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Protein quality control (proteostasis) depends on constant
protein degradation and resynthesis, and is essential for
proper homeostasis in systems from single cells to whole
organisms. Cells possess several mechanisms and processes
to maintain proteostasis. At one end of the spectrum, the
heat shock proteins modulate protein folding and repair. At
the other end, the proteasome and autophagy as well as
other lysosome-dependent systems, function in the
degradation of dysfunctional proteins. In this review, we
examine how these systems interact to maintain proteostasis.
Both the direct cellular data on heat shock control over
autophagy and the time course of exercise-associated
changes in humans support the model that heat shock
response and autophagy are tightly linked. Studying the links
between exercise stress and molecular control of proteostasis
provides evidence that the heat shock response and
autophagy coordinate and undergo sequential activation and
downregulation, and that this is essential for proper
proteostasis in eukaryotic systems.

Introduction

Protein quality control is fundamental to intracellular homeo-
stasis. Central to this quality is a balance between protein folding

and protein degradation, the former controlled by cellular chaper-
ones of the heat shock response,1 and the latter by the ubiquitin-
proteasome system,2 autophagy,3 and other lysosome-dependent
systems.4 Recent data support the idea that these systems influence
each other.5,6 Existing in prokaryotes and eukaryotes, the heat
shock protein chaperone system of protein folding and assembly as
well as regulation of degradation of denatured proteins is more
evolutionarily ancient7 compared to autophagy, which is exclu-
sively a eukaryotic process. Given the greater evolutionary age of
the heat shock system compared to autophagy, as well as the fact
that the heat shock protein response functions in both protein con-
servation and degradation, a question arises of whether and how
they are coordinated. Recent data5 provide support for the idea
that heat shock response does, in fact, exert control over autophagy.

Exercise results in widespread protein degradation followed by
a similarly large scale building phase.8 Thus, exercise can be used
to follow the cross-regulation of protein breakdown and rebuild-
ing, including novel regulatory paths that might exist. We pro-
pose that there is such a novel, previously unappreciated
regulated crosstalk between heat shock-governed protein synthe-
sis and folding and the protein degradation state driven by
autophagy. In this review, by using the complex stress of exercise,
we will discuss the model of cooperation between autophagy and
heat shock response and highlight evidence suggesting an interac-
tion and control between those 2 systems.

Basic concepts

The role of autophagy and heat shock response in protein
homeostasis

To be fully functional, proteins, after translation, fold into the
correct 3-dimensional structure. In the crowded intracellular
environment with a high risk of aggregation, a protein requires
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assistance to assume its native and functionally physiological con-
formation and avoid hydrophobic tangles, precipitation, and
inappropriate protein interactions. In addition, intracellular
problems (spontaneous transcriptional and translational errors,
sudden increase in protein synthesis or excess of synthesized sub-
units, incorrect cellular localization, or the damaging effect of
highly reactive free radicals) as well as extracellular stressors (high
temperature, hypoxia, radiation, toxic chemicals, endotoxins,
and osmotic pressure) can alter the folding capacity of a cell lead-
ing to translational arrest as well as the accumulation of mis-
folded or unfolded proteins.9-14

To insure protein homeostasis, cells employ several systems.
These include intracellular removal or processing of misfolded
proteins,15 involving cellular chaperones, the ubiquitin-protea-
some system, and autophagy. Intracellular or pericellular process-
ing of abnormal proteins is a simple way of protein elimination,
but if not controlled properly, may lead to cell death, dysregula-
tion of homeostasis, and diseases such as Huntington,16 amyloid-
osis,17 Alzheimer,18 or Parkinson.19 The ubiquitin-proteasome
system deals primarily with endogenous proteins. In this process,
the poly-ubiquitin-protein complex binds to the regulatory unit
of the proteasome, which unfolds and translocates the substrate
proteins into the central chamber for proteolytic digestion.20

At basal levels or stress conditions, eukaryotic cells employ
autophagy to remove misfolded proteins, large protein aggre-
gates, and whole damaged organelles inaccessible to smaller pro-
teolytic systems.21 Under starvation conditions, autophagy
represents an effective physiological response providing a biofuel
from degraded macromolecules to maintain sufficient ATP pro-
duction for adaptive macromolecular synthesis to survive stressful
conditions.22 There are 3 primary types of autophagy: chaper-
one-mediated autophagy, microautophagy, and macroautophagy.
In chaperone-mediated autophagy, cytosolic proteins with a sig-
nature exposed pentapeptide motif (KFERQ)23,24 are targeted by
HSPA8/HSC70 (heat shock 70 kDa protein 8). After motif rec-
ognition by HSPA8 and subsequent binding to LAMP2A (lyso-
somal-associated membrane protein 2A), target proteins undergo
unfolding and translocate into the lysosomal lumen where they
are degraded.25 During microautophagy, a small invagination of
the lysosomal membrane sequestering cytosolic content is
formed. After pinching off into the lysosomal lumen, the vacuole
is degraded.26 Macroautophagy (referred to hereafter as autoph-
agy) can also be subdivided into several main stages. During the
initial step, double- or multimembrane autophagic vacuoles
called autophagosomes are formed by engulfing a portion of the
cytoplasm or a damaged organelle.27,28 Next, the autophago-
somes fuse with lysosomes forming autolysosomes that degrade
the captured material.27,29,30

Whereas autophagy is ubiquitous in eukaryotic cells,31 the
heat shock protein (HSP) chaperone system is a feature of both
prokaryotes and eukaryotes. All living organisms employ the
HSP system to convert nascent proteins into their native confor-
mation7 and to mediate the degradation of irreversibly denatured
proteins that accumulate in the cells in response to various stres-
sors. Thus, autophagy and the heat shock response represent 2
functionally distinct systems of cellular protein quality control.

