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Abstract

In this article we prove bounds for the boundary length of patches with
a given set of bounded faces. We assume that with t the number of given
triangles, q the number of quadrangles, and p the number of pentagons, the
curvature 3t + 2q + p is at most 6 and that at an interior vertex exactly
3 faces meet. There is no restriction on the number of faces with size 6
or larger. We prove that one gets a patch with shortest boundary if one
arranges the faces in a spiral order and with increasing size. Furthermore
we give explicit formulas that allow to determine all boundary lengths that
occur for patches with given numbers p, q and t < 2 and no bounded face
larger than 6.

The patches studied in this article occur as subgraphs of 3-regular graphs
in mathematics as well as models for planar polycyclic hydrocarbons in
chemistry where the bounds allow to decide on the (theoretical) existence
of molecules for a given chemical formula.
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Introduction

Connected bridgeless plane graphs in which all bounded faces are hexagons,
all vertices have maximum degree 3 and all vertices not in the boundary of
the outer, unbounded face have degree exactly 3 are especially interesting
as they are models for benzenoids and fusenes in chemistry, correspond to
closest packings of spheres, and occur as subgraphs of cubic plane graphs.
Several papers – the earliest one being [10] – independently determine the
shortest possible length of the boundary as a function of the number of
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hexagons. The central result of these papers is that you get the shortest
possible boundary if you arrange the hexagons in a spiral fashion around a
central hexagon. With this key result it is possible to decide on the exis-
tence of benzenoids for a given chemical formula and determine sequences of
formulas with an equal number of isomers (see e.g. [7]). With the advent of
fullerenes (that is: carbon molecules corresponding to 3-regular plane graphs
with only pentagons and hexagons) also patches with bounded faces of size
5 (but still maximum face size 6 of a bounded face) became increasingly
interesting and in [2] the result from [10] was generalized to patches allow-
ing up to 6 pentagons in an otherwise hexagonal patch. The result from
which the formulas for the smallest boundary length as a function of the
number p of pentagons and h of hexagons was deduced is that the smallest
boundary is obtained by arranging the faces in a spiral fashion starting with
the pentagons. This result found applications in mathematics, chemistry,
algorithms and the interplay between these disciplines (see e.g. [1],[5],[6]).
Already at that time it was conjectured that by using similar methods as in
[2] the result could be further generalized to patches also allowing t triangles
and q quadrangles – as long as the curvature 3t + 2q + p is at most 6 and
that in this case spirals using the faces in increasing order of their size give
shortest boundaries.

In her Diploma thesis [8] Anke Egging attacked this problem and an-
nounced that result as well as formulas for the minimal boundary length
for given t, q, p, and number h of hexagons. The result was applied in the
PhD thesis [11] of Claudia Justus, who noted and corrected an error in the
formulas. Although these results were not published in a journal, they had
some impact and were used by other researchers (see [9],[13]). In the proof
of one of Barnette’s conjectures [12], Frantǐsek Kardoš used a version of this
theorem with curvature at most 5 and a special structure of the boundary
cycle for which he provided his own proof. Later it was detected that in [8]
not only the formulas, but also the proof of the central theorem on which
all other results are based – the minimality of spirals – contained an error
that could not easily be corrected. Egging proved the minimality of spirals
among all patches with the same set of bounded faces as a direct conse-
quence of another theorem and not only the proof of the stronger theorem,
but also the stronger theorem itself are wrong.

In this article we prove the minimality of spirals in an even more gen-
eral context also allowing bounded faces of size more than 6 and give the
corrected formulas as described in [11] for face size at most 6.
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Basic definitions and results

We assume all plane graphs to be embedded in the plane – not the sphere.
To this end there is a unique unbounded or outer face.

Some elementary proofs are left to the reader. The basic strategy and
some proofs follow the lines of [2].

Definition 1. The face sequence of a plane graph with l bounded faces is the
sequence (s1, s2, . . . , sl) of face sizes of bounded faces, sorted in increasing
order. A sequence s = (s1, . . . , sl) for some l is called simple, if the curvature
c(s) =

∑

si<6(6 − si) is at most 6, s1 ≥ 3 and the entries are in increasing
order.

The excess ex(s) of a simple sequence s = (s1, . . . , sl) is defined as ex(s) =
∑l

i=1(si − 6).
A c-6-patch (short for curvature-6-patch) is a finite simple plane 2-connected

graph with a simple face sequence and maximum degree 3 in which each
vertex not in the boundary of the unbounded face has degree exactly 3.
We denote a c-6-patch P with face sequence s by s-patch and also define
ex(P ) = ex(s). Note that by definition we have ex(P ) ≥ −6.

For a simple sequence s, an (s, k)-patchset P̄ is a set of k (nonempty)
c-6-patches P1, . . . , Pk so that s is the sequence of all sizes of bounded faces
in the patches sorted in increasing order. We assume the patches to be
embedded in a way that no patch is embedded in a bounded face of another
patch.

The boundary length b(P ) of a c-6-patch P is the number of vertices (or
equivalently: edges) in the boundary of the unbounded face. The boundary
length b(P̄ ) of an (s, k)-patchset P̄ = {P1, . . . , Pk} is defined as b(P̄ ) =
∑k

i=1 b(Pi). We denote the number of vertices in the boundary that have
degree 2, resp. 3, by v2,b(P ), resp. v3,b(P ). The number of bounded faces
that share an edge with the unbounded face is denoted by fb(P ).

