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ABSTRACT

Context. The Monte Carlo method is the most widely used method to solve radiative transfer problems in astronomy, especially
in a fully general 3D geometry. A crucial concept in any Monte Carlo radiative transfer code is the random generation of the next
interaction location. In polarised Monte Carlo radiative transfer with aligned non-spherical grains, the nature of dichroism complicates
the concept of optical depth.

Aims. We investigate, in detail, the relation between optical depth and the optical properties and density of the attenuating medium in
polarised Monte Carlo radiative transfer codes that take dichroic extinction into account.

Methods. Based on solutions for the radiative transfer equation, we discuss the optical depth scale in polarised radiative transfer with
spheroidal grains. We compare the dichroic optical depth to the extinction and total optical depth scale.

Results. In a dichroic medium, the optical depth is not equal to the usual extinction optical depth, nor to the total optical depth. For
representative values of the optical properties of dust grains, the dichroic optical depth can differ from the extinction or total optical
depth by several tens of percent. A closed expression for the dichroic optical depth cannot be given, but it can be derived efficiently
through an algorithm that is based on the analytical result corresponding to elongated grains with a uniform grain alignment.
Conclusions. Optical depth is more complex in dichroic media than in systems without dichroic attenuation, and this complexity
needs to be considered when generating random free path lengths in Monte Carlo radiative transfer simulations. There is no benefit in

using approximations instead of the dichroic optical depth.

Key words. radiative transfer — polarization

1. Introduction

Radiative transfer is a broad field in astronomy that aims to
describe the interaction between radiation and matter. In an
astronomical context, the Monte Carlo method is by far the
most widely used method to solve radiative transfer problems.
In the past decades, many different Monte Carlo codes have
been developed to address different astrophysical radiative trans-
fer problems, including photoionisation, absorption and scatter-
ing by cosmic dust, the origin of infrared emission, and resonant
line scattering heating (e.g. Gordon et al. 2001; Ercolano et al.
2003; Robitaille 2011; Yajima et al. 2012; Whitney et al. 2013;
Camps & Baes 2015; Reissl et al. 2016). General reviews on
Monte Carlo transport can be found in Dupree & Fraley (2002)
or Kalos & Whitlock (2008), for example, and dedicated reviews
on radiative transfer in astrophysics include Whitney (2011) and
Steinacker et al. (2013).

The essence of the Monte Carlo method is to represent the
radiation field as the flow of a large, but finite, number of photon
packages. The life cycle of each photon package is followed indi-
vidually. Additionally, at every stage in this life cycle, the char-
acteristics that determine the path of each photon package are
determined in a probabilistic way by generating random num-
bers from the appropriate probability density function (PDF). At
the end of the simulation, the radiation field, or more specifically
the intensity of the radiation field, is recovered from a statistical
analysis of the photon package paths.

An important ingredient of Monte Carlo radiative transfer is
the knowledge of the appropriate PDF for a given characteristic,
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and the accurate and efficient sampling of random numbers from
these PDFs. For some characteristics, the PDFs are simple and
sampling random numbers from them is trivial. For example,
most sources send out radiation isotropically, which implies that
the generation of propagation directions after an emission event
simply comes down to generating a random point on the unit
sphere. The PDF that controls the random starting positions for
the photon package is dictated by the 3D luminosity density of
the sources, and specific methods have been developed to gener-
ate such random positions from a range of 3D density distribu-
tions (Baes & Camps 2015).

An aspect that is central to any Monte Carlo radiative transfer
code is the random generation of the next interaction location.
More specifically, if a photon package is emitted or scattered
into a given direction, one needs to randomly generate a free
path length s to the next interaction. To do so, we need to know
the appropriate PDF p(s). In this context, the concept of opti-
cal depth 7 plays a crucial role. In optical depth space, the PDF
p(7) is a simple exponential distribution (Cashwell & Everett
1959; Steinacker et al. 2013). This implies that the next inter-
action location can be found by randomly generating a random
optical depth from an exponential distribution and by converting
this optical depth to a physical path length, which is a critical
point. We need to know the relation 7(s), or inversely s(7), to
properly calculate the next interaction location.

In radiative transfer problems where polarisation is not taken
into account, 7(s) can immediately be calculated from the den-
sity and the optical properties along the path. Notably, it does
not depend on the intensity of the radiation field. The situation
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becomes more complex when polarisation comes into play. In
the case of spherical or randomly oriented particles, polarised
Monte Carlo radiative transfer is only slightly more difficult to
use than unpolarised Monte Carlo radiative transfer. The main
added complexities are that a Stokes vector needs to be intro-
duced to characterise the polarisation status of each photon pack-
age and that this Stokes vector can alter during a scattering event
(e.g. Fischer et al. 1994; Code & Whitney 1995; Bianchi et al.
1996; Peest et al. 2017). The relation between optical depth and
path length is the same as for unpolarised Monte Carlo radiative
transfer.

