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Nederlandstalige samenvatting
-Dutch summary-

X-stralen tomografie of het uitvoeren van een CT-scan is een techniek waarmee
het inwendige van objecten onderzocht kan worden, zonder deze voorwerpen
daarbij mechanische schade toe te brengen. CT is het bekendst omwille
van zijn medische toepassingen, maar wordt ook elders gebruikt, zoals in de
voedselcontrole, geneesmiddelenontwikkeling en onderzoek rond bijvoorbeeld
geologie of materiaalwetenschappen. In dit werk gaat het om micro-CT. Dit
is X-stralentomografie met een resolutie van de orde enkele tientallen mi-
crometer of zelfs tot onder de 1 micrometer, waarmee relatief kleine objecten
gescand kunnen worden, voornamelijk voor onderzoeksdoeleinden.
CT is inherent een driedimensionale techniek, waarmee een morfologisch 3D
model (binnen- en buitenkant) van het gescande object wordt gemaakt. Het
is ook mogelijk om hier de dimensie tijd aan toe te voegen en zo 4D micro-
CT of dynamische micro-CT te bekomen. Dit wil zeggen dat het object aan
veranderingen onderhevig kan zijn gedurende de scan. Het is precies het dy-
namisch proces dat deze verandering veroorzaakt, dat interessant is. Vele
wetenschappers wensen zulke dynamische processen te onderzoeken en CT
kan hier een goede methode voor zijn, mits we met de moeilijkheden kunnen
omgaan. Deze thesis draait rond het ontwikkelen en verbeteren van de algo-
ritmes die gebruikt worden om de data van 4D micro-CT scans te analyseren
en te interpreteren.
In hoofdstuk 2 wordt X-stralentomografie uitgebreid uitgelegd, inclusief 4D
micro-CT en de moeilijkheden die optreden bij het overgaan van 3D naar
4D. Hoofdstuk 3 bespreekt enkele technieken uit de literatuur die reeds zijn
ontwikkeld om dynamische micro-CT mogelijk te maken, dikwijls voor een
specifieke klasse van toepassingen.

Deze thesis zoekt verbeteringen voor twee types algoritmes om om te gaan
met 4D micro-CT scans. De eerste soort zijn reconstructiealgoritmes. Een
reconstructie is het berekenen van een virtueel 3D (of 4D in dit geval) volume
uit de scandata, een volume dat het onderzochte staal beschrijft. De tweede
soort is de analyse. Dit is heel variabele methodologie waarmee de informatie
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wordt bekomen waarvoor het experiment in kwestie werd uitgevoerd, meestal
(maar niet altijd) vertrekkende van het reconstructieresultaat.

In hoofdstuk 4 ontwikkelen we een nieuwe reconstructiemethode: de gewogen
terugprojectie of ‘weighted back projection’. Dit algoritme is een aangepaste
versie van een iteratieve reconstructie, een van de twee belangrijkste klassen
van reconstructiemethoden in micro-CT. Het maakt gebruik van twee soorten
a priori kennis over het staal, i.e. kennis over het onderzochte object die we
al kennen onafhankelijk van de 4D micro-CT scan zelf.
Ten eerste is er een volume nodig dat het staal in kwestie vrij goed beschrijft.
Dit volume noemen we het initieel volume. Dit kan bijvoorbeeld een 3D model
zijn in het geval van een gefabriceerde component, of het resultaat van een
hoge kwaliteit micro-CT scan van hetzelfde object voor het dynamische pro-
ces in gang werd gezet. In deze thesis wordt een dergelijke hoge kwaliteitsscan
gebruikt.
De tweede soort kennis die we nodig hebben is informatie over welke regio’s
in het initieel volume een hogere waarschijnlijkheid hebben om te veranderen
omwille van het dynamische proces. Dit betekent dat gewogen terugprojectie
gebruikt kan worden voor dynamische processen in een statisch rooster, een
belangrijke klasse van onderzoeksproblemen. Een goed voorbeeld is vloeistof-
stroom doorheen een geologisch materiaal: de vloeistof kan enkel doorheen
de poriën stromen. Dit voorbeeld zal doorheen deze thesis gebruikt worden.
Met deze twee vormen van a priori kennis komt de gewogen terugprojectie
tot stand. Deze reconstructie slaagt erin om uit veel beperktere datasets -
dat wil zeggen, datasets die veel minder radiografieën bevatten dan gebruike-
lijk - de benodigde informatie te kunnen halen, wat zeer goed van pas kan
komen. Wel dienen er maatregelen te worden genomen om de ruis onder
controle te houden, die in de gewogen terugprojectie sterker tot uiting komt
dan in een ‘normale’ reconstructie. Dit kan eenvoudig worden gedaan via
het verkleinen van de relaxatiefactor, een van de parameters in een iteratieve
reconstructie. Samenvattend is de gewogen terugprojectie een krachtige re-
constructietechniek, vooral wanneer een klein aantal radiografieën per rotatie
technisch realistisch is op de gebruikte CT-scanner.

In hoofdstuk 5 bekijken we een methode die tussen de reconstructie en de
analyse in staat: het fitten van een stuksgewijze rechte of ‘piecewise linear
fitting’. De basis van deze techniek is heel eenvoudig: voor elke voxel (een
3D pixel) in het reconstructievolume hebben we na de 4D reconstructie een
attenuatiecoëfficiënt voor verschillende tijdspunten. Aan deze attenuatie in
functie van tijd wordt een stuksgewijze rechte gefit: dit is een opeenvolging
van verschillende rechten. Dit is een zeer eenvoudige functie, waardoor ze
makkelijk te interpreteren valt en de fit relatief snel kan gebeuren. Boven-
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Dutch summary

dien kan deze functie elke andere functie benaderen, waardoor we ze voor elk
mogelijk dynamisch proces kunnen gebruiken.
Op deze manier wordt de ruis sterk onderdrukt in de reconstructie. Boven-
dien zijn de gefitte parameters een goede basis voor de verdere analyse van
het dynamisch proces, zoals we aantonen in het laatste deel van deze thesis,
hoofdstuk 6.
In hoofdstuk 6 analyseren we, door te starten van piecewise linear fitting,
de vloeistofstroom doorheen een Bentheimer zandsteen. We combineren deze
analyse met een bestaande 3D analyse, waarmee de poriën in het volume
worden gëıdentificeerd. We bekijken via het resultaat van de piecewise linear
fitting de doortocht van de vloeistof doorheen de poriën en komen zo te weten
wanneer de vloeistof specifieke poriën binnenstroomt.

De technieken ontwikkeld in deze thesis zijn heel waardevol in verscheidene
4D micro-CT toepassingen. Toch is er ook hierna nog veel werk te doen
in het gebied om het mogelijk te maken om meer dynamische processen te
onderzoeken en zo steeds meer te weten te komen over onze wereld. Ik heb
er vertrouwen in dat de ontwikkelingen in de komende jaren ons hier steeds
dichter naartoe zullen brengen.
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English summary

Computed tomography or CT scanning is a technique that can be used to
examine the interior of objects without causing mechanical damage to these
objects. CT is best known for its medical applications, but it is also used else-
where, such as in food control, drug development and research in geology or
material sciences. This work is about micro-CT or µCT. This is computed to-
mography with a resolution of the order of some tens of micrometers, down to
even below 1 micrometer, with which relatively small objects can be scanned,
mainly for research purposes.
CT is inherently a three-dimensional technique to create a morphological 3D
model (inside and outside) of the scanned object. It is also possible to add
the time dimension and thus obtain 4D micro-CT or dynamic micro-CT. This
means that the object can undergo changes during the scan. It is precisely
the dynamic process that causes these changes that is interesting. Many sci-
entists wish to investigate such dynamic processes and CT is an ideal method
for this, provided we can deal with the difficulties. This thesis revolves around
developing and improving algorithms to deal with the data from 4D micro-
CT scans.
Chapter 2 explains X-ray tomography in great detail, including 4D micro-CT
and the difficulties that arise when moving from 3D to 4D. Chapter 3 dis-
cusses some techniques from the literature that have already been developed
to enable dynamic micro-CT, often for a specific class of applications.

This thesis is looking for improvements to two types of algorithms to deal
with 4D micro-CT scans. The first type are reconstruction algorithms. A
reconstruction is the calculation of a virtual 3D (or 4D in this case) volume
from the scan data, a volume that describes the sample examined. The sec-
ond type is the analysis. This is highly variable methodology that obtains
the information for which the experiment was performed, usually (but not
always) starting from the reconstruction result.

In chapter 4 we develop a novel reconstruction method: weighted back pro-
jection. This algorithm is a modified version of an iterative reconstruction,
one of the two most important classes of reconstruction methods in µCT. It
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uses two types of prior knowledge about the sample, i.e. knowledge obtained
independent of the 4D µCT scan.
First, a volume is required that describes the sample in question relatively
well. We call this volume the initial volume. For example, this can be a 3D
model in the case of a fabricated component, or the result of a high-quality
µCT scan of the same object before the dynamic process was initiated. Such
a high quality scan is used in this thesis.
The second type of knowledge needed is information on which regions in the
initial volume have a higher probability of changing due to the dynamic pro-
cess. This means that weighted back projection can be used for dynamic
processes in a static grid, an important class of research problems. A good
example is fluid flow through a geological material: the fluid can only flow
through the pores. This example will be used throughout this thesis.
These two forms of a priori knowledge make weighted back projection possi-
ble. Weighted back projection succeeds in extracting the required information
from severely limited data sets, i.e. containing fewer radiographs than usual,
which can be very useful. However, measures must be taken to keep the noise
under control, which presents itself more strongly in weighted back projec-
tion compared to a conventional reconstruction. This can easily be realised
by lowering the relaxation factor, one of the parameters in an iterative recon-
struction. In summary, weighted back projection is a powerful reconstruction
technique, especially when a low number of radiographs per rotation is tech-
nically realistic on the used CT scanner.

In chapter 5 we examine a method situated in between the reconstruction
and the analysis: piecewise linear fitting. The basis of this technique is very
simple: after the 4D reconstruction, we have an attenuation coefficient for
different points in time for each voxel (a 3D pixel) in the reconstruction vol-
ume. A piecewise linear function (a number of lines with breakpoints between
them) is fitted to this attenuation in function of time. This is a very simple
function, making it easy to interpret and the fitting procedure is relatively
fast. Moreover, this function can mimic any other function, so that we can
use it for every possible dynamic process.
Piecewise linear fitting decreases a large part of the noise in the reconstruc-
tion. Moreover, the fitted parameters are a good basis for further analysis
of the dynamic process, as we demonstrate in the last part of this thesis,
chapter 6.
In chapter 6, starting from the result of piecewise linear fitting, we analyse
the fluid flow through a Bentheimer sandstone. We combine this analysis
with an existing 3D analysis, which identifies the pores in the volume. We
use the result of the piecewise linear fitting to observe the passage of the
liquid through the pores and to find out when the liquid enters specific pores.
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English summary

The techniques developed in this thesis are very valuable in various 4D µCT
applications. Nevertheless, there is still much research to be done to make
it possible to investigate more dynamic processes and thus learn more and
more about our world. I am confident that developments in the coming years
will continue to bring us closer to this goal.
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Terminology

CBCT Cone beam CT

Computed tomography A non-destructive technique for visu-
alising the inside of an object in 3D

CT Short for computed tomography

Dark field A radiograph used for normalisation.
It records the response of the detector
when the X-ray beam is turned off.
See section 2.3.5.

DF Short for dark field image

DVC Short for digital volume correlation.
See section 3.3.

EMCT A CT-scanner of the UGCT often
used for dynamic scans

FBP Short for filtered back projection. See
section 2.4.1.

FDK An analytic reconstruction technique
for a cone beam set-up. See sec-
tion 2.4.1.

GPU Short for graphical processing unit.
An electronic circuit usually respon-
sible for the creation of images for a
display.

HECTOR High Energy CT Optimized for Re-
search, a CT-scanner of the UGCT.

IO Short for intensity offset, which is the
flat field image

Micro computed tomography Computed tomography with a resolu-
tion of µm or better

MVF Short for motion vector field. See sec-
tion 3.3.

Scanning Performing computed tomography on
an object.

UGCT The UGent centre for X-ray tomogra-
phy

UGent Ghent University

µCT Short for micro computed tomogra-
phy
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1
Introduction

What is this thesis about?

High resolution X-ray computed tomography (µCT) is an important tool in
multiple research domains to non-destructively visualise and analyse samples
in 3D, both internally and externally [1, 2]. Its non-destructive nature makes
µCT suited to be extended to the scanning of samples undergoing dynamic
processes during a scan. As such, this so-called dynamic µCT or 4D µCT
has gained interest as a technique to visualise dynamic processes taking place
inside samples. The dynamic process is undisturbed by the measuring tech-
nique (µCT). However, the processing and analysis of this 4D µCT data is
still challenging, facing motion artefact complications and high noise levels.
By optimising these algorithms, we hope to push 4D µCT to become a mea-
surement technique for faster and more difficult dynamic processes.
The processing of 4D µCT data in this PhD research and the developed tech-
niques were implemented in ctrex, a hybrid code of Python and C, using
parallel computing on graphical processing units (GPU) and the open-source
module PyCuda [3].

This research was performed under an SB-grant (‘Strategisch Basisonder-
zoek’) of the Research Foundation Flanders (FWO). The goal, as described
in the original project application, was threefold:

1. Develop methods to use prior knowledge in an iterative reconstruction
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to improve the reconstruction quality.

2. Extend the existing 3D analysis methods to 4D, with time being the
extra dimension.

3. Combine both reconstruction and analysis in one framework.

This dissertation will describe the progress that was made towards all three
of these goals.

1.1 Research group

The research was performed at the Ghent University Centre for X-ray Tomog-
raphy (UGCT) [4]. This is a collaboration between three Ghent University re-
search groups: the Radiation Physics group (Department Physics and Astron-
omy, Faculty of Sciences, with which I am associated), the PProGRess group
(Department of Geology, Faculty of Sciences) and the Laboratory of Wood
Technology (Department of Environment, Faculty of Bioscience Engineering).
The UGCT has five operational, home-build CT scanners ([4, 5, 6, 7]) and
performs research on computed tomography and its applications.

1.2 Outline

The background for this PhD research is described extensively in chapter 2.
We will first describe µCT and its applications and then explain in more
detail how exactly µCT works. Special attention will go to reconstruction
algorithms, as adaptations to these are one of the core focusses of this PhD
research. Section 2.5 describes in detail some of the artefacts, i.e. imaging
errors, that can occur in µCT and that should be compensated for and kept
in mind when interpreting µCT results. After this, the chapter provides an
explanation of 4D µCT, the core research area in which this PhD research
is situated. We also describe the most used CT scanner in this work, the
EMCT, and the sample on which the techniques developed in this PhD re-
search will be demonstrated, a Bentheimer sandstone.

A literature review in the context of 4D µCT is provided in chapter 3. We
will provide an (incomplete) overview of some of the most used techniques
in the context of dynamic CT, along with the advantages, disadvantages and
application area of each. As we will see, most techniques are applicable to
specific applications and are less ideal in others. Therefore, depending on the
sample and the dynamic process under investigation, different techniques can
be chosen.
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CHAPTER 1. INTRODUCTION

We developed an adapted iterative reconstruction algorithm which uses prior
knowledge and is described in chapter 4: weighted back projection. We
explain the algorithm, which uses two types of prior knowledge: an initial
volume and a weight volume. The initial volume is a volume resembling the
sample, typically obtained from a high-quality µCT scan before the dynamic
process was initiated, although it can be a 3D model of a fabricated com-
ponent as well. The weight volume describes in which areas in the sample
the dynamic process is most likely to occur. Both these volumes are incor-
porated into an adapted version of an iterative reconstruction. In this work,
this iterative reconstruction algorithm is SART, but any other can be adapted
similarly.
In chapter 4, we will compare the results obtained with four different weight
volumes and see which effect this choice has on the reconstruction. Such
a weight volume can be either continuous or discrete and it can have zero
weights or not. Chapter 4 will show the importance of choosing the right
weight volume. We will test the ability of weighted back projection to recon-
struct a volume from a limited amount of projections using the Bentheimer
sandstone sample and only 10% of the available projections. This simulates
a scan that was performed faster than the available scan, while still having
the ‘slower’ data available as a benchmark to compare the results with.
A disadvantage of weighted back projection is the high susceptibility to noise.
This can be compensated by setting a low relaxation factor, one of the pa-
rameters in an iterative reconstruction. We found this to be the simplest way
to decrease the noise when comparing different methods in section 4.6.

Chapter 5 describes a novel technique which connects reconstruction to anal-
ysis. It starts from a 4D reconstruction, which can be made with any recon-
struction algorithm, and fits a piecewise linear function to the time evolution
of the attenuation coefficient of each voxel (3D pixel). The algorithm and the
reasoning behind its aspects are explained at the start of the chapter. After
this, the algorithm is demonstrated on the Bentheimer sandstone sample.
Piecewise linear fitting decreases the noise in the reconstruction significantly.
This noise filtering also occurs in the spatial directions, even though piece-
wise linear fitting only intervenes in the temporal dimension. Despite the
noise reduction in the spatial dimensions, spatial resolution is not affected.
As will be demonstrated in chapter 5, the noise filtering effect of piecewise
linear fitting can be similar to ‘real’ noise filters. These exist in plenty of
different forms and therefore noise reduction was not the primary reason to
develop piecewise linear fitting, only an added bonus. Piecewise linear fitting
is a step towards analysis, which is its most important aspect.
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An analysis following from piecewise linear fitting is explained in chapter 6,
where we also use conventional 3D analysis. We use, for each voxel, the
parameters from the piecewise linear fit to determine at which time the dy-
namic process influenced this voxel - if it influenced this voxel at all. This
is combined with a 3D pore segmentation to examine the time of fluid entry
for each pore, with a spread signifying noise levels and uncertainty. Overall,
piecewise linear fitting proves to be a good tool for an analysis of this sample.

Finally, chapter 7 outlines a very short overview and the general conclusion
for this PhD research.

1.3 Main contributions

The main contributions of the author to the field of µCT are:

• Developed and characterised weighted back projection, an iterative re-
construction technique using two forms of prior knowledge: an initial
volume and a weight volume.

• Developed piecewise linear fitting: a post-processing technique specifi-
cally for 4D µCT which acts as a stepping stone towards analysis.

• Demonstrated the possibility to perform data analysis starting from a
piecewise linear fit.

• Heavily extended the reconstruction framework ctrex, a GPU tool using
Cuda and Python.

1.4 Publications related to this work

Journal articles:

• “Piecewise linear fitting in dynamic micro-CT”
Marjolein Heyndrickx, Matthieu Boone, Thomas De Schryver, Tom
Bultreys, Wannes Goethals, Glenn Verstraete, Valérie Vanhoorne and
Luc Van Hoorebeke. Materials Characterization. 139. p.259-268 (2018).

• “Improving image quality in fast, time-resolved micro-CT by weighted
back projection”
Marjolein Heyndrickx, Matthieu Boone, Tom Bultreys, Wannes Goethals
and Luc Van Hoorebeke. (submitted at Optics Express)
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Conference contributions:

• “Effect of an initial solution in iterative reconstruction of dynamically
changing objects”
Marjolein Heyndrickx, Thomas De Schryver, Manuel Dierick, Matthieu
Boone, Tom Bultreys, Veerle Cnudde and Luc Van Hoorebeke. To-
mography of Materials and Structures, 2nd International conference,
Proceedings. p.172-176 (2015).

• “Improving the reconstruction of dynamic processes by including prior
knowledge”
Marjolein Heyndrickx, Thomas De Schryver, Manuel Dierick, Matthieu
Boone, Tom Bultreys, Veerle Cnudde and Luc Van Hoorebeke. HD-
Tomo-Days (2016).

• “Dynamic CT reconstruction using piecewise linear fitting”
Marjolein Heyndrickx, Matthieu Boone, Tom Bultreys and Luc Van
Hoorebeke. 3rd International conference on tomography of materials
and structures (2017).

• “4D-µCT analysis through piecewise linear fitting”
Marjolein Heyndrickx, Matthieu Boone, Thomas De Schryver, Tom
Bultreys, Wannes Goethals, Glenn Verstraete, Valérie Vanhoorne and
Luc Van Hoorebeke. Porous Media, 10th International conference (2018).

• “Weighted backprojection: a reconstruction technique for dynamic micro-
CT”
Marjolein Heyndrickx, Matthieu Boone, Wannes Goethals, Tom Bul-
treys and Luc Van Hoorebeke. Tomography of Materials and Struc-
tures, 4th International conference (2019).
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2.1. WHAT IS X-RAY COMPUTED TOMOGRAPHY?

This thesis is situated in the domain of high resolution X-ray micro computed
tomography (µCT). Specifically, the goal is to improve the techniques for
dealing with dynamic µCT, also known as 4D µCT. The current chapter
will clarify the basic questions about this technique, such as: What exactly
is computed tomography? How does it work? What do people use it for?
What are the difficulties?

2.1 What is X-ray computed tomography?

1

2

 
4

3

Figure 2.1: The high energy CT scanner optimised for research (HECTOR
[1]), one of the CT scanners at the UGCT ([2], section 1.1), with some com-
ponents indicated. 1. The X-ray tube. 2. The object under investigation, i.e.
the sample. 3. The detector. 4. The rotation stage. The blue cone shows
the X-ray beam. HECTOR has the geometry of the bottom left set-up of
figure 2.7.

Computed tomography or CT-scanning is a technique for visualising the ex-
terior and interior of an object in 3D (three spatial dimensions). The most
important aspect of CT is that it is (mostly) non-destructive [3, 4]. The
sample which is scanned will be intact after the scan, since it has not been
cut open or otherwise mechanically damaged. Only in-vivo biological sam-
ples and X-ray sensitive materials might experience harmful effects from the
radiation associated with the measurement [5]. This is especially important
in medical research areas making use of CT and radiation sensitive materials
and plants in µCT [6]. However, since this does not apply to the samples
used in this research, the CT-scans are regarded as non-destructive in the
scope of this work.
Computed tomography is performed with a system called a CT-scanner or a
CT scanning system. There is a large variety of scanners, depending on their
purpose. In this work, we focus on high-resolution CT systems (µCT), as
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CHAPTER 2. DYNAMIC COMPUTED TOMOGRAPHY

opposed to the more well known medical CT systems. Micro-CT or µCT is
defined as computed tomography with a resolution of the order of 100µm to
1 µm or better. In µCT, the scanned samples are typically a few mm to a few
cm big. However, much larger samples can also be scanned, albeit generally
at a worse resolution.
Figure 2.1 portrays an example of a lab-based scanner, with the key parts
specifically indicated (more on this in section 2.3).
CT scanners can differ from each other not only in brand and specifications of
the components such as source or detector, but also in the mechanical set-up
(e.g. which part rotates, see for example section 2.7) and the X-ray beam
geometry. Section 2.3.2 explains this further.

2.2 Applications of computed tomography

A highly advantageous property of CT is its ability to investigate the inte-
rior of objects in a non-destructive way. The most well-known application is
medical imaging, for example the search for tumors in various parts of the
body [7, 8]. Airport security mostly uses radiography, but sometimes checks
luggage with CT as well [9].
Whenever it is useful to investigate the inside of an object in 3D without
cutting it, computed tomography is a suitable technique. Researchers use
computed tomography for their work in different fields, such as palaeontol-
ogy [10], biology of small animals [11], woven textile [12], geology [13, 14],
archaeology [15], wood research [16], materials science [17] and evaluation of
medical devices [18].
In most of these examples, the object does not change significantly during
imaging. However, there is a growing interest in imaging dynamic processes
which occur inside the sample. This is possible thanks to the non-destructive
nature of CT.
4D µCT or CT sampling of dynamic processes is a sub-domain of CT research
and has applications in various scientific disciplines. Indeed, a lot of research
requires the ability to observe dynamic processes in situ, i.e. inside samples
as they take place. The process could be fluid filling up pores [19], crack
formation under stress [20], the weathering of building stones [21] or lime-
stones [22], self-healing materials upon fracturing [23], deformation of foams
[24], evolution of the bubble sizes after mixing of dough [25], oil removal from
sponges [26], structural changes due to temperature variations [27] and many
others.
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2.3. HOW DOES COMPUTED TOMOGRAPHY WORK?