For a simple sequence s = (s1, . . . , sl) and 1 ≤ k ≤ l we define
min(s, k) = min{b|∃(s, k)-patchset P̄ with b(P̄ ) = b}
min(s) = min{min(s, k)|1 ≤ k ≤ l}
max(s, k) = max{b|∃(s, k)-patchset P̄ with b(P̄ ) = b}

Observing that inner duals (that is: the dual graph without the vertex
corresponding to the outer face) of c-6-patches are connected, it is easy to
determine max(s, k):

Lemma 2. For a simple sequence s = (s1, . . . , sl) and an (s, k)-patchset P̄
we have that b(P̄ ) = max(s, k) if and only if the inner dual of each patch is
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a tree.
As a consequence we have max(s, k) =

∑l
i=1(si − 2) + 2k.

Proof. Let e2(P̄ ) (resp. e2(P )) denote the number of edges in P̄ (resp. in
a c-6-patch P ) that are contained in two bounded faces. In a patch with f
bounded faces we have e2(P ) ≥ f−1 and e2(P ) = f−1 if and only if the in-
ner dual of P is a tree. This implies that e2(P̄ ) ≥ l−k. The edges contained
in two bounded faces are exactly the edges not in the boundary. Summing
up all face sizes of bounded faces and subtracting the interior edges, which
are not in the boundary, but were counted twice, we get

b(P̄ ) =

l∑

i=1

si − 2e2(P̄ ) ≥
l∑

i=1

si − 2(l − k) =

l∑

i=1

(si − 2) + 2k

with equality if and only if the inner dual of every patch is a tree.
The fact that such patch sets do in fact exist, is elementary.

Lemma 3. For a c-6-patch P we have
v2,b − v3,b = 6 + ex(P ) which implies

• b(P ) = 2v3,b + 6 + ex(P ) and

• v2,b ≥ v3,b

Proof. Let s = (s1, . . . , sl) be the face sequence of P . Summing up the sizes
of all bounded faces, we count all interior vertices three times, boundary
vertices with degree 3 two times and boundary vertices with degree 2 once.
For the number v of vertices this gives

v =

∑l
i=1 si + v3,b + 2v2,b

3
.

Summing up all face sizes – including the size of the outer face – we
count each edge twice and get for the number e of edges that

e =

∑l
i=1 si + v3,b + v2,b

2
.

Inserting this together with 1 + l for the number f of all faces into the
Euler formula v − e+ f = 2 we get
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∑l
i=1 si + v3,b + 2v2,b

3
−

∑l
i=1 si + v3,b + v2,b

2
+ l + 1 = 2.

Simplifying that gives

−(
l∑

i=1

si − 6l)

︸ ︷︷ ︸

−ex(P )

−v3,b + v2,b = 6.

This implies the formulas in the lemma.

Lemma 4. For a simple sequence s = (s1, . . . , sl) and 1 ≤ k < l we have
min(s, k) < min(s, k + 1), so especially min(s) = min(s, 1).

Proof. We call a boundary edge with both endpoints of degree 2 a convex
edge.

Let {P1, . . . , Pk+1} be a patchset realizing min(s, k+1). If there are two
patches Pi, Pj each with a convex edge, we can identify these edges and get
an (s, k) patchset with boundary length min(s, k + 1)− 2.

By Lemma 3 each patch Pi with ex(Pi) > −6 has a convex edge, so the
only case where it is possible that no two such patches exist, is k+1 = 2 and
one patch – w.l.o.g. P1 – has ex(P1) = −6 and the degrees of the vertices
in the boundary alternate between 2 and 3 and the other patch P2 contains
only faces of size at least 6 and therefore satisfies ex(P2) ≥ 0.

If P2 has three neighbouring vertices of degree 2 in the boundary, the
path connecting these vertices can be identified with a path of length two
with a central vertex of degree 3 in the boundary of P1 to get a patch with
a shorter boundary.

If there are at most two neighbouring vertices with degree 2 in the bound-
ary, there is a hexagon in the boundary of P2 containing a convex edge: if
all bounded faces in the boundary with convex edges had size at least 7,
we could remove one of the vertices of each convex edge and get a patch P ′

without convex edges but ex(P ′) ≥ 0 – contradicting Lemma 3. Note that
under these circumstances a face with m convex edges has size at least 4m
(three boundary edges and one internal edge for each convex edge), so that
we can remove a vertex of degree 2 of each convex edge and the remaining
face size is still at least 6. So let h be a hexagon with a convex edge. This
must be the only convex edge of h. Removing h, the result is either con-
nected or falls into two parts – each with a convex edge it shared with h.
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After possibly identifying two parts along these convex edges we get a patch
P− with boundary length at most b(P2).

The boundary of P2 contains at least 6 vertices of degree 3 neighbouring
only vertices of degree 2 (a consequence of Lemma 3), so there is a vertex
v not neighbouring a vertex of h that has this property also in P−. We
can identify opposite vertices of h once with v and once with a vertex of
degree 3 in P1 and get a patch with boundary length b(P1)+b(P−)−4+2 ≤
b(P1) + b(P2)− 2.

Lemma 5. For every c-6-patch P with at least two bounded faces we have
fb(P ) ≤ v3,b(P ) and fb(P ) = v3,b(P ) if and only if the intersection of each
boundary face with the boundary is connected.

Proof. The proof is identical to that of Remark 3 in [2], which states the
same result for a more restricted class.

We can fix a direction to traverse the boundary and map each boundary
vertex with degree 3 to the boundary face containing the edge following
the vertex in the chosen direction. This mapping is always surjective (so
fb(P ) ≤ v3,b(P )) and bijective if and only if the intersection of each boundary
face with the boundary is connected, so that fb(P ) is equal to v3,b(P ) exactly
in this case.