The real complexity arises when the attenuating particles are
non-spherical and aligned, as in the case of elongated dust grains in
the interstellar medium. Such dust grains are aligned with respect
to the magnetic fields through a variety of processes (Davis &
Greenstein 1951; Jones & Spitzer 1967; Aannestad & Greenberg
1983; Lazarian 1994, 2007). An interesting feature is dichroism,
which, in this context, means that radiation of different polar-
isation experience different amounts of extinction. The nature
of dichroism complicates the relation between optical depth and
physical path length.

In this paper, we investigate in detail whether an optical
depth scale can still be used in a meaningful way in polarised
Monte Carlo radiative transfer codes that take dichroic extinction
into account. In Sect. 2 we discuss optical depth and the gener-
ation of random path lengths in standard unpolarised radiative
transfer. In Sect. 3 we extend this discussion to polarised radia-
tive transfer in the case of elongated aligned grains, in particular.
Apart from the “standard” extinction optical depth, we intro-
duce the total and dichroic optical depth scales, and we com-
pare and analyse them. In Sect. 4 we discuss the implications
of these findings for Monte Carlo radiative transfer codes that
take dichroic extinction into account. In Sect. 5 we discuss these
results and provide a summary.

2. Unpolarised radiative transfer

As discussed in the Introduction, one of the essential steps in the
life cycle of a photon package in a Monte Carlo radiative trans-
fer simulation is the calculation of the next interaction location,
or equivalently, the physical path length s that is covered before
the next interaction. In order to do this, we need to generate a
random s from the appropriate probability distribution function
p(s). The appropriate PDF p(s) can be determined by consider-
ing the variation of the specific intensity /(s) along the path. The
probability that the photon package has not interacted along the
path between O and s is equal to I(s)/Iy, while I is the specific
intensity of the photon package at the start of the path!. There-
fore, the density function P(s) can be written as follows:

; I
P(s) = f p(sHds’ =1- i), €))
0 Iy
In general, we define the optical depth 7(s) as
I
7(s) = —In [Q] . 2)
Iy

By combining these two equations, we find that
P(s)=1-¢7", 3)

! Many of the quantities in this paper are dependent on wavelength,

including the extinction cross section and the optical depth. In order not
to overload the notations, we do not explicitly mention the wavelength
dependence.
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and when we take the derivative of this cumulative density
function,

p(m)=e. “
This yields the well-know result that the PDF describing the next
interaction location is an exponential distribution in optical depth
space. Generating a random optical depth can easily be done by
picking a uniform deviate X, setting 7 = —In(1 — X), and subse-
quently converting this random 7 to a physical path length s.

The difficulty involved is that we need to know the solution
I(s) to calculate the optical depth scale. This solution is found
by solving the appropriate radiative transfer equation. For a pho-
ton package moving through an attenuating medium with density
n(s) and extinction cross section Cex(s), the radiative transfer
equation reads

dI
1 () = =n(s) Cexi(5) 1(5). )
s

It is important to note that no additional emission along the path
or scattering into the line-of-sight are included as this is not rel-
evant for this particular photon package. The following equation
is a simple first-order ordinary differential equation that is easy
to solve:

I(s) =1y G_Tm(s) 6)

with the extinction optical depth 7.y (s) that is defined as

Tex(s) = f n(s") Con(s') s ™
0

By comparing Eqs. (2) and (6), we see that 7(s) = Tex(s). In par-
ticular, the optical depth scale, from which random path lengths
can be sampled, only depends on the density and optical proper-
ties of the material, and not on the properties of the photon pack-
age. In this simple case, the only property of the photon package
that could matter is /.

While the strategy described above is conceptually very sim-
ple, some challenges need to be addressed. In particular, the
conversion of extinction optical depth to physical path length is
not usually a straightforward inversion. Except for some simple
ideal cases, the conversion needs to be done numerically. In most
Monte Carlo radiative transfer codes, the attenuating medium is
subdivided into a large number of individual cells, each with a
constant density and uniform properties. The codes are typically
equipped with a routine to calculate paths through this tessel-
lated medium. The routine returns an ordered list of all the cells
m that the path crosses, as well as the length As,, of the path seg-
ments corresponding to the mth cell. Given this ordered list, we
can calculate the running values for the path length s, and the
optical depth 7¢,, at the exit point of each cell crossed by the
path. The problem is thus reduced to finding the first cell in the
array, for which 7e,, exceeds the randomly generated value of
Text, and subsequently to applying a linear interpolation to con-
Vert Text tO 2.