Figure 2.2: Photographic picture (left) and X-ray image (right) of a baboon
mummy from the National Museum of Antiquities in Leiden. [28, 29]

2.3 How does computed tomography work?

Computed tomography [30] is the 3D extension of X-ray radiography (i.e. 2D
X-ray imaging). When X-rays, originating from an X-ray source, encounter
an object, they pass through it like visible light through glass [31] and only a
fraction of the beam will be absorbed or removed from the beam in another
way. The amount of attenuation (i.e. absorption or scattering, more on that
in section 2.3.1) depends on the internal structure of the object. Therefore,
the X-rays leaving the object will contain a ‘shadow image’ (as in the right of
figure 2.2) of the interior of the object. For example, if the sample contains
both a dense material and a light material, the X-rays passing through the
dense material will be attenuated more. Therefore the transmitted X-ray
beam that went through the dense part of the object will have a lower inten-
sity than its counterpart that went through the light part. These transmitted
X-ray beams and the information they contain can be measured with an X-
ray detector.
The combination of the X-ray source, sample and X-ray detector therefore
produces an X-ray image as in figure 2.2, called a radiograph or projection.
The most dense materials (bones) that attenuate X-rays the most show on a
radiograph as a low intensity, i.e. black, while for example air leaves the in-
tensity of the X-ray beam mostly intact, showing white. Note that in medical
imaging typically the negative image is used. The best-known applications
of such images are medical and security (other applications can be found in
section 2.2). The skeleton is clearly visible on these images, because it atten-
uates X-rays more than the surrounding tissue [32].
An X-ray image is transmission based and therefore inherently 2 dimensional.
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CHAPTER 2. DYNAMIC COMPUTED TOMOGRAPHY

To realise a 3D technique, the CT scanner takes X-ray images from different
angles. Usually this is realised by having components that rotate: the scan-
ner will collect multiple X-ray images during this rotation, resulting in X-ray
images taken from different angles, each time showing the sample projected
from a different direction. All of these images can be combined to calculate
the 3D representation of the sample.
Section 2.3.2 explains how the scanner components are positioned and move
with respect to each other. Sections 2.3.3 and 2.3.4 explain more about the
components of a computed tomography scanner. Section 2.3.1 describes how
X-rays interact with the sample to produce a ‘shadow’ or X-ray image. Sec-
tion 2.4 discusses the software algorithms that produce a 3D image from the
collection of 2D X-ray images.
In summary, a CT scan is performed as follows:

1. The X-ray source, pointing to the sample and the detector, is turned
on.

2. A radiograph is recorded: the ‘shadow image’ from the sample on the
detector.

3. The scanner rotates a small step (either the sample or the detector-
source combination) .

4. A new radiograph is taken in this new position .

5. Repeat point 3 and 4 until a complete rotation has been performed.

6. A computer algorithm called a reconstruction transforms the resulting
set of radiographs into a 3D image.

2.3.1 Interaction of X-rays with matter
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Figure 2.3: The electromagnetic spectrum with X-rays in bold. Adapted from
[33]

X-rays are commonly defined as electromagnetic waves with a wavelength
between 1 pm and 10 nm [34]. Note that this definition includes γ-rays, while
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2.3. HOW DOES COMPUTED TOMOGRAPHY WORK?

the more precise physical definition of X-rays includes their origin: charged
particles (electrons outside the nucleus) emit X-rays, while γ-rays are emitted
by nuclei or originate in annihilation reactions between matter and antimat-
ter [35]. We will use the more common definition in the following and thus
include γ-rays as if they are X-rays, since a γ-ray and an X-ray of identical
wavelength have identical properties.
X-rays were discovered by W. Röntgen in 1895 [31]. As Röntgen has al-
ready noticed in his original article, X-rays pass through most materials, but
the change in intensity after passing depends on the density of the material
and “something else” (which turned out to be material composition). When
putting more than one material next to each other in the path of the X-ray
beam, this results in a shadow image (point 14 in [31]), where you can see a
2D projection of these different materials, for example the bones in a hand.
The intensity of an X-ray beam passing through material A might decrease
more than one passing through material B, causing these shadows. This sec-
tion is about the processes that cause this intensity loss for X-ray beams
passing through matter.
The intensity of a beam is proportional to the number of photons in it. An
example: a monochromatic X-ray beam originates at the source at intensity
I0 = E·104 photons/s/cm2 (with E the energy per photon), passes through a
perfect mono-material slab of 1 cm thick and arrives at the other side with
I = E·7× 103 photons/s/cm2. This means the beam was attenuated by 0.3
or 30 %.
The equation governing the attenuation of X-rays is called the Lambert-Beer
law [36, 37, 38]. In its simplest form, it reads:

I = I0e
−µd (2.1)

with I the transmitted intensity of the X-ray beam, I0 the original intensity, µ
the attenuation coefficient of the material and d the thickness of the material
through which the beam propagated. This is the equation for a monochro-
matic beam (i.e. only one photon energy) and a material of uniform compo-
sition and density. The slab material in the previous example therefore has
an attenuation coefficient µ ≈ 0.36 cm−1, resulting in e−µd = 0.7.
Equation 2.3 presents the more general case of a polychromatic X-ray beam
passing through an object.

I =

∫
E
I0(E) · exp

(
−
∫
L
µ(s, E)ds

)
dE (2.2)

=

∫
E
I0(E) · exp

(
−
∫
L

µ

ρ
(s, E)ρ(s)ds

)
dE (2.3)

In this equation, E is the energy spectrum of the incident X-ray beam, E is the
energy, L is the path followed by the X-ray, s is a position coordinate within
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CHAPTER 2. DYNAMIC COMPUTED TOMOGRAPHY

the material, ds is an infinitesimal path length and ρ(s) is the local density
of the material. ρ(s) is present in this equation because µ depends on the
density, the Z-value of the material and the energy of the X-rays. Since the
density-dependence is directly proportional, this dependence can be removed
through division and µ

ρ can now be tabulated for specific Z’s and energies as

in the database of Berger et al. [39]. Figure 2.4 shows an example. In both
these figures, absorption edges are visible (the sharp increase or decrease in
attenuation). An absorption edge appears at the binding energy of electrons
in a particular shell. Once the incoming photon has this energy or higher, an
additional photo-electric interaction (more on that later) becomes available
for the incoming photon, thus increasing the attenuation.
The linear attenuation coefficient is µ (unit m−1) and the mass attenuation

Figure 2.4: Graph of the mass attenuation coefficient µ
ρ in function of Z at

a fixed energy of 8× 10−3 MeV (left) and as a function of the energy at a
fixed Z = 75, i.e. the element Rhenium (right). The data in these graphs
was taken from the database of Berger et al. [39].

coefficient is µ/ρ (unit m2/kg since ρ has unit kg/m3). This attenuation
is due to several physical interactions between the X-rays and the material,
which can give rise to both absorbing and scattering the X-rays, the latter
removing the X-rays from the primary beam. For the energies most used in
computed tomography the important interactions are [40, 4, 41]:

• Photo-electric absorption

• Compton scattering

• Rayleigh scattering

Pair production and nuclear reactions can also appear, but these only occur
at higher energies and are as such not relevant in this work. Figure 2.5 gives
a schematic representation of these interactions and figure 2.6 shows their
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Rayleigh scattering

X

X

Pair production

X

e+

e-

Compton scattering

X

e-

X

Photo-electric absorption

X e-

X

Figure 2.5: Different interactions between an X-ray and an atom. The inci-
dent X-photon is depicted by the wavy blue line.

relative magnitude at a particular energy for an example material, iron. In
the following, these interactions will be described.
An incident X-ray photon arriving at an atom may bump into an electron,
transfer all its energy (i.e. be absorbed) and in this way knock the electron
out of its shell. This can only happen when the X-ray energy is higher than
the binding energy of said electron. This is photo-electric absorption.
Photo-electric absorption leaves a hole in a shell of the atom, where the
electron was. This can be filled fast by an electron at a higher shell, where
the energy difference between its original position and the new, lower-energy
shell will be emitted as a fluorescent photon, with an energy specific for the
atom from which it was emitted.
The probability qpe of photo-electric absorption happening typically increases
with the Z-value of the material and decreases with the incident photon energy
according to equation 2.4 (see figure 2.4).

qpe ∼
Z3

E3
(2.4)
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This formula is only valid away from the absorption edges, i.e. the threshold
values where a photon has sufficient energy for a new shell of electrons to
interact through photo-electric absorption. Examples of such edges are visible
in figure 2.6 at 7.112× 10−3 MeV and in figure 2.4.
An X-ray photon can also bump into an electron and only transfer part of its
energy. This is Compton scattering or incoherent scattering. The photon
will be scattered: it will continue in a different direction, with a lower energy
(higher wavelength) than before. Like in photo-electric absorption, this can
only happen when the absorbed energy is higher than the binding energy,
unless it is a free electron (not bound to an atom).
The probability qC of Compton scattering increases with the Z-value of the
material. It first rises with energy and then drops, according to a function f,
which can be calculated with the Klein-Nishina approximation [42, 43].

qC ∼ Zf(E) (2.5)

Rayleigh scattering or coherent scattering is scattering not on a single
electron, but on the cloud of electrons as a whole. No electron gets kicked
out in this interaction and there is no energy transfer. The X-ray photon
continues its path in a different direction.
The probability for Rayleigh scattering qR decreases with increasing energy
and increases with increasing Z.

qR ∼
Zn

En
(2.6)

with n a number between 2 and 2.5 [44].
Pair production occurs when a photon, under the influence of the electro-
magnetic field of the nucleus or the electrons, gets transformed into a pair of a
particle and an antiparticle, usually an electron and a positron. This can only
happen when the energy of the photon is higher than 2× 0.511 MeV = 1.022 MeV,
the rest energy of an electron and a positron combined. Any remaining pho-
ton energy above this threshold will be the kinetic energy of the resulting
pair. Since this is much higher than the used energies in µCT, pair produc-
tion does not contribute to the attenuation coefficients.
All the above formulas are approximations which are only valid in µCT X-ray
energy ranges.

2.3.2 X-ray set-ups

The basic orientation of the components of a CT scanner is as follows:

• The X-ray source has the window where X-rays emerge pointed to the
detector.
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Figure 2.6: Different contributions to the mass attenuation coefficient µ/ρ of
iron. Adapted from [45].

• The X-ray detector has the side sensitive to X-rays pointed to the
source.

• The sample is in between source and detector, in the path of the X-rays.

There are two options for the rotation: either the sample is placed on a ro-
tation stage and rotates around its own axis (as in the first three sub-figures
of figure 2.7) or the X-ray source and detector rotate simultaneously around
the sample (as in the last sub-figure of figure 2.7). In µCT, it is most often
the sample that rotates. In medical CT the patient remains stationary while
source and detector rotate. For the scans in this thesis, which are dynamic
scans, it will be the gantry (i.e. source and detector) that rotates, in contrast
to most µCT systems. This is because dynamic processes often require tubes
or cables to supply for example water or electricity to the sample or sample
holder. These may not be tangled up as a result of the rotation, especially
since there will preferably be multiple, continuous rotations (or, equivalent,
one continuous rotation spanning a large rotation angle, multiple times 360◦)
instead of a single full rotation.
The X-ray beam may have different shapes, depending on the source. Fig-
ure 2.7 depicts some of these. A fan beam geometry has a point source and
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Figure 2.7: Four possible geometries for the X-ray CT set-up. Note that other
geometries are also possible, for example parallel beam with a line detector (as
in the shown fan beam geometry) or a rotating gantry in other geometries
than cone beam. The indicated components are 1. the X-ray tube. 2. a
sample. 3. the detector.

a line detector. A fan beam will need an additional movement (besides the
rotation) to scan the entire sample, since the beam does not pass through
the whole sample at once. In figure 2.7, this would be a vertical translation.
A geometry with a 2D detector records the entire radiograph at once and
therefore does not require this additional translation. This is the case for the
depicted parallel and cone beam in figure 2.7. Most current lab-based CT
scanners have a cone beam set-up, while synchrotron beamlines often use a
2D parallel beam set-up. Both geometries allow for the scans to be performed
much faster, since a translation is no longer necessary.
Note that while the cone-beam in figure 2.7 fits completely on the detector,
this is not a real occurring situation. Usually the detector is completely en-
compassed in the X-ray beam, so that all its pixels measure something, even
the ones in the corners. The shadow image of the sample, on the other hand,
should fit completely on the detector.
In this work, I will mostly use the cone-beam stationary-sample set-up (bot-
tom right in figure 2.7). This is the set-up for EMCT [46] (see section 2.7),
the UGCT scanner used for dynamic samples.
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2.3.3 X-ray source

X-rays may originate from different sources. Natural X-ray sources are for
example the sun, planets, comets and black hole binaries [47, 48]. Radioac-
tive substances may, after decay, remain in an excited state and relaxation
can then cause γ-rays to be emitted. This is, however, seldom used as an
X-ray source in µCT for practical reasons [49]. In this work, an X-ray source
will always refer to a man-made device which produces X-rays with the goal
of using these in computed tomography. X-ray sources can be classified in
two broad categories:
Synchrotron sources [50, 51, 52, 53] are circular particle accelerators that
produce X-rays at a few different points. First, at the bending points, where
the particle trajectories are curved by bending magnets to create a closed
circular path. Secondly, at wigglers, an insertion device that is a line-up of a
series of bending magnets. Thirdly, at undulators, another type of insertion
device which produces the most intense beam of these three. The X-ray beam
at one such bending point or insertion device is enclosed in a beam line and
typical synchrotrons have multiple beam lines where X-ray experiments can
be performed. An X-ray beam from a synchrotron is typically coherent and
nearly monochromatic after adding a monochromator, both very desirable
properties. The monochromator is possible while maintaining sufficient in-
tensity of the beam because the beam intensity is incredibly high. This high
intensity allows for much faster imaging with lower noise. Synchrotrons are
therefore ideal X-ray sources for computed tomography. However, there is
only limited access to beam lines, since building a synchrotron is costly and
requires space. Requesting beam time (time at a beam line to perform your
experiments) generally takes months and does not have guaranteed success.
Lab-based X-ray sources or X-ray tubes have less intensity, are not fo-
cussed and are typically polychromatic. However, they are cheap (affordable
for a research lab or company), they fit into an ordinary room and are readily
available.
There exist many types of X-ray tubes, but they are all based on the same

e-

X1

2

Figure 2.8: Photograph (left, [54]) and schematic drawing (right) of a
Coolidge tube. On the drawing, 1 is the cathode and 2 is the anode.
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principle. In figure 2.8 this principle is illustrated for a Coolidge tube, which
is an old type of X-ray tube without additional housing besides the glass exte-
rior, making it ideal to see the components inside. Electrons are emitted from
a filament, the cathode. An electric field accelerates them towards a target
material, the anode. In the anode, they bump into the atoms and decelerate.
During this, they emit bremsstrahlung. The electrons may also excite elec-
trons in the target material. These atoms will then emit relaxation radiation.
These two effects together are the source of the X-rays and form the X-ray
spectrum of that particular X-ray source. Figure 2.9 shows an example of an
X-ray tube spectrum. The continuous curve is the bremsstrahlung, the two
peaks are the characteristic K lines for rhodium (the relaxation radiation).
The bremsstrahlung is cupped at low energies due to filtering in the air and
in the tube itself.

The fact that this spectrum is not just an ultra-small peak, i.e. that it
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Figure 2.9: Spectrum of an X-ray tube with a rhodium target, operated at
60 kV. Adapted from [55].

is polychromatic, poses some problems in laboratory based X-ray CT. The
major consequence is called beam hardening [56], which is discussed in more
detail in section 2.5.2.
For the interested reader, both Boone [40] and Behling [57] provide a wide
discussion on X-ray tubes.
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2.3.4 X-ray detector

An X-ray detector detects the intensity of incoming X-rays on a pixelated
matrix and digitizes this. The signals are sent to a computer and further
processed there.
Two kinds of detectors exist: direct and indirect ones [58, 40]. In a direct
detector, X-rays interact with a layer of the detector and create electron-hole
pairs. These represent a charge, which gets affected by the electric field.
The pair moves to the anode and cathode and this causes an electric signal.
Indirect detectors have the X-rays interact with a scintillation layer. This
layer emits visible light in response to these X-rays. A second layer transfers
this light into an electric signal.
Direct detectors have the advantage that their resolution is better and they
can count individual incoming photons, but in practice most detectors in µCT
are indirect ones. This is because these detectors are easier to make, i.e. more
commercially available (the light-to-electric layer has a bigger development
industry behind it, since this can also be used in photography), are cheaper,
have a higher flexibility (the scintillator can be exchanged) and they can be
optimized for the best suited energy range. Direct detectors, on the other
hand, depend on a particular semiconductor, mostly silicon (Si), which has
a low efficiency at higher X-ray energies. Other possiblities are cadmium-
telluride (CdTe) or cadmium-zink-telluride (CdZnTe) [59], of which there are
only a few suppliers worldwide and chromium compensated galium arsenide
(GaAs) [60, 59], of which supply is very limited.
A detector typically has different sensitivities to different energies of X-rays.
Combined with the X-ray spectrum of the source, this determines how much
each X-ray energy contributes to the radiography.
Boone [40] and Lowe and Sareen [61] discuss the different aspects of an X-ray
detector.

2.3.5 Normalisation

A radiograph is a 2D collection of pixels, each measuring the attenuation
along the path from the source to that particular detector pixel. This happens
according to the Lambert-Beer equation [36, 37, 38], shown in equation 2.3
and repeated here:

Itheory =

∫
E
I0(E) · exp

(
−
∫
L

µ

ρ
(s, E)ρ(s)ds

)
dE (2.7)

Itheory is the intensity as it should be observed on the detector pixel, E is the
energy of a photon, I0(E) is the intensity of the X-ray beam when it comes
out of the source for a particular energy E, E is the energy spectrum of the
ray, L is the path the ray followed from source to detector, s is a fraction
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of this path, i.e. a location coordinate in the sample, ρ(s) is the density of
the sample at location s and µ

ρ (s, E) is the mass attenuation coefficient (de-

scribed in section 2.3.1) of the sample at location s and energy E.
However, the measured Imeasured is not equal to Itheory. There are unwanted
effects that can not easily be resolved (noise and artefacts), but some effects
can be resolved. For this, CT scans use normalisation. At least two addi-
tional radiographs are taken, besides the ‘real’ ones described before: the
dark field (DF) and the flat field/intensity offset (IO). The dark field is a
radiograph taken when the source is turned off. This measures the signal the
detector measures even when there is nothing to be measured - the detec-
tor background. The intensity offset measures the signal when the sample is
not positioned on the scanner - this should measure I0 =

∫
E I0(E)dE directly

(hence the name IO), including the attenuation through air which we consider
to be 0 in the reconstruction algorithms. By including the air attenuation in
IIO we have already incorporated it and can indeed ignore it in the recon-
struction. Note that the attenuation through air is not exactly the same in
IIO and Imeasured, since the IO also measures transmission through a part
air that will have the sample in it in the actual measurement. This effect is
small and can be neglected.
The normalised intensity is [62, 40, 58]:

Inorm =
Imeasured − IDF
IIO − IDF

(2.8)

And this results in:

Inorm ≈
Itheory
I0

(2.9)

Often, more than one dark field and flat field are taken, typically using frame
averaging. This can provide improvement, i.e. eliminate more Poisson noise
[40].
If we now define I/I0 = Inorm the Lambert-Beer equation becomes:

Inorm =
I

I0
= exp

(
−
∫
E

∫
L

µ

ρ
(s, E)ρ(s)dsdE

)
(2.10)

Usually, this is simplified by assuming a monochromatic beam:

Inorm =
I

I0
= exp

(
−
∫
L

µ

ρ
(s)ρ(s)ds

)
(2.11)

A monochromatic beam means that each position in the sample only has
one attenuation coefficient µ

ρ , a number, instead of a µ
ρ that is a function

of energy. Therefore the sample volume will be easier to reconstruct. This
faulty assumption introduces beam hardening artefacts (section 2.5.2), but
these are outside of the scope of this work. Therefore, we will assume this
equation is adequate.
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2.4 Reconstruction: how it becomes 3D

After performing a CT scan as described in section 2.3, the result is a series
of radiographs or projections that will be used to obtain the 3D image repre-
senting the internal and external morphology of the scanned object.
The starting point are detector pixels i, each measuring an intensity Ii as
in equation 2.11. The wanted end result is the distribution of attenuation
coefficients through the sample µ. Because a continuous µ would actually
mean infinite data points, which a computer can not store, and the starting
data is discrete anyway, the end result will be a 3D grid of voxels. A voxel is
the 3D equivalent of a pixel. In general in µCT and more particular in this
work, a voxel is isotropic, i.e. a cube. This means we will have to discretise
the Lambert-Beer equation, equation 2.11.

To change the continuous equation into a discrete one, the integral will

i-1

I0

Ii

1

2

3

i
i+1

j-1

sij
j+1j

Figure 2.10: A representation of an X-ray (blue) coming from a source (1),
passing through a volume of voxels (2) and arriving at a pixel of the detector
(3). This is a 2D slice through the scanning situation.
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become a sum.

pi = − ln

(
Ii
I0

)
=

∫
Li

µ(s)ds (2.12)

⇒ pi = − ln

(
Ii
I0

)
=
∑
j

µjsij (2.13)

i is the index of a detector pixel, while j is the index of a voxel in the volume.
p is a projection value, which is the logarithm of a normalised intensity. sij
represents the volume of voxel j that was passed through by ray i, normalised
by dividing by the area of detector pixel i. This means sij has the unit of a
distance and can also be considered the traversed distance through a voxel for
an infinitely small X-ray beam. For most of the voxels (all the ones not on the
i’th X-ray path), sij = 0. Figure 2.10 shows the path of one X-ray (defined
as all the photons arriving at the same detector pixel) through the sample
(volume grid of voxels), as well as the relevant symbols from the equations.
This figure shows the 2D situation for ease of display. The 3D situation is
analogous.
The reconstruction starts from all the pi and wants to find all the µj by us-
ing equation 2.13. Two main categories of reconstruction algorithms exist:
analytical and algebraic/iterative. Analytical reconstruction, section 2.4.1,
is more mathematical and is less computationally complex. Algebraic recon-
struction, section 2.4.2, is more intuitive and can be adapted more easily, but
typically requires more computer time to complete due to its complexity.

2.4.1 Analytical reconstruction

Filtered back projection (parallel beam)

The most used analytical reconstruction technique is filtered back projection
[63, 62]. It is most intuitive for a parallel beam geometry (figure 2.7), but
can be adapted for other geometries.
In a parallel beam geometry, each X-ray is parallel to the others within the

same projection (radiography). Consider a single horizontal line in a pro-
jection, corresponding with a single slice through the volume. The volume
is built up of such slices, parallel to the xy-plane. Each slice can then be
reconstructed separately. The algorithm will be explained for one slice, mak-
ing this 2D instead of 3D. The extension to 3D is simply to stack the 2D
reconstructions together. This simplicity to move to three-dimensionality is
one of the big computational advantages of a parallel beam geometry, i.e. of
synchrotron radiation µCT, compared to cone beam, where there is mix-up
(see figure 2.10).
The basis of filtered back projection uses the Fourier slice theorem [63, 62],
which we will first cite and then derive:
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Figure 2.11: A representation of a parallel beam (blue) passing through a
2D sample (or one slice of a 3D sample) and arriving at the detector. The
sample and the detector response can be expressed as functions, respectively
µ and p. To the right is their Fourier transform (which has a real R and an
imaginary C component). Remade and extended from figure in Pan et al.
[64].

The 1D Fourier transform of a parallel projection pi of a 2D object
function µ(x, y) at an angle θ with respect to the X-axis, gives a
slice of the 2D Fourier transform S(u, v) of the function µ(x, y)
at an angle θ with respect to the u-axis.

or as mathematical formulas:

S(θ, w) =

∫ ∞
−∞

p(θ, i)e−ı2πwidi (2.14)

µ(x, y) =

∫ ∞
−∞

∫ ∞
−∞

S(u, v)eı2π(ux+vy)dudv (2.15)

µ(x, y) =

∫ π

0

(∫ ∞
−∞

S(θ, w)|w|eı2πwidw
)
dθ (2.16)

In the previous equations, ı =
√
−1 is the complex number, usually indicated

by ı or i (in scientific work) or j (in engineering work). In this work, i
is the coordinate along the detector. Mind the difference between i and ı.
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Figure 2.11 shows the used symbols.
For the derivation of these equations, we go back to the definition of the
projection pi, equation 2.12, which we can rewrite as:

p(θ, i) =

∫ ∞
−∞

µ(h, i)dh (2.17)

In a parallel beam geometry, Li (from equation 2.12) never runs along the
z-direction, only in the xy-plane. If we define h the direction along Li and i
perpendicular to this, the right-handed coordinate system ihz is just the fixed
coordinate system xyz rotated over an angle θ, i.e. it is the coordinate system
moving along with the gantry or sample. The transformations between these
coordinate systems are:

x = i cos(θ)− h sin(θ) (2.18)

y = i sin(θ) + h cos(θ) (2.19)

i = x cos(θ) + y sin(θ) (2.20)

h = −x sin(θ) + y cos(θ) (2.21)

Let us now take the 1D Fourier transform of p(θ, i):

S(θ, w) =

∫ ∞
−∞

p(θ, i)e−ı2πwidi (2.22)

Substitution of equation 2.17 into equation 2.22 gives:

S(θ, w) =

∫ ∞
−∞

(∫ ∞
−∞

µ(h, i)dh

)
e−ı2πwidi (2.23)

This is in the moving coordinate system ihz. Reverting to the fixed coordinate
system xyz results in:

S(θ, w) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)e−ı2πw(x cos(θ)+y sin(θ))dxdy (2.24)

A 2D Fourier transform of a function f(x, y) is by definition:

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−ı2π(ux+vy)dxdy (2.25)

We recognise equation 2.24 as a two dimensional fourier transform with
f(x, y) = µ(x, y), u = w cos(θ) and v = w sin(θ), so S(θ, w) = F (w cos θ, w sin θ).
Therefore, a reverse 2D Fourier transform will yield µ(x, y), i.e. the wanted
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attenuation coefficients. A reverse 2D Fourier transform is:

f(x, y) = µ(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)eı2π(ux+vy)dudv (2.26)

Transforming to the polar coordinate system (w,θ) in the frequency domain
((u,v) is the rectangular coordinate system in the frequency domain) happens
through the following transformations:

u = w cos(θ) (2.27)

v = w sin(θ) (2.28)

While the differentials of the double integral will change according to:

dudv = wdwdθ (2.29)

The reverse 2D Fourier transform becomes:

µ(x, y) =

∫ 2π

0

∫ ∞
0

S(θ, w)eı2πw(cos(θ)x+sin(θ)y)wdwdθ (2.30)

=

∫ π

0

∫ ∞
0

S(θ, w)eı2πw(cos(θ)x+sin(θ)y)wdwdθ (2.31)

+

∫ π

0

∫ ∞
0

S(θ + π,w)eı2πw(cos(θ+π)x+sin(θ+π)y)wdwdθ (2.32)

The integral in the last equation was split into a part θ from 0 to π and a part
from π to 2π. Knowing that S(w, θ + π) = S(−w, θ), cos(θ + π) = − cos(θ)
and sin(θ + π) = − sin(θ), the last integral can be adapted to integrate over
w′ = −w:∫ π

0

∫ ∞
0

S(θ + π,w)eı2πw(cos(θ+π)x+sin(θ+π)y)wdwdθ (2.33)

=

∫ π

0

∫ −∞
0

S(θ, w′)eı2π(−w′)(− cos(θ)x−sin(θ)y)(−w′)(−dw′)dθ (2.34)

=

∫ π

0

∫ 0

−∞
S(θ, w′)eı2πw

′(cos(θ)x+sin(θ)y)(−w′)dw′dθ (2.35)

In the previous, notice that we swapped the integral bounds in the last step,
causing an extra minus sign. We also know that −w′ = |w′| in this integral,
since w′ is always negative, going from −∞ to 0. Now we can just rename
w′ to w and merge the two integrals that are summed in equation 2.32:

µ(x, y) =

∫ π

0

∫ ∞
−∞

S(w, θ)eı2πw(cos(θ)x+sin(θ)y)|w|dwdθ (2.36)
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Since cos(θ)x+ sin(θ)y = i, this becomes:

µ(x, y) =

∫ π

0

∫ ∞
−∞

S(θ, w)eı2πwi|w|dwdθ (2.37)

With this, we derived all three equations 2.14, 2.15 and 2.16.
To obtain the unknown µ(x, y) from the known p(θ, i) it is necessary to first
perform a 1D Fourier transform (equation 2.14) to S(θ, w), then filter the
result with |w| and end with an inverse 2D Fourier transform (equation 2.16)
to result in µ(x, y). Figure 2.11 illustrates the Fourier slice theorem for con-
tinuous functions p and µ.
The convolution theorem allows us to rewrite equation 2.37 or equation 2.16 in
spatial coordinates. The theorem states that F(f(x)∗g(x)) = F(f(x))F(g(x))
with F the Fourier transform. With f(x) representing p(θ, i), therefore
F(f(x)) = S(θ, w), and F(g(x)) being |w|, we can rewrite equation 2.37
to:

µ(x, y) =

∫ π

0

∫ ∞
−∞
F(p(θ, i))F(g(x))eı2πwidwdθ (2.38)

=

∫ π

0

∫ ∞
−∞
F(p(θ, i) ∗ g(x))eı2πwidwdθ (2.39)

=

∫ π

0

p(θ, i) ∗ g(x)dθ (2.40)

However, the inverse Fourier transform of |w|, i.e. g(x), does not exist be-
cause this integral does not converge. This will be solved by going from the
continuous to the discrete regime as explained below.
In practise, both the input data p and the output data µ will be discrete.
The integrals in equations 2.14 and 2.16 will become sums. K is the num-
ber of radiographs taken, each at an angle θk. N is the number of detec-
tor pixels, each having a coordinate in = n∆i. ∆i is the distance between
two detector pixels, also known as the detector pitch. Theoretically, the fre-
quency domain of the Fourier transform extends to infinity in both directions:
−∞ ← w → ∞. However, for practical purposes it is safe to assume w to
be limited to − 1

2∆i
< w < 1

2∆i
, since the Fourier components outside of this

range will be negligible. These limits are the Nyquist frequency [65]. The
Fourier transform will be sampled at frequencies wm = m 1

N∆i
, each being

1
N∆i

apart.
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Equations 2.14, 2.15 and 2.16 become in discrete form:

Sθk(wm) = ∆h

N−1
2∑

n=−N−1
2

pθk(in)e−ı2πwmin (2.41)

µ(x, y) =
π

K

K∑
k=1

 1

N∆i

N−1
2∑

m=−N−1
2

Sθk(wm)|wm|eı2πwmin

 (2.42)

Equations 2.41 and 2.42 are an implementation of the filtered back projection
algorithm for parallel beam. This consists of three steps:

1. Calculate the discrete Fourier transform of the projection data (equa-
tion 2.41)

2. Filter the result with |w| and calculate the inverse Fourier transform
(inner sum in equation 2.42)

3. Add the results of all the different angles θk (outer sum in equation 2.42)

It is also possible to use equation 2.40. When staying within the Nyquist
limits, g(x) = F−1(|w|) becomes an integral that converges:

g(x) =

∫ 1
2∆i

− 1
2∆i

|w|eı1πwxdw (2.43)

The solution is:

g(x) =
1

4∆i
for x = 0 (2.44)

= 0 for x even and not 0 (2.45)

= − 1

Π2∆ix2
for x odd (2.46)

This theoretically correct filter is called the bandlimiting filter. Since the
highest frequencies are amplified in this filter while they contain mostly noise,
other filters often take its place. Two well known ones are the Shepp-Logan
filter and the Cosine filter:

g(x)shepp−logan =
2

π2∆i(1− 4x2)
(2.47)

g(x)cosine =
2

π2∆i

(
sign(x)

x

2
− 1 + 4x2

1− 4x2

)
1

1− 4x2
(2.48)
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Using these filters in equation 2.40 (and discretising the integral in that equa-
tion) yields an implementation of the filtered back projection.
Since the discrete positions (x, y) of the result usually do not correspond
exactly to the sampled positions (i, θk), the algorithms described above are
often accompanied by some sort of interpolation, usually linear.