Lemma 6. Let P be a c-6-patch. Then b(P )− ex(P ) is even.

Proof. If C is the set of edges of P that is contained in two bounded faces
and s = (s1, . . . , sl) is the face sequence, then

b(P ) =
l∑

i=1

si − 2|C|

and
b(P )− ex(P ) =

∑l
i=1 si − 2|C| −∑l

i=1(si − 6) = 6l − 2|C|.

Lemma 7. Let P be a c-6-patch with at least one interior face and let P−

be the patchset obtained by removing all boundary faces of P . Then

b(P−)− ex(P−) ≤ b(P )− ex(P )− 2(6 + ex(P−))

and we have equality if and only if each face in the boundary of P has exactly
two boundary faces as neighbours.
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Proof. The inner dual induced by the boundary faces of P is connected and
due to the fact that P has an interior face, it has at least one cycle. So
it has at least fb(P ) edges, or in other words: the boundary faces share at
least fb(P ) edges.

The boundary edges of P− are exactly those edges that are contained in
a boundary face of P , but are neither in the boundary of P nor shared by
another boundary face, so with s′1, . . . , s

′

fb(P ) the sizes of the boundary faces
we have

b(P−) ≤
fb(P )
∑

i=1

s′i − b(P )− 2fb(P ).

We can write
∑fb(P )

i=1 s′i as

fb(P )
∑

i=1

s′i =

fb(P )
∑

i=1

(s′i − 6) + 6fb(P ) = ex(P )− ex(P−) + 6fb(P ),

and therefore

b(P−) ≤ ex(P )−ex(P−)+6fb(P )−b(P )−2fb(P ) = ex(P )−ex(P−)+4fb(P )−b(P ).

By Lemma 3 we can replace b(P ) and get

b(P−) ≤ ex(P )−ex(P−)+4fb(P )−2v3,b−6−ex(P ) = 4fb(P )−ex(P−)−2v3,b−6.

By Lemma 5 we can replace fb(P ) by v3,b and by Lemma 3

b(P−) ≤ 2v3,b − 6− ex(P−) = b(P )− 6− ex(P )− 6− ex(P−).

Subtracting ex(P−) on both sides we get the first result in the lemma.
In order to have equality we have to have equality in Lemma 5, which

is the case if and only if the intersection of each boundary face with the
boundary is connected. If a boundary face f shared only one edge with
another boundary face f ′ and there are more than two faces, then at least
one of f, f ′ would have a disconnected intersection with the boundary. So
each boundary face shares at least 2 edges with other boundary faces, but
then our estimation that the boundary faces share at least fb(P ) edges is
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sharp if and only if every boundary face shares exactly two edges with other
boundary faces. This property alone also implies that the intersection of
each boundary face with the boundary is connected, so that all inequalities
become equalities.

Definition 8. A spiral patch – or spiral for short – is a c-6-patch with
bounded faces f1, . . . , fl for which a bijective mapping sp : {1, . . . , l} →
{f1, . . . , fl} exists so that with Sk the subgraph consisting of the vertices
and edges of the faces sp(1), . . . , sp(k) we have

• for 1 ≤ i ≤ l Si is a c-6-patch with bounded faces sp(1), . . . , sp(i) and
face sp(i) is in the boundary

• for 1 < i ≤ l face sp(i) has a connected intersection C with Si−1, C
contains an edge of sp(i− 1) and for i > 2 it also contains an edge of
the face sp(j) with j the smallest index so that sp(j) is in the boundary
of Si−1

We call sp(·) a spiral numbering and for a given simple sequence s =
(s1, . . . , sl) we call a patch the spiral for s (and denote it by Ss, resp. Ss,k

for k ≤ l if restricted to s = (s1, . . . , sk)) if it has a spiral numbering so that
for 1 ≤ i ≤ l we have that sp(i) has size si.

Spirals do not exist for every increasing sequence – e.g. not for (3, 4, 5, 5, 6, 6, 6)
– but they do exist for simple sequences. The uniqueness of spirals (up to
reflection) follows immediately by induction on the number of faces.

Definition 9. A strong spiral sequence is a simple sequence s = (s1, . . . , sl),
so that

• l = 1 or

• l = 2 and ex(s) > −6 or

• l ≥ 3 and there is a spiral Ss with the following properties:

(i) The boundary of Ss is formed in cyclic order by faces sp(i), sp(i+
1), . . . , sp(l) for some 1 ≤ i < l.

(ii) For j > i face sp(j) has a path with at least 2 edges in the
boundary.

(iii) Face sp(l) has a path with at least 3 edges in the boundary.
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Lemma 10. Let s = (s1, . . . , sl) be a strong spiral sequence and s′ =
(s1, . . . , sl, sl+1, . . . sl′) a simple sequence that has s as a prefix.

If sl+1 ≥ 6, then s′ is a strong spiral sequence too.

Proof. We will prove the lemma by induction and only have to describe the
step l → l + 1 for each l. The case l = 1 is trivial and for l = 2, faces
sp(1), sp(2), sp(3) form the boundary after extending the sequence with an
entry s3 ≥ 6. Face sp(1) has at least 2 edges in the boundary of S(s1,s2),
so after adding a new face, at least 1 edge remains. Face sp(2) has at least
3 edges in the boundary of S(s1,s2), so after adding a new face at least 2
edges remain. Face sp(3) has at least 4 edges in the boundary of S(s1,s2,s3),
so (s1, s2, s3) is a strong spiral sequence too.

