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Learning kinetic systems from data is one of the core challenges
in many fields. Identifying stable models is essential for the gen-
eralization capabilities of data-driven inference. We introduce a
computationally efficient framework, called CausalKinetiX, that
identifies structure from discrete time, noisy observations, gen-
erated from heterogeneous experiments. The algorithm assumes
the existence of an underlying, invariant kinetic model, a key
criterion for reproducible research. Results on both simulated
and real-world examples suggest that learning the structure of
kinetic systems benefits from a causal perspective. The identi-
fied variables and models allow for a concise description of the
dynamics across multiple experimental settings and can be used
for prediction in unseen experiments. We observe significant
improvements compared to well-established approaches focus-
ing solely on predictive performance, especially for out-of-sample
generalization.

kinetic systems | causal inference | stability | invariance |
structure learning

Quantitative models of kinetic systems have become a cor-
nerstone of the modern natural sciences and are univer-

sally used in scientific fields as diverse as physics, neuroscience,
genetics, bioprocessing, robotics, or economics (1–5). In sys-
tems biology, mechanistic models based on differential equa-
tions, although not yet standard, are being increasingly used,
for example, as biomarkers to predict patient outcomes (6), to
improve predicting ligand-dependent tumors (7), or for develop-
ing mechanism-based cancer therapeutics (8). While the advan-
tages of a mechanistic modeling approach are by now well
established, deriving such models by hand is a difficult and labor-
intensive manual effort. With new data acquisition technologies
(9–11), learning kinetic systems from data has become a core
challenge.

Existing data-driven approaches infer the parameters of ordi-
nary differential equations by considering the goodness of fit of
the integrated system as a loss function (12, 13). To infer the
structure of such models, standard model selection techniques
and sparsity-enforcing regularizations can be used. When eval-
uating the loss function or performing an optimization step,
these methods rely on numerically integrating the kinetic sys-
tem. There are various versions, and here we concentrate on
the highly optimized Matlab implementation Data2Dynamics
(14). It can be considered as a state-of-the-art implementation
for directly performing an integration in each evaluation of the
loss function. However, even with highly optimized integration
procedures, the computational cost of existing methods is high
and depending on the model class, these procedures can be
infeasible. Moreover, existing data-driven approaches, not only
those using numerical integration, infer the structure of ordinary
differential equations from a single environment, possibly con-
taining data pooled from several experiments, and focus solely on
predictive performance. Such predictive-based procedures have
difficulties in capturing the underlying causal mechanism and, as
a result, they may not predict well the outcome of experiments
that are different from the ones used for fitting the model.

Here, we propose an approach to model the dynamics of a
single target variable rather than the full system. The result-
ing computational gain allows our method to scale to systems
with many variables. By efficiently optimizing a noninvariance
score our algorithm consistently identifies causal kinetic models
that are invariant across heterogeneous experiments. In situa-
tions where there is not sufficient heterogeneity to guarantee
identification of a single causal model, the proposed variable
ranking may still be used to generate causal hypotheses and can-
didates suitable for further investigation. We demonstrate that
our framework is robust against model misspecification and the
existence of hidden variables. The proposed algorithm is imple-
mented and available as an open-source R package. The results
on both simulated and real-world examples suggest that learn-
ing the structure of kinetic systems benefits from taking into
account invariance, rather than focusing solely on predictive per-
formance. This finding aligns well with a recent debate in data
science proposing to move away from predictability as the sole
principle of inference (15–21).

Results
Predictive Models versus Causal Models. Established methods
mostly focus on predictability when inferring biological struc-
ture from data by selecting models. This learning principle,
however, does not necessarily yield models that generalize well
to unseen experiments, since purely predictive models remain
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agnostic with respect to changing environments or experimental
settings. Causal models (22, 23) explicitly model such changes by
the concept of interventions. The principle of autonomy or mod-
ularity of a system (24, 25) states that the mechanisms which are
not intervened on remain invariant (or stable). This is why causal
models are expected to work more reliably when predicting
under distributional shifts (26–28).

Causality through Stability. In most practical applications the
causal structure is unknown, but it may still be possible to infer
the direct causes of a target variable Y , say, if the system
is observed under different, possibly unspecified experimen-
tal settings. For nondynamical data, this can be achieved by
searching for models that are stable across all experimental
conditions; i.e., the parameter estimates are similar. Covariates
that are contained in all stable models, i.e., in their intersec-
tion, can be proved to be causal predictors for Y (17, 29).
The intersection of stable models, however, is not necessarily
a good predictive model. In this work, we propose a method
for dynamical systems that combines stability with predictabil-
ity, we show that the inferred models generalize to unseen
experiments, and we formalize its relation to causality (Materials
and Methods).