FDK algorithm (cone beam)

The standard algorithm for the in lab-based µCT more used geometry of a
cone beam (figure 2.7) is called the FDK-algorithm after its inventors Feld-
kamp, Davis and Kress [66, 63]. This algorithm is only approximate, but the
errors remain small for small cone beam angles and the implementation is
computationally efficient.
The FDK algorithm is a 3D extension to the earlier discussed FBP algorithm.
In 3D, the z-direction, usually parallel to the rotation axis, complements the
spatial dimensions x and y. The detector is now 2D instead of 1D, so the i
coordinate gets supplemented with r. The coordinate r is vertical, just as z.
In other paragraphs, both i and r are depicted by the index i.
The equations become for a cone beam [58]:

µ(x, y, z) =

∫ 2π

0

d2
SOD

U(x, y, θ)2
Qθ(i, r)dθ (2.49)

Qθ(i, r) =

∫ ∞
−∞

Sθ(w, r)|w|eı2πwidw (2.50)

Sθ(w, r) =

∫ ∞
−∞

dSOD√
d2
SOD + i2 + r2

pθ(i, r)e
−ı2πwidi (2.51)

In this, dSOD is the source-object distance, the distance between the X-ray
source and the centre of the sample object. U(x, y, θ) is the distance from the
source to the point (x,y) depicted on the central ray, i.e. the line connecting
the X-ray source to the origin (the centre of the sample). It can be expressed
as:

U(x, y, θ) = R+ x sin(θ)− y cos(θ) (2.52)

A more complete explanation of these analytical reconstruction algorithms
can be found in for example De Witte [58], Pan et al. [64], Feldkamp et al.
[66] and Dierick [62].

2.4.2 Iterative reconstruction

Iterative reconstruction starts from an initial (usually empty) volume and
improves this volume little by little, until it represents the object as well as
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possible.
The goal of any reconstruction is finding µj , the local attenuation coefficient in
every voxel j. This means solving the Lambert-Beer equation 2.13, repeated
here:

pi = − ln

(
Ii
I0

)
=
∑
j

µjsij (2.53)

This is in theory possible because pi are the known projection values and
sij could be calculated. However, in practice this set of equations (one for
each projection value Ii) is quite big: the number of pixels in the detector
times the number of radiographs taken. In addition, this set could be over- or
underdetermined and there is noise present, meaning there might not even be
a unique solution µj . Iterative algorithms will therefore attempt to approach
the solution as well as possible.
The archetype of iterative reconstruction techniques is the Kaczmarz method
[67], which is a method to solve a linear set of equations. The Kaczmarz

µ1

µ2

p1

p2

first guess

Figure 2.12: How the Kaczmarz method works in two dimensions, i.e. M = 2
and N = 2 (see text for the definition of M and N). The shown hyperplanes
(lines in two dimensions) are p1 = s11µ1 +s12µ2 and p2 = s21µ1 +s22µ2. The
first guess is in this image (µ1, µ2) = (0, 0), but can be any point.

method provides a solution to the least squares problem. Figure 2.12 pro-
vides an illustration for two dimensions. The algorithm starts from an initial
guess and projects this on the hyperplane defined by one of the equations.
The result is the new current estimate and is projected onto the following
hyperplane. This projection process, equation 2.57, is repeated until the cur-
rent estimate converges to the solution of the set of equations.
Equation 2.13, the discrete Lambert-Beer equation as seen earlier, is an equa-
tion of a hyperplane in M -dimensional space (M being the amount of voxels
in the volume, i.e. the amount of different j), determined by (µ1, µ2, ..., µM ).
There are N hyperplanes, the amount of different i. The solution is the point
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where al these hyperplanes intersect. If this point does not exist due to noise,
it is best to approximate it.
In vector notation the equations become for each i:

pi = ~si · ~µ (2.54)

~si = (si1, si2, ..., siM ) (2.55)

~µ = (µ1, µ2, ..., µM ) (2.56)

The second vector, ~si describes the intersection lengths of an X-ray i with
any of the voxels j. Note that sij = 0 for most combinations of i and j.
For example, in figure 2.10 a particular X-ray i is shown. Every voxel j that
does not have part of this X-ray passing through its volume has sij = 0. The
figure clearly shows this is the case for the majority of voxels j.
The starting point is a guess (µ0

1, µ
0
2, ..., µ

0
M ) which is projected perpendicular

to the first hyperplane i. The i’s can be put in any order. Mathematically
this can be written as:

~µk = ~µk−1 +
pi − ~µk−1 · ~si

~si · ~si
~si (2.57)

A derivation of this formula, the Kaczmarz update step, can for example be
found in Kak and Slaney [63]. Different iterative reconstruction algorithms
use slightly different versions of this update step.
We define one iteration as one sweep over every i, i.e. when equation 2.57 has
been performed N times, the algorithm has done one iteration. This means
k has two components: k = ksuper · N + ksub. The iteration number ksuper
indicates at which iteration we are now, an iteration defined as just above.
The other variable, ksub, is a sub-iteration number that keeps count of how
many i have been traversed in this ksuper-iteration already and is a number
between 0 and N − 1.
In the first step, k = 1, with ksuper = 0 and ksub = 1. The next step
projects this new ~µ to the next hyperplane i, while ksub increases with 1. By
continuing this way, ~µk will converge to the wanted intersecting point. The
convergence is faster when the sequential hyperplanes have a higher angular
difference with respect to one another.
Note that ~µk−1 · ~si in the numerator of equation 2.57 can be considered the
forward projection, as seen in figure 2.13.

Figure 2.13 shows a schematic overview of iterative reconstruction. The
eventual µkj should be a good representation of the scanned sample.
As mentioned earlier, an iterative reconstruction algorithm will start from
a typically empty volume of µj = 0. It will traverse every pixel of every
radiograph, each i, and perform three main steps:

1. Project the current volume
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Figure 2.13: Schematic representation of an iterative reconstruction method.
[68]

2. Calculate the difference between the projection and the measured ra-
diograph

3. Back project this difference into the volume at the corresponding loca-
tions. This is the update step.

All radiographs can be traversed multiple times (i.e. multiple iterations).
Step 1 simulates the projection of an X-ray to pixel i through the current
estimation of µkj , according to the Lambert-Beer equation. The simulated
projection is qi. This step is called the forward projection.

qi =
∑
j

µkj sij (2.58)

Step 2 simply performs a subtraction between the just simulated qi and the
measured pi. Finally, step 3 adapts the µkj , considering the weight each µkj
contributed to this particular X-ray i:

µkj = µk−1
j +

pi − qi∑
m s

2
im

sij (2.59)

This equation is simply the application of equation 2.57 to X-ray CT. It is
repeated for every i (in any chosen order), each time increasing ksub and thus
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k with 1.
The algorithm will keep iterating until it meets a certain criterium. This
might be a chosen number of iterations, or it might be that the correction
factor |pi − qi| is smaller than some value for each i. It is wise not to use the
latter criterium without also putting a restriction on the number of iterations,
because noise can cause |pi−qi| to never get smaller than the chosen value. In

fact, the solution µ
ksuper·N
j might diverge again from the ideal solution after

a few iterations if the noise is too high. This would cause an infinite loop.
The order in which the i are visited might influence the convergence rate. In
the Kaczmarz method, the convergence is faster when sequential hyperplanes
are (almost) orthogonal to each other. This means pki and pk+1

i should differ
as much as possible, which is usually the case when looking at projections
taken physically perpendicular to each other. There are algorithms, such
as the weighted distance scheme [69], that help choose the best order. The
worst order would be following the angular sequence of the scan, since each
following projection will look similar to the previous one. When working with
a lot of projections, an alternative is to just go through the projections in
a random order, as this is faster than calculating the ideal and it is usually
sufficiently good. The drawback is that the solution is not unique.
The sij determine how much voxel j contributes to X-ray i. Most voxels were
not in the path of X-ray i, as seen in figure 2.10, and will have sij = 0. The
other sij could have any value bigger than zero and can be calculated.
Since there are so many sij (N×M), their calculation and storage is cumber-
some. For example, when working with a tiny detector of 128× 128 pixels,
taking a really small amount of 128 projections, N is already 1283. Recon-
structing an equally small volume with this data, a cube with side 128 would
make M = 1283. This means there are 1286 sij to be calculated and stored,
which is about 4× 1012 or 4 trillion, i.e. a lot, and this is for an unrealistically
small µCT scan.
There are some approximations to ease the calculation of all these sij . The
PhD thesis [58] lists a number of these. We will review here the two approx-
imations used in this work, one for the forward projection (step 1) and one
for the back projection (step 3).
For the forward projection, the approximation is ray-based or pixel-based.
Figure 2.14 illustrates this for two instead of three dimensions. For calculat-
ing qi, the algorithm takes equidistant steps of length ∆l along the path L
of X-ray i. At each visited point (x, y, z), it linearly interpolates the nearby
voxels to get µ(x, y, z). The result is multiplied with the length of one step
∆l.
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1
i-1

3

i
i+1

2

Δl

μ(x-,y+)

μ(x-,y-) μ(x+,y-)

μ(x+,y+)

μ(x,y)

Figure 2.14: Schematic representation of the forward projection (equa-
tion 2.60) in the iterative reconstruction in two dimensions. 1 is the X-ray
source. 2 is the volume grid. 3 is the detector.

qi = ∆l
∑
Li

µ(x, y, z) (2.60)

µ(x, y, z) =

∑
xj∈(x−,x+)

∑
yj∈(y−,y+)

∑
zj∈(z−,z+) µ(xj , yj , zj)(xj − x)(yj − y)(zj − z)

(x+ − x−)(y+ − y−)(z+ − z−)
(2.61)

with
∑
Li

running over the path of X-ray i with steps of ∆l, (x, y, z) a co-
ordinate in the sample volume, x− the x-coordinate of the voxels whose x-
coordinate is the highest still lower than x, x+ the x-coordinate of the voxels
whose x-coordinate is the lowest still higher than x. When xj is x−, then xj
is x+ and the other way around. Analogously for y and z.
For the back projection, the approximation is voxel-based. The fraction

sij∑
m s2im

has two possible values in this approximation: 0 for the voxels not in

the path of X-ray i and 1/Li for the others, with Li the total X-ray length
through the sample. This assumes each sij is approximately equal to the
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voxel size. The back projection step becomes:

µkj = µk−1
j +

pi − qi
Li

(2.62)

Noise will negatively influence the results of the CT scan. To decrease its
influence, there are two approaches inherent to iterative reconstruction: a
relaxation factor or combining the back projection for multiple i.
A relaxation factor α is a number between 0 and 1 that decides how strong
the back projection is:

µkj = µk−1
j + α

pi − qi∑
m s

2
im

sij (2.63)

≈ µk−1
j + α

pi − qi
Li

(2.64)

It decreases noise, but slows down convergence.
Combining the back projection for multiple i means waiting to update µkj .
The algorithm calculates pi− qi as usual, but instead of updating with equa-
tion 2.64, the next i is chosen and the next pi−qi calculated and added to the
previous. Only after doing this for several i, is the update step performed.
The difference with updating immediately is that the second, third,... correc-
tion factors are calculated with µk−1 instead of with a new version of µ that
already got the influence of the first correction factor. The back projection
becomes:

µkj = µk−1
j + α

∑
i∈S

(
pi − qi∑
m s

2
im

sij

)
(2.65)

≈ µk−1
j + α

∑
i∈S

(
pi − qi
Li

)
(2.66)

With S the set of i over which the correction factors are calculated before
updating. This becomes equation 2.64 when S only contains one projection
i.
The name of the iterative reconstruction algorithm changes according to the
size of S:

• ART (Algebraic reconstruction techniques): There are no sets,
i.e. S has a size of 1.

• SART (Simultaneous algebraic reconstruction technique): S
contains all the pixels belonging to one radiograph.

• SIRT (Simultaneous iterative reconstruction technique): S has
a size of N and contains all i, i.e. all pixels of the detector and all
radiographs.
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Ordered subsets is the general term for SART, SIRT and every size of S in
between. The bigger S is, the slower the convergence and the lower the noise.
[4, 58]
Iterative reconstruction takes more computer time in comparison with an-
alytical reconstruction (section 2.4.1). Parallel programming on the GPU
(graphical processing unit) can partially compensate for this [4]. The work in
this thesis uses GPU programming to speed up iterative reconstruction. Iter-
ative reconstruction has the advantage over analytical that it allows to model
physical effects and take into account these during the reconstruction [70].
An example is the polychromatic nature of the X-ray beam, which causes
beam hardening, an unwanted reconstruction artefact (section 2.5.2).
Another possibility is to include prior knowledge about the sample into the
algorithm. The simplest example is an initial volume. When you already
have a volume that resembles the sample (for example from a previous scan),
this can be used as µ0

j instead of 0. A previous scan could have been taken
when the sample is undergoing a dynamic process. A more thorough expla-
nation of this can be found in section 3.2.
In short, iterative reconstruction follows the following flowchart:

Choose a starting
volume µk=0

Choose a pro-
jection pi

Forward pro-
jection qi

back projec-
tion: update µk

Is there conver-
gence? (|pi − qi|
small enough?)

All i traversed?

Another iteration?

End result µk yes

no

yes

no

yes

no

2.5 Artefacts

Imaging artefacts are unwanted effects in the final reconstructed volume,
which cause a deviation from the perfect representation of the sample. There
are several causes and therefore types of artefacts. This section presents a
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list of the artefacts most important for this work.

2.5.1 Noise

Noise [56, 63, 71, 72] is a well known effect in almost all scientific data collec-
tion, including in µCT. Noise means that the radiograph pixels suffer from
statistical deviation from the grey value they should theoretically have. In-
stead, they display a value lower or higher, with the additional difficulty that
the size of this deviation is not fixed, but fluctuating. Noise is unavoidable,
i.e. while it can be lowered, it can never be completely eliminated.
The amount of photons detected per detector pixel per time unit is subject
to Poisson statistics. Therefore, the resulting measured intensity in a projec-
tion always contains some amount of noise. Since this is governed by Poisson
statistics, more statistics (longer projection time or brighter source) mean a
higher signal to noise ratio.
In a Poisson process, the chance P of k events happening is [73]:

P (k) =
λk

k!
e−λ (2.67)

with λ the expected number of events.
In the case of µCT an event is the detector measuring an X-ray photon.
Since the amount of photons is directly proportional to the intensity of the
X-ray beam, we can express P as a function of intensity instead of number
of photons. Therefore, λ is Iexpect, the expected intensity from the Lambert-
Beer equation (equation 2.3) and k is Imeasured, the measured intensity.
Starting from k = 0, P (k) rises until it reaches a maximum at k = λ, after
which it starts to drop again, asymptotically going to 0. For higher λ, this
curve approaches a Gaussian curve, which follows the equation:

P (k) =
e(k−λ)2/(2λ)

√
2πλ

(2.68)

In this equation, the gaussian mean equals λ and the standard deviation is√
λ.

The standard deviation of the Poisson peak or Gaussian peak, i.e.
√
λ is

an indication of the magnitude of the noise, i.e. how far k = Imeasured can
deviate from λ = Iexpect. Therefore, a higher intensity Iexpect will increase

the signal to noise ratio, which is
Iexpect√
Iexpect

=
√
Iexpect. This can be achieved

by increasing the flux of the source or increasing the time during which the
detector is recording a radiograph. At the same time, samples that have a
very high attenuation coefficient or thickness will attenuate most incoming
photons, leaving few to reach the detector. Such a sample would result in a
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low Iexpect and thus in high noise. This situation is called photon starvation.
Most notably metals, such as lead - typical materials to shield X-ray sources
- are difficult to scan with µCT.
The important signal for reconstruction is not just I, but the normalised I

I0
.

Both the numerator I = Imeasured and the denominator I0, i.e. the flat field
(see section 2.3.5), are measured projections subject to Poisson noise. If the
normalisation of all I happens with the same I0, the noise in this flat field
becomes a fixed pattern through the dataset, leading to ring artefacts (ring
shaped artefacts in the reconstructed images). To avoid this, many flat fields
are recorded and averaged, increasing λ. Since the noise is Poisson, this will
reduce the noise in the I0. The same applies to dark field images, but their
contribution to the noise in the final reconstruction is smaller compared to
the flat fields. The PhD dissertation [40] presents a more thorough study of
the noise in flat fields and filters specifically designed to reduce ring artefacts
in chapter 3.
Due to the energy sensitivity of the detector, i.e. having different sensitivi-
ties to different energies, in combination with a polychromatic X-ray beam,
the noise on the radiographs will not exactly follow Poisson statistics. How-
ever, it is a reasonable approximation. In addition, the exact relationship
between noise on the radiographs and noise in the final reconstruction (i.e.
noise propagation) is complicated and depends multiple factors, including the
reconstruction algorithm [70].

2.5.2 Beam hardening

In short, beam hardening is the change in energy spectrum of an X-ray beam
before and after traversing the sample [4, 70, 56, 71]. Since low-energy X-rays
are typically attenuated more than higher energy photons, the final spectrum
will have changed compared to the original spectrum: the amount of low en-
ergy X-rays will have decreased more than the amount of high energy X-rays.
The mean of the outgoing spectrum thus shifts to higher energies. Most re-
construction algorithms do not take this into account, leading to an image
artefact known as the beam hardening effect.
Therefore, the beam hardening effect is a consequence of the polychromatic
nature of the X-ray beam, or more precisely: it is the consequence of the
reconstruction algorithm not accurately taking into account this polychro-
maticity. The effect is not present when using monochromatic X-ray beams,
as is often done at synchrotron beamlines.
The change in intensity of a polychromatic X-ray beam after passing through
the sample is described by equation 2.3:

I =

∫
E
I0(E) · exp

(
−
∫
L

µ

ρ
(s, E)ρ(s)ds

)
dE (2.69)

38



CHAPTER 2. DYNAMIC COMPUTED TOMOGRAPHY

Figure 2.15: A slice through the reconstruction of a tooth implant and a plot
of the grey value along two indicated lines. Left is a regular reconstruction,
right is a reconstruction with beam hardening correction. [4]

in which I =
∫
E I(E)dE because the detector only measures one intensity for

all energy bins together, instead of one for each energy bin. This integration
takes into account the initial energy spectrum and the different energy re-
sponse the detector has for different photon energies.
The reconstruction algorithms, however, are based on the monochromatic
Lambert-Beer equation:

I = I0 · exp

(
−
∫
L

µ

ρ
(s)ρ(s)ds

)
(2.70)

in which we pretend none of the variables are dependent on the energy E.
In practice, this means the voxels near the centre of the sample will be recon-
structed with a lower attenuation coefficient. The result is a gradient from
centre to edges, even when it is a single material. Figure 2.15 shows an ex-
ample, which includes the result of a beam hardening correction algorithm
as described in [4].

2.5.3 Limited angle

Limited angle artefacts [74, 72] or missing wedge artefacts [75] appear in the
reconstruction when the radiographs are taken from an insufficient angular
range, which means there is not enough information to correctly reconstruct
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the three dimensional volume. This can happen when the geometry of the
scanner or the size and shape of the sample only allow a (very) limited rota-
tion.
A reconstruction displays limited angle artefacts as prominent distortions in
the image. Figure 2.16 shows an example of a limited angle reconstruction.

The Tuy-Smith condition [3, 76] states that an object’s attenuation coef-

Figure 2.16: Left: a slice of the shepp-logan phantom. Right: the same slice
of a reconstruction using only a 60◦ rotation of the (simulated) µCT scan.
[72]

ficients can only be reconstructed exactly when each plane intersecting the
sample contains at least one line from X-ray source to a detector pixel, some-
where along the rotation trajectory of the CT scan. It is clear that many of
these planes are ‘missing’ their source point if the rotation was not sufficient.
For example, a rotation around the z-axis over 60◦, starting at the x-axis, will
not be sufficient for the yz-plane. A larger rotation diminishes the limited
angle artefacts.
A complete µCT scan contains a rotation over at least 180◦+2α with α being
half the opening angle of the cone. For a parallel beam geometry (see sec-
tion 2.3.2), a rotation over 180◦ is sufficient, since each X-ray at a scanning
angle θ has a ‘mirror’ X-ray at θ + 180◦ and the opening angle α is close
to zero. On the other hand, for cone beam, 180◦ + 2α is necessary [63]. To
understand why, consider figure 2.17. The middle circle is the scanned area in
which the sample resides. In the left figure, a rotation of 180◦ is performed,
but some paths through the sample (planes when considering as their second
axis the rotation axis) have not been traversed, such as the dashed line. For
that, an additional rotation of 2α is necessary, as shown in the right figure.
If the rotation is performed over an angle smaller than 180◦ + 2α, limited
angle artefacts occur.
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180°
α

180°+2α

α

α

Figure 2.17: An illustration of the minimum required rotation for a cone beam
geometry. More explanation on this figure can be found in section 2.5.3.

Figure 2.18: Left: slice of the reconstruction of a moving phantom. Middle:
starting situation of the movement. Right: ending situation of the movement.

2.5.4 Motion artefacts

A CT scan requires a finite amount of time for the gathering of the projec-
tions. Even recording one radiograph takes a finite time, and this is multi-
plied with the number of projections for one scan, optionally adding the time
required for rotation if the scanner does not record radiographs and rotate
simultaneously. During this time, the sample may have moved unintention-
ally, or, when considering a dynamic process (as in this thesis), it may have
changed according to this dynamic process. Since such a change is presum-
ably continuous, no matter how small the time required for a CT scan, there
will still be a change in the sample.
Motion or movement artefacts [56, 71, 72, 41, 77] occur when trying to recon-
struct a three dimensional volume from the radiographs of such a changing
sample (see section 2.6). 4D in this case means there was movement inside
the sample during the scan, i.e. every radiograph was taken from a slightly
different volume, with a bit of movement from the previous one. However,
the reconstruction algorithm assumes every radiograph originated from the
same, static volume.
The result is a smeared effect at the location of the movement. This blur is
similar to photography of fast moving objects, when the object moves faster
than the shutter time of the camera. Since the resolution in µCT can be
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as good as the order of 1µm, even really small changes or movements cause
motion artefacts.
Motion artefacts can be caused by unwanted motion, for example a small tilt-
ing of the sample during the scan. However, of interest here are the motions
that are part of a dynamic process that is the subject of the investigation, i.e.
the reason the sample was scanned was to investigate this dynamic process.
The scans are typically taken as fast as possible, to minimise these artefacts,
while still slow enough to get a good signal to noise ratio. A fast rotation
keeps the movement within one minimum angle of rotation (see section 2.5.3
for the minimum angle) to a minimum. However, since the changes in the
sample are typically continuous, there is no finite time in which nothing in
the sample changes. Therefore, the motion artefacts are still present even
when scanning fast. They are inherent to the scanning of a dynamic process.
The smeared effect of a motion artefact is the result of back projecting all the
‘static’ volumes that each radiograph imaged, i.e. the different time instances.
The visual appearance of the artefact depends on the sample, the movement
and even the trajectory of the scan. An example with a phantom of spheres is
shown in figure 2.18. In this phantom, two spheres rotated clockwise around
a static central sphere.