2 The MC3D radiative transfer code (Kriigel 2008; Heymann &
Siebenmorgen 2012) adopts an alternative method to find the next inter-
action point. For every dust cell along a path, they generate a new optical
depth 7 from an exponential distribution, and they compare this to the
extinction optical depth At ,, within that cell. If 7 < A7ey ., the inter-
action position is determined by linear interpolation. Otherwise, the dust
cell is crossed and the procedure is repeated for the next cell along the
path. This methodology is equivalent to the method used by most of the
other Monte Carlo codes, but it seems computationally more expensive
and not straightforward to combine them with optimisation techniques
as path length stretching (Levitt 1968; Spanier 1970; Baes et al. 2016)
or forced scattering occurs (Cashwell & Everett 1959; Steinacker et al.
2013).
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These integrations through the dust grid often form the most
time-consuming part of a radiative transfer simulation. In order
to make these calculations as efficient as possible, especially
in 3D geometries, advanced grid construction and grid traver-
sal techniques are required (Niccolini & Alcolea 2006; Bianchi
2008; Lunttila & Juvela 2012; Camps et al. 2013; Saftly et al.
2013, 2014; Hubber et al. 2016).

3. Polarised radiative transfer
3.1. The Stokes formalism

The characterisation of the radiation field by the specific inten-
sity and the corresponding radiative transfer Eq. (5) are no longer
suitable when polarisation is considered. In order to take the
polarisation state of radiation into account, one can use the
Stokes formalism, which characterises the radiation field by
means of the 4D Stokes vector

1

_|@
=17l ®)

1%

The first Stokes parameter, 1, is still the specific intensity. The
Stokes parameters Q and U describe the state of linear polar-
isation and V describes the state of circular polarisation of
the radiation. The Stokes parameters are always defined with
respect to a reference direction that is to be chosen freely
from the plane perpendicular to the propagation direction. For
a detailed description of the Stokes vector and its connection to
the monochromatic transverse electromagnetic waves, we refer
to Mishchenko et al. (2000).

When we consider the full Stokes vector, the simple radiative
transfer Eq. (5) becomes

dI

3, = s K(9) 1(s), )
S

where K is now the extinction matrix, a 4 X 4 matrix that

describes how the different Stokes components are affected when

radiation passes through the medium.

3.2. Spherical grains

When dust grains are spherical, or non-spherical but arbitrarily
oriented, the extinction matrix is a simple diagonal matrix, all
components of the Stokes vector are affected in the same way,
and

Cei O 0 0
0 Cext O 0
0 0 Cxt O
0 0 0  Cext

K= (10)

This implies that there is no mixture of the different Stokes com-
ponents due to extinction, and the solution of the radiative trans-
fer equation can be directly written as
I(s) = Ipe ™. (1
In particular, the specific intensity /(s) still behaves according to
Eq. (6), exactly as is the case for non-polarised radiative trans-
fer. Also, in this case, we can immediately conclude that the PDF
describing the net interaction location is an exponential distribu-
tion in extinction optical depth space.

3.3. Spheroidal grains

Complexity arises when the dust grains are non-spherical and
partially aligned. In this case, the extinction matrix K is not a
diagonal matrix, but a full 4 X 4 matrix with 16 nonzero cross
sections of which only seven are independent (van de Hulst
1957; Hovenier & van der Mee 1996). Fortunately, in the case of
spheroidal grains, K is significantly less complex. If we denote
the orientation of the grain alignment at a distance s along the
path as ¢¥(s), K can be expressed as (Martin 1974; Wolf et al.
2002)

K(s) = L(-(5)) Krer(5) L(0(5)) (12)
with L(¥) as the Mueller rotation matrix,
1 0 0 0
10 cos2y sin2y O
L) = 0 —sin2y cos2y Of (13)
0 0 0 1

and K..s as the extinction matrix in the reference frame of the
grain,

Cext Cpol 0 0

o Cpol Cexl 0 0
Kre’r B 0 0 Cext Ccpol ' (14)

0 0 _Ccpol Cext

We note that K has only the following three indepen-
dent elements: the extinction cross section Cex, polarisation
cross section Cpol, and circular polarisation cross section Cepol
(Mishchenko et al. 2000; Whitney & Wolff 2002).

The non-diagonal character of the extinction matrix has an
important effect on the radiation field; the different components
of the Stokes vector are coupled and will get mixed along the
path. In particular, radiation that is initially unpolarised can
develop linear and even circular polarisation just by propagat-
ing through the medium (Serkowski 1962; Martin 1972, 1974).

This dichroism complicates the relation between path length
and optical depth. To stress the fact that we deal with dichroic
extinction, we use the term dichroic optical depth and use the
notation 74i.(s) when we consider the optical depth in a dichroic
medium. In general we can write that
1(s)
where I(s) should now be seen as the first component of the
Stokes vector I(s), which is obtained by solving the vector radia-
tive transfer Eq. (9) with K(s), as given by (12).

In the case of spherical grains, we show that 7(s) = Tex(s).
However, this equivalence does not hold for the general case of
spheroidal grains. Indeed, with an extinction matrix given by
expression (12), the radiative transfer equation is a set of four
coupled first-order ordinary differential equations with varying
coefficients. The full solution for I(s), and hence the dichroic
optical depth 74;.(s), depends on all elements of the extinction
matrix and all initial Stokes components. As the extinction opti-
cal depth (7) only depends on one single element (Kj; = Cex) Of
the extinction matrix, and as it is independent of the initial polar-
isation state Iy, it is impossible that the dichroic optical depth is
equivalent to the extinction optical depth.