Under cellular stress conditions, these 2 systems are likely to
complement each other. A recent study5 provided evidence that
cells under certain conditions prioritize the HSP response over
autophagy, and the heat shock response inhibits autophagy under
conditions when both systems are activated.

The role of autophagy in physiology of skeletal muscle
Growing evidence suggests that the right level of autophagy,

along with the ubiquitin-proteasome system, is critical to homeo-
stasis of skeletal muscle.32 Two main approaches focusing on
activation or inhibition of autophagy have been undertaken to
delineate the role of autophagy in regulating the physiology of
skeletal muscle.

Inhibition of autophagy in autophagy-related (ATG) 5 and
ATG7 conditional knockout mice models leads to a small reduc-
tion in body growth, degenerative changes in muscle tissue,
reduction in myofiber size, accumulation of protein aggregates,
abnormal mitochondria, and reduction in muscle force leading
to severe weakness.33,34 Similarly, reduced autophagy in col6a¡/

¡/collagen VI-deficient mice results in the accumulation of dys-
functional organelles and promotes apoptosis and muscle atro-
phy.35 Mutant mice with normal levels of basal autophagy but
deficient in exercise- or starvation-induced autophagy show lower
endurance, impaired glucose metabolism, and inhibited glucose
uptake by skeletal muscle after a single bout of exercise. More-
over, the autophagy mutant mice lack chronic exercise-induced
protection against glucose intolerance when fed a high-fat diet.36

The importance of autophagy in the development of endurance
capacity was further demonstrated in becn1 (VPS30/ATG6) het-
erozygous mice showing reduced basal autophagy flux, number
of mitochondria, and capillary density in skeletal muscle.37 Inter-
estingly, diminished autophagy levels in sedentary Becn1 hetero-
zygotes does not influence the exercise performance when
compared with wild-type animals, but completely prevents the
development of muscle adaptation and physical endurance in
response to several weeks of involuntary training among Becn1
heterozygotes. To sum up, these studies demonstrate that
autophagy plays a fundamental role in skeletal tissue homeostasis
and, when deficient, leads to impaired physical performance.

Recent studies have also shown that aggravated autophagy
contributes to muscle loss. In mice, activation of the FOXO
(forkhead box O) transcription factors results in enhanced
autophagy and lysosomal proteolysis leading to muscle atro-
phy.38,39 Similarly, increased autophagy levels in a transgenic
mouse model expressing a mutant Sod1 (superoxide dismutase 1,
soluble) gene that mediates antioxidative defense are associated
with muscle atrophy and a profound reduction in muscle
strength.40 In centronuclear myopathy, a naturally occurring
mutation leading to inactivation of MTMR14/hJumpy (myotu-
bularin-related protein 14) activates autophagy, suggesting that
aggravated autophagy is important in the etiology of centronu-
clear myopathy.41 Excessive autophagy contributing to muscle
wasting has also been shown in tumor-bearing animals,42 in a sys-
temic burn injury model in mice,43 in patients with progressive
stages of lung cancer cachexia,44 and in chronic obstructive pul-
monary disease patients.45
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These studies suggest that aggravated/excessive autophagy is
responsible for the loss of muscle mass, whereas defective autoph-
agy leads to the degeneration of muscle fiber, severe reduction in
muscle strength, and metabolic disorders. Future studies are needed
to clearly define the role of autophagy in physiology and patho-
physiology in skeletal muscle. In addition, identifying potential
and effective therapeutic approaches focusing on autophagy man-
agement in disease should be a priority of the upcoming research.

Cellular and molecular mechanisms of autophagy
Metabolic adaptations are primarily mediated by AMPK

(adenosine monophosphate-activated protein kinase) and AKT/
protein kinase B (v-akt murine thymoma viral oncogene homo-
log),46,47 and both are important in autophagy regulation.
AMPK controls food intake in the hypothalamus, promotes glu-
cose and fatty acid uptake and oxidation in heart and skeletal
muscle, inhibits fatty acid synthesis in adipocytes and liver, and
inhibits insulin secretion in pancreatic b cells.48,49 AKT regulates
cellular metabolism through glucose uptake, glycogen synthesis,
glycolysis, and protein synthesis.50

Prolonged exercise, a physiological condition represented by
high energy requirements, activates both AMPK51-53 and
AKT,54,55 that modulate the activity of TSC (tuberous sclerosis
complex) consisting of the TSC1-TSC2 tumor suppressor hetero-
dimer that is involved in autophagy regulation (Fig. 1). Down-
stream of TSC, a small protein, the RAS-like GTPase RHEB (Ras
homolog enriched in brain), cycles between an active GTP-bound
form and an inactive GDP-bound form.56 Reduced glucose or
energy levels increase the AMP/ATP ratio and results in the activa-
tion of AMPK and TSC.49 This activation of AMPK and TSC
leads to augmentation of the RHEB-GDP levels, inhibition of the
mechanistic target of rapamycin (MTOR) pathway and leads to