2.5.5 Undersampling

Figure 2.19: Slices of a reconstruction of a modified Shepp-Logan phantom.
Left was with 8 projections, right with 31. About 250 projections are needed
to avoid the undersampling effect here. [72]

Undersampling [56, 63, 71, 72] happens when a reconstruction is performed
with an inadequate amount of radiographs (even though the radiographs can
still span a whole rotation, see section 2.5.3) or an inadequate amount of
pixels per radiograph. Sharp edges and small features of the sample will then
cause a pattern of lines, as in figure 2.19.
The lines are caused by the backprojection (see section 2.4): a feature is
backprojected along a line, both on its real location and other points in this
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line. Since there are too few projections to correct these wrong parts, the
lines remain in the reconstruction.
The outside edges of an object typically get more undersampling artefacts,
since two subsequent projections (i.e. the rotation angle between them) cover
a larger distance when considering a point further away from the rotation
axis. To reconstruct the outside edges, the required number of projections
according to the Nyquist theorem is π

2N , with N the number of detector
pixels in one row [58].
Below this limit, a difference between step-and-shoot tomography and smooth
rotation arises. In a step-and-shoot set-up, each radiograph is taken with a
motionless scanner and the rotations are performed in between. In a smooth
acquisition, the scanner rotates during the acquisition of radiographs. This
last method causes angular smoothing [78], but is faster and therefore often
more useful for 4D µCT. All set-ups of the UGCT use smooth acquisitions.

2.5.6 Partial volume effect

Figure 2.20: A theoretical example of the partial volume effect in two dimen-
sions. Left: the sample. Right: a reconstruction suffering from the partial
volume effect. We refer the reader to the online version to view the left figure
as a vector image (i.e. without pixels).

The partial volume effect [79, 56, 71, 72] applies when more than one ma-
terial occupies one voxel in the sample. This happens in the sample at the
locations where two different materials meet, since these material interfaces
are highly unlikely to coincide precisely with the independently chosen voxel
boundaries. This is especially true if features in the sample may be smaller
than the voxel size, i.e. the resolution of the CT scan is not sufficient to dis-
cern these features. It is clear that the partial volume effect at visible edges
diminishes when the voxel size is reduced, which can only be done up until
the resolution limit of the µCT scan. This limit depends the spot size (the
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size of the X-ray source) and the resolving power of the detector, as explained
in [40].
In such a voxel that contains more than one material, each with a differ-
ent attenuation coefficient, the reconstructed voxel grey value will display
a weighted average between these attenuation coefficients. Figure 2.20 dis-
plays an example: left is the perfect sample and right is the same sample
with square voxels. The voxels on the edge between both materials display a
grey value between white (the first material) and black (the second material),
which will be darker or lighter depending on the fraction of each material in
that particular voxel.
When the resolution is low or the features are smaller than the voxel size,
this average attenuation coefficient in one voxel will represent the density ρ
in that voxel, when combined with the mass attenuation coefficient of the
material (see equation 2.3). So, counter-intuitively, the partial volume effect
is in some cases less of a problem at really low resolutions compared to high
ones. For example, a highly porous material with small pores will have pores
(air bubbles) smaller than the voxel size. By measuring the density in such
voxels, the porosity can be calculated, which is a property of interest.
Visually, the partial volume effect causes fuzzy edges. More importantly for
data analysis, it can cause voxels to display grey values not present in the real
sample. For example: if a sample consists of two materials, which have grey
value 0 and 1, the voxels on the edge between these two materials might have
grey value 0.25 or any other value between both materials. However, there is
no material with grey value 0.25 in the real sample. This causes difficulties
with segmentation and further analysis of the reconstructed sample.

2.5.7 Cone beam artefacts

Cone beam CT (see section 2.3.2) creates an additional kind of artefact, the
cone beam artefact or the cone beam effect [56], which is not present in other
geometries. This artefact can be explained by the Tuy-Smith condition [3, 76]
(which is also mentioned in section 2.5.3). This condition requires that each
plane intersecting the sample contains at least one line from X-ray source to
a detector pixel, somewhere along the rotation trajectory of the CT scan. In
a cone-beam geometry, the gantry (source and detector) rotate around the
sample in one plane. When the rotation axis is the z-direction, this plane
is the xy-plane with z = 0. Therefore, the xy-plane fulfils the Tuy-Smith
condition, but any plane parallel to the xy-plane with z 6= 0 does not and
can therefore not be reconstructed perfectly.
This artefact appears most at the top and bottom of the reconstructed sample
(when rotation happened around the axis that connects this top and bottom)

44



CHAPTER 2. DYNAMIC COMPUTED TOMOGRAPHY

Figure 2.21: Example of a cone beam artefact. This is an xz-slice of the
reconstruction of a phantom of five identical disks [80].

and can be quite severe.
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2.6 What is dynamic micro computed tomog-
raphy?

Dynamic micro computed tomography or 4D µCT is µCT with the addition
of a fourth dimension: time. The sample being scanned can undergo a dy-
namic process which causes it to change during the scan. In this work, it is
precisely this change, the dynamic process, we want to observe to be able to
study it. Note that in some fields the dynamics are something to be avoided,
for example the breathing motion in a medical chest CT scan. These fields
are not considered in this thesis.
Since we want to observe the dynamic process itself, any destructive tech-
nique is not usable. This would disturb the very process we wish to see.
Therefore, CT, being non-destructive, is a good candidate.
The end result of a 4D µCT scan should be a 4 dimensional volume, i.e. a
time series of 3D reconstructions. The most simple way to get there is to
divide the series of projections into a number of parts and perform a static
3D reconstruction (section 2.4) on each part. For example if there were Nproj
projections and one 3D reconstruction required Nrec projections, it is possible
to create

Nproj

Nrec
parts back-to-back, or more if one projection is allowed to be

used by multiple 3D reconstructions, i.e. if the parts may overlap.
The blurring effect in photographs when the subject is moving is widely
known, for example when you try to photograph a moving car. This is be-
cause the detector pixels that detect the light and record it, are detecting
for a certain time ∆t > 0. During this time, the subject has moved. This
causes one pixel to detect different parts of the subject. It can not know it
has measured multiple things instead of one. This causes the blurring effect,
also described in section 2.5.4.
What happens in 4D µCT is similar. In this case ∆t = N∆tradiograph is the
time it takes to scan enough data for one 3D reconstruction, using N projec-
tions that each require an illumination time ∆tradiograph. In order to avoid
limited angle artefacts (see section 2.5.3), N is a number of projections taken
over 180◦ + 2α, with α half the opening angle of the cone beam. Depending
on the scanning system, the amount of time for a full 360◦ rotation could
be 0.1 s on a synchrotron ([81] mentions twenty scans per second, each half
a rotation instead of a full rotation because synchrotrons work with parallel
beams), to a few seconds on a lab-based 4D µCT scanner (12 s on EMCT
[46]). This is plenty of time for a fast dynamic process to change the sample.
For example, a fly moves its wings at 50 to 2000 Hz [82], a crack in plexiglass
can propagate faster than 330 m s−1 [83] and a fluid propagating through a
porous medium makes so called “Haines jumps” within a timespan of the
order of magnitude of milliseconds [84].
Figure 2.22 presents an overview of the temporal and spatial resolutions of
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several real-world synchrotron and laboratory systems, including the EMCT
(section 2.7) used in this work. Note that for practical reasons, these reso-
lutions are estimated from different samples, scanned at these machines and
published in literature. Each scanner can handle a range of resolutions, while
the resolution for only one sample scanned is displayed in this figure. There-
fore, the figure does not reflect an overall comparison but more a general idea.
The blurring caused by the ∆t is called a motion artefact and it is of course
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Figure 2.22: Temporal and spatial resolution at different synchrotron beam-
lines and laboratory µCT scanners. The spatial resolution, when not cited,
is estimated as twice the used voxel size. The temporal resolution is the time
needed to gather 1000 projections. The lines indicate the state of the art in
resolutions of synchrotron (sync.) or laboratory (lab.) and for monochro-
matic (mono) or polychromatic beams (white) for a certain year. This means
µCT scanners in that year of that type could be anywhere to the right of and
above this line. Adapted from [19].

an unwanted effect in a reconstruction. To minimise motion artefacts, the
scan should go as fast as possible (though this still might not be fast enough).
However, a faster scan means less photons got the chance to reach the detec-
tor in this time,therefore there are less statistics in the detected projections
and hence more noise. Noise in CT scans is an unwanted effect as well (see
section 2.5.1). To minimise noise, the scan should be as slow as possible.
Clearly these two image artefacts (noise and motion blurring) counteract each
other [85]. It is impossible to minimise one without worsening the other. This
is called the law of conservation of misery [86]. Therefore, dynamic µCT is
challenging and warrants further research.
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2.7 The EMCT: scanner for 4D µCT
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Figure 2.23: The environmental micro-CT system (EMCT [46]), one of the
CT scanners at the UGCT ([2]), with some components indicated as explained
in section 2.7. The blue cone shows the path of the X-rays.

In this research, the environmental micro-CT system or the EMCT [46, 3],
one of the µCT scanners of the UGCT (section 1.1), provided all the experi-
mental data.
A picture and a schematic representation of the EMCT is depicted in fig-
ure 2.23. The indicated components are:

1. The X-ray tube. This is a 130 kV source with integrated high-voltage
power supply, a Hamamatsu L9181. It has a minimum spot size of 5µm
and a maximum power output of 39 W.

2. The object under investigation, i.e. the sample. Since this picture was
taken when no real sample was present, the schematic shows a fictious
sample at the location where a sample would normally be. Samples
are mounted through the hole visible between X-ray tube and detector.
Under this hole, beneath the granite table on which the EMCT rests,
is a vertical stage that can move the sample up and down. In addition,
a piezo stage can move the sample horizontally in both dimensions, in
order to position it precisely on the center of rotation.

3. The detector, a Xineos1313. This is a CMOS flat panel with 1316 by
1312 pixels, each 100µm high and wide. In order to scan strongly atten-
uating objects while maintaining a high resolution, a thick structured
CsI-scintillator is used.
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4. The rotation stage. This is the entire structure on which both the X-ray
tube and the detector are mounted.

5. The computer saving the radiographs.

6. Warning light that goes on together with the X-ray tube. This is one of
the safety mechanisms to ensure no people are inside the shielded area
when the X-rays are on.

7. Screen to view the controls when near the scanner (for example for
mounting a sample).

The EMCT is the only UGCT scanner with a rotating gantry. This means
the source and detector rotate around the sample instead of vice versa, which
is a huge advantage for performing dynamic scans. Since the sample is now
stationary, periferal equipment (add-on modules) can be attached to it and
the scanner can perform its continuous rotation without entangling cables
and tubes running to the sample. Such equipment is meant to change the
environment of the sample (hence the name of the EMCT), for example the
pressure, humidity or temperature. In addition, the gantry is set up in a hor-
izontal position (in contrast to most medical CT scanners), so the rotational
accuracy is not affected by changing gravitational forces on the components.
The gantry is mounted on a slip ring [87] embedded in the granite table on
which the EMCT is mounted. Consequently the EMCT can perform multi-
ple rotations without having to return to its original position. This is a big
advantage for 4D µCT as well, where multiple rotations are a requirement.
In addition, the components of the EMCT were chosen to allow for fast scan-
ning: a full rotation can be completed in 12 s, which is very fast for a high
resolution µCT scanner.

2.8 Experimental data

The methods investigated in this thesis are demonstrated on a 4D µCT
dataset obtained to study the behaviour of fluids in the pores of porous geo-
materials, such as groundwater flow in rocks and sediments.
This dataset considered fluid flow through a Bentheimer sandstone. Fig-
ure 2.24 shows a picture of a Bentheimer sandstone sample, albeit a different
(bigger) one than the one that was used as described further. This exper-
iment was performed to investigate the intrusion of oil into a water-filled
porous rock, with relevance to the study of groundwater pollution, CO2 stor-
age and petroleum reservoirs [19, 84]. The sandstone was roughly cylindrical,
with a height (z-axis) of 10 mm and a diameter (x and y-axes) of 6 mm. It
was encompassed in a viton sleeve [88].
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Figure 2.24: Picture of a Bentheimer sandstone sample.

Figure 2.25: Projections of the Bentheimer sandstone scans. Left is the first
scan, where pores were visible. In the middle is the scan for the initial volume.
Right is a projection from the dynamic scan.

The experimental data from this sandstone was acquired using the EMCT
micro-CT scanner [46] (see section 2.7). In total, three separate µCT scans
were performed. One projection of each is displayed in figure 2.25. The first
scan was a high quality static scan of the rock in which the pores were filled
with water. This scan took 17 min and 52 s and consisted of 2201 projections
of 487 ms exposure each, obtained in one full rotation. This resulted in a
volume in which the pores were clearly visible. The second scan was a high
quality static scan of the rock, but now the pores in the rock were filled with
a aqueous CsCl solution (10 wt% CsCl), made to match the attenuation co-
efficient of the rock’s solid quartz grains. As such, the dynamic process of oil
intrusion is imaged as a binary volume with only two attenuation coefficient
values. Over 14 min, 38 s and 1 full rotation, 1801 projections were taken.
The reconstruction of this scan can be used as the initial volume in an itera-
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Figure 2.26: Slices of reconstructions of the Bentheimer sandstone scans. Left
is the first scan, where pores were visible. In the middle is the scan for the
initial volume. Right is a slice from the dynamic scan.

tive reconstruction process. Both these scans were performed with more time
for one rotation compared to the third, dynamic scan described next, so they
could be reconstructed with a higher signal-to-noise ratio.
Finally, a fast dynamic scan was taken of the rock while oil (n-decane [89])
was pumped in from below at 0.005 ml min−1. This scan took 17 min, 6 s and
covered 79.8 rotations during which 48 000 projections were acquired (not
including dark images and flat fields for normalisation). One rotation took
12.86 s. This sample is an example in which a dynamic process occurs within
a static grid, in this case the pores of an otherwise static rock.
Figure 2.25 shows the central slice of an iterative reconstruction of each of
these three scans (in the case of the dynamic scan: a subset of the scan con-
sisting of one rotation).
A time series of phantoms, i.e. simulated samples, was also created, based
on this Bentheimer sandstone. The first phantom was a reconstruction of the
high quality static scan of the rock, in which the pores in the rock were filled
with a aqueous CsCl solution. In each subsequent phantom, 0 to 3 randomly
chosen pores (segmented as described in section 6.1) were filled. In total, 100
different phantom volumes were created, corresponding to 100 separate mo-
ments in time. The last and first phantoms were re-used 10 times, resulting
in a time series of 120 phantoms in total. From these phantoms, two dynamic
CT scans were simulated by calculating the projections and adding for each
dynamic scan different amounts of Poisson noise. The total time series cov-
ered 80 rotations (similar to the real scan), meaning each phantom generated
400 projections and the projection parameters were similar to those of the
physical dynamic scan, i.e. 600 projections per rotation. When using these
projections for a reconstruction, the phantoms can be used as the ground
truth for quality testing purposes.
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3.1. HARDWARE IMPROVEMENTS

Figure 3.1: The number of articles, proceedings papers and other scientific
publications per year with 4D µCT (in different spelling variations) as a topic.
Data taken from Web of Science [1].

Interest in 4D µCT as a scientific research topic and tool is increasing, as
shown in figure 3.1. As such, there is a lot of literature available on different
techniques to handle the difficulties of 4D µCT, either in general or for specific
types of samples. Some of them use prior knowledge or a priori knowledge,
which is information known about the sample independent of the 4D µCT
scan itself. This can for example be information on which materials are
present in the sample, or an approximation of the volume (from design or
from a previous scan) or the limitation that the attenuation coefficient can
only increase or decrease due to the nature of the dynamic process. Other
techniques do not use prior knowledge or combine it with another approach.
Below is an overview of some of the techniques used to perform 4D µCT.

3.1 Hardware improvements

Although this thesis does not implement any hardware improvements, this
research would not have been possible without them. Over the history of CT
scanning, all components of a µCT scanner (as explained in section 2.3) have
improved, causing µCT scanners to become more suitable for 4D µCT. The
evolution and improvements remain ongoing [2, 3].
The original CT scanning system as proposed by Hounsfield [4] used a pencil
beam, requiring a translation as well as a rotation to scan the entire 3D vol-
ume (see section 2.3.2). Since then, cone beam CT has been developed [5],
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providing a huge advantage for 4D µCT. The cone beam geometry is depicted
in figure 2.7. In this set-up, an entire 2D radiograph can be recorded at once,
resulting in a large speed-up with respect to pencil beams or fan beams. This
faster scan causes less motion artefacts in dynamic CT. Note that cone beam
CT suffers from cone beam artefacts at the top and bottom of the recon-
struction (see section 2.5.7). However, the sample can be positioned so the
interesting part is in the middle or even so the top and bottom parts contain
surrounding air instead of sample material.
All experimental data used in this thesis were acquired with a cone beam
set-up.
The geometry of a cone beam can be further extended. Instead of just record-
ing an entire radiograph at once, some scanners can record multiple radio-
graphs at once, at different angles, thus eliminating part of the rotation.
Reducing the need for rotation reduces the scanning time just as eliminating
the translation movement did. An example is a dual source CT scanner,
where only half the rotation time is needed, since two perpendicular sources
and detectors operate simultaneously [6]. More sources and detectors are pos-
sible, further reducing the rotation time, but few such systems exist in reality.
An example of such a multi-source, multi-detector scanner is the Rapiscan
RTT 110, equipped with 900 sources and over 12 000 detectors [7, 8], which
is depicted schematically in figure 3.2.
The UGCT has no multi-source CT scanners available. Therefore, none of

1

2 3

Figure 3.2: Schematic representation of the Rapiscan RTT 110. 1 is a ring of
sources. 2 is the sample, located on a conveyor belt. 3 is a ring of detectors.
The reconstruction is approximately helical. Adapted from Warnett et al.
[9].
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the data in this thesis was acquired with multi-source or multi-detector CT.
The methods developed in this thesis, and more specifically all methods based
on iterative reconstruction techniques, are usable on multi-source/multi-detector
set-ups without any adaptations.
Advances in detector technology are advantageous for 4D µCT. In con-
trast to the older xenon gas detector systems or x-ray image intensifiers
(XRII) coupled to a video read-out, many current scanners use highly efficient
scintillation detectors coupled to photodiodes or to cooled charge-coupled de-
tector (CCD) arrays. This caused an improvement in spatial resolution and
a decrease in noise [2, 10]. This last improvement means that, for the same
signal to noise ratio, less photon statistics are needed, i.e. less time per radio-
graph, with a faster scan as a result. A different class of detector systems has
no scintillator, but converts the absorbed X-rays directly into electron-hole
pairs, which increases the response speed, allowing for even faster readout
[11]. There is, however, a limit in how fast a detector can record one ra-
diograph. For example, the Xineos-1313, one of the faster detectors of the
UGCT and therefore the one used at the EMCT, can acquire a radiograph
in about 30 ms [12].
Typically, the limitation to the speed of a CT scan is not how fast a detec-
tor can acquire radiographs, but how much flux the X-ray source provides.
Therefore, evolutions in X-ray source technology are also important to
consider. For example, a smaller focal spot size results in a better resolution.
However, this smaller spot size means a lower flux, hence a longer exposure
time is needed for the same photon statistics [10], which is detrimental for
4D µCT. Other types of sources are also becoming available for µCT, such as
liquid metal-jet sources, which can achieve a higher flux but may be limited
in resolution [11].
The speed of the rotation stage has increased since the original invention
of CT. This is mostly due to the improvement in detector and X-ray source
technology. For medical scanners, rotation times from 270 ms to 350 ms can
be reached [2]. At the UGCT, a complete rotation of the EMCT (the scanner
most often used for dynamic scans, see section 2.7) takes at least 12 s [13].
A rotating stage for a gantry typically reaches slower speeds than one for a
sample. For the latter, the rotation speed can be a problem when scanning
big or bulky objects, especially when peripheral equipment is connected to
it. When the system is not perfectly aligned, fast rotation can in that case
break the rotation stage, the sample or other equipment.
The development of add-on modules allows for more applications to be
scanned with 4D µCT. These are devices to accurately control the condi-
tions in which a sample is scanned, for example the temperature, pressure,
humidity, flow or compression [14]. Two of these add-on modules, one for
temperature and one for compression, are described in detail in De Schryver
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[14]. A discussion on flow cells, which control fluid movement through a
porous material, can be found in Bultreys et al. [11].
All of these improvements have made CT with spatial resolutions below
100 nm possible, as well as acquiring radiographs fast enough to get mul-
tiple 3D images per second at synchrotrons [15]. High-resolution dynamic
µCT is also becoming possible in lab-based systems [13, 16]. An extensive
review of both spatial and temporal resolutions at CT scanners is available in
Maire and Withers [15], while figure 2.22 shows a selection of spatio-temporal
resolutions of systems around the world.

3.2 Initial volume

Using an initial volume [12, 17] is perhaps the most straightforward way to
incorporate prior knowledge into the reconstruction mechanism. It works by
taking advantage of a property of iterative reconstruction algorithms (see sec-
tion 2.4.2): they can start from any 3D volume. Usually the starting volume
contains all zeros, but in this case, the starting point is a so-called initial
volume [17].
An initial volume is a volume that should resemble the real sample-volume.
This means that the difference

∑
j µj,real − µj,init between the grey values

will be smaller when choosing a good initial volume than it would be when
choosing µj,init = 0 for all voxels j. The iterative reconstruction will there-
fore have to reconstruct less difference and will converge faster to the correct
solution. This not only means there is less reconstruction time needed, but
also that the noise, that tends to come in stronger after a few iterations, has
less chance to increase. In addition, less projections are needed for the same
result, which means less time to record these projections and a faster scan,
which is beneficial for 4D µCT. [12]
As was proven by Jiang and Wang [18], an iterative reconstruction such as
SART converges to a volume close to the real volume irrespective of the initial
volume chosen for theoretically perfect data. In practice, noise and a limited
amount of projections may make the correct solution unreachable. In this
case, the resulting volume is sensitive to the initial volume [19], which should
therefore be chosen wisely.
The initial volume is usually a static µCT scan performed before or after
the dynamic process under consideration. Since the dynamic scan will be of
the same sample, only changed by whatever dynamic process is imaged, the
volumes µreal and µinit can be close together when the dynamic process does
not consist of movement. An example is fluid flow through rock: an initial
volume could be a high resolution scan performed before adding the fluid.
An initial volume works great when the dynamic process is taking place in a
static grid. This means a large part of the volume remains static during the
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scan and is therefore almost perfectly imaged by the initial volume already.
Real movement of the sample is not addressed by an initial volume technique.
Therefore, whether an initial volume is a good choice depends on the type of
dynamic process.
A caveat when using an initial volume is the visual appeal of wrong recon-
structions: when the reconstruction, for any reason (for example too few
iterations), is still close to the initial volume instead of having reconstructed
the µj,real, the visual end result seems reasonable to the human eye. There-
fore, the observer might not realise the reconstruction was wrong. In contrast,
when starting from an empty volume, this is immediately clear. [12]
An initial volume combined with compressed sensing (more on that in sec-
tion 3.4) is called prior image constrained compressed sensing (PICCS) [20].
Any CT reconstruction approach allowing for the use of iterative reconstruc-
tion can be complemented with the use of an initial volume.

3.3 Motion registration

Motion registration is a technique which decreases the motion artefacts, mak-
ing it suitable for dynamic processes consisting of movement. Since weighted
back projection (see chapter 4) handles dynamic processes occurring within
a static grid, the combination of both would be an exciting future prospect,
able to handle even dynamic processes that are happening within a deforming
grid.
Motion registration estimates the motion of all parts of the volume. Some
algorithms go further and incorporate this motion into the reconstruction.
This results not only in the reconstructed volume(s), which will be of higher
quality than without motion correction, but also in the motion estimate it-
self, which may provide valuable information about the dynamic process. For
example, the displacement vectors from this motion can result in strain maps
[15, 21].
The estimated motion is called a displacement fieldM which maps the coor-
dinates of a ‘fixed’ frame ~xf to the coordinates in a moving frame ~xm [14]:

M( ~xf ) = ~xm = ~xf + ~u( ~xf ) (3.1)

The deformation ~u( ~xf ) is known as a ‘dense displacement field’ or ‘Motion
Vector Field’ (MVF). The motion registration technique now consists of two
major parts: estimating the MVF (the motion registration itself) and incor-
porating the MVF in the reconstruction to reduce motion blurring [21]. Both
have different approaches described in literature.

66



CHAPTER 3. ESTABLISHED APPROACHES TO 4D µCT

3.3.1 Motion vector field estimation

The estimation consists of 3 essential components which may change depend-
ing on the used algorithm [14]. First is the choice on the similarity metric,
which is used to compare the moving and fixed volumes. The aim of the
registration algorithm is to deform (equation 3.1) the moving volume µ( ~xm)
in such a way as to maximize the similarity with the fixed volume µ( ~xf )
[22, 23, 24, 25, 26, 27]. Second is the choice on how the MVF is parametrized.
This is equivalent to choosing the basis functions that represent the displace-
ments. Estimating the displacement then means finding the best values for
the parameters of this function [28, 29, 30, 31, 32].
Third is the strategy used to find an optimal set for the deformation pa-
rameters. The optimal parameters are often found through a hierarchical or
resolution-pyramid scheme: the parameters are first searched at larger scales
and the results are used as starting points to search at increasingly smaller
scales (possibly down to voxel level, but not necessarily) [14, 30, 22, 28, 33].
A thorough explanation of the motion estimation and aspects of it can be
found in [14, 27, 25, 15] amongst others.