CausalKinetiX: Combining Stability and Predictability. The observed
data consist of a target variable Y and covariates X measured at
several time points across different experimental setups and are
assumed to be corrupted with observational noise (Fig. 1, Top).

Our proposed method, CausalKinetiX, exploits the assumption
that the model governing the dynamics of Y remains invariant
over the different experiments. We assume there is a subset S∗

of covariates, such that for all n repetitions, and d
dt
Yt depends

on the covariates in the same way; i.e.,

d
dt
Y

(i)
t = f

(
X

S∗,(i)
t

)
, for all i =1, . . . ,n. [1]

The covariates are allowed to change arbitrarily across dif-
ferent repetitions i . Instead of fitting based only on predictive
power, CausalKinetiX explicitly measures and takes into account
violations of the invariance in [1]. Fig. 1 depicts the method’s
full workflow. It ranks a collection of candidate models M=
{M1, . . . ,Mm} for the target variable (Materials and Methods)
based both on their predictive performance and whether the
invariance in [1] is satisfied. For a single model, e.g., d

dt
Y

(i)
t =

θX
8,(i)
t , and noisy realizations Ỹ

(i)
t1

, . . . , Ỹ
(i)
tL

, we propose to
compare the 2 data fits illustrated in Fig. 2. Data fit A calcu-
lates a smoothing spline to the data using all realizations from
the same experiment; see [3]. This fit serves only as a baseline
for comparison: It does not incorporate the form of the under-
lying kinetic model, but is entirely data driven. To obtain data
fit B, we fit the considered model, d

dt
Yt = θX 8

t , on the data
from all other experiments (explicitly leaving out the current
experiment) by regressing estimated derivatives on the predictor
variables. In this example, the model is linear in its parameters,

Fig. 1. The framework of CausalKinetiX. The data for target variables Y and predictors X come from different experiments; we rank models according
to their ability to fit the target well in all experiments; the top-ranked model is then fitted to the data; it allows us to predict the target in an unseen
experiment.
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Fig. 2. CausalKinetiX assigns a score to each model that trades off pre-
dictability and invariance. Here, we consider the model dYt/dt = θX8

t . (A)
For each realization, 2 data fits are considered. An entirely data-driven non-
linear smoother (data fit A, blue) is compared against a model-based fit
(data fit B, green) with constraints on the derivatives (orange lines). (B) The
derivative constraints are obtained from all other experiments: They corre-
spond to fitted values (orange triangles) in a regression of the estimated
derivatives on the predictors.

and it therefore suffices to use linear regression. Data fit B
fits a smoothing spline to the same data, subject to the con-
straint that its derivatives coincide with the fitted values from
the regression inferred solely based on the other experiments;
see [5]. Data fits A and B are compared by considering the
goodness of fit for each realization i =1, . . . ,n . More specifi-
cally, each model M ∈M obtains, similar in spirit to ref. 30, the
noninvariance score

T (M ) :=
1

n

n∑
i=1

[
RSS

(i)
B −RSS

(i)
A

]
/
[
RSS

(i)
A

]
,

where RSS
(i)
∗ := 1

L

∑L
`=1(ŷ

(i)
∗ (t`)− Ỹ

(i)
t`

)2 is the residual sum of
squares based on the respective data fits ŷ(i)

A and ŷ
(i)
B . Due to the

additional constraints, RSSB is always larger than RSSA.
The score is large either if the considered model does not

fit the data well or if the model’s coefficients differ between
the experiments. Models with a small score are predictive and
invariant. These are models that can be expected to perform well
in novel, previously unseen experiments. Models that receive a
small residual sum of squares, e.g., because they overfit, do not
necessarily have a small score T . We will see in Generalization
in Metabolic Networks that such models may not generalize as
well to unseen experiments. This assumes that [1] holds (approx-
imately) when including the unseen experiments, too. Naturally,
if the unseen experiments may differ arbitrarily from the training
experiments, neither CausalKinetiX nor any other method will
be able to generalize between experiments.

The score T can be used to rank models. We prove mathe-
matically that with an increasing number of realizations and a
finer time resolution, truly invariant models will indeed receive a
higher rank than noninvariant models (Materials and Methods).