We start with a spiral for s = (s1, . . . , sl) with properties (i), (ii), and
(iii). assuming that the faces in the boundary of this spiral are sp(l0), . . . , sp(l),
we just have to observe that face sp(l+1) must contain the common bound-
ary vertex of sp(l0) and sp(l) together with one edge of sp(l) and one edge of
sp(l0). If sp(l0) had only one edge in the boundary, the new cyclic order is
sp(l0+1), . . . , sp(l+1), as sp(l0+1) had at least two edges in the boundary
before. The face sp(l+1) shares one edge with sp(l), one with sp(l0) and at
most one with sp(l0 + 1) – so sp(l + 1), which has at least 6 edges, has at
least 3 edges in the boundary and sp(l0+1) at least one. If sp(l0) had more
than one edge in the boundary, the new cyclic order is sp(l0), . . . , sp(l + 1)
and (ii) and (iii) follow analogously.

For some simple sequences s = (s1, . . . , sl) the boundary length does not
monotonically increase when building the spiral one face at a time. This
causes problems in some inequalities when comparing the bounday length
with the boundary length of smaller c-6-patches. The following lemmas shed
some light on the structure of these problematic sequences.

Lemma 11. All simple sequences s = (s1, . . . , sl) with c(s) < 6 are strong
spiral sequences and all simple sequences s with c(s) = 6 are either strong
spiral sequences or the prefix s′ of s consisting of the k elements smaller than
6 has a spiral with even boundary length p and the degrees of the vertices in
the boundary alternate between 2 and 3. In this case we call s a weak spiral
sequence and s′ a weak prefix.

If s = (s1, . . . , sl) is a weak spiral sequence with weak prefix (s1, . . . , sk)
and sj > 6 for some j > k, then l < min{m|m > j and p− k ≡ 0(mod p

2)},
so the sequence s contains less than p

2 elements larger than 6. All bounded
faces with more than 6 edges are in the boundary of Ss and have at most 4
internal edges.
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Figure 1: Spirals with at least 3 bounded faces, curvature less than 6 and all
bounded faces of size at most 5.

Proof. Except in the case s1 = s2 = 3 where the vertices in the boundary of
the spiral have degrees 2, 3, 2, 3 in this order, for l ≤ 2 or s3 ≥ 6 already the
prefix s = (s1, s2) is a strong spiral sequence and therefore due to Lemma 10
also s. The spirals for all other possible prefixes consisting of the elements
that are smaller than 6 are given in Figure 1 and Figure 2. Checking these
cases proves the first part of the lemma.

For the second part it is sufficient to note that for m = k + x · p
2 for

some x > 0 and s′′ = (s1, . . . , sk, s
′′

k+1, . . . , s
′′

m) a simple sequence with prefix
(s1, . . . , sk), the spiral Ss′′ has a boundary of length p and the degrees of the
vertices in the boundary alternate between 2 and 3 if s′′m = 6 and that s′′ is
a strong spiral sequence if s′′m > 6.

Lemma 12. Let s = (s1, . . . , sl) be a weak simple sequence with weak prefix
s′ = (s1, . . . , sk). For k ≤ i ≤ l we have that

b(Ss,i)− ex(Ss,i) ∈ {b(Ss′)− ex(s′), b(Ss′)− ex(s′) + 2}.

Let p =
b(S

s′
)

2 . If i+ p ≤ l then b(Ss,i)− ex(Ss,i) = b(Ss,i+p)− ex(Ss,i+p).

Proof. As for the spiral of the weak prefix the degrees of the vertices in the
boundary alternate between 2 and 3, we can easily check that by adding
hexagons, b(·) − ex(·) first grows by 2 – in fact b(·) grows and ex(·) stays
constant – until p hexagons have been added. At that point b(·) is decreased
by 2 and we are back at the same boundary structure and length. This proves
the periodic behaviour of b(·) − ex(·) if only hexagons are added. If during
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Figure 2: Spirals with curvature 6 and all bounded faces of size at most 5.

one of the additions an entry si > 6 occurs, the values of b(·) and ex(·) are
both increased by an additional si − 6, so b(·) − ex(·) is the same as in the
case of si = 6.

Note that if sl > 6, and i is the maximal index so that for Ss,i the degrees
of the vertices in the boundary alternate between 2 and 3, then l − i < p,
as for l ≥ i + p the sequence s would either be a strong spiral sequence (if
si+p > 6) or for Ss,i+p the degrees of the vertices in the boundary would
alternate between 2 and 3 – contradicting the maximality of i.

In Figure 2 all spirals with curvature 6 and all face sizes smaller than 6
are displayed. From this figure we see that the only weak prefixes are (3, 3),
(3, 5, 5, 5), (4, 4, 4), (4, 5, 5, 5, 5), and (5, 5, 5, 5, 5, 5).

Definition 13. Let Ss be a spiral for a simple sequence s = (s1, . . . , sl)
and s+ = max{6, sl}. A spiral Scl(s) is called an enclosing spiral for Ss

if cl(s) = (s1, . . . , sl, sl+1, . . . , sm) with sl+1 = sl+2 = · · · = sm = s+,
sp(1), . . . , sp(l) are interior faces and m is minimal with this property.

Lemma 14. Let s = (s1, . . . , sl) be a strong spiral sequence and l ≥ 2. Then
Ss has the following properties:

(i) There exists an enclosing spiral Scl(s).

