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a b s t r a c t 

Estimation of parameters in stochastic processes has been thoroughly investigated for 

decades and the asymptotic properties of the estimators are known. However, reaching 

the regime where the asymptotic properties are valid might require such a long time that 

the well based theoretical results have no practical value. One example of this situation is 

at the center of our interest. It concerns determination of the time constant in stochastic 

Langevin equations with additive or multiplicative white-noise terms. Often the number 

of observations to achieve the asymptotic conditions is beyond the physical limits. Here 

we show how to overcome the problem by external perturbation of the system. Further- 

more, we show that the perturbation is not at the price of deterioration of the estimates 

of other parameters unless the observation interval is very short compared to the typi- 

cal time constant of the system. Three processes from the class of Pearson diffusions are 

studied. They are frequently used in many applications, in particular, they are examples 

of leaky integrate-and-fire models, which describe the electrical properties of a neuronal 

membrane. These neuronal models are often used as examples of systems with excitable 

dynamics. The most commonly investigated process is the Ornstein-Uhlenbeck process, 

which has additive noise. Furthermore, the square-root process and the Jacobi process are 

examples of processes with multiplicative noise. The results are illustrated on computer 

experiments, which show a striking improvement of the estimates of the rate parameter. 

It has implications for experimental design, where the information about the parameters 

can be increased for the same amount and cost of data, which is particularly important 

when samples are expensive or difficult to obtain. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

Computational and mathematical models of neuronal behavior are frequently appearing in studies of nonlinear dynamics

and have attracted the attention of researchers for decades. Among these, the models of single-cell excitability, ranging from

complex Hodgkin-Huxley models to the simplest McCulloch-Pitts neurons, are again and again rediscovered and investigated.

The large variability of experimental data obtained under identical conditions calls for extending the deterministic models to
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their stochastic variants. Furthermore, the necessity of stochastic descriptions of neurons from the principles of coding and

decoding of information within the nervous system supports the application of stochastic methods in computational neuro-

science. However, not only building and investigating new models are important, but their verification and comparison with

experimental data play an equally important role. Therefore, methods of statistical inference have to be carefully developed

[17,25,33] . We investigate three variants of a Langevin equation (the leaky integrate-and-fire (LIF) model) frequently used as

a simple model of neurons. The variants differ only by the impact of the noise on the dynamics of the membrane potential.

This neuronal model is among the most frequent examples of excitable systems. In the review on effects of noise in excitable

systems by Lindner et al. [27] , the FitzHugh-Nagumo and LIF models are used as prototypes of excitable stochastic dynamics.

The same models are used in studies on stochastic and coherence resonance in excitable systems in biology [28,30,39] . For

an intuitive overview of the model investigated in this paper, see Ditlevsen and Samson [9] . 

The methods devised for statistical analysis of experimental data often requires asymptotic conditions such as the num-

ber of observations tending to infinity or the sample step tending to zero. In other words, the amount of data has to be

large enough for the results to be trusted, but rarely any evaluation of the robustness is done of whether this is fulfilled

in a specific data set. Even when applying the best available estimator, such as the maximum likelihood estimator (MLE),

it might easily fail to provide trustworthy estimates of the quantity of interest because of insufficient data. We emphasize

that it is not the statistical method that fails; in some standard settings, the data simply do not contain enough information

about the parameter to be reliably estimated. The key idea presented in this paper is to sample the data more cleverly, such

that for the same number of samples, the information about the parameter is increased. 

Studying any dynamical system, it is of primary interest to estimate the time constant or relaxation time, or equivalently,

the rate of change of the process. This is a particularly important parameter in neuronal models [22] , where it represents the

conductance, i.e., in LIF models it is the leakage conductance. Let β denote this parameter. As we will show, β is particularly

difficult to estimate in real situations since the conditions required for the statistical analysis are often unrealistic. The

estimates suffer from large bias and variance. Methods of bias correction have been proposed [29,37,40,41] , however, these

methods are limited to a specific model, and they only alliviate the problem of the bias, not of the large variance. In this

paper we extend the results from [8] , and show how an alternative method can solve the problem in cases where the

process can be manipulated or the data can be judiciously selected. A related problem was considered in [18,19,38] , where

an input was adaptively designed and injected into the process to drive the drift such as to optimize the information about

the parameters. 

The goal is to develop a reliable framework for parameter estimation in a flexible class of stochastic processes called

the Pearson diffusions [13] . Several stochastic neuronal models, with additive as well as multiplicative noise, can be seen

as special cases of Pearson diffusions in the presence of an absorbing boundary, which serves as a firing threshold and

introduces a strong nonlinearity into the model [2,16,32] . The Ornstein-Uhlenbeck model is probably the most common

neuronal model with additive noise [15] , whereas the Feller, Jacobi or Inhomogeneous Geometric Brownian Motion are

models with multiplicative noise [7,12,20,23] and are closer to conductance-based neuronal models. The Pearson diffusions

cover all standard distributions as invariant (stationary) distributions, and thus provides a rich tool box of building blocks for

statistical modeling. In this model class, the process is attracted to an equilibrium point denoted α, or to be more precise, α
is the asymptotic mean in the stochastic dynamical system in absence of external input. It is not only of interest to estimate

the rate constant β , but also the mean level α, as well as a parameter scaling the noise level, denoted σ . 

The approach taken here is to manipulate the system away from its stationary level α and into a regime of transient

behavior, where the dynamics are strongly shaped by the rate parameter. This can be achieved by current stimulation as

well as by imposing other non-electrical stimuli. We call this perturbation, and illustrate it by starting the process far away

from its mean. A natural generalization would be to perturb the process repeatedly whenever it has reached the proximity

of the stationary mean. However, for notational simplicity, we only treat the case where we perturb the initial condition, i.e.,

we study the properties of the estimator as a function of the initial point where the process is started. It is intuitively clear

that the estimation of β benefits from the perturbation if considering the system in absence of noise. The time constant

shapes the decay towards the steady state α, but once the system is there, the time constant plays practically no role, and

limited information can be extracted. Thus, contrary to the common statistical paradigm that estimation is best conducted

on stationary data, we claim that it is the transient behavior that carries information about the time constant. The key

variable is the initial condition, which should be far from equilibrium. Then, an obviously important question is if this

improved determination of β caused by perturbation of the system, does not happen at the cost of a poorer estimation

of the other parameters. Intuitively, the asymptotic mean α is best determined if the system fluctuates around its resting

state, where the average of the observations would provide a good estimator. However, this would be a strongly biased

estimator if the system is only observed in the transient phase, i.e., before it reaches stationarity. It turns out that this

intuition is misleading, and α can still be well estimated in the perturbed system, as long as its estimator is cleverly chosen,

at least if the sample size is not very small. Finally, we will also illustrate that the estimator of the variance parameter

is in most cases unaffected by the perturbation. The estimators are the MLEs when available, and otherwise estimators

approximating the MLE. The estimators possess standard statistical asymptotic properties, ensuring that the parameters can

be identified with a prerequired precision. However, this is a theoretical result based on unlimited amounts of data. The

main message and result of this paper is that much smaller sample sizes are necessary if the behavior of the system is

perturbed. 
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Fig. 1. Example traces of the Ornstein-Uhlenbeck process, the square root process and the Jacobi process, with different starting values. The starting values 

are indicated by k , the number of standard deviations above the invariant mean for the Ornstein-Uhlenbeck and the square root processes. All traces are 

simulated with the same sequence of random numbers. The Ornstein-Uhlenbeck and the square root process have the same invariant mean and variance. 

