring the landscape of focal amplifications in cancer using
AmpliconArchitect. Nat Commun. 2019;10:392. https://doi.org/10.1038/
s41467-018-08200-y.

14. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:
2078–9. https://doi.org/10.1093/bioinformatics/btp352.

15. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read
simulator. Bioinformatics. 2012;28:593–4.

16. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The
human genome browser at UCSC. Genome Res. 2002;12:996–1006. https://
doi.org/10.1101/gr.229102.

17. Li H, Durbin R. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/
bioinformatics/btp324.

18. Møller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B.
Genome-wide purification of extrachromosomal circular DNA from
eukaryotic cells. J Vis Exp. 2016:e54239. https://doi.org/10.3791/54239.

19. Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for
Python. 2001. https://www.scienceopen.com/document?vid=ab12905a-8a5
b-43d8-a2bb-defc771410b9. Accessed 26 July 2019.

20. Lam S, Pitrou A, Seibert S. Numba: a llvm-based python jit compiler. Proc
Second Work. 2015. https://dl.acm.org/citation.cfm?id=2833162. Accessed 7
Oct 2019.

21. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al.
Bioconda: sustainable and comprehensive software distribution for the life
sciences. Nat Methods. 2018;15:475–6. https://doi.org/10.1038/s41592-018-
0046-7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Prada-Luengo et al. BMC Bioinformatics          (2019) 20:663 Page 9 of 9

https://doi.org/10.1073/pnas.1508825112
https://doi.org/10.1534/G3.117.300141
https://doi.org/10.1126/science.1213307
https://doi.org/10.1158/1541-7786.MCR-17-0095
https://doi.org/10.1158/1541-7786.MCR-17-0095
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.9395&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.9395&rep=rep1&type=pdf
https://doi.org/10.1186/1471-2105-15-100
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/s41467-018-08200-y
https://doi.org/10.1038/s41467-018-08200-y
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1101/gr.229102
https://doi.org/10.1101/gr.229102
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.3791/54239
https://www.scienceopen.com/document?vid=ab12905a-8a5b-43d8-a2bb-defc771410b9
https://www.scienceopen.com/document?vid=ab12905a-8a5b-43d8-a2bb-defc771410b9
https://dl.acm.org/citation.cfm?id=2833162
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Candidate read identification
	Realignment graph construction
	Soft-clip realignment

	Results
	Conclusion
	Availability and requirements
	Material and methods
	Circle-Map simulation tool
	Simulated data
	Real data
	Comparison of computational resources
	Size distribution of the circles found in human muscle
	Circle-Map default circular DNA filtering
	Circle-Map default output
	Code availability
	Abbreviations

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

