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1. Introduction 

 

Since more than two decades, efficient and long afterglow persistent luminescent materials are available for 

emergency signalization, road markings and toys. Available emission colors range from violet to red, but longer 

wavelengths are hard to achieve with rare earth dopants. While near-infrared emitting phosphors could be useful 

in night vision or security applications, they are especially promising for medical imaging. Next to Mn4+ [1], Cr3+ 

is an excellent dopant for emission in the so-called first optical window for bio-imaging, from 650 to 950 nm [2]. 

In this work, the spinel LiGa5O8 is used as the host for Cr3+ ions, leading to a combination of broadband and 

narrowband emission around 720 nm  [3,4]. Even without any co-dopants, afterglow can be measured for several 

hours. 

 

2. Results 

 

A combination of the initial rise and Tstop-Tmax methods was shown to be an efficient way to retrieve the distribution 

of trap depths in the persistent phosphor LiGa5O8:Cr3+. A large data set was produced by making a series of TL 

(thermoluminescence) measurements at different excitation temperatures. All these data were fitted simultaneously 

using a single set of trapping parameters. The traps were found to consist of three broad Gaussian trap distributions, 

see figure 1 [5]. This single set of model parameters allowed to accurately describe the experimental afterglow 

characteristics of the phosphor, as shown in figure 2. In addition, the parameters can be used to predict other effects 

of fading and the temperature dependence of the afterglow, which was measured independently.     
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Fig. 2: Experimental (markers) and predicted afterglow 

(full line), based on the calculated trap distributions. 
Fig. 1: Trap distribution calculated from the TL data. 

The expected trap filling factor at 20°C is also indicated. 
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