The black lines are the invariant means. The inlets are the stationary distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Models and estimators 

A stochastic diffusion with linear drift is a prototype of a noisy relaxation process given by the Langevin equation 

d X (t) = −β(X (t) − α) d t + σ (X (t )) d W (t ) ; X (0) = x 0 (1)

where W = { W (t) ; t ≥ 0 } is a standard Wiener process and σ ( ·) is a real-valued function called the diffusion coefficient,

which we assume fulfills conditions such that a solution to (1) exists. The parameter β > 0 is a scaling of the time, the

rate at which the diffusion spontaneously moves towards its resting level α. The inverse, 1/ β , is often called the relaxation

time constant. The diffusion coefficient function σ ( x ) determines the stationary distribution as well as the transition den-

sity of the process, i.e., the distribution of X at time t , given it was at a certain point x at an earlier time s . Assume that

σ (x ) = σ
√ 

ax 2 + bx + c , where σ > 0 is a scale parameter of the diffusion coefficient, and a, b and c are such that the square

root is well defined when X ( t ) is in its state space. Any of a, b and c are allowed to be 0, but not all three at the same time.

These are called Pearson diffusions because the class of stationary distributions equals the Pearson system of distributions.

Specifically, σ ( x ) can be chosen such that the state space of the process is positive, negative, real valued or bounded, and

the distributions can be symmetric or skewed, and both heavy- and light tailed distributions are possible. Examples are nor-

mal, gamma or beta distributions, which are the three examples we will treat in more detail. The Ornstein-Uhlenbeck (OU)

process is linear and has a = 0 , b = 0 , c = 1 so that σ (x ) = σ, it lives on the entire real axis and the invariant distribution

is the normal distribution. The other two models are nonlinear. The square-root (SQ) process has a = 0 , b = 1 , c = 0 so that

σ (x ) = σ
√ 

x , it lives on the positive real axis and the invariant distribution is the gamma distribution. The Jacobi (JA) diffu-

sion has a = −1 , b = 1 , c = 0 so that σ (x ) = σ
√ 

x (1 − x ) , it lives on the bounded interval (0,1) and the invariant distribution

is the beta distribution. In Fig. 1 some example trajectories and stationary densities are plotted. The following results on

Pearson diffusions can all be found in Forman and Sørensen [13] , Sørensen [35] . The linear drift in (1) determines the mean

and the autocorrelation of the process regardless of σ ( x ), as long as σ ( x ) is such that these moments exist. The mean of the

stationary distribution is α. The stationary variances in the Pearson diffusions depend on σ ( x ), and are all functions of α
and γ 2 , defined by the parameter function 

γ 2 := 

σ 2 

2 β
. (2)

Assume X ( t ) is observed at equidistant time points i �, i = 0 , 1 , . . . , n, for some �> 0, and let x i denote the observation

of X ( t ) at time i �. Likewise, let X i denote the random variable X ( i �). The autocorrelation between X i and X i −1 is defined by

E [(X i − α)(X i −1 − α)] / 
√ 

V [ X i ] V [ X i −1 ] and equals e −β�, denoted by 

ρ := e −β�. (3)

The conditional mean is 

E [ X i + j | X i = x ] = xρ j + α(1 − ρ j ) . (4)

Note that the conditional mean converges to α for j → ∞ . 
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If �β � 1 the sampling step is short compared to the time constant, and the autocorrelation given in Eq. (3) is 0 �ρ < 1.

A minimal requirement of the sampling is that �β is not large, because otherwise ρ ≈ 0 and the observations are approx-

imately independent. Then only parameters of the stationary distribution can be estimated, i.e., α and the variance of the

invariant distribution, which depends on the specific model. However, the rate parameter β and the variance parameter σ 2 

can not be desentangled in the parameter function given in (2) from stationary and independent data. 

When discretely observed, the Pearson diffusions are statistically tractable, even if the likelihood function is only known

in two special cases, namely for the OU and the SQ process. The OU process is a Gaussian process, and the least square

estimator obtained by minimizing 
∑ 

(X i − E [ X i | X i −1 ]) 
2 coincides with the maximum likelihood estimator. For the SQ and JA

models we will use martingale estimating functions [13,35] . 

If the length of the observation interval T = �n is fixed, any estimator of β in (1) is inconsistent (i.e., the estimate does

not concentrate around the true value, no matter how frequent we observe, not even if we observe the complete continuous

trajectory), whereas parameters in the diffusion coefficient can be consistently estimated when n → ∞ and �→ 0 [35] . If

we further require that T → ∞ , also β can be consistently estimated, but as we shall see below, the convergence is slow,

whereas σ 2 is well estimated even for small sample sizes as long as � is not too large. This is because the optimal rate

of convergence for β is 
√ 

T = 

√ 

�n , whereas it is 
√ 

n for σ , see [35] . Note that �nβ = T β is the length of the observation

interval measured in units of the time constant 1/ β of the system. 

The initial condition x 0 will play a major role in the following. When | x 0 − α| 	 0 we say that the system is perturbed,

whereas if x 0 ≈α we say it is unperturbed. To ease notation we fix the dependence on the initial condition, and all expecta-

tions and variances in the following are with respect to X 0 = x 0 , which is the key variable in the present study. We measure

x 0 as distance from the asymptotic mean in units of the asymptotic standard deviation γ , such that 

x 0 = α + kγ (5) 

for the OU and the SQ processes, and uniformly in the bounded state space for the JA process. 

2.1. Ornstein-Uhlenbeck process 

The OU process is the simplest and most commonly used Pearson diffusion with applications in numerous fields, such

as physics [14] , neuroscience [1,6] , engineering [4] , psychology [36] and finance [37] . We will treat the OU process in de-

tail, and calculate approximate expressions for bias and variance of the estimators, showing how perturbation improves the

quality of the estimates. This is possible because relevant quantities are explicitly calculable for a Gaussian process. We will

then show through simulations that the same holds true for other Pearson diffusions. The OU process has constant diffu-

sion coefficient, σ (x ) = σ, and the transition probability density function of X ( t ) is normal with conditional mean (4) and

conditional variance (see e.g. [6,13] ) 

V [ X i | X i −1 = x ] = γ 2 (1 − ρ2 ) , (6) 

where ρ and γ 2 are defined in Eqs. (2) and (3) . The stationary variance is the limit of (6) for � going to infinity, γ 2 . 