Stable Variable Ranking Procedure. In biological applications,
modeling kinetic systems is a common approach that is used
to generate hypotheses related to causal relationships between
specific variables, e.g., to find species involved in the regula-
tion of a target protein. The noninvariance score can be used
to construct a stability ranking of individual variables. The rank-
ing we propose is similar to Bayesian model averaging (BMA)
(31) and is based on how often each variable appears in a top-
ranked model. The key advantage of such a ranking is that it
leverages information from several fits, leading to an informa-
tive ranking. It also allows testing whether a specific variable
is ranked significantly higher than would be expected from a
random ranking (Materials and Methods). Moreover, we pro-

vide a theoretical guarantee under which the top-ranked vari-
ables are indeed contained in the true causal model (Materials
and Methods).

We compare the performance of this ranking on a simulation
study based on a biological ordinary differential equation system
from the BioModels Database (32) which describes reactions in
heated monosaccharide–casein systems (SI Appendix, section 4).
(In fact, the example in Fig. 2 comes from this model, with Y and
X 8 being the concentrations of Melanoidin and AMP, respec-
tively.) We compare our method to dynamic Bayesian networks
(33) based on conditional independence (DBN-CondInd), gra-
dient matching (GM), and an integrated version thereof, which
from now on we refer to as difference matching (DM); the
last 2 methods both use `1 penalization for regularization (SI
Appendix, section 4). Fig. 3A shows median receiver operator
curves (ROCs) for recovering the correct causal parents based
on 500 simulations for all 4 methods. CausalKinetiX has the
fastest recovery rate and, in more than 50% of the cases, it
is able to recover all causal parents without making any false
discoveries (Fig. 3C). The recovery of the causal parents as a
function of noise level is given in Fig. 3B. On the x axis, we plot
the relative size of the noise, where a value of 1 implies that
the size of the noise is on the same level as the target dynamic
and the signal is very weak. For all noise levels, CausalKinetiX
is better at recovering the correct model than all compet-
ing methods. More comparisons can be found in SI Appendix,
section 4.

Numerical Stability, Scalability, and Misspecified Models. The
method CausalKinetiX builds on standard statistical procedures,
such as smoothing, quadratic programming, and regression. As
opposed to standard nonlinear least squares, it does not make
use of any numerical integration techniques. This avoids com-
putational issues that arise when the dynamics result in stiff
systems (34). For each model, the runtime is less than cubic
in the sample size, which means that the key computational
cost is the exhaustive model search. We propose to use a
screening step to reduce the number of possible models (SI
Appendix, section 3C), which allows applying the method to sys-
tems with hundreds of variables (e.g., Experiment on Metabolic
Network below). Moreover, it does not require any assumptions
on the dynamics of the covariates. In this sense, the method is
robust with respect to model misspecifications on the covari-
ates that can originate from hidden variables or misspecified
functional relationships. Consistency of the proposed variable
ranking (SI Appendix, section 3), for example, requires only the
model for the target variable to be correctly specified. Simu-
lation experiments show that this robustness can be observed
empirically (SI Appendix, section 4). Finally, there is empiri-
cal evidence that incorporating invariance can be interpreted
as regularization preventing overfitting and that the method
is robust against correlated measurement error (SI Appendix,
section 4).

Generalization in Metabolic Networks. We apply the proposed
method to a real biological dataset of a metabolic network
(Materials and Methods). Ion counts of one target variable and
cell concentrations of 411 metabolites are measured at 11 time
points across 5 different experimental conditions, each of which
contains 3 biological replicates. The experiments include both
up- and downshifts of the target variable; i.e., some of the
conditions induce an increase of the target trajectory, com-
pared to its starting value, and other conditions induce a
decrease.

We compare the performance of CausalKinetiX with the per-
formance of nonlinear least squares (NONLSQ). To make the
methods feasible for such a large dataset, we combine them
with a screening based on DM. We thus call the method based

Pfister et al. PNAS | December 17, 2019 | vol. 116 | no. 51 | 25407
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C

Fig. 3. (A) Median ROCs for recovering the correct causal parents based on 500 simulations. CausalKinetiX has the fastest recovery rate. (B) Median area
under the receiver operator curve (AUROC) for different relative noise levels. CausalKinetiX outperforms all other methods. (C) Number of recoveries before
all correct variables enter the model. In the majority of cases, CausalKinetiX has no false discovery.

on nonlinear least squares DM-NONLSQ; its parameters are
estimated using the software Data2Dynamics (d2d) (14), which
uses CVODES of the SUNDIALS suite (35) for numerical
integration.