inhibition of cell growth and activation of autophagy.46,48,49 In
contrast, activated AKT directly phosphorylates TSC2 and inhibits
its function.57 Reduced activity of TSC2 by AKT increases
RHEB-GTP levels resulting in MTOR activation58,59 and autoph-
agy inhibition. Additionally, AKT may also activate the MTOR
pathway by the inhibition of AMPK-mediated phosphorylation of
TSC247 and AMPK may inhibit MTOR directly by modulating
its phosphorylation site.60-62 Moreover, direct physical interaction
between AMPK or MTOR and ULK1 (unc-51 like autophagy
activating kinase 1) plays a crucial role in the regulation of mam-
malian autophagy.63-69 Under conditions of nutrients abundance,
the activated MTOR phosphorylates ULK1 and prevents its inter-
action with AMPK. Conversely, under starvation conditions,
AMPK-induced MTOR inhibition prevents MTOR from binding
to ULK1. Subsequently, AMPK directly interacts with and phos-
phorylates ULK1 resulting in its activation and leading to autoph-
agy initiation.65 As suggested recently, this complex modulation of
ULK1 activity by AMPK and MTOR may represent the regula-
tion of autophagy and metabolism accordingly to the availability
of glucose and amino acids.63

In addition to the MTOR pathway, AMPK and AKT have
been reported to control glucose metabolism and autophagy
through modulation of FOXO family transcription factors.
AMPK through the transcriptional activation of Foxo3/Foxo3a
suppresses gluconeogenesis in the liver.70 Interestingly, it has
been recently shown that exercise-induced AKT phosphorylation
suppresses the hepatic gluconeogenesis through a decreased asso-
ciation between FOXO1 and PPARGC1A/PGC-1a (peroxisome
proliferator-activated receptor, gamma, coactivator 1 a).71 In
addition, AKT activation suppresses FOXO3 activation and
autophagy independently of MTOR.39 Conversely, AMPK trig-
gers autophagy in skeletal muscle through activation of FOXO3
and interaction with ULK1.72 We have shown that HSP70 exerts
its inhibitory effect on autophagy via the increased AKT path-
way.5 To sum up, AMPK and AKT are responsible for control-
ling metabolic equilibrium and play a critical role in modulating
skeletal muscle mass through fine adjustments of protein expres-
sion. Future studies are required to delineate the role of HSP70
and other members of the heat shock response on intracellular
targets involved in autophagy regulation under physiological and
pathological conditions.

A correspondence between immune and muscle cells
Glucose is an important nutrient for contracting muscle.73

During exercise glucose uptake rises significantly and reaches a
peak (41% of glucose contribution in muscle metabolism) at
90 min during exercise.74 This initial glucose involvement is
replaced by free fatty acids whose contribution of total muscle
metabolism extends to 62% at 240 min of exercise.74 Muscle tis-
sue is the main glutamine depot containing 90% of the body’s
glutamine reserves and during catabolic stress in humans, muscles
are a primary organ of glutamine synthesis and release to the
blood.75,76 Glutamine is the most abundant free amino acid in
the body and it is critical for the proper functioning of the
immune cells that utilize it at high rates for antigen presentation
and cytokines production.77,78 In addition, macrophage-derived

Figure 1. Schematic overview of autophagy regulation by exercise, hor-
monal, and nutrient signals. Arrow-headed (green) lines and bar-headed
(red) lines indicate activation and inhibition, respectively.
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cytokine stimulates glutamine synthesis in muscle cells.79 This
loop of interaction between cytokines and glutamine represents
cooperation and codependence between muscle and the immune
system. Another link involving the immune system and insulin
target cells (muscle) has been demonstrated in the development
of metabolic syndrome. In this model, an attenuated autophagy
by fatty acid in macrophages leads to activation and release of
inflammasome and proinflammatory cytokine IL1B/IL-1b that
in turn inhibits normal insulin signaling in liver, adipose, and
muscle tissues resulting in insulin resistance.80

Cooperation between heat shock response
and autophagy during heat stress and the

unfolded protein response

Heat stress response modulates autophagy
Heat stress denatures proteins and alters translation. It is also a

potent stimulus of the heat shock response. Thus, it is not sur-
prising that heat exerts a complex effect on autophagy. In one of
the earliest studies describing the effect of a physiologically rele-
vant increase in temperature on autophagy induction in isolated
rat hepatocytes, the highest autophagy levels were detected at
37�C reflecting the normal body temperature, whereas tempera-
ture elevation to 40�C reduced the autophagic sequestration.81

Later, by utilizing different cellular techniques and models, it was
shown that heat stress, as high as 43�C, induces autophagy.82

Heat exposure also triggers autophagy in a human hepatoma cell
line,83 rat cardiomyocytes,84 human alveolar basal epithelial
cells,5 a mouse spermatocyte cell line,85 and human cervical can-
cer cells.86 Moreover, recent studies have shown that deletion of
the heat shock transcription factor 1 (HSF1), increases basal
autophagy levels.5 Treatment with a constitutively active HSF1
mutant inhibits the basal level of microtubule-associated protein
1 light chain 3 (LC3-II) protein and prevents induction of
autophagy in heat-treated cells.82

In animals, similar to cell culture studies, heat exposure upre-
gulates autophagy proteins in the rat cerebellar Purkinje cells87

and hepatocytes,88 but not in the pancreatic cells.89 These studies
suggest that autophagy remains under regulatory control of the
heat shock response, but more studies are needed to fully define
the hierarchy of importance among proteins involved in autoph-
agy regulation.