One could consider another optical depth scale that does
depend on the initial polarisation state of the photon package.
An interesting starting point is the total extinction cross section,
~ Vo

U
Cext = K][ + —QO K]z + -0 K|3 + — K]4,
Iy Iy Iy

Tdic(s) = — 111[

(16)
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introduced by Mishchenko et al. (2000) and Whitney & Wolff
(2002). It properly describes the attenuation of an incident beam
with the arbitrary initial polarisation state I,. Based on this total
extinction cross section, one can define an optical depth scale,
which we denote as the total optical depth, in a similar way as
for the extinction optical depth (7),

rls) = [ 16 Conls) 85 a7
0
or explicitly,
_ QO ' ’ ’ ’ ’
Tm&S)—-TaKS)+-7- n(s’) Cpoi(s’) cos 2y(s”) ds
0 Jo
UO y ’ ’ . ’ 7
+ A f n(s") Cpol(s”) sin 2y (s”) ds”. (18)
0 Jo

Despite the increased complexity, it is computationally not
much more difficult to employ than the extinction optical depth.
Indeed, for a photon package in a Monte Carlo simulation with
a given position, propagation direction, and polarisation state, it
is relatively easy to compute the total optical depth Ty, at the
entry point of each cell crossed by the path.

We can, however, use analogous reasoning as above to
argue that the total optical depth cannot be equivalent to the
dichroic optical depth. Indeed, with an extinction matrix given
by expression (12), the radiative transfer equation is a set of four
coupled first-order ordinary differential equations with varying
coefficients. The full solution for I(s), and hence the dichroic
optical depth 74i.(s), depends on all elements of the extinction
matrix and all initial Stokes components. The expression (18)
does indeed depend on the initial linear polarisation state of the
incoming radiation and the polarisation cross section, but it does
not involve any dependency on the circular polarisation cross
section Ccpol Or the initial circular polarisation Vj. As a result,
it is impossible that the total extinction is fully equivalent to the
dichroic optical depth.

If neither the extinction optical depth nor the total optical
depth are equivalent to the dichroic optical depth, one inevitably
questions what the correct expression for the dichroic optical
depth is. For a medium with non-uniform grain alignment, the fol-
lowing answer is somewhat disappointing: given the non-trivial
coupling of all four components of the radiative transfer equation,
it is not possible to write down a closed formula for /(s) nor the
dichroic optical depth 7g4;.(s). Obtaining the solution I(s) can be
achieved numerically using standard vector ordinary differential
equation (ODE) solution techniques. One might wonder whether
Text OF Ty, fOr which we have a closed expression, are reason-
able approximations for the dichroic optical depth. To answer this
question, we performed numerical tests.

We adopted a hypothetical example where n(s) = ¥(s) = s,
that is, the density of material increases linearly with increas-
ing distance, and the grain alignment rotates around the path.
Furthermore, we assumed that the optical properties do not vary
along the path, and we set Ceyy = 1 and Cpop = Cepor = 0.1 (rep-
resentative values of the Cpo1/Cex Tatio go up to 0.3 and more).
On the one hand, we calculated the dichroic optical depth 7(s) by
numerically solving the vector radiative transfer equation using
an explicit Runge—Kutta method with variable step size control.
On the other hand, we used Eqgs. (7) and (17) to calculate Tex(s)
and 7(s), and we calculated the relative differences

Text — Tdic Ttot — Tdic

Oext = and Oy = (19)

Tdic Tdic
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We calculated these quantities for initial Stokes vectors, that are
100% linearly polarised, with the linear polarisation angle

1 Up 1 Qo
6 = — arctan — = = arccos —

2 Qo 2 Iy
by gradually changing between 0° and 90° in steps of 5°.

In the upper left panel of Fig. 1 we show . as a function of
the dichroic optical depth 74;. along the path. The extinction opti-
cal depth scale has the advantage that it is simple and does not
explicitly depend on the polarisation state of the photon package,
such that the relation between s and 7¢ can in principle be pre-
computed. It is clear, however, that 7. is a poor approximation
for the dichroic optical depth. Depending on the value of Qy/1y,
it can either underestimate or overestimate 74 by up to 20 per-
cent. More importantly, the differences between 74;c and 7ex: can
be large even at small optical depths.

The relative difference dy¢ in the bottom left panel shows
very different behaviour. The total optical depth always overesti-
mates the dichroic optical depth. A second important difference
is that ¢ is usually smaller than the absolute value of dcx. This
is particularly true in the optically thin limit where ¢, approxi-
mates 7qic very well. At large optical depths (74 > 10), it turns
out that the total optical depth is not always a reliable approxi-
mation for the dichroic optical depth. It is interesting to note that
Tyt Can even become a poorer approximation for the dichroic
optical depth than the simpler approximation Te;.