Fig. 4A shows the models’ ability to describe the dynamics
in the observed experiments (in-sample performance). DM-
NONLSQ directly optimizes the RSS and therefore fits the
data better than CausalKinetiX, which takes into account sta-
bility, as well. The RSS for DM-NONLSQ-10 (based on 10
terms) is lower (0.83) compared to CausalKinetiX (0.96) aver-
aged over all in-sample experiments. The plot contains diagnos-
tics for analyzing kinetic models. The integrated dynamics are
shown jointly with a smoother (blue) through the observations
(gray). At the observed time points, the predicted derivatives
(red lines) are also shown using smoothed X and Y val-
ues. Model fits that explain the data reasonably well in the
sense that the integrated trajectory is not far from the observa-
tions may predict derivatives (short red lines) on the smoother
that do not agree well with the data: They fail to explain the
underlying dynamics. For an example, see the in-sample fit of
DM-NONLSQ-10 in Fig. 4A. We regard plotting a smooth-
ing spline and the predicted derivatives for the fitted values
as a highly informative tool when analyzing models for kinetic
systems.

Pooling data across heterogeneous experiments, as, for exam-
ple, done by DM-NONLSQ, is already a natural regularization
technique; if there is sufficient heterogeneity in the data, the
causal model is the only invariant model. Finitely many exper-
iments, however, exhibit only limited heterogeneity and one
can benefit from focusing specifically on invariant models. To
compare the out-of-sample performance of the methods, we
consider the best-ranked model from Fig. 4A, hold out 1 exper-
iment, fit the parameters on the remaining 4 experiments, and
predict the dynamics on the held-out experiment. While DM-
NONLSQ-10 explains the observations well in-sample, it does
not generalize to the held-out experiments, and neither does
DM-NONLSQ-3 (based only on 3 terms), which avoids over-
fitting. The average RSS of the held-out experiments are 1.41,
2.95, and 3.45 for CausalKinetiX, DM-NONLSQ-10, and DM-
NONLSQ-3, respectively (Fig. 4B). Another comparison, when

the methods are fully agnostic about one of the experimental
conditions, is provided in SI Appendix, section 4. By trading off
invariance and predictability, CausalKinetiX yields models that
perform well on unseen experiments that have not been used for
parameter estimation.

Discussion
In the natural sciences, differential equation modeling is a widely
used tool for describing kinetic systems. The discovery and veri-
fication of such models from data have become a fundamental
challenge of science today. Existing methods are often based
on standard model selection techniques or various types of
sparsity enforcing regularization; they usually focus on predic-
tive performance and sometimes consider stability with respect
to resampling (36, 37). In this work, we develop methodology
for structure search in ordinary differential equation models.
Exploiting ideas from causal inference, we propose to rank
models not only by their predictive performance, but also by
taking into account invariance, i.e., their ability to predict well
in different experimental settings. Based on this model ranking,
we construct a ranking of individual variables reflecting causal
importance. It provides researchers with a list of promising can-
didate variables that may be investigated further by performing
interventional experiments, for example. Our ranking methodol-
ogy (both for models and for variables) comes with theoretical
asymptotic guarantees and with a clear statement of the required
assumptions. Extensive experimental evaluation on simulated
data shows that our method is able to outperform current state-
of-the art methods. Practical applicability of the procedure is
further illustrated on a not yet published biological dataset.
Our implementation is readily available as an open-source
R package (38).

The principle of searching for invariant models opens up a
promising direction for learning causal structure from realistic,
heterogeneous datasets. The proposed CausalKinetiX frame-
work is flexible in that it can be combined with a wide range
of dynamical models and any parameter inference method.
This is particularly relevant when the differential equations
depend nonlinearly on the parameters. Future extensions may
further include the extension to stochastic, partial, and delay

25408 | www.pnas.org/cgi/doi/10.1073/pnas.1905688116 Pfister et al.
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Fig. 4. Metabolic network analysis. (A) In-sample fit. All 5 experiments are used for model selection and parameter estimation. The plot shows model-based
trajectories (numerically integrated) for experiment 5. DM with 10 terms (Right) fits the data better than CausalKinetiX (Left) or DM with 3 terms (Center).
(B) Out-of-sample fit. The plot shows the models’ ability to generalize to new experiments. Each plot shows model-based trajectories that are obtained when
that experiment is not used for parameter estimation. CausalKinetiX shows the best generalization performance. The large DM model does not generalize
well to unseen data due to overfitting.

differential equations and the transfer to other areas of applica-
tion like robotics, climate sciences, neuroscience, and economics.