Interactions between the heat shock response and autophagy
during the unfolded protein response

Besides hyperthermia, conditions generating the unfolded
protein response upregulate both the heat stress response and
autophagy. Treatment with a highly selective, reversible inhibi-
tor of the 26S proteasome, bortezomib, resulting in mitochon-
drial dysregulation and endoplasmic reticulum (ER) stress
triggers autophagy and the cellular chaperone HSP70 in mela-
noma cell lines.90 Similarly, exposure to the histone deacetylase
inhibitor panobinostat activates the heat stress response and ER
stress and leads to an increased accumulation of unfolded pro-
teins resulting in autophagy induction.91 In 2 independent cell

culture studies, HSP70 and HSF1 were shown to be required in
autophagosomes formation. In mouse embryonic fibroblasts,
panobinostat-induced formation of autophagic vesicles was pre-
vented by HSP70 knockout,92 whereas, in human breast adeno-
carcinoma cells, exposure to the chemotherapeutic agent
carboplatin increased autophagy as indicated by an increase in
LC3 punctate structures and LC3 and ATG7 protein expression
that was prevented by knockdown of HSF1.93 It was also
reported that silencing of TPR (translocated promoter region,
nuclear basket protein) a component of the nuclear pore com-
plex leading to a significant reduction in nuclear pore numbers
results in a significant increase in autophagy that is associated
with an increase in heat stress response in HeLa cells (see a com-
prehensive diagram illustrating the intracellular mechanisms reg-
ulating autophagy in translocated promoter region, nuclear
basket protein-depleted cells).94 In mouse with progression of
Alzheimer-like deficits, the autophagy-activating agent rapamy-
cin (an inhibitor of MTOR) results in HSF1 activation and
HSPs overexpression in the brain. Rapamycin-fed animals
express a reduced amyloid-b content in the brain, demonstrat-
ing that rapamycin treatment improves protein homeostasis by
removing damaged proteins through autophagy and fixing
unfolded proteins via increased chaperone activity.95 Although
the exact role and relationship between autophagy and the heat
stress response under stressful conditions remains to be deter-
mined, they cooperate in maintaining cellular homeostasis by
facilitating appropriate folding of partially unfolded proteins or
removing irreversibly damaged proteins to help the cell in cop-
ing with the cellular stress.86,88,96

Cooperation between the heat shock response
and autophagy during exercise in animals

and in humans

The effect of exercise on muscle growth
Muscle growth is only possible when protein synthesis exceeds

protein breakdown, meaning there is a positive anabolism. Resis-
tance exercise is important and well known in development of
muscle mass (hypertrophy). In humans, resistance exercise
increases protein synthesis97-106 and improves protein balance
during the recovery phase in the skeletal muscle,8,107,108 but not
during acute bouts of resistance exercise.109 Similar to resistance
exercise, low intensity aerobic training110 causes a significant
increase in fractional synthetic rate in the leg muscle. In contrast,
in female deltoid muscle, neither resistance nor swimming exer-
cise, when performed separately, had a significant effect on net
muscle protein synthesis, but when combined stimulated
increased muscle protein synthesis above baseline levels.111 Simi-
larly, there was no change in protein synthesis or protein break-
down in vastus lateralis shortly after an acute bout of resistance
exercise.112 Interestingly, the effect of exercise on protein synthe-
sis seems to depend on the type, or protein measurement (mixed
vs. myofibrillar), and training status of the subjects (trained vs.
untrained). In response to acute resistance exercise, there was a
significant increase in mixed protein synthesis in untrained
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subjects but not in the trained athletes:113 however, the myofi-
brillar protein synthesis rate was elevated in both untrained and
trained subjects in response to resistance exercise.114,115

The effect of the training protocol and muscle protein synthe-
sis is documented in exercise literature as well. Both resistance116-
118 and endurance119 exercise training result in a marked increase
in skeletal muscle protein synthesis rate. However, a 12-wk regi-
men of high-intensity resistance exercise did not alter the whole
body protein synthesis.120

The role of autophagy and other lysosome systems in exercise-
induced muscle growth remains to be determined.

Exercise and HSP70 protein expression in animals
Heat shock proteins comprise a family of chaperones, whose

expression is induced in response to a wide variety of physiologi-
cal and environmental insults, including high temperature, oxi-
dative stress, heavy metal exposure, and ionizing radiation.121-123

The primary function of these heat shock proteins is to fold
nascent proteins and refold denatured proteins after cellular
stress.7,124,125 The heat shock proteins also modulate physiology
of a single cell or whole organism by regulating signaling path-
ways,126 cell survival,127 tight junction permeability,128-130 cyto-
kine expression,131 and protein degradation.25,132

HSP70 is the most highly conserved member in the HSP fam-
ily and has been studied in the response to acute exercise or exer-
cise training in animals. Brief (5 min) eccentric exercise produces
no increase in HSP70 protein expression in the muscle tissue,133

but longer and more exhaustive treadmill running134,135 or
eccentric exercise136,137 results in a significant increase in HSP70
protein expression in cardiac and skeletal muscles. Elevated
HSP70 levels are also observed in lung and kidney in response to
strenuous endurance exercise.138

Findings on aerobic training on muscle HSP70 protein
expression are conflicting. A high-intensity aerobic exercise pro-
tocol involving treadmill running (5 d) elevated HSP70 protein
expression in both cardiac135 and skeletal muscle.139 Conversely,
no increase in HSP70 was observed in animals exposed to either
the continuous (low intensity and longer duration) or to the
intermittent exercise protocol (high intensity and short
duration).136,140

In conclusion, exercise (acute or training) raises the HSP70
levels but the magnitude of the response depends on the inten-
sity141 and type of exercise.138