(ii) Each face in the boundary of Scl(s) shares an edge with exactly two
boundary faces.
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(iii) If s′ = (s1, . . . , sl, sl+1, . . . , sl′) is a simple sequence with s as prefix
and with sl+1 ≥ 6 then b(Ss)− ex(s) ≤ b(Ss′)− ex(s′). A special case
is b(Ss)− ex(s) ≤ b(Scl(s))− ex(cl(s)).

(iv) The interior faces of Scl(s) are exactly sp(1), . . . , sp(l).

Proof. Item (i) follows immediately from the fact that a spiral for s′ =
(s1, . . . , sl, sl+1, . . . , sm) for arbitrarily large m exists (Lemma 10) and from
the fact that the last face contains an edge of the smallest numbered face in
the boundary.

Due to Definition 8, Lemma 10 and Definition 9 each boundary face of
Scl(s) shares edges with at least two other boundary faces. We will argue in
the inner dual D of Scl(s). Assume now that there are vertices with degree 3
or more in the subgraph G of D induced by the vertices of D corresponding
to boundary faces. Then G contains a subgraph consisting of the boundary
cycle and a chord that can be described as the union of two cycles C1,
C2 sharing an edge and with disjoint interior. In D, one of them, say C1,
contains all vertices corresponding to faces sp(1), . . . , sp(l) in the interior.
Let i be an index, so that sp(i) ∈ C2, but sp(i) 6∈ C1. This implies that
sp(i) has no edge in common with sp(1), . . . , sp(l), so Scl(s),i−1 has none of
the faces sp(1), . . . , sp(l) in the boundary – contradicting the minimality of
the enclosing spiral. This implies (ii).

Item (iii) follows from item (ii) of Definition 9 and Lemma 10 which
imply that for i > l each face sp(i) shares at most 3 edges with Ss′,i−1. This
again implies that b(Ss′,i) ≥ b(Ss′,i−1) − 3 + (si − 3). On the other hand
ex(s1, . . . , si−1) + (si − 6) = ex(s1, . . . , si). Combining this we get

b(Ss′,i)−ex(s1, . . . , si) ≥ (b(Ss′,i−1)+(si−6))−(ex(s1, . . . , si−1)+(si−6))

= b(Ss′,i−1)− ex(s1, . . . , si−1).

Item (iv) is a consequence of items (i) and (ii) of Definition 9 and of
Lemma 10. If Scl(s) has m bounded faces, then sp(m) shares an edge with
sp(l) which is a boundary face in the spiral S− without sp(m). As sp(l+ 1)
has at least two edges in the boundary of S− it has at least one edge in the
boundary of Scl(s), so sp(l + 1), . . . , sp(m) are no interior faces.

Definition 15. For a simple sequence s = (s1, . . . , sl) and 1 ≤ j ≤ l we
write ex(s, j) =

∑j
i=1(si − 6).

We say that a simple sequence s = (s1, . . . , sl) is dominated by a simple
sequence s′ = (s′1, . . . , s

′

l) (of the same length) and write s � s′ if for all
1 ≤ j ≤ l we have that ex(s, j) ≤ ex(s′, j).
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Theorem 16. Let s, s′ be two simple sequences such that s � s′. Then for
the spiral Ss and every s′-patch P we have that

b(Ss)− ex(Ss) ≤ b(P )− ex(P ).
As s � s this implies b(Ss) = min(s).

Proof. Assume that for some m ≥ 6 there are sequences s = (s1, . . . , sl) and
s′ = (s′1, . . . , s

′

l), so that the spiral Ss and the s′-patch P are counterexamples
(that is: s � s′ and b(Ss)− ex(Ss) > b(P )− ex(P )) with sl ≤ m and s′l ≤ m.

Among all these sequences choose s, s′ so that the string o(s′, s) =
[−l, s′1, s1, s

′

2, s2, . . . , s
′

l, sl] is lexicographically maximal. Note that this im-
plies that the number of faces is minimal. All bounded faces in the boundary
of P have size m, as otherwise we could subdivide boundary edges to obtain
faces of size m without changing b(P ) − ex(P ), but resulting in a sequence
s′ with larger o(s′, s) while still s � s′.

By Lemmas 3 and 5 we have
b(P )− ex(P ) = 2v3,b(P ) + 6 ≥ 2fb(P ) + 6 and
b(Ss)− ex(Ss) = 2v3,b(Ss) + 6 = 2fb(Ss) + 6

as boundary faces in spirals have a connected intersection with the boundary.
This implies that fb(P ) < fb(Ss) and especially fb(P ) < l, so P has an

interior face.
Removing the b boundary faces of P , Lemma 7 gives for the resulting

patchset P− that b(P−)− ex(P−) ≤ b(P )− ex(P )− 2(6 + ex(P−)) and with
P0 the patch with minimal boundary length for the resulting face sequence
s′
−
we have by Lemma 4 that b(P0)−ex(P0) ≤ b(P )−ex(P )−2(6+ex(P−)).

As only faces of size m were removed, we have s′
−

= (s′1, . . . , s
′

l−b), so for
s− = (s1, . . . , sl−b) we have s− � s′

−
.

We have that sl−b+1 = · · · = sl = m, as otherwise we could replace
these boundary faces by m-gons and the modified sequence smod would fulfill
b(Ssmod

) − ex(Ssmod
) = b(Ss) − ex(Ss), but as s− � s′

−
and s′l−b+1 = · · · =

s′l = m, we would have smod � s′ and smod, s
′ would be a counterexample

with larger o(s′, smod).
We will distinguish between a strong and a weak spiral sequence s.