Estimation of α, β and σ 2 can be done by MLE, which generally is the preferred method of choice, and provides both

consistent and rate optimal estimators when T → ∞ . The MLEs for the OU process of α, β and σ 2 are derived in Section 5.1 ,

see also Lansky [24 , Eqs. (24)-(26)], and given as solutions to the equations, 

ˆ α = 

1 

n 

n ∑ 

j=1 

x j + 

ˆ ρ

n (1 − ˆ ρ) 
(x n − x 0 ) (7) 

≈ 1 

n + 1 

n ∑ 

j=0 

x j = x̄ , (8) 

ˆ ρ = 

∑ n 
j=1 (x j − ˆ α)(x j−1 − ˆ α) ∑ n 

j=1 (x j−1 − ˆ α) 2 
, (9) 

ˆ σ 2 = 

2 

∑ n 
j=1 

(
x j − x j−1 ̂  ρ − ˆ α(1 − ˆ ρ) 

)2 ˆ β

n 

(
1 − ˆ ρ2 

) , (10) 

where ˆ β = − log ˆ ρ/ �, and the symbol ˆ indicates it is an estimator. See e.g. [31, p. 152] or [8] for the case when α = 0 .

Note how the estimator (7) of α is approximately equal to the average (8) if the initial and the last observations are close.

The last term in (7) is often ignored, but will turn out to be very important for perturbed data sets, where it corrects for

the otherwise induced bias, and ensures that estimates of α are still reasonable. When estimating with the true likelihood,

i.e., Eqs. (7) and (9) , a system with two equations in two unknowns has to be solved, e.g., by the Newton-Raphson method.

When (8) is used the estimators are explicit, and there is no need to implement an iterative algorithm. Therefore, this

simpler estimator is often used. However, as we shall see, this is not suitable in our case. 

The asymptotic variances in the limit n → ∞ of ˆ α in (7) , and 

ˆ β and ˆ σ 2 in (9)–(10) obtained by inverting the Fisher in-

formation are Var [ ̂  α] ≈ σ 2 /n �β2 = 2 γ 2 /n �β, Var [ ̂  β] ≈ 2 β/n � and Var [ ̂  σ 2 ] ≈ 2 σ 4 /n, see Section 5.2 . Nevertheless, we are



S. Ditlevsen, A. Cencerrado Rubio and P. Lansky / Commun Nonlinear Sci Numer Simulat 82 (2020) 105034 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interested in finite sample size properties, and specifically in the influence of the initial condition, and thus, the asymptotic

variances are not relevant here. However, these variances can serve as a benchmark, so if the experiment can be designed

such that the variance of an estimator approaches the asymptotic variance, we are close to an optimal situation. 

Estimation of the rate parameter In the following we will present the main results of this article. Define the random

variables 

Z = 

n ∑ 

i =1 

(X i − α)(X i −1 − α) ; Y = 

n ∑ 

i =1 

(X i −1 − α) 2 . (11)

Then approximately, see Eq. (9) , 

ˆ β ≈ − 1 

�
log (Z/Y ) , (12)

where the approximation comes from using the true (unknown) value of α and not the estimated one. We only use expres-

sion (12) to calculate approximate theoretical expressions for the mean and variance of the estimator. When estimating we

of course use the estimator (7)–(10) , since all parameters are unknown. Thus, the variance in the theoretical expressions

below will underestimate the true variance of ˆ β, since the statistical variability due to α also being estimated will increase

the overall variance. Taylor expansions up to second order of ˆ β and 

ˆ β2 with α fixed at its true value in (12) around the

mean values of Z and Y and taking expectations are developed in Section 5.3 , and yield 

E [ ̂  β] ≈ β + 

1 

2�E [ Y ] 2 

(
1 

ρ2 
V [ Z] − V [ Y ] 

)
, (13)

V [ ̂  β] ≈ 1 

�2 E [ Y ] 2 

(
1 

ρ2 
V [ Z] + V [ Y ] − 2 

ρ
Cov [ Z, Y ] 

)
. (14)

To evaluate (13) and (14) further, moments of (11) have to be inserted. These are evaluated in Section 5.4 . The approximate

bias and variance of ˆ β obtained from Eqs. (13) and (14) are thus 

E [ ̂  β] − β ≈ 1 + 3 ρ2 

2�ρ2 

(
n + 

1 −ρ2 n 

1 −ρ2 (k 2 − 1) 
) − 2 n (k 2 − 1)(1 − ρ2 ) ρ2 n −2 + 2(1 − ρ2 n ) 

�(1 − ρ2 ) 
(

n + 

1 −ρ2 n 

1 −ρ2 (k 2 − 1) 
)2 

, (15)

V [ ̂  β] ≈ (1 − ρ2 ) 

�2 ρ2 

(
n + 

1 −ρ2 n 

1 −ρ2 (k 2 − 1) 
) . (16)

Both converges to 0 with T → ∞ , the length of the observation interval, as expected. What is more remarkable is that they

both scale as 1/ k 2 , and thus, because of the square term, the desired convergence to 0 is fast when perturbing the initial

condition. The Mean Squared Error (MSE) is the sum of the squared bias and the variance, 

MSE [ ̂  β] = (E [ ̂  β] − β) 2 + V [ ̂  β] . (17)

In Fig. 2 we illustrate the relative MSE normalized by dividing by β2 , approximated by expressions (15) and (16) , as a

function of T = n � and k , for high ( � = 0 . 1 ) and low ( � = 1 ) frequency sampling. It is clear that to obtain a lower MSE, it

is more efficient to increase k than n . It is also clear that what matters is not the number of observations, but the length of

the observation interval T . 

If we assume �β � 1 we can further approximate the relative variance using expression (16) , depending on whether n is

small or large. 

• If n is small, then ρm ≈ 1 − mβ� for m ≤ 2 n , and the relative variance can be further approximated by 

V [ ̂  β] 

β2 
≈ 2 

�nβk 2 
. (18)

Thus, if for experimental reasons it is only possible to observe the system over an interval which is short compared to

the typical time constant of the system, it is paramount to perturb the system to get reliable estimates, since otherwise

the variance explodes. 
• If n is large, then ρ2 ≈ 1 − 2 β� and ρn ≈ 0, and the following approximation is obtained 

V [ ̂  β] 

β2 
≈ 2 

�nβ + (k 2 − 1) / 2 

(19)

which still emphasizes the positive effect of perturbation. 