Materials and Methods
In this section, we provide additional details about data format, methodol-
ogy, and the experiments. We further prove that our method is statistically
consistent; i.e., it infers correct models when the sample size grows toward
infinity.

Data Format. The data consist of n repetitions of discrete time observations
of the d variables X (or their noisy version X̃) on the time grid t = (t1, . . . , tL).
Each of the repetitions is part of an experiment {e1, . . . , em}. The experi-
ments should be thought of as different states of the system and may stem
from different interventions. One of the variables, X1, say, is considered
as the target, and we write Y1,(i)

t = X1,i
t . We further assume an underly-

ing dynamical model (which then results in various statistical dependencies
between the variables and different time points).

Mass-Action Kinetic Models. Many ordinary differential equation-based sys-
tems in biology are described by the law of mass-action kinetics. The
resulting ordinary differential equation models are linear combinations of
various orders of interactions between the predictor variables X. Assum-
ing that the underlying ordinary differential equation model of our target
Y = X1 is described by a version of the mass-action kinetic law, the derivative
Ẏt :=

d
dt Yt equals

Ẏt = gθ(Xt) =
d∑

k=1

θ0,kXk
t +

d∑
j=1

d∑
k=j

θj,kX j
tX

k
t , [2]

where θ= (θ0,1, . . . , θ0,d , θ1,1, θ1,2, . . . , θd,d)∈Rd(d+1)/2+d is a parameter
vector. We denote the subclass of all such linear models of degree 1 con-

sisting of at most p terms (i.e., p nonzero terms in the parameter vector θ)
byMExhaustive

p and call these models exhaustive linear models of degree 1.
A more detailed overview of different collections of models is given in SI
Appendix, section 2.

Model Scoring. For each model M the score T = T(M) is computed using the
following steps. They include fitting 2 models to the data: one in M3 and
the other one in M4 and M5.

M1) Input: Data are as described above and a collection M=

{M1, M2, . . . , Mm} of models over d variables is assumed to be rich
enough to describe the desired kinetics. In the case of mass-action
kinetics, e.g.,M=MExhaustive

p .
M2) Screening of predictor terms (optional): For large systems, reduce the

search space to fewer predictor terms. Essentially, any variable reduc-
tion technique based on the regression in step M4 can be used. We
propose using `1-penalized regression (SI Appendix, section 2).

M3) Smooth target trajectories: For each repetition i∈{1, . . . , n}, smooth
the (noisy) data Ỹ (i)

t1
, . . . , Ỹ (i)

tL
using a smoothing spline

ŷ(i)
a := argmin

y∈HC

L∑
`=1

(
Ỹ (i)

t`
− y(t`)

)
2
+λ

∫
ÿ(s)2 ds, [3]

where λ is a regularization parameter, which in practice is chosen
using cross-validation;HC contains all smooth functions [0, T]→R, for
which values and first 2 derivatives are bounded in absolute value by
C. We denote the resulting functions by ŷ(i)

a : [0, T]→R, i∈{1, . . . , n}.
For each of the m candidate target models M∈M perform steps
M4 to M6.

M4) Fit candidate target model: For every i∈{1, . . . , n}, find the function
gi ∈G such that
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Ẏ (k)
t = gi

(
X(k)

t

)
[4]

is satisfied as well as possible for all t∈ t and for all repetitions
k belonging to a different experiment than repetition i. Below,
we describe 2 procedures for this estimation step resulting in esti-
mates ĝi . For each repetition i∈{1, . . . , n}, this yields L fitted values
ĝi(X̃(i)

t1
), . . . , ĝi(X̃(i)

tL
). Leaving out the experiment of repetition i ensures

that only an invariant model leads to a good fit, as these predicted
derivatives are reasonable only if the dynamics generalize across
experiments.

M5) Smooth target trajectories with derivative constraint: Refit the tar-
get trajectories for each repetition i∈{1, . . . , n} by constraining the
smoother to these derivatives; i.e., find the functions ŷ(i)

b : [0, T]→R
which minimize

ŷ(i)
b := arg min

y∈HC

L∑
`=1

(
Ỹ (i)

t`
− y(t`)

)
2
+λ

∫
ÿ(s)2 ds,

such that ẏ(t`) = ĝi(X̃(i)
t`

) for all `= 1, . . . , L.