(20)

3.4. Spheroidal grains with uniform alignment

We can gain more insight into these results by considering the
special case ¥(s) = 0 in which the grains are all uniformly
aligned along the path?. In this special case, the rotation matrices
in (12) are the identity matrices, and K = K. With this rela-
tively simple block-diagonal extinction matrix, the four differ-
ent components of the Stokes vector are paired, instead of fully
coupled as follows: I and Q in addition to U and V are linked,
respectively. The full solution of the radiative transfer equation
can be written out as

I(s) = €™ [ Iy cosh Tyei(s) = Qo sinh Tpoi(s)] (21a)

Q(s) = e [ Qg cosh Tpei(s) = Io sinh Tpai(s)] (21b)

U(s) = e [Ug cos Tepai(s) = Vo sinepai(s)|,  and  (21c)

V(s) = e |V oS Tepor(5) + Uo $in Tepol ()] 21d)

with

Tpol(s) = f n(s") Cpoi(s)ds”  and (22)
0

a(9)= [ 1) Copas) ' 23)
0

By combining Eq. (2) with the solution (21a) for the specific
intensity, we find an explicit expression for the dichroic optical
depth:
_ Qo .
Tdic(8) = Texe(s) — In [cosh Tpo1(s) — T sinh 7,01(5) | - 24)
0

In the panels on the right-hand side of Fig. 1 we show ey, and o
as a function of 74;. along the path for the case with y = 0. Again,

3 We can always perform a rotation to the initial Stokes vector to
ensure that it is aligned with the grain orientation.
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Fig. 1. Top left: relative differences d.x between extinction optical depth 7., and dichroic optical depth 74 for hypothetical example with density
and grain alignment increasing linearly with increasing path length. The different curves correspond to different input Stokes vectors. In each case
the photon package is initially fully linearly polarised, but the Stokes vector orientation 6 increases in steps of 5°. The red lines corresponds to § = 0°
(Qo/1Ip = 1) and the purple line to 8 = 90° (Qy/Iy = —1), respectively. Bottom left: similar to top left panel, but now showing relative difference o
between total optical depth 7, and dichroic optical depth. Right: same as panels on left, but now for model with uniform grain alignment.

Text 18 @ poor approximation for the dichroic optical depth even
at small optical depths. Based on the explicit expression (24),
we can calculate the extreme values for dey, Which correspond
to Qo/lp = *1,

_ G (25)

For our example, these differences run up to —17% and 25%. On
the other hand, the total optical depth is a better approximation,
in general, for the dichroic optical depth, especially in the opti-
cally thin limit 7 < 1. This can be understood by considering
the Taylor expansion for expression (24) for 7po < 1,

0 1, (@)
Tdic = Text T = Tpol _E 1- = Téol + O(Tlsml)'
— ——

7o T (26)

Trot

This result shows that the extinction optical depth approximates
the dichroic optical depth to first order in 7,01, whereas the total
optical depth approximates it to second order. For small opti-
cal depths, it is hence not surprising that the dichroic optical
depth is a much better approximation. Moreover, as the coef-
ficient of the second order term is always negative, the total
optical depth systematically overestimates the dichroic optical
depth. It is important to note, however, that the total optical

depth is not guaranteed to be a reliable estimator for the dichroic
optical depth as at large optical depths, 7y, overestimates 7.
significantly.

4. Application in Monte Carlo radiative transfer
4.1. Random generation of path lengths

In the previous Section, we demonstrate that neither the simple
extinction optical depth nor the total optical depth are equiva-
lent to the dichroic optical depth. In particular, we see that, for
a given physical path length, relative differences of up to several
tens of percent are possible between these optical depth scales.
It is interesting to note that for the total optical depth scale, these
large differences only occur at large optical depths. As discussed
in the Introduction, the optical depth in Monte Carlo radiative
transfer simulations is mainly important for the random genera-
tion of the next interaction location. In practice, a random opti-
cal depth is generated from an exponential PDF, and this optical
depth is translated to a physical path length, which immediately
sets the next interaction location.

In order to find out to which degree the choice of the opti-
cal depth scale affects the determination of the path length,
we performed a number of simple simulations. We adopted a
similar setup as in Sect. 3.3, with n(s) = ¥(s) = s, Cexy = 1,
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Fig. 2. Histograms for distribution of randomly generated path lengths, corresponding to different optical depth scales discussed in this paper. The
model is described in Sect. 4.1, and the different columns correspond to different levels of initial linear polarisation. Top panels: optical depths
randomly generated from an exponential distribution, botfom panels: optical depths generated by using the composite biasing approach discussed

in Baes et al. (2016).

and Cpo = Cepor = 0.1, and we used a maximum path length
Smax = 10, corresponding to Textmax = 50. We generated one
million random optical depths from an exponential PDF, and we
converted these values to physical path lengths according to each
of the three different optical depth scales.