• Assume first that s is a strong spiral sequence.
As Ss− has more faces than Ss has interior faces, we have that the
enclosing spiral Scl(s−) has more faces than Ss and by Lemma 14 (iii)
b(Ss)− ex(s) ≤ b(Scl(s−))− ex(cl(s−)). Removing the boundary faces
of Scl(s−) again we get Ss− (Lemma 14 (iv)) and due to Lemma 14 (ii)
we can apply Lemma 7 with equality and get

b(Ss−)− ex(Ss−) = b(Scl(s−))− ex(cl(s−))− 2(6 + ex(s−)) ≥

13



b(Ss)− ex(s)− 2(6 + ex(s−)) ≥ b(Ss)− ex(s)− 2(6 + ex(s′
−
)) >

b(P )− ex(P )− 2(6 + ex(P−)) ≥ b(P0)− ex(P0).

This contradicts the maximality of o(s′, s).

• Assume now that s is a weak spiral sequence with weak prefix sw. As
in s− only faces of size at least 6 were removed, sw is also a weak prefix
of s−.
By Lemma 12 we have
b(Ss−)− ex(s−) ∈ {b(Ssw)− ex(sw), b(Ssw)− ex(sw) + 2}
and b(Ss)− ex(s) ∈ {b(Ssw)− ex(sw), b(Ssw)− ex(sw) + 2}.
As the pair P, Ss is a counterexample and due to Lemma 6 we have
b(P ) − ex(P ) ≤ b(Ssw) − ex(sw). Due to the maximality of o(s′, s)
we have that P0, Ss− form no counterexample, so b(P0) − ex(P0) ≥
b(Ssw)− ex(sw) and together with Lemma 7 we get

b(P0)−ex(P0) = b(P−)−ex(P−) = b(P )−ex(P ) = b(Ssw)−ex(sw).

Again according to Lemma 7 this implies that ex(P−) = −6 and that
each face in the boundary of P has exactly two boundary faces as
neighbours, which implies that the intersection of each boundary face
with the boundary is connected. Now Lemmas 5 and 3 imply

fb(P ) =
b(P )− 6− ex(P )

2
=

b(P−)− 6− ex(P−)

2
=

b(Ssw)

2
.

As P0, Ss− form no counterexample, we have also b(Ss−) − ex(s−) =
b(Ssw)−ex(sw). Due to Lemma 12 this implies b(Ss)−ex(s) = b(Ss−)−
ex(s−) = b(Ssw) − ex(sw), in contradiction to the pair P, Ss being a
counterexample.

Theorem 16 now allows to compute the minimum boundary length for
a given set of bounded faces. If one fixes the maximum face size to a value
m ≥ 6 and the boundary length is a strictly monotonically growing function
of the number of faces, the theorem also solves the reverse question:
Given a certain value b for the boundary length and a certain simple sequence
s with face sizes smaller than m. How many faces with size m can a patch
with boundary length b and a face sequence with the given prefix s and
otherwise only bounded faces of size m have?
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Lemma 17 gives formulas for the minimal boundary length for maximum
face size 6 of a bounded face and at least one triangle or quadrangle as
presented in [8] and corrected in [11]. The formulas for minimum face size
5 are already given in [2] and for minimum face size 6 in [10].

Lemma 17. [8][11] In the following equations h stands for the number of
elements with value 6 in the sequence.

• min((4, 6, . . . , 6)) = 2⌈
√
8h+ 4⌉

• min((4, 5, 6, . . . , 6)) = 2⌈
√

6h+ 49
4 + 1

2⌉ − 1

• min((4, 5, 5, 6, . . . , 6)) = 2⌈
√

4h+ 16)⌉

• min((4, 5, 5, 5, 6, . . . , 6)) = 2⌈
√

2h+ 73
4 + 1

2⌉ − 1

• if h ≡ 0 (mod 4) then min((4, 5, 5, 5, 5, 6, . . . , 6)) = 8
else min((4, 5, 5, 5, 5, 6, . . . , 6)) = 10

• min((4, 4, 6, . . . , 6)) = 2⌈
√

4h+ 9)⌉

• min((4, 4, 5, 6, . . . , 6)) = 2⌈
√

2h+ 49
4 + 1

2⌉ − 1

• min((4, 4, 5, 5, 6, . . . , 6)) = 8

• if h ≡ 0 (mod 3) then min((4, 4, 4, 6, . . . , 6)) = 6
else min((4, 4, 4, 6, . . . , 6)) = 8

• min((3, 6, . . . , 6)) = 2⌈
√

6h+ 9
4 + 1

2⌉ − 1

• min((3, 5, 6, . . . , 6)) = 2⌈
√

4h+ 8)⌉

• min((3, 5, 5, 6, . . . , 6)) = 2⌈
√

2h+ 41
4 + 1

2⌉ − 1

• if h ≡ 0 (mod 3) then min((3, 5, 5, 5, 6, . . . , 6)) = 6
else min((3, 5, 5, 5, 6, . . . , 6)) = 8

• min((3, 4, 6, . . . , 6)) = 2⌈
√

2h+ 25
4 + 1

2⌉ − 1

• min((3, 4, 5, 6, . . . , 6)) = 6

• if h ≡ 0 (mod 2) then min((3, 3, 6, . . . , 6)) = 4
else min((3, 3, 6, . . . , 6)) = 6

For the proofs we refer the reader to [11].
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Boundary lengths between the maximum and minimum

We determined the minimum and maximum boundary length that can
be achieved for a given simple sequence s = (s1, . . . , sl). As due to Lemma 6
b(P ) − ex(P ) is always even, the parity of the boundary length and the
sum of face sizes must be the same and one can only hope for intermediate
boundary lengths in steps of size two.