[5]

M6) Compute score: If the candidate model M allows for an invariant fit,
the fitted values ĝi(X̃(i)

1 ), . . . , ĝi(X̃(i)
L ) computed in M4 will be reasonable

estimates of the derivatives Ẏ (i)
t1

, . . . , Ẏ (i)
tL

. This, in particular, means that

the constrained fit in M5 will be good, too. If, conversely, the candidate
model M does not allow for an invariant fit, the estimates produced in
M4 will be poor. We thus score the models by comparing the fitted
trajectories ŷ(i)

a and ŷ(i)
b across repetitions as

T(M) :=
1

n

n∑
i=1

[
RSS(i)

b − RSS(i)
a

]
/
[
RSS(i)

a

]
, [6]

where RSS(i)
* := 1

L

∑L
`=1

(
ŷ(i)
* (t`)− Ỹ (i)

t`

)
2. If there is a reason to believe

that the observational noise has similar variances across experiments, the
division in the score can be removed to improve numerical stability.

The scores T(M) induce a ranking on the models M∈M, where models
with a smaller score have more stable fits than models with larger scores.
Below, we show consistency of the model ranking.

Variable Ranking. The following method ranks individual variables accord-
ing to their importance in obtaining invariant models. We score all models in
the collectionM based on their stability score T(M) (see [6]) and then rank
the variables according to how many of the top-ranked models depend on
them. This can be summarized in the following steps:

V1) Input: Same as in M1.
V2) Compute stabilities: For each model M∈M compute the noninvariance

score T(M) as described in [6]. Denote by M(1), . . . , M(K) the K top-
ranked models, where K ∈N is chosen to be the number of expected
invariant models inM.

V3) Score variables: For each variable j∈{1, . . . , d}, compute the following
score:

sj :=
|{k∈{1, . . . , K} |M(k) depends on j}|

K
. [7]

Here, “M(k) depends on j” means that the variable j has an effect in the
model M(k) (SI Appendix, section 2). If there are K invariant models, the
above score represents the fraction of invariant models that depend on
variable j. It equals 1 for variable j if and only if every invariant model
depends on that variable.

These scores sj are similar to what is referred to as inclusion probabilities
in Bayesian model averaging (31). Below, we construct hypothesis tests for
the test whether a score is significantly higher than if the models are ranked
randomly.

A natural choice for the parameter K should equal the number of invari-
ant models. This may be unknown in practice, but our empirical studies
found that the method’s results are robust to the choice of K. In particu-
lar, we propose to choose a small K to ensure that it is smaller than the
number of invariant models (SI Appendix, section 2).

Fitting Target Models (M4). In step M4, for every i∈{1, . . . , n}, we perform
a regression to find a function gi ∈M such that [4] is optimized across all
repetitions k belonging to different experiments than i. This task is diffi-
cult for 2 reasons. First, the derivative values Ẏ (k)

t are not directly observed
and, second, even if we had access to (noisy and unbiased versions of) Ẏ (k)

t ,
we are dealing with an error-in-variables problem. Nevertheless, for certain
model classes it is possible to perform this estimation consistently and since
the predictions are used only as constraints, one expects estimates to work
as long as they preserve the general dynamics. We propose 2 procedures:
1) a general method that can be adapted to many model classes and 2) a
method that performs better but assumes the target model to be linear in
parameters.

The first procedure estimates the derivatives and then performs a regres-
sion based on the model class under consideration. That is, one fits the
smoother y(k)

a from M3 and then computes its derivatives. When using the
first derivative of a smoothing spline, it has been argued that the penalty
term in [3] contains the third rather than the second derivative of y (39). We
then regress the estimated derivatives on the data. As a regression proce-
dure, one can use ordinary least squares if the models are linear or random
forests, for example, if the functions are highly nonlinear.

The second method works for models that are linear in the parameters,
i.e., for models that consist of functions of the form gθ(x) =

∑p
j=1 θjgj(x),

where the functions g1, . . . , gp are known transformations. This yields

Y (k)
t`
−Y (k)

t`−1
=

p∑
j=1

θj

∫ t`

t`−1

gj(X̃
(k)
s )ds.