The approximations above depend on how reliable the Taylor expansions in Eqs. (13) and (14) are. Especially in the

boundary situation of n and k small, these expressions probably underestimate the true bias and variance [8] . 
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Fig. 2. Relative Mean Squared Error of the estimator of the rate parameter β , approximated by expressions (15) and (16) , normalized by dividing by β2 . 

The MSE is given as a function of the length of the observation interval T = n � on the y axis, and amount of perturbation of x 0 away from the mean α, 

measured in number k of standard deviations on the x -axis. Parameters are β = 0 . 05 , α = 0 , σ = 0 . 01 . Left plot: High frequency, n = 10 0 0 , � = 0 . 1 . Right 

plot: Low frequency, n = 100 , � = 1 . The two panels look practically the same, which illustrates that it is not the number of observations but the length of 

the observation interval that matters for the estimation of the rate parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimation of the asymptotic mean The next question is then how the estimation of the other parameters is influenced by

perturbation. Expected values of ˆ α and ˆ α2 with ρ fixed at its true value in (7) , again using expressions (4) and (6) , yield 

E [ ̂  α] ≈ α, V [ ̂  α] ≈ γ 2 (1 + ρ) 

n (1 − ρ) 
. (20) 

The only approximation used here is assuming ρ known, implying a slight underestimation of the variance, but the mo-

ments are otherwise exact. Note how the value of k , or equivalently x 0 , does not enter the expressions, and the estima-

tor is approximately unbiased even under perturbation. This is not true for the average estimator (8) , where the bias is

kγ (1 − ρn +1 ) / (n + 1)(1 − ρ) , which is increasing with larger perturbation, but decreasing in n . It is therefore important to

use the slightly more involved maximum likelihood estimator (7) when perturbing. However, if the observation interval is

too small compared to the typical time constant of the system, 1/ β , then the estimator of α will deteriorate for large pertur-

bation, as we will see in the simulation study in the next section. The variance in (20) is equal to the asymptotic variance

given by the inverse of the Fisher information. 

Estimation of the variance parameter The approximate mean and variance of ˆ σ 2 are 

E [ ̂  σ 2 ] ≈ σ 2 , V [ ̂  σ 2 ] ≈ 2 σ 4 

n 

(21) 

which are not affected by the perturbation. In general, the scale parameter of the diffusion coefficient, σ 2 , is not difficult

to estimate. Note how only n enters, and thus, decreasing � and increasing n for fixed observation interval T will improve

the estimation of σ . This is not the case for the drift parameters, where more observations for fixed T does not improve the

estimation. 

2.2. Square root process 

The SQ process has been used in finance under the name of the Cox-Ingersoll-Ross process and in neuroscience under

the name of the Feller process, but also finds application in other fields such as physics and biology [3,7,34] . It has diffu-

sion coefficient, σ (x ) = σ
√ 

x . The transition probability density function of X ( t ) is a non-central chisquare distribution with

conditional mean (4) and variance 

V [ X i | X i −1 = x ] = αγ 2 (1 − ρ) 2 + 2 xγ 2 (1 − ρ) ρ, (22) 

see [7] . It is a process restricted to the positive real line with a right skewed distribution, and is thus a good alternative to

the OU process when modeling strictly positive processes. Following Feller’s classification of boundaries [21] , the boundary

0 is entrance if α ≥γ 2 , meaning that it can start from 0, but will have probability zero of ever hitting 0 again. In this

case it admits a stationary distribution, which is a gamma distribution with mean α and variance αγ 2 , that is, with shape

parameter α/ γ 2 and scale parameter γ 2 [7] . 

The likelihood of the SQ process involves special functions of the Bessel kind, which can be numerically unstable to

evaluate. Instead we will use approximate MLEs, based on martingale estimating functions. The estimator of α coincides
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with Eq. (7) , and the estimators for β( ρ) and σ 2 are [ 35 , p. 21] 

ˆ ρ = 

n 

∑ n 

j=1 

x j 

x j−1 

−
(∑ n 

j=1 
x j 

)(∑ n 

j=1 

1 

x j−1 

)

n 

2 −
(∑ n 

j=1 
x j−1 

)(∑ n 

j=1 

1 

x j−1 

) , (23)

ˆ σ 2 = 

∑ n 

j=1 

1 

x j−1 

(
x j − x j−1 ̂  ρ − ˆ α(1 − ˆ ρ) 

)2 ˆ β

∑ n 

j=1 

1 

x j−1 

(
( 

ˆ α

2 

− x j−1 ) ̂  ρ2 − ( ̂  α − x j−1 ) ̂  ρ + 

ˆ α

2 

) . (24)

It is difficult to find theoretical results on moments of the estimators for small samples and as a function of a perturbation

for the SQ, but we conjecture that the same pattern emerges as for the OU process, in particular, that the estimate of

β can be hugely improved by perturbation. Since the process is bounded below by 0, it is most natural to perturb it to

values above the mean, whereas for the OU process this is irrelevant since OU is symmetric around its mean. We study the

estimators through simulations in the next section. 

2.3. Jacobi diffusion 

The Jacobi diffusion is the only bounded Pearson diffusion, and has for example been applied in finance [26] , genetics [ 21 ,

chap 15, sec 2.F], neuroscience [11,12] and for ion channel dynamics [5,10] . It has diffusion coefficient σ (x ) = σ
√ 

x (1 − x ) ,

and lives on the bounded interval (0,1). A unique ergodic solution exists if α ∈ (0, 1), α ≥γ 2 and (1 − α) ≥ γ 2 . In that case,

it has stationary distribution the beta distribution, Beta (α/γ 2 , (1 − α) /γ 2 ) , with mean α and variance α(1 − α) γ 2 / (1 +
γ 2 ) . A special case is obtained for α = γ 2 = 1 / 2 , in which case it is standard uniformly distributed. It follows that for any

strictly increasing and twice differentiable distribution function F , another diffusion is obtained by F −1 (X(t)) with invariant

density given by f = F ′ . It is thus an important and flexible building block for modeling purposes. In particular, an affine

transformation can transfer it to any desired bounded interval. 