Definition 18. A simple sequence s = (s1, . . . , sl) is called diamond-free, if
l < 2 or s2 6= 3.

Lemma 19. Two bounded faces in a c-6-patch P without two neighbouring
triangles share at most one edge.

Proof. Assume that a counterexample exists. Let P be a counterexample
with the smallest number of faces, and f, f ′ two bounded faces sharing more
than one edge. It is easy to see that no two of these edges share a vertex
as (using the fact that boundaries of faces in 2-connected graphs are cycles)
this would be an internal vertex with degree 2.

If we connect the centers cf and cf ′ of f resp. f ′ with the centers of all
k ≥ 2 common edges, we get k disjoint paths from cf to cf ′ partitioning the
plane into k components, only one of which contains the unbounded face.
Let J be the Jordan curve bounding a component without the outer face.

The interior of J is not empty and contains only bounded faces (different
from f, f ′). The union of these faces is a patch P ′ bounded by a cycle
consisting of a part from the boundary of f and a part from the boundary
of f ′. As all vertices of P ′ have degree 3 in P , all except two vertices – the
endpoints of the edges intersected by J – have degree 3 in P ′. So for P ′

we have v2,b = 2 and by Lemma 3 we have v3,b ≤ 2. In case v3,b < 2 there
would be a double edge or a bridge, so v3,b = 2. If the two vertices with
degree 3 in the boundary are not connected by an edge through the interior
of P ′, the patch P ′ contradicts the minimality of P – otherwise P ′ consists
of two neighbouring triangles – in contradiction to the assumption.

Lemma 20. Let l be given and m = max{6, l}. If for each diamond-free
simple sequence s = (s1, . . . , sl) with sl ≤ m and for all even 0 ≤ c ≤
max(s, 1) − min(s), an s-patch P with b(P ) = min(s) + c exists, then this
also holds without the restriction sl ≤ m.

Proof. For a diamond-free sequence s = (s1, . . . , sl) let sr = (sr,1, . . . , sr,l)
denote the reduced sequence where all elements larger than m are replaced
by m. As m ≥ 6 we have that c(s) = c(sr) and sr is also a simple sequence.
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We will show that if for the reduced sequence all intermediate boundary
lengths with the necessary parity exist, then also for the original sequence.

As for given s the value of ex(P ) is constant for every s-patch P , we
can equivalently discuss whether for all even d with min(s) − ex(s) ≤ d ≤
max(s, 1)− ex(s) there is an s-patch P with b(P )− ex(P ) = d.

Due to Lemma 19 each bounded face of size q ≥ l in an s-patch shares
at most l − 1 < q edges with other bounded faces, so all faces with size at
least l are in the boundary.

To this end we can modify a spiral for sr to a spiral for s by just sub-
dividing a boundary edge in those faces that correspond to values that
were replaced. Such an operation does not change b(·) − ex(·), so we have
b(Ss) − ex(s) = b(Ssr) − ex(sr). The same operation can be done on all
sr-patches with boundary lengths up to max(sr, 1) proving that if for all
even d with min(sr) − ex(sr) ≤ d ≤ max(sr, 1) − ex(sr) sr-patches P with
b(P )− ex(P ) = d exist, the corresponding result also holds for s.

The fact that we excluded patches with two triangles in these lemmas
is not simply because the proof does not work. In fact the main result of
this section – that is that for all values (with the suitable parity) between
the minimum and maximum boundary length patches exist – is not true
for patches with two triangles. E.g. for the sequence s = (3, 3, 7, 8) c-6-
patches with boundary length b exist for each odd b with min(s) = 7 ≤
b ≤ 15 = max(s, 1) – except for b = 9. For s = (3, 3, 6, 6, 6, 6) c-6-patches
with boundary length b exist for each even b with min(s) = 4 ≤ b ≤ 20 =
max(s, 1) – except for b = 6. For s = (3, 3, 6, 6, 6, 6, 6) c-6-patches with
boundary length b exist for each even b with min(s) = 6 ≤ b ≤ 24 =
max(s, 1) – except for b = 10. Though all missing values we know of seem
to display a certain pattern, we will not investigate this very special case
here.

Theorem 21. Let s = (s1, . . . , sl) be a simple diamond-free sequence. Then
for all even 0 ≤ c ≤ max(s, 1)−min(s), an s-patch P with b(P ) = min(s)+c
exists.

Proof. The cases s = (s1, . . . , sl) with l ≤ 4 can be easily checked by hand,
as due to Lemma 20 it is sufficient to check sequences with sl ≤ 6. So
we can assume l ≥ 5. One can also easily check all simple sequences with
at most one entry larger than 5 (that is: sl−1 < 6 and implies l ≤ 7) by
hand. Alternatively one can (as we in fact did) use the program described
in [4] to generate all patches for these simple sequences and combine it with
an easy program to check the boundary lengths. The generation program
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is publically available in the environment CaGe [3]. We applied it for all
sequences s = (s1, . . . , sl) with l ≤ 9, sl ≤ 9. All cases where intermediate
boundary lengths were missing, were sequences with s1 = s2 = 3.

We will prove that for all even d with min(s)− ex(s) ≤ d ≤ max(s, 1)−
ex(s) there is an s-patch P with b(P )− ex(P ) = d.

As before, we call a boundary edge with both endpoints of degree 2 a
convex edge and we call a boundary path of length 2 with the central vertex
of degree 3 and the two endpoints of degree 2 a concave path.