Exercise-induced HSP70 protein expression in humans
Our studies were among the first to show the effect of acute

exercise on HSP70 protein expression in human peripheral white
blood cells. Ryan et al. showed that treadmill exercise results in
no apparent increase in HSP70 protein expression in human leu-
kocytes.142 Similarly, 2 50-min bouts of moderate intensity aero-
bic exercise143,144 do not affect HSP70 levels in peripheral blood
mononuclear cells (PBMCs). In our recent studies, strenuous
treadmill running (rectal temperature of 40�C) produces a time-
dependent increase in HSP70 protein expression in peripheral
leukocytes, but the difference did not reach statistical signifi-
cance.5 Similarly, a short (4 min) bout of “all-out” cycling results

in a nonsignificant increase in HSP70 protein expression in
monocytes and lymphocytes.145 On the contrary, running in a
hot environment (40�C) with body temperature exceeding 39�C
results in a significant increase in HSP70 in PBMCs within 1 h
after exercise146 following an increase in HSP70 gene147 and
transcript expression.148,149

Exhaustive endurance exercise has been consistently shown to
trigger heat stress response in human leukocytes. In subjects who
completed a half marathon (21.1 km) with an increased plasma
creatine kinase activity indicating exercise-induced skeletal muscle
damage and rectal temperature reaching 44�C, there is a post-exer-
cise increase in HSP70 protein expression in monocytes and granu-
locytes that remains elevated for up to 1 d post-exercise.149,150

Similarly, exhaustive treadmill exercise,148,151 strenuous
cycling,152,153 or repeated sprint cycle exercise154 augments HSP70
protein expression in leukocytes that lasts up to 48 h post exercise.

In skeletal muscle, moderate155 or high intensity exercise156

does not alter HSP70 protein expression within 3 h after cessa-
tion of exercise, despite the fact that HSP70 mRNA levels are
upregulated 4 min post exercise156 and stay elevated 3 h after
exercise termination.156,157 However, a significant effect of exer-
cise on HSP70 protein expression in human skeletal muscle has
been observed as early as 8 h post exercise158 and expression
remains elevated up to 7 d after exercise termination.158-166

When examining exercise training effects on HSP70 protein
expression in humans, it has been shown that a 7-d heat acclima-
tion protocol consisting of 2 50-min exercise bouts in a warm
environmental chamber elevates subjects’ core temperature to
� 39�C and results in a significant increase in HSP70 protein
expression in peripheral leukocytes at 4-h post-exercise.144 Simi-
larly, a 10-d acclimation program involving treadmill walking or
running in a hot environment augments HSP70 content in
peripheral blood mononuclear cells.143,167,168 Elevation of
HSP70 in response to high-intensity and long-term training is
also found after an 11-d training program, but not in response to
short or moderate intensity exercise.146,169-172

Besides exercise intensity, training status and the type of exer-
cise seem to exert considerable effect on HSP70 expression. In
untrained subjects, 5-8 wk of triceps brachii training produce a
significant increase in HSP70,173 whereas 12 wk of concentric
contraction of biceps brachii decrease HSP70 protein expression
in trained athletes.174 Taken together, exhaustive endurance
(acute or training) exercise triggers a heat stress response in
peripheral leukocytes as well as in skeletal muscles, but the mag-
nitude of HSP70 expression depends on exercise intensity and
training status.175 Future studies are needed to clearly determine
the minimum amount of physical activity for increased heat stress
response.

Exercise modulates autophagy in animals
Most scientific interest in autophagy and exercise has been

observed in the last 4 y, despite the fact that the first study show-
ing upregulated autophagy levels in response to exercise was pub-
lished 3 decades ago.176 In these older studies, strenuous physical
exercise associated with the appearance of necrotic fibers in skele-
tal muscle results in the most pronounced changes in autophagy
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levels between 2 and 7 d after exercise and returns to baseline
within 2 wk after exertion. Recently these results were confirmed
in mice performing a short but more strenuous exercise.177 Even
low intensity aerobic exercise (10 m/min for 90 min), however,
augments autophagy in the gastrocnemius muscle, and this effect
is more pronounced in the fasted than in a fed state, suggesting
that a decreased INS/insulin-AKT pathway in the fasted state
exerts a less evident inhibitory effect on autophagy.178

It has also been shown that exercise-induced autophagy is not
limited to skeletal muscle, and that it is also upregulated in adi-
pose tissue, pancreatic b cells, and the brain.36,179

Deficiency of NR1D1/Rev-Erb-a (nuclear receptor subfamily
1, group D, member 1), a nuclear receptor involved in control-
ling hepatic lipid and glucose metabolism results in dysfunctional
mitochondria, their reduced biogenesis, and increased mitochon-
drial clearance via autophagy, as well as reduced exercise capacity.
By contrast, pharmacological activation of NR1D1 with a syn-
thetic ligand, SR9009, improves mitochondrial function and
exercise endurance,180 suggesting that autophagy represents an
important adaptive mechanism in the maintenance of cellular
homeostasis under stress conditions.