The transition probability density function of X ( t ) is unknown, but all moments are known. It has conditional mean

(4) and variance 

V [ X i | X i −1 = x ] = ρ2 e −σ 2 �

(
x 2 − α + γ 2 

1 
2 

+ γ 2 

(
x −

1 
2 
α

1 + γ 2 

))

− ρ2 (x − α) 2 + ρ(x − α) 
(1 − 2 α) γ 2 

1 
2 

+ γ 2 
+ 

α(1 − α) γ 2 

1 + γ 2 
, (25)

see Section 5.5 . Since the transition probability densities are unknown, also the likelihood function is unknown. Instead we

will use approximate MLEs, based on martingale estimating functions [35] . They are given as solutions to the equations, 

ˆ α = 

∑ n 

j=1 

x j − x j−1 ̂  ρ

x j−1 (1 − x j−1 ) 

(1 − ˆ ρ) 
∑ n 

j=1 

1 

x j−1 (1 − x j−1 ) 

, (26)

ˆ ρ = 

∑ n 

j=1 

(x j − ˆ α)(x j−1 − ˆ α) 

x j−1 (1 − x j−1 ) ∑ n 

j=1 

(x j−1 − ˆ α) 2 

x j−1 (1 − x j−1 ) 

, (27)

ˆ σ 2 = 

1 

n �

n ∑ 

j=1 

(
x j − x j−1 ̂  ρ − ˆ α(1 − ˆ ρ) 

)2 

x j−1 (1 − x j−1 ) 
, (28)

which are derived in Section 5.6 . Also for this model, it is difficult to find theoretical results on moments of the estimators

for small samples and as a function of a perturbation, but we conjecture that the same pattern emerges, and that the

estimate of β can be hugely improved by perturbation. Note that it is not possible to perturb very much, since the process

is bounded between 0 and 1, and it does not make sense to measure the perturbation in k , as was done for the OU and the

SQ processes. Instead, we use different starting conditions in the interval (0,1). We study the estimators through simulations

in the next section. 



8 S. Ditlevsen, A. Cencerrado Rubio and P. Lansky / Commun Nonlinear Sci Numer Simulat 82 (2020) 105034 

Fig. 3. Simulation study for the Ornstein-Uhlenbeck process. For each starting condition indicated by the number k of standard deviations above the 

stationary mean, 10,0 0 0 data sets were simulated, and on each data set, parameters were estimated. The panels show density plots of the 10,0 0 0 estimated 

parameters. Three situations were considered. Upper plots: Low frequency, long observation interval, n = 100 , � = 1 . Middle plots: High frequency, long 

observation interval, n = 10 0 0 , � = 0 . 1 . Lower plots: High frequency, short observation interval, n = 400 , � = 0 . 1 . The long observation interval corresponds 

to 5 times the typical time constant of the system, 1/ β , the short observation interval corresponds to 2 times. The parameter values used in the simulations 

are indicated by the blue straight lines, they are β = 0 . 05 , α = 0 , σ = 0 . 01 . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Simulation studies 

In this section we test the estimators of the three processes through simulation studies, in particular, we vary the amount

of perturbation through changing the initial condition x 0 . When running a new set of simulations with a new value of x 0 ,

we always use the same set of random numbers, such that changes in estimates are due to the perturbation and not due to

random variation. 

3.1. Ornstein-Uhlenbeck process 

Trajectories from the OU process were simulated according to the exact distribution, the normal distribution with mean

given in Eq. (4) and variance given in Eq. (6) with parameter values β = 0 . 05 , α = 0 , σ = 0 . 01 . Thus, the typical time constant

of the system is 1 /β = 20 time units. We denote the sampling to be high frequency when � = 0 . 1 , and low frequency when

� = 1 . This corresponds to sampling 200 and 20 times per typical time constant, respectively. We denote the observation

interval to be long when T = 100 and short when T = 40 . This corresponds to sampling over an interval that has length 5

and 2 times the typical time constant, respectively. Three sets of simulations were run: 1) High frequency sampling, long

observation interval, n = 10 0 0 , � = 0 . 1 . 2) High frequency, short observation interval, n = 400 , � = 0 . 1 . 3) Low frequency,

long observation interval, n = 100 , � = 1 . Within each set of simulations, the perturbation was varied as k ∈ {0, 2, 4, 6, 8,

10}. For each value of k , 10,0 0 0 data sets were simulated, and on each data set, the three parameters β , α and σ 2 were

estimated. 

Density plots of the 10,0 0 0 estimates for each condition can be found in Fig. 3 . It is clearly seen how the estimate of

β improves with increasing perturbation, and that for these relatively short sampling intervals, it is crucial to have at least

some perturbation, preferably larger than k = 2 standard deviations away from the stationary mean. The estimate of α is

for long sampling intervals not affected by the perturbation, however, for short sampling intervals, it does deteriorate for

increasing perturbation. Both drift parameters are unaffected by the frequency of the sampling, but improve with increasing

length T . The estimate of the variance parameter σ is not at all affected by the perturbation, but improves with increasing

sampling frequency and increasing number of observations. Note that the estimate of σ improves even when the sampling

interval is shorter, as long as n is larger. 
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Fig. 4. Simulation study for the square-root process. For each starting condition indicated by the number k of standard deviations above the station- 

ary mean, 10,0 0 0 data sets were simulated, and on each data set, parameters were estimated. The panels show density plots of the 10,0 0 0 estimated 

parameters. Three situations were considered. Upper plots: Short observation interval, n = 400 , � = 0 . 1 . Middle plots: Medium observation interval, 

n = 800 , � = 0 . 1 . Lower plots: Long observation interval, n = 1600 , � = 0 . 1 . The long observation interval corresponds to 8 times the typical time constant 

of the system, 1/ β , the medium observation interval corresponds to 4 times, and the short observation interval corresponds to 2 times. The parameter 

values used in the simulations are indicated by the blue straight lines, they are β = 0 . 05 , α = 0 , σ = 0 . 1 . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Square-root process 

Trajectories from the SQ process were simulated according to the Euler-Maruyama scheme, with a time step of 0.01

time units, which was then subsampled to a time step of � = 0 . 1 , to minimize discretization bias. Parameter values were

β = 0 . 05 , α = 0 . 5 , σ = 0 . 1 . Thus, as for the OU process, the typical time constant of the system is 1 /β = 20 time units. We

only considered high frequency sampling, since the main interest is the quality of the estimation of the drift parameters,

which depends on the length of the sampling interval, as was shown for the OU process. We denote the observation interval

to be long when T = 160 , medium when T = 80 and short when T = 40 time units. This corresponds to sampling over an

interval that has length 8, 4 and 2 times the typical time constant, respectively. Three sets of simulations were run: 1) Long

observation interval, n = 1600 , � = 0 . 1 . 2) Medium observation interval, n = 800 , � = 0 . 1 . 3) Short observation interval, n =
400 , � = 0 . 1 . Within each set of simulations, the perturbation was varied as k ∈ {0, 2, 5, 10}. For each value of k , 10,0 0 0 data

sets were simulated, and on each data set, the three parameters β , α and σ 2 were estimated. 