We will first prove that for all diamond-free simple sequences s′ =
(s′1, . . . , s

′

l) with l ≥ 5 and for all even d ∈ {min(s′) − ex(s′) + 2,min(s′) −
ex(s′) + 4} there is an s′-patch P with b(P ) − ex(P ) = d and a convex
boundary edge e.

The boundary length of a patch with face sequence s = (s1, . . . , sl) and i
interior edges is

∑l
j=1 sj − 2i. So removing a face of a patch with boundary

length b and excess ex that has j interior edges and gluing it back along j′

edges results in a patch with b′ − ex′ = (b− ex) + 2(j − j′).
Assume that s′ as well as (s′1, . . . , s

′

l−1) and (s′1, . . . , s
′

l−2) are strong spiral
sequences. This is e.g. the case for c(s′) < 6 and implies that in the spirals
for s′ and (s′1, . . . , s

′

l−1) the last face has 2 or 3 interior edges, as in the case
of 4 edges one would have two bounded faces with only one boundary edge
for the spiral with one face less. Furthermore these spirals have a convex
edge as well as a concave path. If the last face has 3 interior edges, one
can remove it and put it back identifying an edge with a convex edge of the
remaining patch (resulting in a patch with b′−ex′ = (b−ex)+4) or a path of
length 2 with a concave path (resulting in a patch with b′−ex′ = (b−ex)+2).
If the last face has 2 interior edges, by removing and gluing it back along a
convex edge one gets a patch with b′ − ex′ = (b− ex) + 2. In order to get a
patch with b′ − ex′ = (b− ex) + 4 one can remove the last two faces (losing
4 or 5 interior edges) and glue the first face back along a concave path or
a convex edge and the second along a convex edge of the first face. As the
faces removed and glued back are at least pentagons, they are guaranteed
to have a convex edge after being glued back.

If one of s′, (s′1, . . . , s
′

l−1) and (s′1, . . . , s
′

l−2) is a weak spiral sequence,
then assume first that s′l ≤ 6. In that case s′ itself is a weak spiral sequence
and has a weak prefix p′. With b = b(Sp′) we have min(s′) − ex(s′) ∈
{b− ex(s′), b− ex(s′) + 2}.

We will show that for h ≥ 2 hexagons there are patches P with b(P ) −
ex(P ) = d for all d ∈ {b− ex(s′)+2, b− ex(s′)+4, b− ex(s′)+6} that have a
convex edge as well as a concave path. Replacing b− ex(s′) by the possible
values for min(s′) − ex(s′) this implies that for h ≥ 2 hexagons there are
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(3,5,5,5,...)
(4,4,4,...)

(4,5,5,5,5,...)
(5,5,5,5,5,5,...)

b(P)−e(P)=14

b(P)−e(P)=14 b(P)−e(P)=16
b(P)−e(P)=18

Figure 3: Patches with a boundary length b(Sp′) + 2 corresponding to weak pre-
fixes p′ plus one hexagon.

patches P with b(P ) − ex(P ) = min(s′) − ex(s′) + 2 and patches P with
b(P )− ex(P ) = min(s′)− ex(s′) + 4.

In Figure 3 patches for b−ex(s′)+2 are given for all weak prefixes and one
hexagon. Successively adding hexagons at the place with two neighbouring
boundary vertices of degree 3 we get for all h ≥ 1 patches P with the same
value of b(P ) − ex(P ), a convex edge as well as a concave path and two
neighbouring vertices of degree 3 in the boundary.

Adding a second hexagon along a concave path or a convex edge, we
get patches with b(·) − ex(·) = b(Sp′) + 4, resp. b(·) − ex(·) = b(Sp′) + 6
for all h ≥ 2. Note that for up to b/2 hexagons all hexagons are in the
boundary and that for more than b/2 hexagons at least b/2 hexagons are in
the boundary of the patches we constructed.

If s′ contains also faces of size larger than 6, then the number is at most
b/2 (Lemma 11). As they are all in the boundary of the spiral Ss′ , we have
min(s′)− ex(s′) = min(s′′)− ex(s′′) with s′′ the sequence where all elements
larger than 6 are replaced by 6. Furthermore we can modify boundary faces
of the patches with b(·)− ex(·) ∈ {b− ex(s′)+2, b− ex(s′)+4, b− ex(s′)+6}
constructed for s′′ to obtain examples for s′.

Now we will proceed by induction in l and show that for all diamond-
free simple sequences s′ and for all even d with max(s′, 1) − ex(s′) ≥ d >
min(s′) − ex(s′) + 4 there is an s′-patch P with b(P ) − ex(P ) = d and a
convex boundary edge.

Let s′ = (s′1, . . . , s
′

l) be a simple diamond-free sequence with l ≥ 5,
sl−1 ≥ 6 and let d be even with
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• d > min(s′)− ex(s′) + 4

• d < max(s′, 1)− ex(s′)

Let s′
−
= (s′1, . . . , s

′

l−1). Then

• d−4 ≥ min(s′)−ex(s′)+2 ≥ min(s′
−
)−ex(s′

−
) (Lemma 12, Lemma 14

(iii))

• d− 4 < max(s′
−
, 1)− ex(s′

−
) (Lemma 2)

The first inequality is an equality only if sp(l) is the last face in a layer
around a boundary with alternating degrees of 2 and 3. In that case the
minimal spiral for s′

−
has also a convex edge. So there exists an s′

−
-patch

P− with b(P−) − ex(P−) = d − 4 and a convex boundary edge. Identifying
an edge of a face of size sl with this boundary edge, we get a patch P with
b(P )− ex(P ) = (b(P−) + sl − 2)− (ex(P−) + sl − 6) = d− 4 + 4 = d.
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