The top row of Fig. 2 shows the histograms of the corre-
sponding path lengths for three different input linear polarisa-
tions (Qo/lp = 0, 0.5 and 1, from left to right). For initially
unpolarised photon packages, the three distributions are very
similar. In fact, the distributions corresponding the extinction
and total optical depth are identical as Tex(s) = T (s) for ini-
tially unpolarised radiation. When the initial linear polarisation
degree increases, the histograms for the dichroic and total optical
depth scales remain very similar, but they gradually deviate more
from the histogram corresponding to the extinction optical depth.
We applied two-sample Kolmogorov—Smirnov tests to quantify
this observation. These tests demonstrate that there is indeed
no significant difference between the path length distribution
corresponding to the total optical depth scale and the dichroic
optical depth scale, whereas the path length distribution corre-
sponding to the extinction optical depth scale is significantly dif-
ferent in the case of initially linearly polarised photon packages.
This result is not surprising, as the exponential PDF strongly
favours small random optical depths, and in the optically thin
regime, the total optical depth approximates the dichroic optical
depth very well (see Fig. 1).

However, itis not always advisable to randomly generate opti-
cal depths from an exponential distribution. One particularly rele-
vant case is the penetration of radiation through an optically thick
medium, which is a notoriously difficult task for Monte Carlo
radiative transfer (e.g. Min et al. 2009; Gordon et al. 2017; Camps
& Baes 2018). For a standard exponential PDF, huge numbers of
photon packages need to be generated before a single one might
cross the barrier. Path length stretching (Levitt 1968; Spanier
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1970; Dwivedi 1982) is a Monte Carlo optimisation technique that
artificially stimulates the generation of larger path lengths. Baes
et al. (2016) combine this technique with the concept of compos-
ite biasing, which results in an approach that has the advantages
of path length stretching (an increased probability for large path
lengths) and minimises the disadvantages (no large weight fac-
tors for the photon packages). The bottom row of Fig. 2 shows
the same histograms as the top row, but now the random opti-
cal depths are sampled from a biased distribution (for details, see
Baes et al. 2016, Sect. 4.3). As the total optical depth is no longer
guaranteed to be a good approximation for the dichroic optical
depth at high optical depths, it is no surprise that the distribu-
tions are now more different, especially in the high path length
tail. Kolmogorov—Smirnov (KS) tests indicate that the probabil-
ity that they are drawn from the same distribution is negligible.

4.2. Practical calculation of the dichroic optical depth

The results from the previous subsections show that it is not a
good idea to use the extinction or total optical depth scale to
generate random path lengths in a Monte Carlo radiative transfer
simulation with non-spherical dust grains. To avoid systematic
errors, the dichroic optical depth scale should be used to translate
randomly generated optical depths to physical path lengths. We
hence need an efficient calculation for the dichroic optical depth
T4ic(s) along the path. However, in Sect. 3.3 we argue that it is
not possible to write down a general closed formula for 7gc(s),
which is similar to the “simple” formulae (7) and (18) for the
extinction and total optical depth scales, respectively. In general,
a solution for 74;c(s) needs to be obtained numerically using stan-
dard vector ODE solution techniques.

Fortunately, in the context of Monte Carlo radiative trans-
fer simulations, in which the density of the medium is usually
discretised on a grid with a uniform density and uniform optical
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properties within each grid cell, there is an efficient routine to
solve the radiative transfer equation without the need for vector
ODE solution methods (see also Whitney & Wolft 2002; Lucas
2003). Indeed, we can progressively solve the radiative transfer
equation in each individual cell along the path. We assume again
that the path is split into individual cells that are small enough so
the density, optical properties, and grain orientation can be con-
sidered uniform within each cell. We denote the Stokes vector at
the entry point of cell m as I,,,;. We first rotate the Stokes vec-
tor over an angle i, to align it with the grain orientation within
cell m,

I;n_l = L(‘/’m) Im—1~

As the grain orientation with the cell is constant, we can directly
apply the solution (21) for the radiative transfer to calculate the
Stokes vector at the exit point s = s, of the cell,

27)

I, = e I, cosh ATpoim = ), sinh ATpoln] (28)

Q) = e Ao [Q;n_ , cosh Atpor, — I, sinh A‘rpol,m] , (29)
= g ATextm [U,’n_ 1 €08 ATeporm — V,,_; sin ATCpol,m] , 30)

V! = e AT [V,’n—l oS ATeporm + U,y sin At cpol,m] ) (31)

and

ATxxx,m =Ny Cxxx,m ASm (32)

When we rotate the resulting Stokes vector back to the laboratory
frame, we find the desired result 1,,,

Ly = L(=Ym) I,

This recipe can be repeated for all cells along the path.