Density plots of the 10,0 0 0 estimates for each condition can be found in Fig. 4 . It is clearly seen that also for the SQ

process, the estimate of β improves with increasing perturbation, and that for these relatively short sampling intervals, it is

crucial to have at least some perturbation, preferably larger than k = 2 standard deviations above the stationary mean. The

estimate of α is for long sampling intervals not affected by the perturbation, however, for short sampling intervals, it does

deteriorate for increasing perturbation. Sometimes for short observation intervals, the estimate of α becomes negative, in

particular for large perturbation. This occurs because the last term on the right hand side in equation (7) dominates, and

thus, in these cases, the estimate of α does not exist, even if the estimate of β is reasonable. Both drift parameters improve

with increasing length T . The estimate of the variance parameter σ is not at all affected by the perturbation, but improves

with increasing number of observations. 

It sometimes occurs that the estimator for a specific data set does not exist. This happens if the statistic in the right hand

side of Eq. (23) , which is the estimate of the autocorrelation, is not in the interval (0,1). The probability that the estimator

does not exist decreases with increasing length of the sampling interval. A relevant question is then how the perturbation

affects this probability. In Table 1 , the percentages of the simulated samples where the estimator did not exist are listed.

It is seen that the estimator nearly always exists, and the perturbation improves (decreases) this probability for medium

length observation intervals, however, for short sampling intervals, it slightly increases this probability. 
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Table 1 

The percentages of simulated samples where the es- 

timator of the square-root process did not exist. 

k = 0 k = 2 k = 5 k = 10 

n = 400 0.69% 0.74% 1.06% 0.88% 

n = 800 0.11% 0.04% 0.05% 0.01% 

n = 1600 0% 0% 0% 0% 

Fig. 5. Simulation study for the Jacobi process. For each starting condition x 0 , 10,0 0 0 data sets were simulated, and on each data set, parameters were 

estimated. The panels show density plots of the 10,0 0 0 estimated parameters. Three situations were considered. Upper plots: Short observation interval, n = 

400 , � = 0 . 1 . Middle plots: Medium observation interval, n = 800 , � = 0 . 1 . Lower plots: Long observation interval, n = 1600 , � = 0 . 1 . The long observation 

interval corresponds to 8 times the typical time constant of the system, 1/ β , the medium observation interval corresponds to 4 times, and the short 

observation interval corresponds to 2 times. The parameter values used in the simulations are indicated by the blue straight lines, they are β = 0 . 05 , α = 

0 . 2 , σ = 0 . 01 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Jacobi process 

Trajectories from the JA process were simulated according to the Euler-Maruyama scheme, with a time step of 0.01

time units, which was then subsampled to a time step of � = 0 . 1 , to minimize discretization bias. Parameter values were

β = 0 . 05 , α = 0 . 2 , σ = 0 . 01 . Otherwise, the setup is as for the SQ process, except for the initial conditions. Within each set

of simulations, the perturbation was varied as x 0 ∈ { 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 } = α × { 1 , 2 , 3 , 4 } . For each value of x 0 , 10,0 0 0 data sets

were simulated, and on each data set, the three parameters β , α and σ 2 were estimated. 

Density plots of the 10,0 0 0 estimates for each condition can be found in Fig. 5 . It is clearly seen that also for the JA

process, the estimate of β improves with increasing perturbation. The estimate of α is for long sampling interval not affected

by the perturbation, however, for short sampling intervals, it does slightly deteriorate for increasing perturbation. Both drift

parameters improve with increasing length T . The estimate of the variance parameter σ is slightly biased, however, note the

scale, so the bias is small. 

The estimator for a specific data set does not exist if the numerator in the right hand side of Eq. (27) is negative. In

Table 2 , the percentages of the simulated samples where the estimator did not exist are listed. It is seen that the estimator

nearly always exists. 

4. Concluding remarks 

We have shown how perturbation can remedy the statistical problems related to the estimation of time scaling pa-

rameters in stochastic processes in a wide class of one dimensional diffusion models. Probably also for multidimensional
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Table 2 

The percentages of simulated samples where the estimator 

of the Jacobi process did not exist. 

x 0 = 0 . 2 x 0 = 0 . 4 x 0 = 0 . 6 x 0 = 0 . 8 

n = 400 1.61% 5.20% 0.46% 0% 

n = 800 0.37% 0% 0% 0% 

n = 1600 0.01% 0% 0% 0% 

 

 

 

 

 

 

 

 

 

stochastic processes with different time scales, the statistical inference will benefit from data obtained from the transient

parts of the state space. 

In many experiments only limited amount of data can be obtained, for example because samples are expensive, or the

experimental setting only allows for a finite number of samples. Therefore it is important to design the experiment such

that maximal information can be extracted from each data point. 

In some physical systems an unlimited perturbation is not possible, such as injecting current into a neuronal cell that

might die. An alternative could be repeated smaller perturbations to improve the estimate of the rate constant, which would

furthermore have the advantage that the estimate of the mean parameter would not be deteriorated. 

5. Mathematical details 

5.1. Maximum likelihood estimators of the Ornstein-Uhlenbeck process 

The likelihood function of the OU process is the product of the transition densities 

L n (θ ) = 

n ∏ 

i =1 

p( , X i −1 , X i ; θ ) 

where the transition density is normal with mean (4) and variance (6) , 

p( , X i −1 , X i ; θ ) = 

1 √ 

2 πγ 2 (1 − ρ2 ) 
exp 

(
− (X i − X i −1 ρ − α(1 − ρ)) 2 

2 γ 2 (1 − ρ2 ) 

)
. 

The score function is the vector of derivatives of the log-likelihood function with respect to the parameters, and the MLE

is given as solution to the likelihood equations ∂ θ log L n (θ ) = 0 , where θ is either β , α or σ 2 . The elements of the score

function are thus 

∂ 

∂α
log L n (θ ) = 

(1 − ρ) 

γ 2 (1 − ρ2 ) 

n ∑ 

i =1 

(X i − X i −1 ρ − α(1 − ρ)) , 

∂ 

∂β
log L n (θ ) = 

n 

2 β
− n �ρ2 

1 − ρ2 
− �ρ

∑ n 
i =1 (X i − X i −1 ρ − α(1 − ρ))(X i −1 − α) 

γ 2 (1 − ρ2 ) 

−
∑ n 

i =1 (X i − X i −1 ρ − α(1 − ρ)) 2 

σ 2 (1 − ρ2 ) 
+ 

�ρ2 
∑ n 

i =1 (X i − X i −1 ρ − α(1 − ρ)) 2 

γ 2 (1 − ρ2 ) 2 
, 

∂ 

∂σ 2 
log L n (θ ) = − n 

2 σ 2 
+ 

∑ n 
i =1 (X i − X i −1 ρ − α(1 − ρ)) 2 

2 σ 2 γ 2 (1 − ρ2 ) 
, 

whose zeros provide the MLEs in Eqs. (7) –(10) , by observing that setting ∂ 
∂σ 2 log L n (θ ) to zero implies that the first and

fourth terms in 

∂ 
∂β

log L n (θ ) cancel out. It requires that 
∑ n 

i =1 (X i − ˆ α)(X i −1 − ˆ α) > 0 , otherwise the MLE does not exist. 