3.3.2 Incorporating the displacement field in the recon-
struction

Van Nieuwenhove et al. [34] and De Schryver et al. [14, 21] describe two
methods that incorporate an MVF into an iterative reconstruction algorithm
(see section 2.4.2).
The first step is to reconstruct certain time steps in a static way, result-
ing in a number of 3D volumes each corresponding to a certain time point
and (probably) containing motion artefacts, since they were reconstructed
using projections that were taken over a certain time period. Then, a motion
registration is performed for each adjacent pair of 3D volumes. Finally, an
iterative reconstruction is performed while deforming the volume according
to the found MVF.
Remember, when there is only a fixed state ~xf , the steps in an iterative re-
construction are equations 2.60 and 2.64, respectively the forward and the
backward projection. While reconstructing a certain time point T with coor-
dinates ~xm, the algorithm uses other nearby time points t (coordinates ~xf )
as well, since every radiograph corresponds to a different time point. These
time points are connected through the known or estimated MVF ~u (see sec-
tion 3.3.1 and equation 3.1). In the projection step, the volume is transformed
according to ~xf +~u( ~xf ) to the projection time t. In the back projection step,
the volume is transformed in the opposite direction ~xf − ~u( ~xf ) to get back
to the wanted time point T . A thorough explanation of this is found in De
Schryver et al. [14, 21] and Van Nieuwenhove et al. [34] and a schematic
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Figure 3.3: Schematic 2D representation of an interative reconstruction using
a displacement field ~u. The pixel under reconstruction, i, is indicated in blue.
At time T (the time being reconstructed), it is at its ‘fixed’ position, at time
t it moved to position m. A projection at time t has X-rays passing through
m, they use µi from the current reconstructed volume T instead of µm in
the forward projection. When back projecting this same X-ray, instead of
applying the correction to µm, it should be applied to µi.

representation in figure 3.3.
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3.4 Total variation minimisation

Total variation minimisation or compressed sensing is an increasingly popular
technique in sparse-data CT and 4D µCT [35]. It was first developed for CT
with theoretically insufficient data, i.e. few projections. It combines an iter-
ative reconstruction (see section 2.4.2) with the total variation minimisation
noise filter, which assumes the sample consists of constant regions, i.e. the
sample is spatially piecewise constant [36, 35].
The total variation minimisation minimises the `1-norm of an image by using
the the gradient descent method [37]. The `1-norm of an image is the sum
of the absolute grey values of the pixels. This minimisation leads to sparse
solutions. Since (ideal) reconstructions are not necessarily sparse in the the
`1-norm of the volume itself, the norm that is minimised is actually the `1-
norm of the gradient of the volume. For a piecewise constant volume, the
gradient volume is sparse. [36]
By combining the iterative reconstruction (for example ART) and the total
variation minimisation, the result is a volume consistent with the projection
data which has a gradient volume with a sparse `1-norm. The algorithm
will first perform an ART iteration, then a total variation minimisation and
repeat from the start until a predetermined criterium is met. This can be
a fixed number of iterations or when the changes made in each iteration are
smaller than some threshold.
The total variation minimisation uses the gradient descent method, which is
in itself an iterative method with a predetermined number of iterations. The
main step in one iteration is the following [36]:

µkj = µk−1
j − adjvk−1

j (3.2)

in which µ is the voxel grey value, k is the iteration step of the gradient
descent method, j is the voxel number, a is a parameter between 0 and 1
determining the ‘strength’ of this noise filter, dj is how much this voxel grey
value changed starting from the beginning of the last ART-iteration to the
end of the same ART-iteration and vk−1

j is the gradient between the grey
value of voxel j and its neighbours.
This reconstruction algorithm can handle sparse projection data. Specifically
in 4D µCT, the sparseness is caused by the rapid scanning.
A significant amount of literature builds upon total variation minimisation or
adapts it to obtain better results. Xu et al. [35] add a weight dependant on
the anisotropic variation to better suppress the noise along the edges. The
technique described by Grasmair [38] combines the total variation minimisa-
tion with an anisotropic diffusion filter to get the benefits of both (though
this is not in the context of CT). Chen et al. [20] combine compressed sens-
ing with gating (section 3.7) and an initial volume (section 3.2). The result,
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with or without gating, is called prior image constrained compressed sensing
(PICCS). Lee et al. [39] build further upon PICCS by performing a segmen-
tation into air, soft tissue and bone and performing a registration between the
current volume and the prior image based on this. In contrast to section 3.3,
this is not used to find the dynamic process, but simply to align scans that
are taken days apart. Regions where a mismatch of the segmented regions
occurred between prior image and current volume get a higher weight, used
in the total variation minimisation step. The algorithm is called adaptive
prior image constrained compressed sensing (APICCS).
One property of total variation minimisation is the assumption of a piecewise
constant sample, resulting in ‘cartoon-like’ images with a ‘staircase’ effect: at
a gradient, the grey value makes discrete jumps [38], which is a wanted effect
for many samples.

3.5 Discrete reconstruction

When a sample consists of a limited amount of materials, each with a fixed
density, there is only a limited number of attenuation coefficients. In this
case, the fact that there is a discrete amount of attenuation coefficients can
be used as prior knowledge in the reconstruction, leading to what is called a
discrete reconstruction.
With the attenuation coefficients of the sample known in advance, a discrete
reconstruction technique such as DART, the discrete algebraic reconstruction
technique [40], becomes possible. In this technique, a well known iterative
reconstruction technique (see section 2.4.2) is used to create a starting vol-
ume. In this volume, fixed pixels are those with a grey value that is already
correct, i.e. that belongs to one of the known materials in the sample. Non-
fixed pixels are those with a differing grey value or directly adjacent to one
such pixel.
Next, the iterative reconstruction technique is repeated, but the fixed points
are kept unchanged (see also chapter 4). After this, a smoothing filter is ap-
plied. This concludes an iteration, which continues until a certain stopping
criterium is met (a fixed number of iterations or a certain minimal level of
change during a complete iteration).
The following flowchart shows an overview of DART [40] :
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A discrete algorithm provides an enormous improvement and allows for a
good reconstruction even with few or noisy projections. The downside is that
this is only possible for samples which consist of only a few known materials.
Herman and Kuba [41] provide an extensive overview of discrete reconstruc-
tion techniques and the math behind them, including techniques where the
precise attenuation coefficients of the materials are now known beforehand.

3.6 Machine learning

Machine learning is a programming technique applied in an increasing num-
ber of domains, such as face recognition, chat bots, handwriting recognition,
spam filters, traffic prediction, product recommendations and µCT. Machine
learning allows an algorithm to ”learn”, i.e. to get increasingly better at a
given task, without explicit programming on how to perform this task [42, 43].
One subset of machine learning is a neural network, which is what this section
will focus on.
A neural network is a sort of ‘black box’. It reads the input data, makes some
internal decisions and outputs what it considers to be the correct solution.
These internal decisions are not created by the programmer. Instead, the
network has undergone a training phase. During training, the neural net-
work is presented with many examples of input combined with the correct
output. For example, in µCT, the input could be the radiographs and the
output the reconstruction volume. Or the input could be the reconstruction
and the output the analysis result. This training data consists of objectively
correct outputs for each given input, otherwise the network will train itself to
produce wrong results. Therefore, training data for µCT is typically based
on high-quality scans. The input (radiographs) may be truncated to simulate
a ‘bad scan’ that the neural network should eventually be able to handle [3].
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The output, however, should be the ‘correct’ reconstructions from the com-
plete, high-quality scan. Another possibility is to reconstruct the training
data with a different method that is able to handle the low-quality scans, but
might not be the preferred method for all performed scans because it requires
a large amount of computer time. [44]
The neural network learns from these examples. It does this by trying to
predict the output for a given input and comparing this with the given out-
put. The difference is propagated back through the network. The network
becomes iteratively better at predicting the correct output.
After training, new input data from low-quality scans can be fed to the neural
network, that will (ideally) produce the correct reconstruction volume.

3.6.1 Internal mechanism
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Figure 3.4: Schematic representation of a neural network with 5 input num-
bers, 2 hidden layers and 2 output numbers. The two different colors serve
only to discern the connecting lines from different nodes easier from each
other.

While the neural network is often called a ‘black box’, it still relies on known
mathematics.
A network consists of a number of layers as represented in figure 3.4. One
layer is the input layer, one is the output layer and all the other layers between
them (there’s at least one) are called hidden layers. The amount of layers can
be chosen by the user or the programmer. There are no fixed rules dictating
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how many layers each application would need.
A number of nodes make up each layer. For the hidden layers, the number
of nodes in any layer is not governed by clear rules, so the programmer or
user fixes this before starting the algorithm. It is hard to determine the ideal
number of nodes: too few and the network will not be able to correctly map
the input to the output. Too many and the chance of overfitting increases,
as explained in section 3.6.2 [44].
Each node j has Nj input numbers (x1j , x2j , etc.), one output (yj) which is
sent to multiple nodes in the next layer, Nj internal weights (w1j , w2j , etc.)
with Nj being the number of nodes in the previous layer, and a threshold
value bj , . Note that while a node only has one output, the complete network
can have several. The input numbers of a node are the output numbers of
the nodes of the previous layer. The j’th node transforms input to output as
follows:

yj = f(bj +

Nj∑
i=1

wij · xij) (3.3)

f is a function that is the same for each node, but may be different be-
tween two neural networks, depending on the choice of the programmer. It is
called the activation function and sometimes called σ instead of f . The most
commonly used is the sigmoid function:

f(x) =
1

1 + exp(−βx)
(3.4)

β is a parameter chosen beforehand for this neural network. It determines
the slope of the function [45]. For example, in Pelt et al. [44], β is 1.
The output layer often has a different activation function than the other lay-
ers, for example f(x) = x as in Pelt et al. [46].
A lot of networks use the simplest way to connect the nodes from different
layers: a node gets input from each node in the previous layer and from none
of the other layers. However, it is possible to connect a node to nodes from
several layers before, for example in Mixed-Scale Dense networks, allowing
for sufficient training with few data available [46].
During training, the network will improve the weights wij and thresholds bj
parameters. Improvement in this case means the correct output, the final
y’s, will be produced for an input xj within a certain application. There are
several training methods. A supervised learning training method presents the
network with a set of correct outputs mapped to their input. These inputs
and outputs are called the training data. [46]
The goal of the training phase is to minimise the total mean square error
between calculated output and given output. There are several minimisation
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methods, such as gradient descent [45, 43], the Levenberg-Marquardt algo-
rithm [44], the proximal point algorithm and the Chambolle-Pock algorithm
[47].
The initial weights and thresholds are picked randomly [45] or set to 0 [47].
The training phase works iteratively. It calculates the output from a train-
ing input data set with its current weights and thresholds (parameters). It
then compares this output with the correct training output and adapts its
parameters according to the chosen minimisation method. Gradually, this
minimises the total mean square error between calculated output and given
output. The number of iterations can be fixed [47] or based on a stopping
criterium such as an error computed with a validation data set (more on this
in section 3.6.2) [44].
After training, the neural network produces output for a given input, never
seen in the training phase, with the final parameters it obtained from train-
ing.
A neural network can be a very powerful tool to process new data from appli-
cations where the relation between input and output is not easily described
[43]. The network can find patterns between input and output that the pro-
grammer or researcher couldn’t notice or formulate. In addition, while some
neural networks take a long time to train and to compute the output, oth-
ers have the advantage of the fast reconstruction computation time that is
typical for analytical reconstructions. A notable example is a neural network
that is a weighted sum of filtered back projections (see section 2.4.1) [44].

3.6.2 Disadvantages and dangers

While the advantages of a neural network are clear, i.e. fast processing of
incomplete or otherwise imperfect data while maintaining a very high recon-
struction quality [44, 46], there are also some disadvantages to keep in mind
when considering a neural network for an application.

• There is a risk of underfitting if there is not enough training data. This
means the model will not be trained enough and won’t produce the
correct output for a new input.

• There is a risk of overfitting if there is too much training data. The
neural network is no longer sufficiently generic, and it can not handle
completely new input data well.

• The training data has to include all possible situations the real data
can encounter.

• The training data has to resemble the real input data the neural network
will have to process.
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• Since the neural network is a black box, i.e. it is unknown what pat-
terns it actually recognises in the data, there is no certainty it will
always produce the correct result. When dealing with new data, this
uncertainty is a major disadvantage.

A notable example of an incomplete training data set, combined with the
uncertainty of the neural network can be found in Wolfson [48], where a
simple neural network discerned dogs from wolves. Eventually, it turned
out to recognise snow instead of wolves, since most wolf training data were
pictures from wolves with a snowy background.
Overfitting can be prevented by using a second set of training data, the
validation set. The error between calculated output and validation output
is calculated at each iteration. When this error stops improving and instead
starts deteriorating, overfitting is occurring. The training therefore stops at
that point. [44]
For the samples considered in this thesis, neural networks are not an option
because there is not enough training data. The samples used for research are
usually unique or there’s only a small set of them to be scanned. Applications
of neural networks within 4D µCT are still relatively rare because it requires
many similar samples. However, it is also possible to increase the training
data set by considering small parts of the scan (for example each set of 100
neighbouring pixels) as one input and output data set, or even, as in Pelt et
al. [44] one voxel at a time.

3.7 Gating

When the dynamic component of the sample is a periodic movement, gating
(or single exposure phase retrieval) becomes available for correctly recon-
structing the different phases of the sample. A periodic or quasi-periodic
movement is common in medical CT. Examples are the cardiac movement
(heartbeat) and the respiratory movement (breathing). Sometimes the scan
takes into account both the cardiac and the respiratory movement [10].
The CT scanner performs multiple rotations, as usual in 4D CT. Each pro-
jection therefore has a certain projection angle associated with it, which is
important for the reconstruction. In addition, since the dynamic process is
periodic, each projection was taken during a certain part or phase in this
process. The same phase returns for a projection T time later, with T being
the period of the movement. When T 6= R (R being the duration of one
rotation), the next projection that has the same phase will be taken at a
different angle. [49]
Gating combines the projections belonging to the same phase into reconstruc-
tion sets. Each reconstruction set corresponds to one phase and contains
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Respiratory

ECG

X-ray on

Rotation

Figure 3.5: Procedure for rotation and radiograph recording (“X-ray on”) in
a discontinuous gating sequence in medical CT, dependant on both the heart
phase (measured with an ECG) and the respiratory phase. Adapted from
Guo et al. [49].

projections that were not taken sequentially, but should span the whole ro-
tation domain. Since a single phase is static, each reconstruction set can be
reconstructed without motion artefacts. Putting the reconstructions of the
different phases together spans the complete dynamic process.
Gating can be performed non-continuously as in figure 3.5. This means a
phase to reconstruct is chosen first. The projections are now taken exclu-
sively at the times of this phase: a projection is taken at the correct time,
the gantry rotates to the next position and then the scanner waits. When
the phase occurs again, a new projection is taken and the process is repeated
until the complete projection set is acquired. This can be repeated for other
phases if they are of interest. [49]
Gating eliminates the difficulties of 4D CT, especially when the phase per
projection can be determined accurately, for example by an outside measure-
ment such as an ECG [50]. The major drawback is the limited applicability:
the dynamic process must be periodic. This assumption is false for the dy-
namic processes considered in this thesis, hence the gating technique is not
used on the samples presented in this work.
Gating is most relevant in medical CT, in studies of the heart [10, 51] and
the lungs [52]. In high resolution µCT, the application of gating is rare, with
one such rare example being the quasi-periodic wingbeat of a fly in motion
[53]. In medical CT, gating can even be considered the ‘default’, since new
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techniques for 4D cardiac or respiratory CT are often compared with it [54]
or build upon it [55, 52].
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4
Weighted back projection

Reconstruction when the location of changes is known
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To improve the reconstructions of 4D µCT scans, we developed weighted back
projection. Weighted back projection is a technique that combines an initial
volume (section 3.2) with a weight volume and is performed in the context
of an iterative reconstruction (section 2.4.2).
Weighted back projection is used in the context of 4D µCT, when two types
of prior knowledge are available:

• An initial volume representing the very same sample which is studied
using 4D µCT, but without the dynamic process occurring. This can
be obtained from a scan before the process was initiated or after it has
concluded, or it can be a model which represents the real sample.

• Knowledge about which areas in the sample might change (in compar-
ison to the initial volume) due to the dynamic process.

In weighted back projection, the prior knowledge of an initial volume is ex-
tended by the knowledge on where the dynamic process is most likely to
occur in this volume, i.e. which voxels j of the initial volume will have the
largest |µj,measured − µj,init|. Weighted back projection typically starts from
a high-quality static scan, wherein the voxels that will be subject to the dy-
namic change are identified, and focusses on those voxels for reconstructing
the dynamic scan. Without this prior knowledge, weighted back projection
is not possible.
Other techniques have used this type of prior knowledge before, such as a
method presented by Myers et al. [1] and region based 4D tomographic re-
construction [2]. In both these, the static regions are enforced to not deviate
from their initial value. In Myers’ method [1], the prior knowledge of the
static regions is supplemented with prior knowledge about the physics of the
dynamic process and the fact that only two attenuation coefficients are possi-
ble, i.e. the studied materials are incompressible and therefore do not change
in attenuation coefficient. All this prior knowledge is implemented as correc-
tions to the reconstruction volumes in between the iterations of an iterative
reconstruction and after the reconstruction completes.
In region based reconstruction [2], two separate SIRT reconstructions are per-
formed per iteration. One, called the static reconstruction, uses the complete
projection data, the other uses a small fraction around the time which is be-
ing reconstructed and is performed for each time step. Both reconstructions
in region based reconstruction [2], static and dynamic, reconstruct the entire
volume, i.e. the static reconstruction also reconstructs the dynamic region
and vice versa. The resulting volume for one time step uses as attenuation
coefficients for the static regions those obtained by the first reconstruction
and as attenuation coefficients for the dynamic regions those obtained by the
second one. Therefore, in this technique, similarly to Myers et al. [1], the

84



CHAPTER 4. WEIGHTED BACK PROJECTION

prior knowledge of static and dynamic regions is incorporated in between it-
erations and at the end.
In reconstruction algorithms that use prior knowledge, the influence of this
prior knowledge on the final resulting volume is of importance. If this in-
fluence is too strong, small errors in the prior knowledge could propagate to
wrong results that might be hard to detect. Therefore, any algorithm must
be able to robustly deal with at least a small margin of error in the prior
knowledge. Weighted back projection can handle small errors in the prior
knowledge, while similar 4D µCT techniques require the prior knowledge to
be exactly correct. In both previously described techniques, the static re-
gions are enforced not to deviate from their initial value. In contrast, the
static regions can still deviate in weighted back projection, allowing for error
correction in the initial volume.
Weighted back projection works by assigning a weight wj to every voxel j:
high for dynamic regions and low for static regions. The voxels expected to
change with respect to their value in the initial volume will receive a high
wj , while those that are expected to remain static receive a wj closer to zero.
This results in a faster convergence to a correct volume and therefore fewer
projections needed for one 3D reconstruction, granted that the wj are chosen
wisely.
This weight is included in the back projection step of an iterative reconstruc-
tion, instead of in between iterations as in most 4D µCT techniques, and
assures most of the correction is assigned to dynamic voxels. Static vox-
els should already have their (almost) correct value from the initial volume,
which means all changes to this initial volume in the update step should be
due to the dynamic process which is being studied. Since the prior knowl-
edge is incorporated in the reconstruction algorithm itself, less iterations are
required to fully use it.
The simplest way to determine the wj in samples where the dynamic re-
gion shares a single µ, including the sample we will use here (described in
section 2.8), is based on the attenuation coefficients of an input volume (pos-
sibly, but not necessarily the initial volume) with the assistance of a Gauss
function. This assures that the slightly different attenuation coefficients in
a reconstruction (since the input volume is probably a reconstruction from
another scan, reconstructed attenuation coefficients from the same material
can have differences due to noise and other imaging artefacts) do not have
widely different wj . This also means there is a wide range of possible wj .
If there are only two wj possible, 0 and 1, weighted back projection becomes
similar to region based iterative reconstruction [2] or Myers’ technique [1].
As shown in Van Eyndhoven et al.[2], this already provides a tremendous im-
provement for 4D µCT. When extending this to more possible weights, there
is more room for error upon determining the wj and there is no requirement
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for a segmentation step [3]. Weighted back projection can be combined with
other techniques such as compressed sensing or using other prior knowledge
[4, 5].
Dividing a reconstruction volume in a static and a dynamic region can also
happen without prior knowledge on these regions. Part of the MOCDOR
framework [6] is to iteratively determine the changing regions within a cer-
tain projection time range. Note that, even though Kumar [6] uses the ter-
minology ‘motion model’, their framework is about dynamic regions instead
of motion registration (section 3.3). This subtle distinction in terminology is
important when comparing techniques. MOCDOR combines these dynamic
regions with a certain acquisition scheme for the projections, a probability
maximisation algorithm and some smoothing filters.
Both weighted back projection and region based iterative reconstruction can
only be used when the volume has enough static regions. Therefore it is best
to use different techniques (for example motion registration, as in section 3.3)
when the dynamic process consists of movement.

4.1 The reconstruction algorithm

Weighted back projection is an adapted version of the 3D iterative recon-
struction for computed tomography. In this study, we use SART, but any
other iterative reconstruction algorithm can be adapted in the same way to
result in weighted back projection. We first explain the 3D reconstruction
and subsequently this can be integrated in a 4D reconstruction.
We assume that the initial volume is a good approximation of the sample in
the static regions of the sample and hence most of the back projected infor-
mation in the update step physically originates from the dynamic regions.
Therefore, weighted back projection back projects mostly in the dynamic
regions, by using the prior knowledge on where these regions occur in the
sample.
To achieve this, an additional volume is introduced into the reconstruction
process: the weight volume. This volume has the same amount and configu-
ration of voxels as the reconstruction volume, although it may be stored as a
different data type. It would be possible to create a lower resolution weight
volume, i.e. with a lower amount of voxels, and use interpolation to get voxel
values at higher resolution. This approach was not tested in this manuscript,
but it is a promising method to decrease the memory load.
Each voxel j in the reconstruction volume therefore has a corresponding voxel
value wj in the weight volume. Voxels that are present in a dynamic region
should have a high wj and voxels in a static region should have a low wj .
The exact values for these will be discussed below.
The iterative reconstruction now starts with an initial volume. Ideally, the
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static regions from the prior knowledge will already have the correct attenu-
ation coefficient µj in this initial volume. In theory, all changes pi − qi that
are back projected will be a result of changes in the dynamic regions due to
the dynamic process. However, in reality these changes also contain contri-
butions from noise in both dynamic and static regions and potentially other
imaging artefacts. The dynamic regions are those voxels where we expect the
dynamic process to occur, while the static region is its complement.
We want the correction pi − qi to be back projected mainly in the dynamic
voxels, instead of evenly over dynamic and static voxels as is the case in a
regular iterative reconstruction. The weight factors wj will ensure a larger
part of the correction is distributed to those voxels with a larger weight, i.e.
that are known to be more likely to be dynamic.
The weight volume is used during the back projection step of an iterative
reconstruction algorithm (section 2.4.2), equation 2.64. The back projection
step without a weight volume is given by the following equation, which is
simply equation 2.64.

µkj = µk−1
j + α

pi − qi
Li

(4.1)

We propose to add a weight volume to transform this equation into:

µkj = µk−1
j + α

wj
Wi

pi − qi
Li

(4.2)

Wi is the normalisation factor, which depends on the X-ray i. When Wi < ε,
the attenuation coefficients are unchanged in the implementation, i.e. µkj =

µk−1
j . ε is a very small number determined by the precision of the used

data type (unsigned 8-bit int, 32-bit float,...). This is to prevent infinities
resulting from division by 0. Wi ensures that the same total amount pi − qi
is back projected over the complete X-ray, compared to a back projection in
a conventional iterative reconstruction, where all weights are 1. It is defined
by the following equation:

Wi =

∑
j∈Xi

wj∑
j∈Xi

1
(4.3)

To demonstrate that the total amount back projected remains unchanged,
we calculate the sum along an X-ray i of the back projected values with a
weight volume:

∑
j∈Xi

(
wj
Wi

pi − qi
Li

)
=
pi − qi
Li

1

Wi

∑
j∈Xi

(wj) (4.4)
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And the same sum without a weight volume:

∑
j∈Xi

(
pi − qi
Li

)
=
pi − qi
Li

∑
j∈Xi

(1) (4.5)

In both these, we removed any factor not depending on j from the sum over
j. These two summations should be equal, which can only be true if equa-
tion 4.3 holds.
The consequence of using equation 4.2 as the back projection step in an iter-
ative reconstruction is that the voxels with a high wj change more as a result
of one back projection than voxels with a low wj . Over the scope of a full
iteration, low wj voxels will keep a value close to µ0

j , their value in the initial
volume. This behaviour is desirable for static voxels, i.e. those regions in the
sample where no dynamic process (section 2.6) takes place.
While the physical dynamic process in the sample will not affect the static
voxels, the voxels where we expect the dynamic process to occur should have
a high wj , so they have to opportunity to start deviating from their initial
attenuation coefficient µ0

j . Obviously, voxels in the dynamic region do not
necessarily change. For example, a dynamic process might occur only in cer-
tain pores of a geological material and not all of them. Since it is not a priori
known exactly which pores will change, all of them receive a high wj .
The benefit of fast convergence and the requirement of a previously acquired
initial volume makes the technique perfectly suited for 4D µCT imaging. A
weighted back projection for a 4D µCT scan starts by subdividing the radio-
graphs into a number of subsets which may overlap, each spanning at least
a complete angular range. Each subset is reconstructed separately with the
above described 3D weighted back projection reconstruction algorithm. The
combination of these 3D volumes forms the resulting 4D volume.
An additional benefit of weighted back projection is that it can be combined
with most other 4D µCT techniques, as long as they are using iterative re-
construction.

4.2 The weight volume

4.2.1 Generic description

The choice of the weight volume has an important influence on the result, as
will be discussed in section 4.4. In this work, we consider 4 different cases,
but more methods to determine the weight volume are possible. In this study,
a weight volume can be continuous (many possible weight values) or discrete
(only two possible weight values), and it can allow weights of zero or require
all weights to be higher than zero.
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All used weight volumes in this work are derived from a high quality recon-
struction of an additional scan. The attenuation coefficient of this recon-
structed volume at voxel j is µwj and the weight of this voxel is wj . For the
continuous weight volumes, both are connected by:

wj = b+ v · exp

(
−

(µwj − µcentr)2

2σ2

)
(4.6)

This is a Gaussian function [7] with four parameters: b, v, µcentr and σ. This

Figure 4.1: Graph respresenting equation 4.6 with µcentr = 0.6, σ = 0.05,
b = 1 and v = 9.

method of determining the weight volume can be used on the Bentheimer
sandstone sample (described in section 2.8) since we know the dynamic pro-
cess, i.e. the oil displacing brine in the rock, will only occur in the pores.
Therefore, all dynamic regions have the same attenuation coefficient µ of the
pore space. Figure 4.1 shows an example plot of this function. b is a con-
stant determining a minimum weight for the static voxels. It is put to 0 or
1 depending on whether zero weights are allowed or not. v is a factor deter-
mining the height of the peak, µcentr is the central value of the peak and σ
determines its width. When used to determine a weight volume, µcentr is the
average attenuation coefficient of the dynamic region, i.e. the region inside
the initial volume most likely to undergo a dynamic change, σ determines
how much µ0

j can differ from µcentr while still receiving a high weight and v
is a measure of how certain we are that dynamic and static regions are well
described by this Gauss. v regulates how much of the back projection ends
up in dynamic regions and how much in static regions.
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The baseline, when b = 1, is an important aspect of this function. It assures
no wj is ever zero. A voxel j with wj = 0 would be unable to change from
its value µ0

j in the initial volume. Therefore, any mistakes in the initial vol-
ume or in the determining of the dynamic region are fixed and can not be
corrected. To allow some lenience for these mistakes, b can be set to 1.
This method of determining the weight volume is a very simple segmentation.
The dynamic and the static regions are determined based on their attenu-
ation coefficient in the initial volume. This is similar to a single threshold
segmentation algorithm ([8], section 6.5), which is the simplest segmentation
technique in existence, with the difference that the cut-off for weighted back
projection is not ‘hard’: this function is a Gaussian distribution, instead of a
delta function. For the discrete weight volumes, the segmentation will be a
single threshold, resulting in two possible weights: whigh and wlow.
In contrast, region based iterative reconstruction [2] is similar to allowing only
two different wj , 0 or 1. This is a hard division between static and dynamic
regions, in which there is no room for error in determining the static region.
If any dynamic voxel ends up with wj = 0, it will keep its faulty initial value.
While there is less uncertainty allowed, this method provides a simpler weight
volume than the continuous weight volume as described above. A voxel can
either change, or it can not.
In region based iterative reconstruction [2] the static and dynamic regions are
either known beforehand, or they are estimated during the reconstruction it-
erations with a projection distance minimisation scheme. For the interested
reader, Van Eyndhoven et al. [2] provide a detailed explanation of this esti-
mation method.
A weight volume can be derived from an initial volume or another represen-
tation of the sample with most segmentation methods. Vlassenbroeck [8] lists
a number of these methods, which are used for 3D analysis.