We tested this strategy using the same example as already
discussed. The comparison between the brute-force Runge—
Kutta approach and the algorithm described above is shown in
Fig. 3 for an initially unpolarised Stokes vector. The top panel
shows the evolution of the individual Stokes components, the
bottom panels shows the Stokes ratios, as well as the degree of
linear and total polarisation

\VO? + U? VO? + U+ V2
1 1 '

The two methods clearly agree. As the initially unpolarised pho-
ton propagates along the path, it gradually develops linear polar-
isation as a result of dichroic extinction and also circular polar-
isation later on. From 7 > 8, the circular polarisation starts to
dominate the linear polarisation, and at T = 50, the photon is
almost 100% polarised.

The determination of a random path length now follows
the same strategy as discussed for the unpolarised Monte Carlo
radiative transfer in Sect. 2. From the solution of the Stokes vec-
tor I,,, we calculated the dichroic optical depth 7g;c,, at the exit
point of each cell, and we searched for the first cell for which
Tgic,m €Xceeds the randomly determined 7. One additional differ-
ence needs to be taken into account. In the case of unpolarised
radiation transfer, the increase in optical depth within each cell
is directly proportional to the increase in path length within that
cell, for example

(33)

pL= , and p= (34)

Sme1 < 8 < Spye (35)

Text(s) = Textm—1 + i Cext,m (S - Sm—l)

To find the exact path length s corresponding to a randomly
generated 7, we can therefore use simple linear interpolation as
follows:

102}
107t}
1074}
107}
10-10 |
10-13 |
10-16 |
10-19 |
10-22 |
10701 1 10
Tdic

Stokes components

1.0 Q/l — linear polarisation

— total polarisation

0.5¢

0.0 =

Stokes ratios

~0.5} %

0.1 1 10
Tdic
Fig. 3. Evolution of initially unpolarised Stokes vector propagating
through medium of aligned grains where grain alignment rotates around
path. The dots are the result from a Runge—Kutta numerical integration

of the vector radiative transfer equation and the solid lines correspond
to the method outlined in Sect. 3.

= Sm—1

T — Textm—-1 _ ( Sm
Textyn — Textym—1

§=Sp-1=

) (T — Textyn-1)-  (36)
Ny Cext,m

In the case of dichroic attenuation, the increase in optical depth
within a cell is no longer proportional to the increase in path
length, as

Tdic(s) = Tdiem—1 + i Cext,m (S - Sm—l)

—1In [cosh (nm Cpolym (5 = sm_1))

- % sinh (nm Cpolym (5 — sm_l))}

m—1

Sm—1 =<8 < Spy-

(37

For a randomly generated 7, we should in principle use this equa-
tion to determine the correct value of s, which can be done using
standard root-finding algorithms. In practice, however, we sug-
gest using linear interpolation. Given the approximations due to
the discretisation itself, the gain in accuracy by applying an exact
root finding algorithm which is probably not worth the additional
computational cost. Only in cases where the individual cells have
a high optical depth could it possibly be useful to consider a
more advanced, and numerically more costly, higher-order inter-
polation scheme.

One could argue that, in spite of the errors made, it would
still be advantageous to use the extinction or total optical depth
instead of the dichroic optical depth because the calculation
of the dichroic optical depth is numerically more demanding.
Indeed, calculating Tex () or Ty () involves just a single summa-
tion along the path, whereas the calculation of 74;.(s) requires the
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propagation of the entire Stokes vector, including rotations and
hyperbolic function evaluations at every grid cell. However, it
should be recognised that this operation has to be executed any-
way in the Monte Carlo loop since the calculation of the Stokes
vector up to the next interaction point is required. This is due to
the albedo and the scattering matrix that explicitly depend on the
polarisation state of the radiation (Mishchenko et al. 2000; Wolf
et al. 2002). Rather than being a numerically expensive extra, the
dichroic optical depth calculation is free. We can conclude that
there is no benefit at all in using Tex, Tior, OF any other approxi-
mation, instead of the dichroic optical depth to calculate the next
interaction location.

5. Summary and outlook

We have performed an analysis of the attenuation of radiation
when it passes through a medium of aligned spheroidal grains,
fully taking into account the effects of dichroism. The most
important conclusions from this analysis are as follows.

Firstly, in a dichroic medium, the dichroic optical depth is
no longer equivalent to the usual extinction optical depth ey,
that is, the integral of the product of number density and extinc-
tion cross section along the path. For representative values of the
optical properties of dust grains, the relative difference between
both optical depth scales can be several tens of percent, even at
low optical depths.

A potential option to account for dichroic attenuation could
be to replace the extinction cross section by the total extinction
cross section. The corresponding total optical depth 7, approx-
imates the dichroic optical depth to first order, but it is always
overestimated. Relative differences between total and dichroic
optical depth are small at low optical depths, but they can also
run up to several tens of percent at high optical depths. An accu-
rate calculation of the dichroic optical depth requires the full
solution of the intensity profile along the path. In the general case
of a dichroic medium, the radiative transfer equation becomes
a set of four coupled first-order differential equations with
varying coeflicients, and a closed expression for the dichroic
optical depth cannot be derived. However, the exact solution cor-
responding to a medium with uniform grain alignment can be
used to find the full solution in an elegant way without any fur-
ther numerical integration. There is no benefit in using Text, Ttot,
or any other approximation instead of the dichroic optical depth
to calculate the next interaction location in a Monte Carlo radia-
tive transfer simulation.