The effect of exercise training on autophagy regulation seems
to be multifactorial, and appropriate autophagy levels are funda-
mental for the well-being of an organism. Under basal condi-
tions, the highest autophagy levels are observed in tonic,
oxidative muscles (soleus). In plantaris muscle composed of both
glycolytic and oxidative fibers, intermediate autophagy levels are
observed; the lowest levels of autophagy proteins are present in
glycolytic white vastus lateralis. Voluntary exercise training does
not enhance already high basal autophagy levels in oxidative
soleus muscle, but enhances basal autophagy flux in plantaris
muscle.37 Besides skeletal muscle, aerobic training upregulates
autophagy proteins (BECN1, ATG7, and LC3) in aortic and car-
diac tissues.181,182 Moreover, it seems that autophagy also
depends on the type of exercise. A 5-wk swimming program
decreases gene expression of autophagy proteins (LC3), whereas
5 wk of wheel running increases Lc3 mRNA in the
gastrocnemius.183

Autophagy is responsible for the removal of dysfunctional
proteins, but uncontrolled and exceptionally upregulated autoph-
agy may be harmful and lead to deleterious consequences. In rats,
exposure to an effective antitumor agent, doxorubicin, results in
cardiotoxicity that is associated with an increased oxidative stress
and the upregulation of cellular proteolytic systems, including
autophagy. Although aerobic training exerts no significant change
on autophagic genes and proteins in control animals, it prevents
doxorubicin-induced cardiac muscle damage and significantly
reduces autophagy proteins.184 Similarly, transient middle cere-
bral artery occlusion leads to neurological dysfunctions and
increases LC3 accumulation in the peri-infarct region. Physical
exercise training improves neurological function and inhibits
autophagosome accumulation in this region.185 In rats, pharma-
cologically induced diabetes results in increased muscle atrophy,
reduction in diameter of the muscle fibers, and increased autoph-
agy. Exercise training reverses these changes, increases muscle
mass, and reduces autophagy levels.186 In mice with

experimentally induced myopathy and increased autophagy pro-
teins (LC3-II and SQSTM1/p62), 6 wk of exercise training pre-
vents these changes leading to an improvement in muscle
function and a decrease in atrophy.187

There is growing evidence suggesting that exercise, through
the activation of previously suppressed autophagy, may provide
beneficial effects. In dystrophic mice, voluntary exercise improves
markers of oxidative capacity and autophagy levels, suggesting
that exercise-induced autophagy levels account for exercise bene-
fits.188 It has been reported that mutation in the Col6a¡/¡/colla-
gen VI gene results in skeletal muscle myopathy that is
characterized by myofiber degeneration and decrease in muscle
strength.

189

The Col6a¡/¡ mutant mice fail to trigger autophagy
in response to exercise and this appears to worsen the dystrophic
condition in the mice.177 Long-term resistance training (9 wk)
prevents age-related muscle atrophy and is associated with
increased autophagy levels in rat gastrocnemius muscles.190 Simi-
larly, regular aerobic exercise prevents an age-related decrease in
autophagy proteins (BECN1 and ATG7), suggesting that exer-
cise plays an important role in skeletal muscle remodeling
through the modulation of the degradation of the crucial muscle
proteins.191,192 Taken together, these studies demonstrate the
requirement of autophagy in exercise-mediated development of
skeletal muscle adaptation and physical endurance. They also
suggest that exercise by controlling autophagy adjusts its intensity
to the appropriate levels. Future studies are needed to show that
autophagy contributes to the beneficial effect of exercise in dis-
ease prevention and life-span extension.

Exercise modulates autophagy in humans
Recently, studies have shown that 1 h of aerobic exercise

(70–80% of VO2 max) in a warm (30�C) environment results
in a significant increase in autophagy in peripheral leukocytes.5

Interestingly, glutamine supplementation resulting in an
increase in HSP70 protein expression prevents this exercise-
induced increase in autophagy, suggesting that autophagy
remains under inhibitory control of the heat stress response. In
human skeletal muscles, ultra-endurance running (149 km for
more than 18 h) produces a significant increase in autophagy
proteins (LC3-II and ATG12). These changes correlate with
low plasma insulin levels, reduced activation of AKT, FOXO3,
MTOR, and EIF4EBP1 (eukaryotic translation initiation factor
4E binding protein 1) and concurrent upregulation of
AMPK.193 Conversely, a single bout of resistance exercise has
no effect112 or reduced autophagy levels in both older and
younger adults194 in skeletal muscle. Similar to resistance train-
ing, a short (20 min) sub-maximal aerobic exercise (cycle
ergometer corresponding to 81% VO2 max) exerts no signifi-
cant effect on autophagy regulation in human skeletal mus-
cle.195 Finally, future research is needed to investigate the effect
of exercise (intensity and type) on autophagy regulation in
humans and to determine the role of autophagy under physical
performance. A key question is to identify, besides exercise,
optimal strategies including nutritional modifications that help
autophagy work more effectively.
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Autophagy and heat shock – cooperation through
the complex stress of exercise

Model of control
The heat shock response was fully functional during the evolu-

tion of the system of autophagy. In addition, heat shock both
manages denatured polypeptides and is essential for protein
translocation, multimer assembly, refolding, and protein synthe-
sis. Finally, cells must constantly switch between damaged pro-
tein clearance and rebuilding. These principles argue for a
cooperative interaction between these 2 protein management sys-
tems, heat shock response and autophagy, where one exacts either
activation or inhibitory control over the other. A recent study5

suggests that this is indeed the case and that the heat shock
response regulates autophagy. Single gene overexpression of the
HSP70 protein, the main executor of the heat shock response,
inhibits starvation- or rapamycin-induced autophagy. In addi-
tion, under control conditions, HSF1, the central regulator of
the heat shock response, negatively regulates autophagy.5 The
molecular basis for modulation of autophagy by heat shock
response includes activation of the AKT-MTOR pathway.