4.2.2 Experimental study

We created multiple weight volumes for the experiments on the sample of
the Bentheimer sandstone, described in section 2.8. For all of these weight
volumes, the starting point was a high resolution reconstruction of a scan
of the sample, taken before an attenuation-matching CsCl solution filled the
pores. In other words, this is a scan of the sample where the pores are clearly
visible, but it is not the initial volume, as described in section 2.8. Figure 4.2
shows a slice of this volume.
Also in figure 4.2 is the porous volume on which a straightforward cylindri-

cal mask has been applied. The cylinder encompassed the sample as close as
possible and any voxel outside of it got a grey value of 1, which is white in
the visual representation shown.
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Figure 4.2: The central slice of the reconstruction of the Bentheimer sand-
stone where the pores were visible. To the right a cylindrical mask was applied
to single out the sample from the background viton sleeve.

This masked volume was the starting point for the continuous weighted back

Figure 4.3: Slice of the weight volume created for weighted back projection
(left) and a discrete weight volume (right). White areas are the pores, which
have higher weight.

projection weight volume, shown in figure 4.3 (left). For this weight volume,
we used equation 4.6, with µcentr = 0 /mm, σ = 0.03 /mm, b = 1 and v = 20.
Depending on whether weights of zero were allowed or not, b got a value of
respectively 0 or 1. With these parameters, any voxel outside of the cylinder
got wj = b, which is the lowest weight.
A weight volume with two discrete wj (one high and one low) was created
from the same starting volume: the cylindrical masked volume represented in
figure 4.2. The pores, segmented with a simple threshold on their attenuation
coefficient, received wj = whigh while the grey rock structure had wj = wlow.
The threshold was chosen manually, as the quality of the initial scan was suf-
ficiently high to have a clear distinction between both phases. The resulting
weight volume can be found in figure 4.3 (right).
Both these weight volumes can allow wj = 0 (in case of the discrete weight
volume, this is wlow = 0, in the continuous case, b = 0) or only allow non-zero
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weights (wlow = b = 1). Both possibilities visually look similar, hence they
are not shown in separate figures here.
In the case of the Bentheimer sandstone, we set µcentr = 0 /mm and σ =
0.03 /mm. These parameters should be determined for each application in-
dividually, based on the histogram of the high-quality dataset.
For discrete weight volumes, the weights are either wj = 0 and wj = 20 or
wj = 1 and wj = 20. The absolute values 1 and 20 are not important, it is
only the ratio between the highest and the lowest weight which influences the
results.

4.3 The benchmark volume

Figure 4.4: The central slice of the benchmark reconstruction with a zoomed-
in area focussing on a specific pore shown in the bottom figures. This recon-
struction is an averaged reconstruction without prior knowledge using all
projections. The zoomed-in area shows the situation of the pore before filling
with oil and after filling with oil. The complete slice shows the after-filling
situation. The diameter of the slice is 6 mm and the physical size of the
zoomed-in region is 0.95 mm×0.95 mm.

All reconstructions in this chapter use one full iteration of the SART algo-
rithm, i.e. use every projection once. We compare the reconstructions with
a benchmark volume, for which we reconstruct two static situations, rep-
resenting an average over the first 8 rotations and the last 8 rotations of

92



CHAPTER 4. WEIGHTED BACK PROJECTION

the dynamic scan. As described in section 2.8, the total scan consisted of
79.8 rotations. The projections corresponding to these 8 rotations were av-
eraged for each projection angle and the resulting dataset was reconstructed
with conventional SART. The projections of each rotation were shifted 0.096◦

compared to the previous rotation, which resulted in angular smoothing when
averaging over many rotations. This shift is due to rounding errors in the
positions of the rotation motor and does not influence a reconstruction, only
an averaging such as done here. Such a shift can even be on purpose, since it
is beneficial to have data at slightly different angles in subsequent rotations.
Multiple rotations can then be combined for one reconstruction, each having
additional information.
The number of 8 was chosen to get significant noise reduction while keeping
the angular smoothing limited. The pore on which the figures in the following
sections zoom in was static in both benchmark reconstructions and got filled
with oil in between. The resulting benchmark reconstructions are shown in
figure 4.4.
The reconstructions with which weighted back projection was tested used
only 1 out of every 10 projections. One time step was therefore reconstructed
with 60 projections, uniformly spread over a full rotation, instead of the 600
available per rotation. This simulates a dynamic process that is ten times
faster with a 4D-µCT scan that is performed ten times faster (since there is
still the same amount of change within one rotation). Since the benchmark
uses the full available data, we can compare such reconstructions of such a
‘fast’ scan with limited available data with a higher quality scan.

4.4 Comparison between weight volumes

Figure 4.5: Zoom-in of a pore in the central slice of two different reconstruc-
tions: the conventional SART reconstruction starting from an empty volume
(left) and starting from an initial volume (right) with only 1/10th of available
projections used. Three reconstructed time steps are shown for each one:
immediately before the filling of this pore with oil, during filling and imme-
diately after. The physical size of the displayed region is 0.95 mm×0.95 mm.
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Figure 4.6: Zoom-in of a pore in the central slice of weighted back projection
reconstructions with different weight volumes with only 1/10th of available
projections used. Three reconstructed time steps are shown for each one:
immediately before the filling of this pore with oil, during filling and imme-
diately after. The physical size of the displayed region is 0.95 mm×0.95 mm.
The left part of the pore in the before-filling time step shows a lot of noise
when including weights of 0.

In this section, we will present the resulting reconstructions when using ei-
ther of the weight volumes described in section 4.2. Figure 4.4 shows the
benchmark reconstruction, while figure 4.5 shows reconstructions using con-
ventional SART. The result of the weighted back projection reconstructions
with different weight volumes are shown in figure 4.6, where three time steps
are shown for each reconstruction, zoomed in on one large pore with a size of
2292 voxels: immediately before the filling of this pore with oil, during filling
and after filling. A quantitative analysis of one pore is displayed in figure 4.7.
For this figure, the pore volume was segmented into individual pores using
the software octopus analysis (formerly known as Morpho+ [9]) as described
in section 6.1. Using the information on which voxels belonged to which pore,
we viewed the results within one pore, the same pore visualised in figure 4.4.
We calculated the attenuation coefficient µ of a pore by taking the average
over all voxels within this pore. Similarly, a standard deviation σ was calcu-
lated over all these voxels. The result is a µ and a σ for each pore and for
each reconstructed time step. We display, for one dynamic pore, the average
over all time steps before this specific pore was invaded by oil (this moment
of invasion is called the Haines jump) and after the Haines jump in figure 4.7.
The slices show that both the reconstruction from an empty or from an ini-
tial volume in figure 4.5, i.e. the reconstructions that did not use a weight
volume, fail completely at reconstructing the sample correctly. As visible in
figure 4.7, the conventional SART reconstruction and the reconstruction from
an initial volume fail to reach the benchmark µ after filling of the pore with
oil. It is clear that 60 projections is far too few. However, the weighted back
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Figure 4.7: The average attenuation coefficient and average standard devia-
tion in a dynamic pore (the bigger pore in the zoomed-in region in figure 4.4)
in the reconstructions which used 1/10th of projections. Data from both be-
fore the filling with fluid and after are shown. The benchmark µ are shown
as a constant function, with the σ on the benchmark reconstruction denoted
by the shaded areas around the benchmark constant.

projection reconstructions in figures 4.6 and 4.7 perform well, clearly show-
ing the pore getting filled for all four weight volumes and the attenuation
coefficients being close to the benchmark. From visual assessment, there is
little difference between discrete or continuous weight volume reconstructions.
Similarly, the attenuation coefficients in figure 4.7 are similar, although the
noise for a continuous weight volume (the error bars) is larger when consider-
ing the graph. The difference between including or excluding wj = 0 is clear:
the noise is stronger when including wj = 0, as shown in the size of the error
bars. This noise is mainly visible in function of time, when visually scrolling
through slices: the grey value of many smaller pores is fluctuating around
the attenuation coefficient of the surrounding rock. This is an unphysical
effect: these pores are not rapidly decreasing and increasing in attenuation
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coefficient. Using piecewise linear fitting [10] (chapter 6), these small pores
were found to be static and should therefore remain on their initial attenu-
ation coefficients. This strong noise behaviour is much more nuanced in the
weighted back projection reconstructions that used a minimal weight larger
than 0.
When performing these reconstructions using the projections generated from

Figure 4.8: The root mean squared pixel error between reconstruction and
phantom for reconstructions starting from the simulated projections of the
phantoms (described in section 2.8). The left figure corresponds to low sim-
ulated noise, the right figure to high noise.

the phantoms (as described in section 2.8), we can calculate the root mean
squared error between the ground truth (the phantoms) and the reconstruc-
tions. A graph of these mean squared errors is displayed in figure 4.8. A
remarkable difference between a continuous and discrete weight volume is
visible: a discrete weight volume suffers more from noise, even resulting in a
higher mean squared error than the conventional method when reconstruct-
ing from high-noise projections. The continuous weight volume, on the other
hand, has a mean squared error that remains below the mean squared error
of a conventional reconstruction. In general, all errors increase with time.
This can be explained due to the increasing number of small features (filled
pores) that should be reconstructed, rendering the reconstruction with any
technique increasingly difficult.
The high noise is caused by the nature of weighted back projection: the
pores, which have a higher weight than the surrounding rock, receive the
high amount of noise that would otherwise be spread out over a much higher
amount of voxels. This amount of voxels is the voxels in the complete trans-
mission length in the case of conventional SART reconstructions, or the voxels
in the complete transmission length with different contributions from pores or
non-pores in case of weighted back projections where wj > 0. When wj = 0
is possible, the amount of voxels is smallest, explaining why the noise in the
pores is the most pronounced in these reconstructions.
This higher noise in the dynamic regions is the largest disadvantage of the

96



CHAPTER 4. WEIGHTED BACK PROJECTION

weighted back projection technique. It is stronger when zero weights are al-
lowed, since the static regions in that case cannot act as a buffer for some
of this back projected noise. At the other hand, not only the propagation
of noise is stronger in weighted back projection, but also the signal itself.
This is why the filled pores are clearly visible in the weighted back projection
reconstructions when using only a limited amount of projections.

4.5 Effects of errors in prior knowledge

Figure 4.9: Weighted back projection reconstructions starting from a wrong
initial volume using a weight volume where wj = 0 is possible (left) and
another where wj > 0 for all voxels j (right). These reconstructions used
all available projections, i.e. 600 (the full amount in one rotation) per time
step. The shown time step is after the filling of the chosen pore with oil. All
shown slices and zoom-ins are scaled equally. A benchmark reconstruction
for comparison can be found in figure 4.4.

In general, reconstruction methods which incorporate prior knowledge are
susceptible to errors in this prior knowledge, such as noise and imaging arte-
facts. In this case, weighted back projection methods, particularly with zero
weights, result in strongly deteriorated reconstruction quality when the static
regions of the initial volume, i.e. the voxels where wj = 0, are wrong. To eval-
uate this, we consider an initial volume in which the attenuation coefficients
are about 33% higher than they are in the reconstructions of the dynamic
scan. This can occur due to different filtering, beam fluctuations or a bad
normalisation. It may not always be obvious at first sight that this initial
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volume is wrong, which is why we want a reconstruction algorithm robust
enough to handle this, as said in the introduction.
As visible in the figure 4.9, allowing zero weights in this case renders the
reconstruction useless: the dynamic pores at the bottom of the zoomed-in
region are shown as filled, but so is every other pore in the volume, including
those that should have remained on their initial value. On the other hand,
when the static regions still have a low, non-zero weight, the reconstruction
can handle a small error in the prior knowledge.
We can conclude, so far, that weight volumes without zero weights, both dis-
crete or continuous, provide the best reconstruction of the four possibilities.
Zero weights, while useful in theory, produce too much noise to safely discern
the real change to the initial volume, even when there are no mistakes in the
initial volume.

4.6 Dynamic relaxation factor

Weighted back projection causes a noise increase in the dynamic regions,
which is a disadvantage of the technique. Additionally, the dynamic regions
are precisely those of interest: a 4D µCT scan is performed to study the
dynamic process taking place in the sample, which is why it is of such great
importance to correctly reconstruct the dynamic regions.
The idea of weighted back projection is to back project the difference between
simulated and measured projection values only to those voxels that can cause
this difference: the voxels in a dynamic region. However, this back projected
difference is not only caused by real attenuation changes, i.e. the dynamic
process, but also by noise. Back projecting this difference over a lower amount
of voxels causes these voxels to suffer more from noise than they would have
in a conventional reconstruction.
In this section, some approaches to decrease the noise are investigated. Two
methods are often used to combat noise in a reconstruction: noise filters and
the relaxation factor α. The second one is inherent to iterative reconstruction
and described in section 2.4.2, in equation 2.64. α is a number between 0 and
1. A lower relaxation factor leads to less noise and a slower convergence.
Another method tried here is the use of a dynamic relaxation factor. Instead
of using a relaxation factor α that is fixed for the entire reconstruction, the
relaxation factor will depend on the X-ray i that is being back projected.
More specifically, we want α to be lower when the X-ray passes through few
dynamic voxels and higher when it passes many of them. Therefore, the total
relaxation factor will consist of two parts, αi and αfixed as follows:

α = αi · αfixed (4.7)
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with αfixed a constant and αi a number between 0 and 1 that depends on the
X-ray i. The back projection is therefore slightly adapted from equation 4.2:

µkj = µk−1
j + αi · αfixed

wj
Wi

pi − qi
Li

(4.8)

Since αi should depend on the amount of dynamic voxels traversed, it is
correlated with Wi and we should take care to not negate the normalisation
effect of Wi. A high Wi means many dynamic voxels are present in this X-ray,
so αi may be high as well. The opposite is true for a low Wi.
The simplest relation between αi and Wi that matches the above description
is linear. However, since the back projection contains αi

Wi
, a simply linear

relationship such as αi = k ·Wi (with k some constant number) would cancel
out the normalising effect of Wi. Therefore, we will use a slightly more
complicated version of αi, which is still not optimised since this is a proof
of concept. This simple version is used to investigate the feasibility of the
dynamic relaxation factor. αi will follow the next equations:

αi = 1 if Wi > c (4.9)

αi =
Wi

c
if Wi ≤ c (4.10)

This is the linear equation with the addendum that there will be no lowering of
the relaxation factor when the cumulative weight on X-ray i is high enough.
This only affects the relaxation factor when Wi ≤ c, i.e. when the X-ray
passes through a relatively static X-ray. The constant c is a rough estimate
of a dynamic X-ray, i.e. containing many dynamic voxels:

c = (1 + b)wminNvoxels (4.11)

with wmin the minimum possible weight (we use a weight volume with
wmin > 0), Nvoxels the number of voxels along one side of the volume cube, as
an estimation of the average X-ray length, and b the fraction of these voxels
that we want to be dynamic, i.e. have a higher weight than wmin, to label
this a ‘dynamic X-ray’. In the case of the Bentheimer sandstone and similar
samples, b will be related to the porosity, i.e. the fraction of pore volume
with respect to the total sample volume. We set b to 0.3. This number was
determined by trying out several different b and picking the one which gave
the best result. As mentioned before, this is an extremely simple formula for
αi and, in extension, c, because this is a proof of concept test to gauge the
ability of a dynamic relaxation factor to improve the weighted back projec-
tion method. In addition, b is set to an ad hoc number for the same reason.
After determining the feasibility of the technique, we want to determine the
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Figure 4.10: Zoom-ins of a pore on the slices of weighted back projection
reconstructions using all available projections (600 per rotation) with different
options to reduce the noise, including dynamic relaxation. The benchmark
reconstructions can be found in figure 4.4.

best value for any application.
Dynamic relaxation is an addition to weighted back projection which adapts
the update step in an iterative reconstruction based on the weight volume,
similarly to weighted back projection itself. The adaptation to the update
step is slightly different compared to weighted back projection, which can
hopefully provide a result with less noise.
Figure 4.10 shows zoom-ins of slices of the results. In this figure, the weighted
back projection is compared to a dynamic relaxation reconstruction, a weighted
back projection with a lower relaxation factor and a weighted back projection
on which a simple median noise filter was applied.
While the dynamic relaxation provides a small improvement in the noise level
of the pores, simply selecting a lower, static relaxation factor achieves a bet-
ter result. The noise lowering of the relaxation factor is also demonstrated
in figure 4.11: a lower α decreases the noise within one pore. The median
filter decreases the noise, but blurs the pores. A more complex noise filter
will provide better results.
In conclusion, we recommend to use a lower relaxation factor for the weighted

back projection than would be used for a conventional reconstruction, to use
a noise filter which is more tailored to the specific sample compared to the
demonstrated median filter or to use piecewise linear fitting as explained in
chapter 5. This approach will keep the noise in the small dynamic regions
adequately small.
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Figure 4.11: The average attenuation coefficient and average standard devia-
tion in a dynamic pore (the bigger pore in the zoomed-in region in figure 4.4)
in the reconstructions which used all available projections, using different
relaxation factors. Data from both before the filling with fluid and after
are shown. The benchmark µ are shown as a constant function, with the σ
on the benchmark reconstruction denoted by the shaded areas around the
benchmark constant.

4.7 Back projected weights

Back projected weights is a reconstruction technique which is an adapted ver-
sion of the weighted back projection as described earlier in this chapter. In
this technique, the weights from the weight volume in back projected weights
can be changed before the reconstruction, instead of being determined solely
from prior knowledge, as in weighted back projection.
We can estimate which X-rays pass through only static voxels and lower the
weights on these X-rays. The result should be a lower amount of dynamic
voxels (voxels with a high weight) and therefore the reconstruction can back
project the dynamic changes in a more focussed region. In short, we use an
iterative approach to improve the weight volume, in order to strengthen the
weighted back projection. This is possibly at the cost of more noise, as we
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expect a weight volume with fewer dynamic regions to suffer more from image
noise.
In back projected weights, an additional step is added in the reconstruction.
First an initial volume and a weight volume are determined, then comes the
additional step: the weight tuning, which can be seen as the fine-tuning of
the weight volume. Finally, a weighted back projection reconstruction is per-
formed, exactly as explained earlier in this chapter.
The weight tuning starts from an initial volume and an initial weight volume
and tunes the weights based on the first steps in a ‘normal’ iterative recon-
struction, using the initial volume as the volume of attenuation coefficients.
It performs the first steps of an iterative reconstruction for a chosen set of
projections from the data: the simulation of a projection of the initial volume
and the calculation of a correction based on the measured radiographs, called
C in the following. The actual back projection step, however, is adapted.
The algorithm needs a certain threshold variable, which is called g. We will
discuss a good choice for the value of g later in this section. With this vari-
able and the correction factor C (as in equation 2.64) back projected weights
fine-tunes the weight volume:

C =
pi − qi
Li

(4.12)

f = 0.999 + 0.001 exp(− exp(1− C

g
)) (4.13)

wki = f · wk−1
i if f < 0.9998 (4.14)

wki = wk−1
i if f ≥ 0.9998 (4.15)

The numbers in this equation are determined ad hoc in order to test this tech-
nique as a proof of concept. More rigorous determination of the constants
will be necessary if the technique proves viable. The wki are assured never
to drop below wmin, which is 1 for our demonstration dataset. We discussed
the possibility of zero weights in section 4.4 and determined a weight volume
without zero weights was a better option.
Since f always has a value between 0.999 and 1, the weights will be lowered
on an X-ray i with a small correction C, while they will retain their origi-
nal value on X-rays with high correction factors. The double exponential in
the calculation of f results in a fairly ‘gentle’ rising between 0.999 and 1, as
shown in figure 4.12.

We use an estimation of the noise level in the projection images for de-
termining the value of g. An X-ray that went through a set of only static
voxels will have a correction factor C that only differs from 0 because of noise.
Therefore, the threshold should be bigger for a bigger noise level.
The noise level can be determined by selecting an outer region on the nor-
malised projections, where the sample does not enter the image. Here, all
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Figure 4.12: Plot of equation 4.13 with g = 1.

contributions to the pixels are due to noise, since the air should, normalised
on the incoming intensity I0, theoretically have an attenuation coefficient of
0. The noise level is determined to be the standard deviation σ of a Gaussian
distribution fitted to the projection values in this region.
We set g = 1.35σ. This 1.35 was determined by manually tuning this vari-
able until the resulting weight volume for the Bentheimer sandstone sample
seemed reasonable while using 600 projections to determine the weight vol-
ume (the entire last rotation, assumed to differ the most from the initial
volume). If this proof of concept technique proves viable, a more rigorous
approach to determining g will be necessary to apply the technique to more
samples.
There is a big disadvantage of back projected weights: the algorithm is not

Figure 4.13: Slices of possible weight volumes after the weight back projec-
tions. Left: g = 1.2σ, middle: g = 1.35σ, right: g = 1.5σ.

robust. A small change in the parameter g drastically changes the resulting
weight volume, as visible in figure 4.13. The left weight volume almost does
not differ from the weight volume without using back projected weights. The
algorithm did try to lower the weight of the voxels outside of the rock, but
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these were already at the minimum because of prior knowledge. The weight
volume at the right on the other hand, overestimates the lowering and only
left a few pores in the middle of the sample at a non-minimal weight. This
does not correspond to the pores that are actually changing, i.e. not all of
the pores that receive oil in this scan, are kept at a high weight by back
projected weights. It seems mostly the edge weights are lowered, which raises
the suspicion that there is an issue with the normalisation. Further research
is necessary to investigate this.

The non-robustness of back projected weights is a consequence of the fact

Figure 4.14: Comparison of a weighted back projection and a back projected
weights reconstruction when only 1/10th of the projections were used. A
zoom-in of a pore before, during and after filling with oil is shown, as well as
the full slice during filling with oil.

that the weights can only go down, never up. After enough iterations, all
weights that are on even a single X-ray i with f < 0.9998 will reach the
minimal value. In order to still use a significant amount of projections for
determining the weight volume, i.e. use more available information, the min-
imal factor f is fairly high, i.e. 0.999, so a single X-ray i has little influence.
If the weights were allowed to go up as well, the initial information on the
weight volume would be eroded and the algorithm would be similar to a con-
ventional reconstruction, with one extra iteration.
The results of a back projected weights reconstruction are shown in fig-
ures 4.14 and 4.15. Visually, there is some, but little difference between
the weighted back projection and the back projected weights reconstruction.
Quantitatively, the reconstruction of an empty pore (i.e. the zoomed-in pore
before filling) seems to be closer to the benchmark in back projected weights,
while the noise is in between the reconstructions with a continuous and a
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discrete weight volume. Overall, both reconstruction techniques result in a
similar reconstruction quality.
Since this algorithm needs careful fine-tuning of the threshold value in order

Figure 4.15: The average attenuation coefficient and average standard devia-
tion in a dynamic pore (the bigger pore in the zoomed-in region in figure 4.4)
in reconstructions which used 1/10th of projections, both with weighted back
projection and back projected weights. Data from both before the filling
with fluid and after are shown. The benchmark µ are shown as a constant
function, with the σ on the benchmark reconstruction denoted by the shaded
areas around the benchmark constant.

to provide a decent weight volume and the resulting reconstruction is not a
significant improvement upon standard weighted back projection, we do not
advise to use it in its current form.
While back projected weights is not an improvement upon weighted back
projection, it is not impossible to automatically estimate the dynamic and
stationary regions from the projection data. As demonstrated by Van Eynd-
hoven et al. [2], it is possible to estimate a static (and by its complement,
dynamic) region by minimising a measure called region inconsistency itera-
tively. The static region, in this case, is described by a B-spline closed curve
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model, so all stationary regions are connected. Anything in between static
and dynamic is not possible, so this algorithm is more suited when using a
discrete weight volume and it can be used in combination with weighted back
projection.