Our results have implications for Monte Carlo radiative
transfer coders that wish to incorporate the attenuation by elon-
gated dust grains. If scattering polarisation by spherical grains
already adds some complexity to Monte Carlo radiative transfer
codes, dealing with non-spherical grains increases this complex-
ity to a new level. Compared to spherical grains, the scattering
process is significantly more complex. The scattering properties
of spherical grains are fully described by just the albedo and
the scattering phase function; for elongated grains, a full 4 x 4
scattering matrix comes into play (Mishchenko et al. 2000), and
the random determination of a new propagation direction after a
scattering event is not trivial (Wolf et al. 2002; Whitney & Wolff
2002; Lucas 2003). A related complexity concerns the amount of
data that needs to be stored and accessed. Each of the elements
of the extinction matrix and the scattering matrix is not only
dependent on grain material, size, and wavelength, but also on
shape and incidence angle. Moreover, each element of the scat-
tering matrix needs to be discretised on the unit sphere. Finally,
the process of dichroic extinction adds yet another level of com-
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plexity, and the results in this paper show that this also affects
the random generation of the next interaction location.

So far, only a limited number of Monte Carlo radiative trans-
fer codes have attempted to actually calculate dichroic attenu-
ation by non-spherical aligned grains*. Wolf et al. (2002) were
the first to include non-spherical aligned grains in their Monte
Carlo radiative transfer calculations. They presented multiple
light scattering calculations and demonstrated that the incorpo-
ration of elongated grains is important to explain the circular
polarisation of light. They discussed the concepts of dichroism
and birefringence, but they did not include these effects in the
simulations they presented. Whitney & Wolff (2002) presented
a Monte Carlo code that models the effects of scattering and
dichroic absorption by aligned grains in circumstellar environ-
ments. While their code is presented for general geometries, they
only discussed models with a uniform grain alignment. Simpson
et al. (2013) applied this code to massive young stellar objects
with more complex magnetic field configurations. Lucas (2003)
presented a third Monte Carlo code with more or less the same
characteristics as the code by Whitney & Wolff (2002), and also
with the modelling of young stellar objects as the prime science
objective. Applications of this code were presented by Lucas
et al. (2004) and Chrysostomou et al. (2007). Peest et al. (in
prep.) discuss the implementation of polarisation by elongated
grains in the vectorised Monte Carlo code MC3D developed by
(Kriigel 2008; Heymann & Siebenmorgen 2012). Finally, a new
Monte Carlo radiative transfer code, POLARIS, is presented by
Reissl et al. (2016). It handles dichroic extinction and polarised
emission, and it is optimised to handle data that results from
sophisticated magneto-hydrodynamic simulations (Brauer et al.
2017; Reissl et al. 2017, 2018).

The work we present here fits into a broader effort to fully
integrate the attenuation, polarisation, and thermal emission
by elongated interstellar dust grains into the publicly available
radiative transfer code SKIRT (Camps & Baes 2015). The advan-
tage of implementing elongated grains in SKIRT is that the code
can then use many of the useful ingredients that are already
available, such as a suite of optimisation techniques (Baes et al.
2011, 2016), a library of input geometries for sources and sinks
(Baes & Camps 2015), advanced spatial grids and grid traver-
sal techniques (Camps et al. 2013; Saftly et al. 2013, 2014), the
coupling to the output of grid-based and particle-based hydrody-
namic codes (Saftly et al. 2015; Camps et al. 2016), and hybrid
parallelisation techniques for shared and distributed memory
machines (Verstocken et al. 2017).

Contrary to the currently available radiative transfer codes
that incorporate elongated grains, SKIRT mainly focuses on
galaxy-wide scales (e.g. De Looze et al. 2012, 2014; Viaene
et al. 2017; Trayford et al. 2017). The magnetic and turbulent
energy densities in nearby galaxies are found to be roughly in
equipartition, and therefore magnetic fields are expected to be
important for the evolution of galaxies (Boulares & Cox 1990;
Beck et al. 1996). High-resolution cosmological zoom simula-
tions have recently started to take magnetic fields into account
(Pakmor et al. 2014, 2017; Grand et al. 2017). Radiative transfer
codes that can fully incorporate dichroic extinction and emission
by elongated aligned grains could be important tools to compare
such simulations to observations.

4 Several codes (Wood 1997; Wood & Jones 1997; Seon 2018) use an
approximate treatment of dichroic attenuation, based on a non-linear
relationship between the magnitude of dichroic polarisation and optical
depth in our Milky Way (Jones 1989; Whittet et al. 2008).
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