Additional evidence from blockage with other proteostasis
pathways supports the above view. Pharmacologically induced
proteasome inhibition upregulates autophagy in mouse cardio-
myocytes,196 human prostate cancer cells,197 and human breast
cancer cells.198 In mouse fibroblasts, autophagy is activated by
selective blockage of chaperone-mediated autophagy.199 Simi-
larly, knockdown of an essential autophagy gene (ATG5) results
in upregulation of chaperone-mediated autophagy in mouse
embryonic fibroblasts.200 Inhibition of the proteasome by using
MG132 activates autophagy in mouse embryonic fibroblasts
through a downregulation of the AKT-TSC-MTOR pathway.201

Similarly, inhibition of the HSP70-dependent proteasomal path-
way by methylene blue enhances degradation of androgen recep-
tor through induction of autophagy, suggesting that the level of
the heat shock response affects the activity of autophagy.202 Pre-
treatment with a chemical chaperone, 4-phenylbutyric acid, pre-
vents an ER stress-induced decrease in the MTOR pathway and
results in autophagy inhibition. In colorectal cancer cells, tran-
sient knockdown of HSP70 expression (siRNA) potentiates,
whereas HSP70 overexpression (adenovirus to express HSP70)
prevents, an increase in autophagy induced by the pro-apoptotic
agent OSU-03012.203 Moreover, mild heat preconditioning
associated with HSP70 overexpression inhibits heat-induced
autophagy and this effect is diminished by HSP70 inhibition
with triptolide pretreatment.84 The above studies indicate that
the heat shock response and autophagy are linked and that
autophagy remains under regulatory control of the heat shock
response. In addition, we propose that HSP70 itself acts as a part
of the intracellular control mechanism, switching the cell from
the degradation phase to the building and protein synthesis
phase.

Exercise as a model
The genesis of our hypothesis of heat shock regulatory control

over autophagy was grounded in part upon the concept that cells

must constantly switch between protein breakdown/clearance
and rebuilding. Nowhere is this better demonstrated than in the
complex stress of exercise. Consistent with cell-based studies of
heat shock regulation of autophagy, it has been demonstrated
that glutamine supplementation as a heat shock activator prior to
exercise results in a significant increase in HSP70 protein expres-
sion in human PBMCs. This pre-exercise increase in HSP70 pre-
vents the expected increase in autophagy in response to exercise
in human subjects.5

The responses of skeletal muscle to exercise provide an exam-
ple of physiological adaptations to constantly changing physical
activity of an organism. At the cellular level, changes in intracel-
lular temperature, pH, and energy status during exercise pose
homeostatic challenges. In addition, the adaptation to work also
poses significant challenges to the systems involved in break-
down, transport, and synthesis of proteins. In this regard, the
skeletal muscle tissue is highly regulated by protein turnover
comprised of degradation and rebuilding of the muscle fibers. In
response to decreased mechanical stress, skeletal muscle tissue
undergoes rapid atrophy characterized by the loss of mass and
size.204,205 On the other hand, mechanical stimulation of the tis-
sue leads to increased mitochondrial content,206 improved insu-
lin sensitivity,207 enhanced muscle strength, and increased
size.208 During catabolic conditions, muscle proteins are catabo-
lized to maintain gluconeogenesis in the liver,209 but excessive
degradation of the muscle tissue may be extremely damaging for
the organism, leading to muscle wasting and even death. In
patients with lung cancer cachexia, enhanced autophagy has been
shown to increase muscle proteolysis, suggesting that impaired or
exaggerated autophagy in the muscle tissue plays a role in the eti-
ology of pathological conditions and is responsible for the dam-
age of the muscle tissue.42,44

The immediate post-exercise phase is characterized by
increases in catabolic signals such as IL6/interleukin 6 and pro-
tein turnover. In healthy, active human subjects, infusion of
recombinant IL6 causes a significant increase in the net release of
amino acids from the muscle.210 IL6, among other pro-inflam-
matory cytokines, has also been implicated in the development of
a cachectic conditions in skeletal muscles211 and is also responsi-
ble for activation of autophagy in cell culture models.212

We propose that recovery from and adaptation to exercise rep-
resents a single, unified physiological response resulting from
cooperation between autophagy and the heat shock response, 2
protein management systems. In this model, the initial phase of
exercise-induced damage activates protein turnover to recycle
and reclaim amino acids and to remove damaged proteins. This
phase is mediated by a host of factors that drive autophagy. Turn-
over must be stopped to allow for repair. This protein synthesis
and protein folding is regulated by heat shock proteins. When
the cellular response to exercise is seen as a continuous process of
coordinated breakdown and repair, this concept, coupled with
the evidence that HSP70 may control autophagy,5 supports a
model in which HSP control of autophagy is the mechanism by
which the organism adapts to exercise. During this collaboration,
autophagy and HSP function in concert in order to build muscle
and create the adaptation. We propose that HSP serves as a

206 Volume 11 Issue 2Autophagy



switch that turns off autophagy
and allows the organism to shift
from reclamation to building.

The combined activities of
autophagy and the heat shock
response in exercise adaptation

We undertook an analysis of
the temporal relationship
between the heat shock response,
represented by changes in HSP70
protein expression, and autoph-
agy, represented by changes in
LC3 following exercise. We con-
ducted a systematic search of
PubMed focusing on the terms
“exercise, autophagy, HSP70,
protein synthesis, protein break-
down, and humans.” Four meas-
ures (autophagy, heat shock
response, protein synthesis, and
breakdown) have been included
in the analysis presented in
Figure 2 in support of this
model. In our analysis, we col-
lected and analyzed 1) 22 publi-
cations (with a total of 231
subjects) studying the effect of
acute exercise on HSP70 protein
expression in humans; 2) 5 publi-
cations (with a total of 70 sub-
jects) examining the effect of
acute exercise on autophagy acti-
vation; 3) 20 publications (with a
total of 204 subjects) investigat-
ing the effect of acute exercise on
protein synthesis in humans, and
4) 6 publications (with a total of
61 subjects) testing the effect of
acute exercise on protein break-
down in humans. The following
inclusionary and exclusionary cri-
teria were used in our analysis:
exercising human (both females
and males) subject studies were
used regardless of 1) age of partic-
ipants , 2) training status of sub-
jects, 3) exercise intensity (low,
moderate, or high), 4) type of
exercise (aerobic [running,
cycling, or rowing] or resistance),
5) collected tissue (muscle tissue
or white blood cells), 6) protein
measurement (western blot analy-
sis, flow cytometry, or immunos-
taining). Only studies with