4.8 Conclusion

We presented a new technique to include prior knowledge on dynamic and
static regions directly into an iterative reconstruction of 4D µCT. This tech-
nique uses an extra volume, the weight volume, which outlines the regions in
the sample that are more likely to undergo the dynamic process and slightly
adapts the back projection equation. In order to use this information, an
initial volume is also required.
The resulting reconstruction, weighted back projection, improves the slices
of the Bentheimer sandstone visually by more sharply showing the borders of
the pores. Given that only a fraction of the projections (1/10th) were used,
the difference between weighted back projection and a conventional recon-
struction is striking: a conventional reconstruction can not handle this, but
the fast convergence of weighted back projection assures that the reconstruc-
tions still show the relevant dynamic changes.
Weighted back projection can be used with any iterative reconstruction.
While SIRT theoretically converges, where SART does not, it requires many
iterations, over which the influence of the initial volume will decrease slowly.
Therefore, when using an initial volume such as in weighted back projection,
a technique using a low number of iterations, such as SART, is well suited.
Note that decreasing the number of projections in a continuous scan means
that each projection spans a larger angle, thereby increasing the angular
smoothing. There will be a certain maximum angle one projection can span
to keep a sufficient image quality, given by the spatial resolution, and therefore
a minimum number of projections per rotation. Weighted back projection is
useful for set-ups where this minimum number of projections is not reached
yet. It is also possible to reduce the number of projections without increasing
the angular range per projection by using a step-and-shoot mechanism, where
the scanner rotates between projections but not during.
There are multiple possible weight volumes, even when the prior knowledge
remains the same. Weights of zero can be allowed or disallowed, and weights
can be discrete (only two possible values) or continuous. We found that
weights of zero should not be used in the weight volume, while there was
little difference between the results obtained with a continuous and a discrete
weight volume. Theoretically, a continuous range of possible weights allows
for the inclusion of uncertainty and a smaller dependence on a perfect seg-
mentation into a static and a dynamic region. Voxels can now have a weight
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in between the maximum and minimum, signifying a probability this voxel is
dynamic. This advantage of a continuous weight volume is not large enough
to generate a significant difference on the tested reconstructions.
Weights of zero should not be allowed, because they completely rule out any
errors in both the weight volume and the static component of the initial vol-
ume. However, since we work on real data, there will always be artefacts and
noise that do cause certain errors.
Weighted back projection can result in very noisy data in the (small) dynamic
regions when not paying attention to the relaxation factor and not using a
noise filter, since the back projected correction is due to a combination of
the dynamic process, originating only from the dynamic regions, and noise,
originating from the entire volume. This noise now gets back projected into
a smaller region and therefore has a larger influence there. We tested a tech-
nique to combat this, dynamic relaxation. However, it turned out that simply
using a lower relaxation factor in the iterative reconstruction provided more
improvement than dynamic relaxation. Therefore, we advise to use weighted
back projection with a lower relaxation factor compared to what a conven-
tional iterative reconstruction would require, or use a noise filter tailored to
the specific application.
There is the possibility to improve the weight volume further, after construct-
ing it from the available prior knowledge, by using the projection data. How-
ever, the technique we tested for this, back projected weights, was not a good
choice. It lowered the weights on ‘static’ X-rays iteratively. The threshold
parameter required careful fine-tuning and the resulting reconstruction did
not show significant improvement. Other techniques to improve the weight
volume, such as iteratively minimising the region inconsistency, will be more
robust and therefore a better choice.
The weight volume for the Bentheimer sandstone could be improved further
by including the prior knowledge that pores can only be filled when located
at the border, or when one of the adjacent pores was filled earlier. Using this
knowledge requires extracting a pore network (as in section 6.3) and providing
a different weight volume for each time step. After reconstruction of the first
time step with a weight volume having only the border-pores as dynamic re-
gions, a new weight volume can be created based on this first reconstruction.
This second weight volume will have border-pores and pores neighbouring
already filled pores as the dynamic region. Subsequent timesteps are recon-
structed similarly. Due to the segmentation step (yielding which pores are
filled already) and the re-calculation of the weight volume at each time step,
this technique would be computationally more complex. However, the weight
volume at each time step will have a smaller dynamic region when compared
to the case of using only one weight volume as done in this chapter, so the
reconstruction will converge even faster and require even less projections.
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An important class of research problems covers dynamic processes occurring
within a static grid, which is where weighted back projection is applicable.
An example of such a process is fluid flow through the pores of a geoma-
terial [11]. In contrast, weighted back projection is not suited for dynamic
processes which consist mainly of deformation, such as the deformation of
foams [12], since in those cases no dynamic regions can be identified. As a
future prospect, weighted back projection could be combined with motion
registration [13, 14, 15] (see section 3.3), deforming not only the volume itself
but the weight volume with it, to include more possible applications.
While weighted back projection was demonstrated on only one dataset in this
chapter, the technique has been tried on other samples with similar results.
However, for all these samples one was dealing with fluid flow through geo-
materials. In general, as the ratio between dynamic regions and static regions
decreases, weighted back projection needs less projections to converge and the
noise in the dynamic regions increases. In order to further investigate and
improve weighted back projection, i.e. evaluate its strengths and weaknesses,
future work should investigate weighted back projection on a more diverse
set of samples.
In conclusion, weighted back projection is a useful technique for 4D µCT
when the necessary prior knowledge is available. When using it, it is best
to choose a weight volume without zeroes: if the static region has a weight
value higher than zero, noise has the chance to ‘dissipate’ in the larger static
region and it allows room for error correction in the initial volume. Weighted
back projection is more likely to suffer from noise in comparison to a regular
reconstruction. This can be compensated by using a lower relaxation factor
than for a conventional reconstruction.
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Bridging 4D CT reconstruction and analysis
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5.1. STARTING SITUATION

5.1 Starting situation

Figure 5.1: A schematic example of a dynamic scan, in this case the com-
pression of an aluminium foam. Each time step or 3D volume is made out of
a subset of the total amount of projections.

A dynamic CT scan (section 2.6) is a CT scan taking a long time in which
the sample that is being scanned is undergoing changes. Taking a long time,
in this case, means performing multiple rotations, even 50 or more. This
is somewhat schematically presented in figure 5.1: each projection has both
a time coordinate (presenting at which point in time this projection was
recorded) and an angle coordinate (presenting at which point in the rotation
the scanner was), that are linearly related to each other. There are no two
projections with the same time coordinate, disregarding scanner systems with
multiple detectors, but because α ≡ α + n · 360◦ for any n ∈ Z, there are
projections having the same angle coordinates.
After a reconstruction of a dynamic CT scan, the result is generally a series
of 3D volumes. An example can be seen in figure 5.1. For clarity, not all
of the projections or reconstructed 3D volumes are shown in figure 5.1, but
only a representative sample. Each volume represents a specific time point
or time range and is created from a set of consecutive projections, which is
a subset of the total amount of projections taken during the dynamic scan.
When interpreting the result in terms of time ranges, the range of a volume
is the time needed from the first used projection to the last. When assigning
a specific time point to a volume, the centre of this range is used.
A time range is usually a complete rotation, but it can also be smaller or
larger. Time ranges may overlap or be consecutive. In theory, the time
ranges are allowed to have gaps between them, but this means that some
projections are not used, leaving the reader to wonder why these projections
were taken at all. This is therefore not done in practice.
This series of 3D volumes after a reconstruction is the starting point of piece-
wise linear fitting as described in this chapter and in the article [1]. Several
reasons led to the development of piecewise linear fitting in the scope of a 4D
µCT reconstruction.
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5.2 Motivation

5.2.1 Memory

A 4D µCT scan results in a lot of data. There are the projections themselves,
the projection data after preprocessing (normalising, ring filtering, etc.) and
of course the result: the reconstruction volumes for each time step.
To conserve computer memory, in this work all of this was saved as 8 bit data
(1 byte per pixel). Generally, at least for the first tests, the size of all these
datasets was limited. With small sizes, a typical memory size for all of this
would be:

1. Projections after preprocessing: 512× 512 pixels per projection, 8000
projections. These are taken as 16 bit images, so 2 bytes per pixel. This
is 512× 512× 8000× 2 = 4 194 304 000 bytes or 4.2 GB.

2. Reconstruction volumes: 50 time steps. Each volume being 512× 512× 512
voxels. This gives 6 710 886 400 bytes or approximately 6.7 GB.

This would give a total of 10.9 GB as an estimate of the memory needed for a
very memory-gentle saving of the data. Note that it is possible to delete these
first data set after use, leaving 6.7 GB of data. The reconstruction volumes
are of interest and it is therefore these that we want to retain. Having a few
of these dynamic scans quickly demands quite some disk space. Some way to
store this data in less memory could therefore be beneficial.

5.2.2 Noise in the temporal dimension

After creating a time series of 3D volumes from a dynamic scan, the data
is generally quite noisy, which yields uncertainty in the temporal dimension.
In figure 5.2 a three dimensional rendering of one time step is represented.
Three of the voxels in this volume have been selected and the time evolution
of their grey value is plotted. This serves to illustrate the noise level of the
temporal dimension, as a movie of the reconstructions can not be included
here due to the restrictions of paper.
It is possible to battle this excess noise with a noise filter. Note that the
‘connectedness’ in the temporal dimension is probably higher than in the
spatial dimensions - meaning that the volume one time step ahead is very
likely to bear big resemblance to the volume at hand. A voxel in a 3D volume
will also resemble its spatial neighbours, but there exist more small details
that are present in just one or a tiny amount of voxels than there are features
which appear in just one or two time steps, to disappear again almost directly
after they appeared (e.g. these would be noise instead of features).
A simple smoothing filter employed over the temporal dimension will still
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have the negative effects of blurring that it has in the spatial dimensions.
While we expect features to be bigger in the temporal dimension, they still
have edges. An edge will mostly appear due to movement in those dynamic
processes where movement is present: water that moves into a voxel, a piece
of the object that moves out of the voxel, etc. It is therefore best to pick a
noise filter that aims to save edges.
While there are noise filters available in literature (such as an anisotropic
diffusion filter with continuous switch [2]) and hence noise reduction was not
the primary reason to implement piecewise linear fitting, it did do a good job
at reducing the temporal noise too, as will be shown in this chapter.

5.2.3 Analysis

After reconstruction of the sample, we want to analyse the data to find out
certain properties of the dynamic process. Since the goal of the analysis is
different for each sample, the technique used is not a one-fits-all, even for
analysing static 3D samples. With conventional 3D analysis methods, this
is cumbersome, as the analysis has to be repeated for each time step and is
computationally intensive. It involves manual work, fine-tuning the parame-
ters for a specific application, that can not always be easily scripted [3].
A method to analyse a sample in one session - i.e. analyse the entire 4D
volume instead of one 3D volume at a time - would certainly be beneficial.
Since each sample and process is different and especially since the particular
information we want to get from the sample or process is different, we cannot
hope for an automatic analysis method applicable to each 4D volume. There-
fore we will assume there is still some manual work needed for each sample.
However, we want to minimise this manual work. Performing only one anal-
ysis on the entire sample, instead of combining multiple analyses from each
time step, would therefore be a huge step forward. Piecewise linear fitting
will aim to do just this for a wide variety of samples and processes.
Chapter 6 explains the analysis resulting from a piecewise linear fit in more
detail.

5.3 Technique

Consider one 3D-voxel of a reconstructed dynamic scan. This voxel has a
grey value for each reconstructed time step. Therefore its grey value can be
plotted as a function of the time, as is done for three voxels in figure 5.2.
Neighbouring points in this plot should have a high correlation to each other,
as explained in section 5.2.2. Therefore it is possible to fit a function to
this plot, a function that should reflect the real evolution of the attenuation
coefficient of a voxel during the CT scan.
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5.3.1 A suitable function

For determining a suitable function to fit, we consider the possible physical
explanations for a certain grey value behaviour. Remember that a grey value
represents a linear attenuation coefficient, which is determined by the mate-
rial present and its density (section 2.3.1). The dependence on the density is
linear. The dependence on the Z-value (the material) is a more complex func-
tion, including discontinuous jumps (absorption edges) as seen in figure 2.4.
While the attenuation coefficient also depends on the energy of the X-rays,
it is not considered here because the X-ray beam is assumed to remain un-
changed during the CT scan. It will therefore not contribute to any change
in grey value within one dynamic scan.
Possible behaviours of the attenuation coefficient in a voxel are:

• Nothing changes: the grey value should be a constant function. The
CT scan is static (instead of dynamic) if all voxels are like this.

• The material in a voxel changes due to movement. This means that a
certain material is moving in or out of the voxel under consideration.
An example of this is fluid flow through rock: a pore voxel might have
air in it at first and subsequently fluid as it moves through a pore. The
attenuation coefficient will therefore change from that of air to that
of the fluid and the change will be abrupt. The grey value will be a
constant at first and a different constant later, with a discontinuity at
the time the movement reaches this voxel. This is a piecewise constant
function. If the partial volume effect (section 2.5.6) is significant - i.e.
if there are distinct time steps where the voxel is filled partially with
air and partially with water - values in between these two constants
may be reached and the exact form of the function depends on how the
voxel is filled.
If the sample breaks, this is also a form of movement, where two parts
of the sample that were previously stuck together now move apart while
air (or whatever the surrounding gas or fluid is) moves in to fill the gap.

• The material changes due to a chemical reaction. A chemical reaction
only changes the molecules involved. The atoms and their ratio are pre-
served [4]. Since µ, the attenuation coefficient, depends on the atomic
number Z of the material components and on their ratio, but not on in
which specific molecules they are bound [5], µ will not change in this
case. It is a constant function.

• The material changes due to a nuclear reaction. In this case, Z of the
participating molecules does change and therefore the attenuation co-
efficient does too.
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Nuclear reactions are unlikely to occur in a CT sample. This is fortu-
nate, since the evolution could not be easily described, but if the chosen
function can still accommodate for this as well, that would be positive.

• The density changes. This can be due to a number of reasons, such as
crystallization [6], temperature changes (material expands or contracts
upon heating up [7]; note that this density change is combined with
a movement at the outer region of the expanding object) or pressure
changes (although this effect is small in solids and liquids [8]). Phase
changes, such as melting, change the density radically.

• The concentration changes. An example of this is salt that is being
added to water. Since the composition of the water changes, its atten-
uation coefficient changes as well.

The above changes that occur to the real attenuation coefficient are exactly
the changes that the dynamic CT scan is supposed to reveal. On top of this,
there are changes to the measured attenuation coefficient that are unwanted,
such as noise or limited angle artefacts (see section 2.5.3). The function that
is going to be fitted on the data should reflect the real changes as described
above and neglect the false changes of noise and artefacts.
The chosen function is a piecewise linear function. This is a line (i.e. linear),
with any slope and offset, that ends in a specific x-point, the breakpoint.
From this breakpoint, a line with a new slope and offset starts until the
next breakpoint, where another one starts. The function does not need to
be continuous at the breakpoints. In theory the number of breakpoints is
unlimited, but in practice it is bound by the number of data points we have
to fit this function to.
A piecewise linear function may be used to approximate any function [9].
This is a great property, because we do not know the exact function the
attenuation coefficient will follow. It is discontinuous, but only at specific
points (the breakpoints), as was required by the ‘changes due to movement’.
The linear part will not allow for the sudden, drastic changes that noise
induces, because the breakpoints will have to be a minimum distance apart,
which is at least two fitting points.
Note that if the dynamic behaviour of the sample is known, a less general
function that fits the specific sample better is preferable. For example, in [10],
a piecewise constant function is used with three parts, in which the first and
the third part have the same value. This will represent fewer samples, but the
samples that can be described by this function, will be better reconstructed by
using the more precise function, instead of a general piecewise linear function.
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Figure 5.2: Top left: a 3D rendering of the pores in a Bentheimer sandstone.
The temporal evolution of three separate voxels is plotted. The graphs depict
their grey value µ in function of time t, along with a piecewise linear fit to
this.

5.3.2 Fitting to data

Suppose there is data µi(t), meaning that for each time point t, there exists
a grey value µi for voxel i. This is the data of one voxel in the reconstructed
volumes. It is this data on which a fitted piecewise linear function will be
fitted. Both this data and its fit are depicted for 3 separate voxels in figure 5.2.
Note that the following fitting procedure should be repeated for each voxel
in order to result in a complete 4D volume.
The fitting procedure should be translation-invariant, i.e. not influenced by
the order at which the individual data points are visited. This is the case for
the following procedure.
The fitting procedure consists of two main steps:

1. Determine which t are breakpoints

2. Use linear regression to determine the slope and offset of the lines be-
tween each two breakpoints
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Since the resulting piecewise linear function does not need to be continuous,
we can use linear regression on the data only present between two breakpoints,
i.e. independent of adjacent data. The linear regression is a well known
function [11]:

s =
tµ− t · µ
t2 − t2

(5.1)

f = µ− s · t (5.2)

with the overline indicating an average over the data points in the time di-
mension. In this set of equations s is the resulting slope, f is the offset, t
is the independent variable (in this case time) and µ is the time dependent
variable (in this case attenuation coefficients). Every voxel in the resulting
volume will have a set of slopes, offsets and breakpoints.
The main challenge to fit a piecewise linear function now is to define the
breakpoints. For this we will use a criterium which indicates how good a
linear regression result fits the data: R2, the coefficient of determination [12].
R2 will be determined by the following formula:

R2 = 1−
∑
k(µk − νk)2∑
k(µk − µ)2

(5.3)

νk = s · tk + f (5.4)

In this, the sum over k runs over all data points (time points) over which the
linear regression is performed for this particular linear fit. µk is the ‘mea-
sured’ value of the linear attenuation coefficient and νk is the value predicted
by this linear fit. µ is the average µk over the fitted data range.
When a line is a good fit, R2 should be close to 1. When it is a bad fit, R2

will approach 0. In any case, 0 ≤ R2 ≤ 1.
We have a number of data points µk = µ(tk) in function of time coordinates
tk, sorted in ascending order, i.e. tk−1 < tk < tk+1 for all k. We choose a
fixed line length L. L will be much smaller than the available time range, but
L will encompass a reasonable amount of time points tk. If L = tk+1 − tk,
i.e. L is the length between two adjacent data points, then a fitted line of
length L will only be fitted to two data points, providing a perfect fit each
time. If this would be the case, we can not use R2 as a measure to search for
breakpoints, since it would be 1 everywhere. Therefore, L > tk+1 − tk. In
order to choose a good L, we consider the specific sample and dynamic pro-
cess of this scan. We expect a certain distance in time between two sudden
dynamic events (breakpoints), which can be estimated from prior knowledge
or from the 3D reconstructions before the piecewise linear fit. L should be a
bit below this temporal distance. Within one 4D µCT scan, L is fixed.
Now we start fitting lines of length L to the data, calculating their R2 each
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time. These R2 can be plotted in function of the first time point tk to which
this line was fitted. For clarity, we will also add the endpoint of the line,
tk + L to the notation. We will have data R2(tk; tk + L) from R2(0;L) up
until R2(T − L;T ), T being the final time point t.
The goal is to search at which tk the best breakpoints will be located, based
on the behaviour of R2(tk; tk + L). Specifically (for reasons outlined in sec-
tion 5.3.3), we will assume breakpoints are located at tk for which R2 displays
the following characteristics:

• R2(tk − L; tk) ≈ R2(tk−1 − L; tk−1) and R2(tk − L; tk) > R2(tk+1 −
L; tk+1) (this means that R2(tk − L; tk) displayed a plateau to the left
and starts to go down to the right)

• R2(tk; tk+L) ≈ R2(tk+1; tk+1 +L) and R2(tk; tk+L) > R2(tk−1; tk−1 +
L) (this means thatR2(tk+L) displayed a plateau to the right and starts
to go down to the left)

• There exists a tl for which tk−L < tl < tk and R2(tl; tl+L) < Rthreshold

Rthreshold is chosen to be 0.7 · 1
2 (R2(tk − L; tk) + R2(tk; tk + L)), but this is

not a fixed number for this algorithm. The final criterium is to make sure
there is a reasonably deep ‘valley’ between R2(tk) and R2(tk + L).
After applying these criteria, the result is a series of tk that are possible
breakpoints. To make sure the linear regression which will occur between
breakpoints has enough data, we assume each line will be at least Lmin
long. We set Lmin = L, but a different value might be chosen as well. Two
breakpoint-candidates that are closer than Lmin together will be replaced by
their average, starting with the two tk that are closest together, until every
pair of tk is at least Lmin apart.

5.3.3 Reasoning behind the breakpoint detecting algo-
rithm

The breakpoint detecting algorithm is described in section 5.3.2. As men-
tioned there, the breakpoints are picked based on the behaviour of R2(tk; tk+
L), with L a constant line length and tk the time coordinates which may be
breakpoints. To see how we got to the previously given criterium for break-
points, let’s take a look in figure 5.3 at some R2(tk; tk+L) plotted in function
of tk + L for perfect piecewise linear data. L was 10 in this case, while the
minimum length of one line was 20, which we know because this is simulated
data.
In figure 5.3 the piecewise linear function (left figure), which is our test data,
has two different breakpoints: one continuous (at t = 33) and one discontin-
uous (at t = 91). Both are clearly visible on the R2-graph (right figure), but
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Figure 5.3: Left: a random piecewise linear function without noise. Right:
the R2 corresponding to the function depicted at the left.

display different behaviours. Let’s move from left to right in the graph, so
increasing t. When the data points in range (t−L, t) belong to a perfect line,
R2(t − L, t) = 1. It is first when t reaches the breakpoint, that R2(t − L, t)
begins to drop, since it reflects how well a line is fitted to a set of data points
that are no longer described well by linear regression. When t − L reaches
the breakpoint (i.e. exactly L further), R2(t− L, t) will return to 1.
The basic behaviour around a breakpoint is therefore a large drop in R2 of
L width. Around a continuous breakpoint, this is the exact description of
the behaviour. Around a discontinuous breakpoint, we see a (smaller) peak
inside the valley of R2. This is because the fitted line will not go straight
from the line before the breakpoint to the one after. It will first attempt to
fit the discontinuous jump with a very steep line. This will temporarily cause
R2 to rise.
Since we want to find both continuous and discontinuous breakpoints, the
algorithm will search for a ‘valley’ of L wide and of a reasonable depth. The
depth is checked to rule out some noise that would otherwise disguise itself
as a breakpoint.
In figure 5.4 the criterium for finding breakpoints is used on data of a piece-
wise linear function with some added noise. The noise is very clear in the
R2-plot, yet the criterium finds the correct breakpoints and a few extra ones.
The extra breakpoints are not a problem, since a breakpoint in the middle
of a straight line results in about the same straight line fitted on both sides.
The real breakpoints in this case were t = 27 and t = 62. The breakpoints
found were t = 27, t = 63, t = 79, t = 90 and t = 105.
A reason to choose this breakpoint criterium instead of a more established
fitting algorithm such as the Nelder-Mead simplex algorithm [13] or Powell’s
method [14] is mainly its simplicity and speed. Linear regression only con-
siders each data point once and therefore the calculation of every R2 is O(n),
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Figure 5.4: Left: a random piecewise linear function with noise and the fitted
function to this data. Right: the R2 corresponding to the function depicted
at the left.

n being the number of data points, i.e. the number of 3D reconstructions.
There are n R2 to be calculated, but each one can use the results of the
previous one, each time removing one data point and adding another one, so
the complexity remains O(n). After finding these breakpoints, the final lin-
ear regression is again O(n), making the resulting complete fitting algorithm
O(n) for one voxel.
By implementing this procedure on a GPU (graphics processing unit), each
thread processing one voxel, the execution time is very short. For example,
in a case where an original reconstruction of all time steps, also on the GPU,
takes of the order of an hour, the fitting takes of the order of minutes.

5.4 Results

In the following, we denote the axis system by xyzt, with t the time dimen-
sion and the z-axis being parallel to the rotation axis of the tomographic
acquisition. The scanned sample is described in section 2.8. We divided the
dataset into time steps the length of one rotation, spaced overlappingly to
have 158 time steps. As described in section 2.8, the total scan had about
80 rotations. Each time step was then reconstructed using SART [15] (see
section 2.4.2) with the framework described in the PhD thesis of De Schryver
[16].
After reconstruction of the time steps with SART (see section 2.4.2), a piece-
wise linear fit with L = 13 was performed on the time evolution of each voxel,
as described in section 5.3.2. The original 4D reconstruction consisted of 158
time steps and therefore 158 volumes. By fitting, the amount of data was
reduced to 32 parameter volumes, meaning the voxel with the most fitted
breakpoints had 11 lines (each providing 2 parameters: a slope and offset)
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Figure 5.5: Left: xy-slice of a reconstruction of the Bentheimer sandstone.
Right: slice of the same reconstruction after performing a piecewise linear fit
on the dataset. The blue line indicated in the slices is plotted in the graphs
below.

and 10 breakpoints (excluding the first and last time step, which are the lim-
its of the time dimension. Each breakpoint is one parameter). Each line has
three parameters: a slope, an offset and the breakpoint where it ends. The
last line does not need a breakpoint, since it ends at the end of the time range
in any case. Since the amount of breakpoints can be different for each voxel,
each voxel will have a different amount of parameters to save. We saved as
many volumes as the largest amount and padded those voxels that needed
less parameters with zeros.
Decreasing the value of L increases the maximum amount of breakpoints fit-
ted for one voxel, which is the total amount of time of the scan divided by
L. In the total volume, there is almost always at least one voxel reaching
this value. However, the final analysis results (see chapter 6) proved robust
against changes in L, since extra breakpoints at static points in time do not
influence the result.
Therefore, piecewise linear fitting reduced the amount of computer memory
needed to store the results by a factor of 32

158 = 0.203. This is while saving
a complete volume for each parameter - the data storage could be further
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Figure 5.6: Left: xz-slice of a reconstruction of the Bentheimer sandstone.
Right: slice of the same reconstruction after performing a piecewise linear fit
on the dataset. The blue line indicated in the slices is plotted in the graphs
below.

reduced by only saving the amount of necessary parameters for each voxel.
Figures 5.5 and 5.6 show slices and plots of this reconstruction before and
after piecewise linear fitting. The surrounding dark pixels contain a viton
sleeve around the Bentheimer sandstone sample. The light grey round object
represents a slice through the Bentheimer sandstone. The dark shapes inside
the stone consist of pores filled with oil.
The reduction in spatial noise levels is clearly visible in both the horizontal
and the vertical directions. This is remarkable, since the fitting only affects
the t-dimension. While the noise is significantly reduced, the spatial resolu-
tion is not or barely affected, as seen in figures 5.5 and 5.6. The line profile
displays slopes at the same spots and the height of the minima and maxima
is the same, while they would be less pronounced in the case of blurring. This
is a consequence of the fact that piecewise linear fit does not operate in the
spatial dimensions, only in the temporal one.