This approach does not require estimation of the derivatives of Y but
instead uses the integral of the predictors. It is well known that integra-
tion is numerically more stable than differentiation (40). Often, it suffices to
approximate the integrals using the trapezoidal rule; i.e.,

∫ t`

t`−1

gj(X̃
(k)
s )ds≈

gj(X̃
(k)
t`

) + gj(X̃
(k)
t`−1

)

2
(t`− t`−1),

since the noise in the predictors is often stronger than the error in this
approximation. The resulting bias is then negligible.

As mentioned above, most regression procedures have difficulties with
errors in variables and therefore return biased results. Sometimes it can
therefore be helpful to use smoothing or averaging of the predictors to
reduce the impact of this problem. Our procedure is flexible in the sense
that other fitting procedures, e.g., inspired by refs. 28, 41, and 42, could be
applied, too.

Experiment on Metabolic Network. Defining the auxiliary variable Zt :=

2−Yt , we expect that the target species Yt and Zt are tightly related: Yt 

Zt , i.e., Yt is formed into Zt and vice versa. We therefore expect models of
the form

Ẏt = θ1ZtX
j
tX

k
t + θ2ZtX

p
t Xq

t − θ3YtX
r
t Xs

t

Żt =−θ1ZtX
j
tX

k
t − θ2ZtX

p
t Xq

t + θ3YtX
r
t Xs

t ,

where j, k, p, q, r, s∈{1, . . . , 411} and θ1, θ2, θ3≥ 0. By the conservation of
mass both target equations mirror themselves, which makes it sufficient
to learn only the model for Yt . More precisely, we use the model class
consisting of 3-term models of the form ZtX

j
tX

k
t , YtX

j
tX

k
t , ZtX

j
t , YtX

j
t , Zt , or

Yt , where the sign of the parameter is constrained to being positive or
negative depending on whether the term contains Zt or Yt , respectively.
We constrain ourselves to 3 terms, as we found this to be the smallest
number of terms that results in sufficiently good in-sample fits. Given suffi-
cient computational resources, one may include more terms, too, of course.
The sign constraint can be incorporated into our method by performing
a constrained least-squares fit instead of OLS in step M4. This constrained
regression can then be solved efficiently by a quadratic program with linear
constraints.

As the biological data are high dimensional, our method first screens
down to 100 terms and then searches over all models consisting of 3 terms.
To get more accurate fits of the dynamics, we pool and smooth over the 3
biological replicates and work only with the smoothed data.

Significance of Variable Ranking. We can test whether a given score sj ,
defined in [7], is significant in the sense that the number of top-ranked
models depending on variable j is higher than one would expect if the
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ranking of all models inM was random. More precisely, consider the null
hypothesis

H0 :
the top-ranked models M(1), . . . , M(K)

are drawn uniformly from all models inM.

It is straightforward to show that under H0 it holds that K · sj follows
a hypergeometric distribution with parameters |M| (population size),
|{M∈M|M depends on j}| (number success in population), and K (num-
ber of draws). For each variable we can hence compute a p value to assess
whether it is significantly important for stability.

Theoretical Consistency Guarantees. We prove that both the model ranking
and the proposed variable ranking satisfy theoretical consistency guaran-
tees. More precisely, under suitable conditions and in the asymptotic setting
where both the number of realizations n and the number of time points L
converge to infinity, every invariant model will be ranked higher than all
noninvariant models. Given sufficient heterogeneity of the experiments it
additionally holds that the variable score sj defined in [7] tends to one if
and only if j∈ S* (see [1]). Details and proofs are provided in SI Appendix,
section 3.

Relation to Causality. Causal models enable us to model a system’s behav-
ior not only in an observational state, but also under interventions. There
are various ways to define causal models (22, 23). The concept of structural
causal models is well suited for the setting of this paper and its formalism
can be adapted to the case of dynamical models (SI Appendix, section 1). If
the experimental settings correspond to different interventions on variables
other than Y , choosing S* as the set of causal parents of Y satisfies [1]. If the
settings are sufficiently informative, no other set satisfies [1].

Code and Data Availability. Well-documented code is available as an open-
source R package on CRAN (38). It includes the ordinary differential equa-
tion models used in the simulations, e.g., the Maillard reaction. All further
code and data are available at http://CausalKinetiX.org. The exact parame-
ter settings for the simulations can be found in SI Appendix, section 4. The
data underlying the metabolic network experiment will be made available
upon reasonable request.
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