Figure 2. Time-course effect of acute exercise on (A) heat shock response (HSP70) and autophagy (LC3), and
(B) protein synthesis and protein breakdown in humans based on acute exercise trials listed in Tables S1-4.
Each dot represents 1 measurement. In both panels (A and B) the X-axis represents the time from the start of
exercise, that is the sum of times in hours representing duration of exercise and collection time post-exercise;
in panel (A), the Y-axis represents relative intensity of HSP70 protein expression (Table S1) or LC3 protein
expression (Table S2); in panel (B), the Y-axis represents relative intensity of protein synthesis (Table S3) or
protein breakdown (Table S4). (Insets) Expanded views of the first 25-h time point. Axes titles removed for
clarity. The X-axis represents time from the start of exercise in hours, and the Y-axis represents relative inten-
sity (% from control). In the (A) inset the Y-axis scale was truncated to improve clarity.
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calculated relative protein intensity of LC3 (marker of autoph-
agy) or HSP70 (marker of the heat stress response) were used in
the analysis, followed by normalization to the control, pre-exer-
cise, or baseline values and set to 100%. For resistance exercise,
when duration of exercise was not provided, only time after exer-
cise was used for the analysis, otherwise time from the initiation
of the exercise was used. Due to exceptionally high (1000-3200
fold increase with standard error reaching § 3000 compared
with a combined average of 164 § 1 in other studies) HSP70
protein expression, a study by Khassaf et al.160 was excluded
from the analysis. We used linear and nonlinear regression analy-
ses to describe relationships between time since initiation of exer-
cise and HSP70 protein expression, autophagy, synthesis, and
breakdown. Analyses accounted for random study effects, but
did not weight study effect sizes by their precision, as variance
estimates were not available for all studies. Prior to analyses,
effect sizes on the percent scale were log-transformed (ln[Effect_
Size/100]) to improve normality of residual errors and homoge-
neity of variances. Models did not include an intercept, which
constrained fitted models to predict 100% response at the initia-
tion of exercise. Nonlinear regression with study random effects
was used to analyze synthesis rate data. In addition we conducted
exploratory analyses to assess whether trajectories differed with
respect to whether measurements were made on skeletal muscle
or on PBMCs.

Time since initiation of exercise explained significant amounts
of variation in HSP70 (P < 0.001), protein synthesis
(P <0.001), and protein breakdown (P D 0.01), but not for
autophagy (P > 0.15). As shown in Fig. 2, the analysis of human
exercise studies demonstrates that autophagy represented by LC3
protein expression has only been measured � 24 h after comple-
tion of exercise with 8 out of 12 points showing reduced expres-
sion shortly after exercise. Overall, a quadratic polynomial model
shows a peak 1.75-fold increase in LC3 protein expression during
the initial, degradation phase of exercise, about 14 h from the
start of exercise. However, the relationship between time and
autophagy appears to be different for PBMCs and muscle. Three
points with increasing expression <8 h after exercise initiation
were measured in PBMCs by Dokladny et al.,5 whereas 8 of 9
skeletal muscle observations had reduced expression. Given the
limited number of autophagy measurements analyzed, additional
studies are needed to assess autophagy measured in PBMCs and
skeletal muscle. In contrast to the apparent initial increase and
decline in autophagy within 24 h, cellular HSP70 levels rise to
peak levels at about 105 h after exercise initiation (»2-fold
increase when compared with pre-exercise values) and then
decline. These changes in autophagy and HSP70 levels correlate

with changes in measures of protein breakdown and protein syn-
thesis. In response to one bout of exercise, the rate of protein
breakdown shows a modest change since exercise began increas-
ing, to about 30% above baseline at about 24 h and then decreas-
ing. Protein synthesis rate increased about 2-fold in the first
8 hours after initiation of exercise and gradually approached
baseline after 24 h. Peak synthesis rate was predicted to be
between 8 and 12 h; however, we found no studies with measure-
ments in this range and therefore additional research is needed to
determine the peak and duration of increased synthesis rate.

Conclusions

In the present review, we proposed a model of cooperation
and control between autophagy and the heat shock response dur-
ing exercise in humans. Our model has been supported by the
direct cellular data of the effect of exercise on heat shock response
and autophagy in humans. The model shows that autophagy is
primarily upregulated in the initial degradation phase of exercise,
whereas heat shock response is mainly activated in the building
and protein synthesis phase of exercise. The model also suggests
that heat shock response represented by HSP70 is an intracellular
control mechanism switching the cell from the initial degradation
phase (autophagy) to the building and protein synthesis phase.
More studies are needed to fully determine the relationship
between exercise and autophagy in exercising humans and ani-
mals and also to delineate the role of the heat shock response in
regulation of other proteolytic systems in cell culture models, ani-
mals, and humans. As more research occurs and data accumulate,
refinement of this model may help us understand the factors and
conditions influencing the interactions between various intracel-
lular systems responsible for maintaining protein homeostasis.
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