In contrast to the spatial dimensions, the time dimension, visible in fig-
ure 5.7, experiences some smoothing. A voxel in figure 5.7 is a vertical line,
with time running from top to bottom. A dynamic pore which gets filled with
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Figure 5.7: Left: part of an xt-slice of a reconstruction of the Bentheimer
sandstone. Middle: the same xt-slice from a median-filtered volume. Right:
slice of the same reconstruction as the left figure, after performing a piecewise
linear fit on the dataset. On the bottom line histograms are shown of the
grey values within a region in the rock that contained both rock and pores
filled with oil.

oil during the scan will be displayed as a grey line at the top and black at
the bottom. While the breakpoints are usually placed on or near the “time-
edges”, a lot of these edges are still smoothed, because the fitting algorithm
placed a breakpoint right before and after the real moment oil entered this
voxel. Further research on the optimization of the breakpoint selection algo-
rithm is therefore still desirable. Alternatively, we could include the spatial
correlations to some extent.
Figure 5.7 compares the result of a piecewise linear fit with the result of a
noise filter, in this case a median filter in the time domain. The filter was
only applied in the time dimension and is applied at a strength that gives a
similar noise reduction as the linear fit, as can be verified in the histograms
and in table 5.1. On each of the histograms, two peaks are visible: one at
the grey value of the oil and one at the grey value of the rock. Table 5.1 lists
the full width at half maximum of each of these peaks. It is clear that the
piecewise linear fit gives a similar noise reduction as the temporal dimension
median noise filter. A piecewise linear fit handles discontinuities in the time
dimension (in this case, the edges of the black rectangles in figure 5.7) as
a breakpoint or a very steep slope. Both possibilities should be considered
when searching for these discontinuities, for example for an analysis as de-
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FWHM of left peak FWHM of right peak
normal reconstruction 0.0303 0.0233
median filtered 0.0213 0.0174
piecewise linear fitted 0.0212 0.0173

Table 5.1: The full widths at half maximum for the peaks visible on the
histograms in figure 5.7.

scribed in section 6.2.
The graphs in figure 5.8 illustrate how the fitting works on individual vox-

els. While the human eye would probably obtain a different fit (with less
breakpoints), the result is still good, as the most important breakpoint for
the human eye is present in the right graph (around t = 10500) and it is
approximated by a very steep line in the middle graph (around t = 40000).

Figure 5.8: Left: plot of grey value in function of time for a static voxel (who
does not undergo a dynamic process during the scan). Middle and right: a
similar plot for two different dynamic voxels.

Piecewise linear fitting can be used alongside any 4D reconstruction tech-
nique, such as an initial volume or weighted back projection, as shown in
figure 5.9. The chosen reconstruction technique can be tuned to the specific
sample and performed completely independent from the piecewise linear fit.
This combination can profit from the advantages of both piecewise linear fit
and the specific reconstruction technique, i.e. a piecewise linear fit acts as an
additional noise filter and as a stepping stone to further analysis, as will be
described in chapter 6.
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Figure 5.9: A comparison of xy-slices of reconstructions before and after per-
forming a piecewise linear fit. The reconstructions were made with three
different reconstruction techniques: normal SART, SART from an initial vol-
ume (section 3.2) and weighted back projection (chapter 4). A small part of
the slice is shown zoomed in.

5.5 Conclusion

4D micro-CT scans often suffer from large amounts of noise. Piecewise linear
fitting is a simple technique aiming to tackle this. Every 3D voxel in the
reconstructed volume gets a piecewise linear function fitted to its grey value
time evolution. This reduces the noise significantly and requires less com-
puter memory.
Piecewise linear fitting was demonstrated on a Bentheimer sandstone and
showed great noise reduction, while maintaining spatial resolution.
The individual time steps of the reconstructed Bentheimer sandstone used
overlapping ranges of projections for reconstruction, in order to have enough
time steps to perform a piecewise linear fit. A motion artefact originating
from a small number of projections therefore propagates to multiple time
steps. The individual time steps of the reconstructed Bentheimer sandstone
used overlapping ranges of projections for reconstruction, in order to have
enough time steps to perform a piecewise linear fit. A motion artefact orig-
inating from a small number of projections therefore propagates to multiple
time steps. When using overlapping projection ranges, more time steps are
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represented as an actual reconstruction. So if a motion is occurring in ∆t
time, it will be present in for example 1 reconstructed time step when using
adjacent projection ranges for reconstructions, and in more than 1 when using
overlapping projection ranges. However, the total time in which the motion
artefact is present is still ∆t .
Some techniques to deal with the reconstruction of dynamic scans mainly
improve the spatial resolution and signal-to-noise ratio of the static regions
in the sample, possibly smoothing any information present in the temporal
direction ([17], [18]). Piecewise linear fitting on the other hand also improves
the static regions - by fitting constant functions or lines with a low slope
to these pieces - but does not smooth the dynamic regions as much in the
temporal dimension, mainly due to the use of breakpoints. A dynamic scan
suffering from a lot of noise can benefit greatly from the piecewise linear fit-
ting technique.
Furthermore, if there is prior information available on the sample, it can
be used to improve the reconstruction even more. Specifically, the initial
reconstructions might be improved with any chosen reconstruction method
without affecting the piecewise linear fitting result, including filtered back
projection or iterative methods, noise filters, segmentation, etc. Combining
multiple techniques like this when they suit the sample characteristics is com-
mon practice (for example by Dobson et al. [19]).
If it is known beforehand that the time evolution of a voxel should follow a
certain function (for example piecewise constant), it is best to fit this spe-
cific function instead of a piecewise linear one. When the time evolution is
not known beforehand, a piecewise linear function is a good choice since it
emulates all other functions. It is also a simple function, making it easy to
fit and requiring less computing power than more complex functions would
need.
With this method, any time point during the scan can be shown, instead of
a discrete number of reconstructed ones. In addition, less memory is needed
to store these results, as you only need to store the parameters of the fitted
function for each voxel, instead of an entire volume for each time step.
The current implementation could be further improved by including spatial
information, so for each voxel information on its neighbours can be included
in the calculations. This could improve the correct placement of the break-
points and therefore reduce unwanted temporal smoothing. It might also
remove spurious breakpoints and therefore reduce noise even more.
Another possibility to improve the result is to impose the piecewise linear fit in
between iterations of the reconstruction, instead of as a post-processing step.
However, this technique is currently limited by the available computer mem-
ory. Since the entire 4D reconstructed volume does not fit in RAM-memory,
read- and write-operations to and from the hard disc would be required for
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each iteration, since the piecewise linear fit requires the temporal informa-
tion, while the reconstruction uses the 3D spatial volumes. This would vastly
increase the reconstruction time.
The combination of this technique with advanced 4D reconstruction tech-
niques, such as motion registration [16, 20] (see section 3.3), is a future
prospect, hopefully able to deal with more complexity in the samples.
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6
Analysis

The detailed analysis of a geological sample
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6.1. SEGMENTATION OF THE PORE SPACE

This chapter describes an analysis of the sandstone sample discussed in sec-
tion 2.8. We will combine 3D analysis techniques (as in section 6.1) with 4D
analysis techniques (based on piecewise linear fitting, see section 6.2) to get
the most complete description of oil transport through the pores of a Ben-
theimer sandstone. We represent this sample as a volume of 512× 512× 512
voxels.

6.1 Segmentation of the pore space

In the sandstone sample described in section 2.8, the pore space is of large
interest. Therefore, we performed a segmentation to segregate this pore space
from the surrounding rock. This segmentation started from the first scan de-
scribed in section 2.8, a high quality static µCT scan of the sandstone where
the pores were not yet saturated with an attenuation-matching solution, so
they were still easily discerned from the rock. We used this scan, instead of
the dynamic scan, since not all pores got filled with oil during the dynamic
process (so not all pores ended up visible) and the noise level in the dynamic
scan is significantly higher.

We used the software Octopus Analysis (formerly known as Morpho+ [1])

Figure 6.1: Left: slice of the segmented pore volume of the Bentheimer sand-
stone. Each color represents a different pore. To the right is the unsegmented
pore volume for comparison.

to perform this segmentation on a volume of 512× 512× 512 voxels, recon-
structed with SART (section 2.4.2). The following steps were taken:

1. Select a cylindrical volume of interest closely encompassing the sample
and discarding the top and bottom slices, where cone beam artefacts
(see section 2.5.7) distort the image.
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2. Select the pore space of the sample using a dual threshold filter. This
filter first encloses all voxels with an attenuation coefficient lower than a
threshold A into the segmented space. It then adds the voxels which are
between thresholds A and B and that are neighbours of a segmented re-
gion, possibly through a region of other voxels that have an attenuation
coefficient between A and B.

3. Use a shrink filter [2] to remove some of the noise, as well as (unfortu-
nately) the smallest pores.

4. Use an expand filter [2] to restore the segmented pores to their original
size.

5. Label the objects in the segmented pores. This will cause each pore to
become a separate object, which is listed.

The result is a list of 9771 objects, each representing one pore having a size of
7 voxels or larger (the used size of the shrink and expand filters was 2 voxels,
meaning too small pores were eliminated). 4224 of these segmented pores
have a size of 100 voxels or larger, which is equivalent to a diameter of only
6 voxels in a spherical shape. The relation between the number of voxels in
a pore N and the equivalent spherical diameter is the formula for the volume

of a sphere N = 4
3π
(
d
2

)3
with d the diameter in number of voxels. Since

each voxel is a cube with a side of 0.02 mm, more than half of the pores have
a volume smaller than 0.0008 mm3 (100 voxels). Therefore, most of these
segmented objects are very small pores. The largest pore consists of 20 423
voxels, which is equivalent to a sphere with a diameter of 34 voxels. This
means the largest pore has a volume of 0.164 mm3.
Figure 6.1 shows a visual representation of one slice of the pore space. Each
segmented pore is displayed as a different colour in this slice.

6.2 Time of occurrence of steepest slope

After a piecewise linear fit reconstruction, as described in chapter 5, we have
a 3 dimensional volume of 512× 512× 512 voxels in which each voxel does
not have one attenuation coefficient, but a set of parameters describing a
piecewise linear function.
We would like to know, for each voxel, if oil entered during the experiment
and if so, when exactly that happened. The theoretically perfectly recon-
structed voxel can have two possible evolutions of its attenuation coefficient
in function of time: either it is a static voxel and the function will be a
constant, or it is a voxel where oil entered, in which case the function will
consist of two constant functions with a breakpoint in between. The second
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constant, the attenuation coefficient of oil, will be lower. This breakpoint is
the time of interest t at which oil filled this voxel.
In a real reconstructed voxel, the functions will not follow this perfect be-
haviour. There will be more than one breakpoint and even the static parts
will have a slope that is not exactly zero, although it will still be small. This
is due to noise and artefacts (see section 2.5).
In these “real voxels”, the time t at which specific pores got filled with oil
shows up as a steep decreasing line or as a large discontinuous jump at a
breakpoint. In order to find this t, we searched for the time point of each
voxel where the fitted line had the steepest decreasing slope. A discontinuous
jump at a breakpoint was given a ‘slope’ of ∆µ/∆t, with ∆µ the size of the
change in attenuation coefficient and ∆t the distance between two consecu-
tive time points. This procedure is just the searching of a minimum (largest
negative value) and is therefore a simple analysis.
Static voxels, which keep the same attenuation coefficients during the entire
scan, will have a piecewise linear function fitted to them which is a combina-
tion of multiple lines with a slope close to zero. Due to noise variations, this
will not be a perfect constant function. This means the line with the steepest
slope will be somewhat random for these voxels. As such, they will obfuscate
the information of the interesting voxels. In order to avoid this noise, we add
another criterium. A line can only qualify to have the steepest decreasing
slope if it causes a change in attenuation coefficient from its start to its end
which is at least ∆µ′, with ∆µ′ a value chosen to be a little less than what
we estimate the real dynamic change to be.

The result of this analysis is a 3D volume with a resulting time t for each

Figure 6.2: The 256th (left, the slice also shown in figure 6.1) and 203th

(right) slice of the resulting 3D volume, consisting of 512 slices in total, from
an analysis searching the steepest slope after a piecewise linear fit.

voxel. Figure 6.2 shows two slices of this result. We can discern complete
pores, as all voxels in a pore seem to get a similar time t as a result. This

134



CHAPTER 6. ANALYSIS

Figure 6.3: The 156th slice of the Bentheimer sandstone. Static voxels dis-
play in grey their average attenuation coefficient over the entire dynamic
scan. Dynamic pores display in colour the result of the analysis searching the
steepest slope after a piecewise linear fit, averaged over the entire segmented
pore. Note: to properly view this figure, consult a colour print or the online
version.

corresponds to the known behaviour of one pore being filled in a short time,
shorter than our temporal resolution, making it appear ’instantaneous’ in this
reconstruction. This phenomenon is called Haines jumps [3] and one jump
does not always fill just one pore. The fact that multiple pores get filled in
one jump is also visible on figure 6.2: there are clusters of pores with a very
similar t.
Figure 6.3 shows yet another slice, this time as a combination of the atten-
uation coefficients of static voxels with the resulting time t for the dynamic
voxels. In this figure, the static voxels are averaged over all time steps, while
the t for dynamic voxels is averaged over all voxels within a pore. The re-
sulting figure therefore contains much less noise compared to figure 6.2. We
choose a different look-up-table to transfer t to a color, compared to figure 6.2,
because white, black and grey colors would cause confusion between the dy-
namic and the static part of this figure.

When plotting the distribution of the resulting time per voxel within one
pore, using the pore coordinates from the segmentation described in sec-
tion 6.1, a Gaussian behaviour is observed. An example for one such pore is
displayed in figure 6.4, where a histogram of the filling times for each voxel
within one pore is displayed along with a plotted Gaussian function. While
the distribution is not exactly Gaussian, it is quite close. This is expected
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Figure 6.4: Histogram of how many voxels within one pore have a certain
time of steepest slope.

Figure 6.5: Histogram of how many pores have a certain time of steepest
slope and of the standard deviation σ on this time.

behaviour, since all voxels within one pore should have the same resulting
filling time. The variance on this central filling time is due to the noise levels.
A small number of pores displayed bimodal filling time distributions, i.e.
there were two individual peaks instead of one. A possible explanation is
that pores with this behaviour were segmented incorrectly: each of these
could actually consist of two individual pores, segmented as if it was only
one. These pores will introduce a small error in the following analysis, since
a Gaussian function can not be properly fitted to them. The very low number
of such pores keeps the effect small.
In order to have a better view on this distribution of Haines jumps, we cal-
culated the average resulting time per pore. For this, we ignored any voxel
that did not have a resulting t, i.e. that had a ‘flat’ time evolution with no
visible jump. Also not included are those pores where less than half of the
voxels had a resulting t, since we assume in this case the pore did not get
filled and only had a few voxels provide a resultint t due to noise fluctuations.
The majority of voxels did not have a result, as they did not get filled with
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fluid in the duration of the CT scan.
These resulting times of all filled pores were plotted in a histogram, visible
in figure 6.5 (left). Two clear peaks are visible around 100 s and 250 s. These
could indicate two big Haines jumps, influencing many pores simultaneously.
The flattening towards later times is also logical: many pores are already
filled at that time, so the fluid has multiple paths to continue, instead of
a few bottlenecks where the pressure needs to build before the fluid breaks
through, as in the first Haines jumps.
Apart from an average filling time per pore, the standard deviation on this
time within a pore was also calculated and displayed in a similar histogram
in figure 6.5 (right). This is a Gaussian distribution with a tail to the right:
this is because σ can be arbitrarily large, but never lower than 0. Most have
a standard deviation below 40 s. This is a rather large deviation (the total
scanning time was 1026 s and one rotation was 12.85 s), signalling that the
data contains a lot of noise. Therefore, analysis results for a single voxel
have a large uncertainty. However, combining this analysis with the pore
segmentation provides a much better view, since we can average over all vox-
els within one pore. Therefore, the results will be less influenced by noise for
larger pores, in which the averaging happens over a larger amount of voxels.
We perform the same analysis on the phantom reconstructions. The phan-
toms are described in section 2.8. A series of projections, 600 per rotation,
are created from these with added Poisson noise. Define ∆t as the time
required to acquire a single projection. The reconstructions, the piecewise
linear fitting and the analysis (searching for the time of the steepest slope)
are handled similarly to the data processing of the real scan as described
above. When comparing the analysis result within individual pores to the
ground truth of the phantoms, we found a minimal error of 0.5 ∆t between
ground truth and analysis result and an average error over all pores of 1038
∆t (i.e. 1,73 rotations) when reconstructing from low-noise projections, and
a minimal error of 4.3 ∆t with an average error over all pores of 1218 ∆t (i.e.
2.03 rotations) when reconstructing from high-noise projections. While the
analysis result is therefore close to the ground truth, it is not perfect yet and
an optimal result requires further improvements to the technique.

6.3 Check: is the analysis result physically mean-
ingful?

In the dynamic process of the Bentheimer sandstone, the sample investigated
here, oil flows through pores and ‘pushes away’ the attenuation-matching liq-
uid which previously filled the pores. Logically, oil can only flow in those
pores that are connected to at least one other pore that is already filled with
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oil, as the oil must physically have a path to reach the new location, or those
pores that are connected to the border of the sample where the oil is pumped
in.
We want to check if the analysis result from section 6.2 is in agreement with
the previous explanation, i.e. pores are only filled at time t1 if at least one
of their neighbours was filled before t1. Therefore, we need information not
only on the pores themselves, but also on how they are connected.
Analysis of two phase fluid flow in geological materials, as the Bentheimer
sandstone sample (see section 2.8) often uses a pore network. This is a seg-
mentation of pores (as in section 6.1) combined with a segmentation of the
throats, i.e. the connections between pores. A pore network provides not
only information on the pores themselves, but also on which pores are con-
nected to which pores, along with properties of the throats such as thickness
and length.
A pore network was extracted by Tom Bultreys (PProGRess, department of
geology, Ghent University) for the Bentheimer sandstone sample using open-
source pore network extraction software from Imperial College London [4].
This network extraction started from the reconstruction of the first scan de-
scribed in section 2.8, a high quality static µCT scan of the sandstone where
the pores were easily discerned from the rock. First, voxels are separated into
pore-space and background (similarly to the method described in section 6.1,
i.e. using thresholds), upon which a distance map is performed. This means
that for each voxel, the closest distance to the border of the object it belongs
to, is calculated. The local maxima in this distance map are used as seeds
for a watershed-based separation [5] to separate individual pores from each
other, while saving the information of which pores are neighbouring which
pores. The program calculates different properties of the resulting pores, such
as the radius of the largest inscribed sphere.
With this extracted pore network, we investigated the analysis result from

section 6.2 further. We calculated the average analysis result time of filling
tj of a pore j and checked whether this pore had a neighbouring pore with
tneighbour < tj . If so, this pore was classified ‘physical’. Otherwise, it was
classified ’unphysical’. In total, 90.00% of the pores were classified physical.
Both sets of pores (physical and unphysical) are plotted as tj in function
of pore radius and in function of vertical coordinate z in figure 6.6. Visual
assessment indicates that most unphysical pores have a low tj . Indeed, cal-
culating the percentage of unphysical pores with tj < 95.92 s, which is the
lowest 5% of the complete time range, returns 38.43%. Another, smaller ef-
fect visible in figure 6.6 is that there are more unphysical pores at low z, i.e.
in the bottom of the sample. Numerically, the lowest 5% of the complete
z-range, which is all z < 76.50 voxels, hosts 10, 98% of unphysical pores.
Both effects can be explained by the same principle: a number of pores does
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not have a neighbouring pore that was filled previously, because they are
either filled from the edge of the sample (the oil was pumped in from the
bottom of the sample, i.e. low z), or they do have a filled neighbouring pore,
but this pore was filled before the X-rays turned on, i.e. before the first ra-
diograph and therefore before the first reconstructed time step. As visible
in figure 6.7, quite some pores were already filled at the very first time step.
A lot of the pores that are filled with oil from this region will be filled in
the first time steps (hence the high amount of unphysical pores at low tj).
However, some of these might still be filled later in the experiment, which
will also explain some of the unphysical pores, appearing later.

The next step in this analysis would be to segment the pores that are al-
ready filled before the first time step and include pores that neighbour those
as physical instead of unphysical. Lack of time prevented us thus far to per-
form this additional analysis. The first analysis provides a high likelihood of
the results being correct, since a high amount is physical and many of the
unphysical pores can be explained.
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6.3. CHECK: IS THE ANALYSIS RESULT PHYSICALLY
MEANINGFUL?

Figure 6.6: Plot showing the pores that have a physical or a non-physical
analysis result according to the method used in section 6.3 in function of
pore size (radius of largest inscribed sphere) and z-coordinate.
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CHAPTER 6. ANALYSIS

Figure 6.7: The central XZ-slice of the reconstruction of the Bentheimer
sandstone at the first reconstructed time step (centered at 6.4125 s). The dis-
tortions at the top and bottom are due to cone beam artefacts (section 2.5.7).
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7
Conclusion

What we learned from this research

4D µCT is a technique to non-destructively investigate dynamic processes in-
side samples. Unfortunately, one scan (one time step) requires a finite time to
perform, therefore limiting the temporal resolution when using conventional
algorithms dealing with reconstruction and analysis.
As explained in chapter 1, the goal of this research was threefold:

1. Developing methods to use prior knowledge in an iterative reconstruc-
tion.

2. Extend the existing 3D analysis methods to 4D, with time being the
extra dimension.

3. Combine both reconstruction and analysis in one framework.

Ultimately, all three of these goals are aiming at improving the reconstruction
and analysis of 4D µCT.
We tested all techniques on our demonstration dataset of fluid flow through a
Bentheimer sandstone. This porous rock was first saturated with an attenuation-
matching fluid, i.e. a fluid with a similar attenuation coefficient to the sur-
rounding rock, filling all the pores. The dynamic process was the pumping
of oil through this sandstone.
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The first goal was achieved with the development of weighted back projec-
tion in chapter 4. This iterative reconstruction technique uses two types of
prior knowledge, an initial volume and a weight volume. The initial volume
is typically the reconstruction of a high-quality µCT scan before the dynamic
process was initiated or after it has concluded. For our demonstration sam-
ple, it was a scan from before the oil intrusion.
The weight volume is a volume indicating which regions in the sample are
likely to change in attenuation coefficient due to the dynamic process and
which are static. For our sample, we based this weight volume on a high-
quality µCT scan of the porespace of the Bentheimer sandstone, i.e. a scan
performed before the pores were saturated with the attenuation-matching
liquid.
Both the initial volume and the weight volume are used to adapt an iterative
reconstruction such as SART. The values in the weight volume determine how
much of the back projected correction is assigned to dynamic or static voxels.
The resulting reconstruction, weighted back projection, is able to reconstruct
dynamic µCT scans using fewer projections per rotation. The fast conver-
gence provides good results when only using 10% of available projections in
our demonstration dataset, while conventional reconstructions are not able to
reconstruct any relevant information in this case. Using only 10% of available
projections means we are simulating a faster scanner, that would rotate 10
times faster, while taking the same amount of projections per time unit. Such
a scanner could use this technique to provide the same reconstruction quality.
Faster processes could be imaged in this way. Unfortunately, the mechanical
components of the scanners at UGCT do not allow this high speed, so we
have not demonstrated weighted back projection on a real faster dataset.
A disadvantage of weighted back projection is the high susceptibility to noise
in the dynamic regions. We tested several techniques to combat this, in-
cluding one developed in this research, dynamic relaxation, and found that
the simplest way was to decrease the relaxation factor compared to the best
choice of relaxation factor for a conventional reconstruction.

Goal nr. 3 was achieved in chapter 5 by bridging reconstruction and anal-
ysis with the technique of piecewise linear fitting. In this technique, we fit
a piecewise linear function to the time evolution of the attenuation coeffi-
cient in each voxel after a 4D reconstruction with any chosen reconstruction
technique. This function can approximate any function, even discontinuous
ones, and is therefore a suited choice when it is not known in advance what
function the time evolution of the scanned dynamic process will follow. The
simplicity of the function allowed us to implement the fitting in an O(N)
(with N the number of time points) algorithm, which in turn made it suited
to implement on a GPU, since these are designed to perform many small
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CHAPTER 7. CONCLUSION

computations in parallel, so less complex calculations for one thread are an
advantage. The parallel implementation on a GPU is a necessity because of
the gigantic amount of voxels (109), since the fitting would otherwise require
hours to perform.
The result of a piecewise linear fit was demonstrated on the Bentheimer sand-
stone sample. The noise in the reconstructions is significantly reduced. Even
though piecewise linear fitting only operates in the temporal dimensions, the
noise reduction also occurs in the spatial dimensions, without affecting the
spatial resolution.
As demonstrated in chapter 5, piecewise linear fitting provides a similar noise
filtering effect as noise filters, which are available in many forms and for many
different applications. The noise filtering of piecewise linear fitting was a
very positive effect, since it did not decrease the spatial resolution. The main
advantage of piecewise linear fitting however is the fact that it is a bridge
towards analysis.

In chapter 6, we explored the analysis of the Bentheimer sandstone, start-
ing from the piecewise linear fitting result from chapter 5. The different
time steps resulting from a reconstruction were transferred into a function
describing the time evolution of the attenuation coefficient in each voxel with
piecewise linear fitting, effectively linking the discrete time steps to a contin-
uous range. This allowed the analysis in chapter 6 to make use of the fourth
dimension, instead of repeating a 3D analysis for each time step, effectively
fulfilling goal nr. 2.
More specifically, we examined the time points at which specific pores were
filled with fluid or whether they were never filled during the scan. We seg-
mented the pore space with a standard 3D analysis to be able to examine the
properties per pore, so the chapter demonstrates a combination of 3D and 4D
analysis. The segmentation of the pore space also shows that the result of the
4D analysis is physically logical. The resulting time of filling for each voxel
within a pore is similar and the distribution follows a Gaussian distribution.
This is logical, since we know that one pore is filled during a very short time
that can be considered instantaneous. Therefore, the distribution of filling
times for all the voxels within one pore should show a peak. The width of the
fitted Gaussian function indicates the uncertainty. By using a pore network
with information on which pores neighbour which pores, we also verified an-
other logical property of the analysis result: pores can only be filled with oil
after one of the neighbouring pores was filled with oil, since the oil needs a
physical path to reach a new pore.

4D µCT is still an open subject with room for progress. A future prospect
is the combination of weighted back projection with motion registration (see
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section 3.3), since weighted back projection is suited for dynamic processes
occurring within a static grid, while motion registration handles deformation
in samples. Presumably, a smart combination of both could handle a very
wide range of applications.
The possibility of an analysis resulting from a piecewise linear fit was demon-
strated on one sample in this thesis and on another in the paper describing
this technique. It would be interesting to see how general the possibilities are
and how many different applications could benefit from it, since the require-
ments for analysis are so different for each research.
We briefly discussed the many developments in the domain of 4D µCT in
chapter 3, most being applicable to a certain range of applications. The fu-
ture will probably bring many more possibilities and techniques to handle
4D data. Especially the use of neural networks shows a lot of potential, with
many researchers exploring this promising avenue. One of the big drawbacks
of neural networks, the requirement of a high amount of training data, seems
to be diminishing with smart ways to increase the use of a single training
data set or the use of good simulations. I also expect big improvements by
using more external measurements as prior knowledge for the reconstruction
of a dynamic process. For example, for fluid flow through a geomaterial, the
total amount of fluid pumped into the sample at each time point could define
limits on the reconstruction that could greatly improve the final image qual-
ity. Hopefully, in time, techniques will be developed having fewer limitations
and more advantages, making them ever more useful so the limits of research
can be moved further and further.
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