5.2. Asymptotic variances of the MLEs in the Ornstein-Uhlenbeck process 

The Fisher Information I of the MLEs equals minus the expectation of the Hessian H of the log-likelihood function. For

the OU log-likelihood, the elements of H are given by 

∂ 2 

∂α2 
log L n (θ ) = − n (1 − ρ) 

γ 2 (1 + ρ) 
, 

∂ 2 

∂αβ
log L n (θ ) = 

n ∑ 

i =1 

( C 1 (X i −1 − α) + C 2 (X i − X i −1 ρ − α(1 − ρ)) ) 

∂ 2 

∂ασ 2 
log L n (θ ) = C 3 

n ∑ 

i =1 

(X i − X i −1 ρ − α(1 − ρ)) , 
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∂ 2 

∂β2 
log L n (θ ) = − n 

2 β2 
+ 

2 n �2 ρ2 

(1 − ρ2 ) 2 
+ C 4 

n ∑ 

i =1 

(X i − X i −1 ρ − α(1 − ρ))(X i −1 − α) − �2 ρ2 

γ 2 (1 − ρ2 ) 

n ∑ 

i =1 

(X i −1 − α) 2 

+ 

2�ρ2 

γ 2 (1 − ρ2 ) 2 

(
1 

β
− �(1 + ρ2 ) 

1 − ρ2 

)
n ∑ 

i =1 

(X i − X i −1 ρ − α(1 − ρ)) 2 

∂ 2 

∂βσ 2 
log L n (θ ) = C 5 

n ∑ 

i =1 

(X i − X i −1 ρ − α(1 − ρ))(X i −1 − α) 

+ 

1 

σ 2 γ 2 (1 − ρ2 ) 

(
1 

2 β
− �ρ2 

1 − ρ2 

)
n ∑ 

i =1 

(X i − X i −1 ρ − α(1 − ρ)) 2 , 

∂ 2 

∂(σ 2 ) 2 
log L n (θ ) = 

n 

2 σ 4 
−

∑ n 
i =1 (X i − X i −1 ρ − α(1 − ρ)) 2 

σ 4 γ 2 (1 − ρ2 ) 
, 

where C i , i = 1 , . . . , 5 , are deterministic constants that will disappear when taking expectations. Thus, the Fisher Information

is 

I = −E H = n 

⎡ 

⎢ ⎢ ⎣ 

(1 −ρ) 
γ 2 (1+ ρ) 

0 0 

0 

1 
2 β2 − 2�ρ2 

β(1 −ρ2 ) 
+ 

�2 ρ2 (1+ ρ2 ) 2 

(1 −ρ2 ) 2 
1 
σ 2 

(
1 

2 β
− �ρ2 

1 −ρ2 

)
0 

1 
σ 2 

(
1 

2 β
− �ρ2 

1 −ρ2 

)
1 

2 σ 4 

⎤ 

⎥ ⎥ ⎦ 

. 

The inverse of the Fisher Information provides the asymptotic covariance matrix, 

1 

n 

⎡ 

⎢ ⎢ ⎣ 

γ 2 (1+ ρ) 
(1 −ρ) 

0 0 

0 

1 −ρ2 

�2 ρ2 
σ 2 

�

(
1 −ρ2 

�βρ2 − 2 

)
0 

σ 2 

�

(
1 −ρ2 

�βρ2 − 2 

)
σ 4 

(
1 −ρ2 

β2 �2 ρ2 − 4 
β�

+ 

2(1+ ρ2 ) 
1 −ρ2 

)

⎤ 

⎥ ⎥ ⎦ 

. 

The diagonal elements provide the asymptotic variances of α, β and σ 2 , respectively. The asymptotic covariance matrix is

for �β � 1 approximately equal to 

1 

n 

⎡ 

⎣ 

σ 2 

�β2 0 0 

0 

2 β
� 2 βσ 2 

0 2 βσ 2 2 σ 4 

⎤ 

⎦ . 

Note that the variances of ˆ α and 

ˆ β are on the order of 1/ n �, whereas the variance of ˆ σ 2 is on the order of 1/ n and thus

converges faster, and that ˆ α is asymptotically independent of the other two. 

5.3. Taylor expansion of the estimator of β in the Ornstein-Uhlenbeck process 

Here, we develop Taylor expansions up to second order of ˆ β and 

ˆ β2 in (12) with α fixed at its true value around the

mean values of Z and Y in (11) . First, we note that by the tower property of conditional expectations and using (4) , 

E [ Z] = 

n ∑ 

i =1 

E (X i − α)(X i −1 − α) 

= 

n ∑ 

i =1 

E (E (X i − α)(X i −1 − α) | X i −1 ) 

= 

n ∑ 

i =1 

E ((E (X i | X i −1 ) − α)(X i −1 − α)) 

= 

n ∑ 

i =1 

E ((X i −1 ρ + α(1 − ρ) − α)(X i −1 − α)) 

= ρ
n ∑ 

i =1 

E (X i −1 − α) 2 

= ρE [ Y ] . (29) 
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Define f (z, y ) = − log (z/y ) / �, then 

ˆ β ≈ f (Z, Y ) . A Taylor expansion up to second order of f ( z, y ) around E [ Z] and E [ Y ]

yields 

f (z, y ) ≈ − 1 

�

(
log ρ + 

(z − E [ Z]) 

E [ Z] 
− (y − E [ Y ]) 

E [ Y ] 
+ 

1 

2 

(
− (z − E [ Z]) 2 

E [ Z] 2 
+ 

(y − E [ Y ]) 2 

E [ Y ] 2 
+ 0 

))
. 

Taking expectations and using (29) yields 

E f (Z, Y ) ≈ β + 

1 

2�

(
V [ Z] 

ρ2 E [ Y ] 2 
− V [ Y ] 

E [ Y ] 2 

)
, (30)

which is Eq. (13) . Now define g(z, y ) = ( log (z/y ) / �) 2 . A Taylor expansion up to second order of g ( z, y ) around E [ Z] and E [ Y ]

yields 

g(z, y ) ≈ 1 

�2 

(
( log ρ) 2 + 

2 log ρ

E [ Z] 
(z − E [ Z]) − 2 log ρ

E [ Y ] 
(y − E [ Y ])+ 

1 

2 

(
2 − 2 log ρ

E [ Z] 2 
(z − E [ Z]) 2 + 

2 + 2 log ρ

E [ Y ] 2 
(y − E [ Y ]) 2 − 2 

E [ Z] E [ Y ] 
(z − E [ Z])(y − E [ Y ]) 

))
. 

Taking expectations and using (29) yields 

E g(Z, Y ) ≈ β2 + 

1 

�2 E [ Y ] 2 

(
1 

ρ2 
V [ Z] + V [ Y ] − 2 

ρ
Cov [ Z, Y ] 

)
+ 

log ρ

�2 E [ Y ] 2 

(
V [ Y ] − V [ Z] 

ρ2 

)
. 

Taking the square of (30) and retaining terms of up to order two yields 

(E ̂

 β) 2 ≈ (E f (Z, Y )) 2 ≈ β2 − β

�E [ Y ] 2 

(
V [ Y ] − V [ Z] 

ρ2 

)

so we obtain Eq. (14) 

V [ ̂  β] = E ( ̂  β) 2 − (E ̂

 β) 2 ≈ 1 

�2 E [ Y ] 2 

(
1 

ρ2 
V [ Z] + V [ Y ] − 2 

ρ
Cov [ Z, Y ] 

)
, 

where we have used that log ρ = −β�. 

5.4. Moments of equation (11) 

To evaluate (13) and (14) , moments of Eq. (11) have to be inserted. After a considerable amount of algebra, using the

conditional moments (4) and (6) in (11) , one obtains 

E [ Y ] 

γ 2 
= n + 

1 − ρ2 n 

1 − ρ2 
(k 2 − 1) , E [ Z] = ρE [ Y ] , 

V [ Y ] 

γ 4 
= 

n 

(
2(1 + ρ2 ) − 8(k 2 − 1) ρ2 n 

)
1 − ρ2 

+ 

4(k 2 − 1)(ρ2 + ρ2 n )(1 − ρ2 n ) 

(1 − ρ2 ) 2 
− 4 ρ2 (1 − ρ2 n ) + 2(1 − ρ2 n ) 2 

(1 − ρ2 ) 2 
, 

V [ Z] 

γ 4 
= 

n 

(
1 + 4 ρ2 − ρ4 − 4(k 2 − 1) ρ2 n (1 + ρ2 ) 

)
1 − ρ2 

+ 

(k 2 − 1) 
(
(1 + ρ2 ) 2 − ρ2 n (1 − ρ2 ) 2 − 4 ρ4 n +2 

)
(1 − ρ2 ) 2 

− 4 ρ2 (1 − ρ2 n ) + 2 ρ2 (1 − ρ2 n ) 2 

(1 − ρ2 ) 2 
, 

Cov [ Z, Y ] 

2 ργ 4 
= 

n 

(
2 − (k 2 − 1)(1 + 3 ρ2 ) ρ2(n −1) 

)
1 − ρ2 

+ 

(k 2 − 1)(1 + ρ2 + ρ2 n (1 − ρ2 ) − 2 ρ4 n ) 

(1 − ρ2 ) 2 
− (1 + ρ2 )(1 − ρ2 n ) + (1 − ρ2 n ) 2 

(1 − ρ2 ) 2 
. 

5.5. Conditional variance of the Jacobi diffusion 

The generator of the Jacobi diffusion is given by 

L (·) = −β(x − α) 
d 

(·) + 

σ 2 

x (1 − x ) 
d 2 

2 
(·) . (31)
dx 2 dx 
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Eigenfunctions φj ( x ) and eigenvalues λj of generator (31) are defined by 

Lφ j (x ) = −λ j φ j (x ) . (32) 

The eigenfunctions of (31) are the Jacobi polynomials [35] , from where the diffusion has its name. The eigenfunctions and

the corresponding eigenvalues can be used to find conditional moments and define explicit martingale estimating functions

using the following result [35] , 

E φ j (X t | X 0 = x ) = e −λ j t φ j (x ) . (33) 

To find the conditional variance, we need the eigenfunctions being the first two Jacobi polynomials, 

φ1 (x ) = x − α, (34) 

φ2 (x ) = x 2 − 2 αβ + σ 2 

β + σ 2 
x + 

αβ(2 αβ + σ 2 ) 

(β + σ 2 )(2 β + σ 2 ) 
(35) 

with corresponding eigenvalues λ1 = β and λ2 = 2 β + σ 2 , which can be checked by inserting in Eq. (32) . Using (33) we

obtain 

E (X i − α| X i −1 ) = e −β�(X i −1 − α) = ρ(X i −1 − α) , (36) 

which is Eq. (4) , and 

E (X 

2 
i − 2 αβ + σ 2 

β + σ 2 
X i + 

αβ(2 αβ + σ 2 ) 

(β + σ 2 )(2 β + σ 2 ) 
| X i −1 ) = e −(2 β+ σ 2 ) t 

(
X 

2 
i −1 −

2 αβ + σ 2 

β + σ 2 
X i −1 + 

αβ(2 αβ + σ 2 ) 

(2 β + σ 2 ) + (β + σ 2 ) 

)
. 

Re-arranging and using Eqs. (2) , (3) and (36) , we obtain 

E (X 

2 
i | X i −1 ) = ρ2 e −σ 2 �

(
X 

2 
i −1 −

α + γ 2 

1 
2 

+ γ 2 

(
X i −1 −

1 
2 
α

1 + γ 2 

))
+ 

α + γ 2 

1 
2 

+ γ 2 

(
ρ(X i −1 − α) + α

1 
2 

+ γ 2 

1 + γ 2 

)
. (37) 

Finally, the conditional variance can be found by V (X i | X i −1 ) = E (X 2 
i 
| X i −1 ) − (E (X i | X i −1 )) 

2 using Eqs. (36) and (37) , which is

Eq. (22) . 

5.6. Martingale estimating function for the Jacobi diffusion 

To estimate the two drift parameters α and β (or equivalently ρ), we will use an approximate optimal linear martingale

estimating function [35] , given by the zeros of the vector function 

G (α, β) = 

n ∑ 

i =1 

∂μ(X i −1 ) 

σ 2 X i −1 (1 − X i −1 ) 
(X i − E (X i | X i −1 )) 

where μ(x ) = −β(x − α) is the drift function, and the partial derivative is with respect to α and β . We obtain 

G 1 (α, β) = 

n ∑ 

i =1 

β

σ 2 X i −1 (1 − X i −1 ) 
(X i − α − ρ(X i −1 − α)) , 

G 2 (α, β) = 

n ∑ 

i =1 

−(X i −1 − α) 

σ 2 X i −1 (1 − X i −1 ) 
(X i − α − ρ(X i −1 − α)) . 

The estimators are given by G ( ̂  α, ˆ ρ) = 0 , which are Eqs. (26) and (27) . To estimate σ 2 , we use an approximate moment

estimator, where the infinitesimal variance (the diffusion function) is estimated, Eq. (28) . This will be exact in the limit

�→ 0, but will introduce a minor discretization bias for finite samples, as seen in Fig. 5 . 
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